
SIAM J. COMPUT.
Vol. 10, No. 4, November 1981

1981 Society for Industrial and Applied Mathematics

0097-5397/81/1004-0005 $1.00/0

SOME COMPLEXITY RESULTS IN THE DESIGN OF
DEADLOCK-FREE PACKET SWITCHING NETWORKS*

SAM TOUEG- AND KENNETH STEIGLITZ*

Abstract. Deadlocks are very serious system failures and have been observed in existing packet
switching networks (PSN’s). Several problems related to the design of deadlock-free PSN’s are investigated
here. Polynomial-time algorithms are given for some of these problems, but most of them are shown to be
NP-complete or NP-hard, and therefore polynomial-time algorithms are not likely to be found.

Key words, packet switching network, deadlock, complexity, NP-complete, flow control, routing,
computer network, communication network

1. Basic definitions. A packet switching network (or PSN) is a directed graph
G (V, E); the vertices V represent processors, and the edges E represent communi-
cation links. We assume messages, called packets, are to be passed between processors.
Each vertex vi has an associated constant bi, the number of buffers at this vertex; a
buffer can hold exactly one packet. Associated with each packet is an acyclic route
/-)1, V2," Vq, which is a path in G. Vertex /)1 is the source, and vq is the destination
vertex for the packet. We assume a fixed routing procedure [KL], where a packet’s route
is determined at the source node. We may also assume that the route of a packet is
included as part of the message in the packet, although in practice the packet could
hold only the source and destination, with each processor in the network responsible
for deducing the next vertex to which the packet is to be passed.

The moves made by the network are of three types:
1. Generation. A vertex v creates a packet which is placed in an empty buffer of v.
2. Passing. A vertex v transfers a packet in one of its buffers to an empty buffer

of vertex w, where v- w is an edge, and the route for the packet has w
following v. The buffer of v holding the packet becomes empty.

3. Consumption. A packet in a buffer of v, such that the destination for the packet
is v, is removed from that buffer and the buffer is made empty.

2. Flow control procedures. A flow control procedure (or controller) for a network
is an algorithm that permits or forbids various moves in the network. One of the key
problems in packet switching is preventing deadlock states, which are situations in which
one or more packets can never make a move. Deadlock states have been observed in
existing packet switching networks [KL]; they tend to occur under near-saturation
input load [GHKP]. For example, in the network of Fig. 1, if all physically possible
moves are permitted by the controller, vl generates bl packets with destination re, v2
.generates be packets with destination v3, and v3 generates b3 packets with destination
Vl, then all buffers of all vertices will be full, no consumption moves can take place
without a pass move, and no generation can take place. It is not hard to see that the
network is deadlocked.

* Received by the editors July 11, 1979, and in final form October 29, 1980. This work was supported
in part by the National Science Foundation under grant GK-42048, and in part by the U.S. Army Research
Office, under grant DAAG29-75-0192.

t Department of Computer Science, Cornell University, Ithaca, New York 14853.
$ Department of Electrical Engineering and Computer Science, Princeton University, Princeton, New

Jersey 08544.

7O2

COMPLEXITY RESULTS, DEADLOCK-FREE NETWORKS 703

(C)

FIG. 1. A network exhibiting deadlock with a trivial controller.

However, if we use a controller that simply prohibits the generation (but not
passing) of a packet into the last empty buffer at a vertex, then we can show that at
least one empty buffer must exist somewhere in the network. Hence it is always possible
to pass or consume some packet if there are any packets in the network, and this
controller is deadlock-free.

In what follows, deadlock is assumed to occur with respect to some controller; that
is, a controller is deadlock-free (or DF) for a given network if it does not permit this
network to enter a state in which one or more packets can never make a move permitted
by that controller.

3. Fundamental questions. We have assumed that each packet is generated with
a fixed route to travel. There are still several options left to us:

1. Are we looking for a DF uniform controller, one that is deadlock-free for all
networks? The design of optimal DF uniform controllers (optimal in the sense
that they put the least restriction on moves) was investigated in [TU], [TO].

2. Are we designing a particular network with its flow control procedure such that
this network is DF?

We investigate here the complexity of two deadlock-exposure problems related
to the latter approach.

4. Deadlock-exposure problems. We consider the following two problems.
Problem 1. Given a network G and a set of source-destination routes in G, is the

network exposed to deadlock (i.e., is there a deadlock state in G)?
Problem 2. Given a network G and a set of rurce-destination pairs of nodes in

G, is there a corresponding set of routes in G such that the network is not exposed to
deