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Design of FIR Digital Phase Networks

KENNETH STEIGLITZ, FELLOW, IEEE

Abstract—The problem of the minimax design of FIR digital filters
with prescribed phase characteristics and unit magnitude is a nonlinear
optimization problem. In this paper it is approximated by a linear
programming problem, and it is shown that the solution of this linear
program is optimal to first order. That is, if 5 and e are optimal
deviations of magnitude and phase characteristics, then the actual devia-
tions obtained from the linear program solution satisfy & < 59 + €3
and e < eg(1 +8¢)/(1 -50). Numerical examples are given, including
design results for full-band M-term chirp filters which (like linear phase
filters) can be implemented with (M + 1)/2 multiplications per point.

I. INTRODUCTION

E consider here the design of FIR digital filters with

prescribed phase characteristics and approximately unit
magnitude response, using a weighted Chebyshev error crite-
rion. Such filters are the FIR counterpart to IIR all-pass filters
(1], [2] and have the same applications—nonlinear phase
equalization, pulse shaping for chirp radar, and so on. These
FIR filters can be implemented readily with the FFT or CCD
devices, advantages over IIR filters. On the other hand, all-
pass IIR digital filters can have magnitude response precisely
one, but FIR filters can only approximate an all-pass charac-
teristic. Thus, the design problem we consider here is more
complicated than IIR all-pass design in that we must approxi-
mate magnitude and phase simultaneously. However, the IIR
problem has parameters which enter nonlinearly into the trans-
fer function, and the phase optimization problem is inherently
more difficult. It requires an algorithm like that of Davidon-
Fletcher-Powell, and is limited to relatively few parameters.
We will apply linear programming to the FIR phase design
problem, and show that this approach is easily practical for
filters of length of at least 61. Also, when the phase character-
istic has certain symmetries, the FIR approximating filter can
be implemented with one-half the usual number of multiplica-
tions, in a manner analogous to the linear phase case.

Previous work by Cuthbert [3], Holt et al. [4], and Razzak
and Cuthbert [5] takes the following approach. Let the un-
known transfer function be

M-1 .
Hw)= Y hyelk, 6))
k=0
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Fig. 1. Optimal approximation of a point at an angle of «/4; fitting
real and imaginary parts can result in a radius deviation of x.

Let M=2L +1 be an odd integer (the even case is similar),
and write

. . L
e’L“’H(w)=hL + Z (hL—k +hL+k) cos kw
k=1

L
+j 3 (hp-k - hpai)sinkw
k=1

L L
=Y apcoskw+j Y bysinkw.
k=0 k=1

&)

If the desired complex-frequency response is D(w), we can
separately approximate Re [e/Z“D(w)] by the cosine poly-
nomial in (2) and Im [e/£“D(w)] by the sine polynomial,
using the Remez algorithm [4], for example. This approach
is quite practical, but suffers from two important difficulties.

1) Suppose for illustration that we wish to.approximate unit
amplitude at an angle of 7/4 at some particular frequency, and
that the optimal approximation results in an amplitude devia-
tion of & and angle deviation of e. : Fig. 1 shows the sector
within which the optimal solution lies at that frequency. Also
shown is the smallest box which can, in general, result from
the method above, corresponding to a radius of x. An applica-
tion of the law of sines shows that

x =(1+8) (cos € +sin ¢€). 3)
Take e = § for simplicity; then to first order
x=~]1+28. “)

That is, the deviation in magnitude resulting from the minimax
approximation of real and imaginary parts can be twice the
optimal value,

2) The above approach does not allow the independent
weighting of radius and phase angle deviations.
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Fig. 2. The constraints corresponding to optimal approximation.

Fig. 3. Linear constraints approximating those of Fig. 2.

We will now show that when the desired radius is 1, the use
of linear programming can, to first order in € and &, eliminate
both of these problems.

II. LINEAR PROGRAMMING FORMULATION

The general problem of simultaneous magnitude-phase mini-
max approximation can be stated as follows. We are given
desired values of magnitude R, and phase 6 at a set of fre-
quencies wg, k=1, ++,K on a grid, O0<wi <, and a cor-
responding set of tolerances 7M,, and TP,. We wish to find
M real coefficients h;,i =0, -+ ,M - 1 in the transfer function

M-1 .
Hw)= Y heliv ®)

i=0
so as to minimize the “squeezing” parameter A in
| Arg H(wy) - 6| S ATP,. 6)

These constraints are nonlinear in the parameters h;. Fig.2
shows these constraints at one particular frequency and value
of R.

The idea of our approach is to replace this nonlinear prob-
lem with a linear one, so that we can use the highly reliable
simplex algorithm for linear programming [6]-[12]. Fig. 3
shows linear constraints which approximate those in Fig. 2—
we will study the question of how closely in the next section.
These constraints in algebraic form are

i(yk sin Gk +xk cOs Gk - Rk)< )\TMk
t(yg cos Oy - Xy sin 0;) < ATP, )
where

M-
Yi =Im[H(wy)] =- > hysin iy

i=0

xx = Re [H(wyg)] = Mz_‘_l h; cos iwy. 8)

i=0

el
Y

.
N\ f
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f

Fig. 4. The linear program results in deviations §; and e, ; the actual
deviations can be 5 .and e.

The linear programming problem is then to find the h; and A
so as to minimize A subject to the linear constraints (7).

A program was written especially to implement the simplex
algorithm for this problem. This program is similar to that
given in [11], except that the tableau elements now cor-
respond to the more complicated inequalities in (7). The
two-phase simplex method was used to solve the dual prob-
lem [6] with particular care in the resolution of ties in the
pivot row selection,

III. BoUNDS ON QUALITY OF THE LINEAR
PROGRAMMING SOLUTION

Suppose for simplicity that the desired values R, are all one;
this is the phase approximation problem on which we want to
concentrate. Also, assume that the phase tolerances are all
equal, and so are the magnitude to tolerances, and let

81 =NTM
€1 =N\ TP ©)

where ), is the optimal value of X in the solution of the linear
program (7). Also, as shown in Fig. 4, let § and e be the maxi-
mum possible actual magnitude and phase deviations. From
the figure it is clear that

tane=¢, /(1 - &;)
(1+8)* =€l +(1+5,). (10)

Thus, we can state the following.

Result 1: 1f in the R =1 (all-pass) case the linear program
yields optimal values of magnitude and phase deviations &,
and €, then the actual deviations satisfy

2+ 2
s<VIFo)Fa- 1<5, +21 26‘ (11)

e<tan™ [e;/(1-8,)] <e; +€;5, +€,62/(1 - §y). 12)

This result tells how good the actual approximation is from
the results of the linear programming problem. It reveals that
the actual deviations are equal to those of the linear program
to first order in the (small) parameters ¢, and §,.

Next let

8o = Ao TM

€0 =N TP (13)

be values of phase and magnitude deviations which are rruly
optimal for the ideal problem of (6). The corresponding
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Fig. 5. The optimal deviations are 5 and eq; the linear program devia-
tions are 5§, and ¢ ; the actual deviations can be § and e.

-

Fig. 6. Approximation to.zero. The optimal deviation is 8¢ and the
actual deviation can be 5.
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Fig. 7. The addition of linear constraints decreases the possible actual
deviation.
geometry is shown in Fig. 5, and implies that
sin €g = €, /(1 +8,)
cos €0 =(1-84)/(1-8o)
tane=¢ /(1 - §,) .
(1+8)* =€} +(1+85,). (14)

Some algebra yields the following.

Result 2: If in the R =1 (all-pass) case &, and €o are the
ideally optimal magnitude and phase deviations (the solution
to the nonlinear problem), then the actual deviations satisfy

§<8, +62 (15)

1+,
1-8,

4 f1+8 .
e<tan! (1-60 taneo)<eo

0

(16)

Thus, we are assured that the actual deviations are within
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second-order terms of optimal—we say, therefore, that the
linear program yields results which are “optimal to first order.”

When the desired magnitude is zero in some band, this par-
ticular approximation of the nonlinear problem by linear pro-
gramming does not work as well, and in fact is no improve-
ment over approximating real and imaginary parts separately.
Fig. 6 shows that the actual deviation & can be v/2 times the
optimal 8o, a possible sacrifice in rejection in a stopband of
about 3 dB. The situation can be improved by adding linear
constraints as shown in Fig. 7 to approximate the circle with
an octagon instead of a square. This guarantees that § <
80/cos (n/8) = 1.082398,, or only about 0.69 dB. Since we
were mainly interested in phase approximation, these extra
constraints were not included in the program. (This idea can
clearly be extended to an n-gon approximation to the circle
with a guarantee of § < §4/cos (n/n)).

IV. SYMMETRY PROPERTIES OF CERTAIN
ALL-PASS PHASE SPECIFICATIONS

We now remind the reader of some simple but useful sym-
metry properties of the Fourier coefficients when the desired
function e/L“H(w) is all-pass with an (odd) phase function
¢(w) which is symmetric or antisymmetric about w = /2.
Suppose that we expand the desired response in a Fourier
series: :

eleH(w) = el¢(w)

= i ge ek, an

k=~

Then

1 (7,

= jl¢(w)+kw]

gk 2"[" e dw

1 "

=— f cos (¢(w) +kw)dw
™ Jo
1 "

=— f cos ¢(w) cos kw dw
T Jo

l n
- ;f sin ¢(w) sin kw dw. (18)
o

If ¢(w) is even about m/2 and K is even, the second integral
vanishes, so gx =g.,. If, on the other hand, ¢(w) is even
about 7/2 but k is odd, the first integral vanishes and 8 =
-&-x- This translates into the following. -

Result 3: If the desired transfer function e/L“H(w) is all-
pass with a phase function ¢(w) even about n/2,

k even
k odd. 19)

We can insist on these conditions when ¢(w) is even, thus
reducing the number of unknown parameters in (2) to
(M +1)/2. Tt turns out that the linear programming formula-
tion is symmetric and the optimal solutions satisfy the con,
clusions of Result 3 when ¢(w) is even, without additional

hp -k =hp.x

hy-x=-hpex
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constraints. (A specialized and faster program ~ould be written
for this case, as in [12], but was not done here.)

The conclusions of Result 3 hold for the important case of a
full-band chirp filter, and show that such filters can be imple-

mented with (M + 1)/2 multiplications per point, just as linear »

phase filters can.

When ¢(w) is an odd function about /2, we have a similar
property.

Result 4: If the desired transfer function e/L“H(c) is all-
pass with a phase function ¢(w) odd about n/2,

hL_k=hL,,k=0 k odd. (20)
V. EXAMPLES
Example 1 (Chirp All-Pass)

The first example deals with the important class of digital
chirp filters, with phase specification

ArgH(w)=—(—M—21)w- 8o~ n/2)? @1)

and group delay

d
= e — H
T=-2 Arg H(w)

- (M - l) +28(c - 7/2). 22)
The parameter § must be chosen with some presence of mind,
since Arg H(m) must be a multiple of 7. We ran two sets of
designs, for §=8/2m and 16/2n, with the results shown in
Table I.

Figs. 8, 9, and 10 show the magnitude (in decibels), group
delay, and impulse response, for the last case, M =61 and
B=16/2n. The impulse response satisfies the symmetry rela-
tions (19) to nine significant figures, and the upper bound (11)
checks.

This particular magnitude characteristic is very nearly equi-
ripple. The reason for this can be seen by examining Fig. 4.
When the solution lies on the rightmost vertical constraint
boundary, for example, the actual magnitude (assuming
€ =8,)

148, <1+8<V{A+5,2 +57<1+85, +52 (23)

so when 8, is small (as it is when M = 61), the magnitude
response at a positive ripple is always within §% of | +38,.
When M =15 there is more departure from equiripple be-
havior. In general, the solution points wander around inside
of rectangles, since we are simultaneously approximating two
functions, and we should expect more complicated looking
minimax solutions than we are used to in the one-function
case,

Example 2 (Twin-Delay All-Pass)

This is a specification of a filter of length 61 with unit mag-
nitude and a delay of 34 in [0,0.25] and 26 in [0.25,0.5],
with equal tolerances on magnitude and phase. The resultant

TABLE I
Number of Actual
M Grid Points LP Deviation Magnitude Deviation
g=8/2n
15 250 1.922 D2 1.941 D-2
31 500 1.667 D-3 1.669 D-3
61 610 3.793D-4 3.793D-4
g=16/2%
15 250 2.299 D-1 2512 D1
31 500 7.745 D-3 7.774 D-3
61 610 8.765 D-4 8.769 D-4

MAGNITUDE RESPONSE (x 1073)

aAannnn

o [¢H] 10 LS 20 25 30 s 40 45 50
FREQUENCY IN FRACTIONS OF TWO PI(xI0™')

Fig. 8. Magnitude in decibels versus frequency for a full-band chirp
filter with M = 61, Example 1.
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Fig. 9. Group delay versus frequency for Example 1.
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Fig. 10 Impulse response for Example 1.
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Fig. 11. Magnitude in decibels versus frequency for a twin-delay all-
pass filter, M = 61, Example 2,
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Fig. 12. Group delay versus frequency for Example 2.
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13. Magnitude in decibels versus frequency for a sine-delay all-
pass filter, M = 61, Example 3.
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Fig. 14. Group delay versus frequency for Example 3.

linear programming deviation is 2.846 D-2 and actual magni-
tude deviation 2.885 D-2. Figs. 11 and 12 shows the resulting
magnitude and group delay. Since the phase has a discontin-
uous derivative (the delay is itself discontinuous), this is a
relatively difficult example.

Example 3 (Sine-Delay All-Pass)

As a last example, we approximate a unit amplitude and a
phase characteristic

Arg H(w) = - (—M—;l) w+2n(1 - cos w) (24)
corresponding to delay
M- 1
(W)= (—-2—) - 2msin w. (25)
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The resultant magnitude and delay for M =61 are shown in’

Figs. 13 and 14. The actual magnitude deviation is in this case
9.310 D-4, much lower than Example 2 because of the rela-
tively smooth delay curve,

V1. NoTE oN TIMING

All jobs were run in double precision on an IBM 3033 com-
puter at Princeton University, using Fortran H. The execution
times were at most 1.3 s for M =15 and 250 grid points, 9's
for M =31 and 500 grid points, and 45 s for M = 61 and 610
grid points.

VII. CONCLUSIONS AND COMMENTS

We have considered here the desi  of (near) all-pass FIR
digital filters with prescribed phase - sponse, the FIR counter-
parts to the usual IIR all-pass pha-  etworks. This nonlinear
problem is well approximated by a . .iear program—mathemati-
cally to within second-order terms in the deviation—and close
enough for all practical considera“ions. This provides another
example of the flexibility of the near programming approach
to design optimization problems in digital signal processing,
especially when the simplex algorithm is specially tailored to
the problem.

In this paper two functions are being approximated simulta-
neously in a minimax sense, and the resultant approximants
sometimes look quite different from those obtained on the
more familiar linear-phase magnitude approximation problem.
The author does not know whether the Remez algorithm can
be applied successfully to the problem considered here.

It is also an open question whether the delay instead of the
phase can be approximated in a near-minimax sense with such
a linear programming formulation.

The FIR near all-pass filters obtained in this paper seem
quite practical for phase equalization and chirp processing.
The chirp filters of length 61, for example, require only 31
multiplications per point and have magnitude ripple of less
than 0.00762 dB full band with comparable phase accuracy.
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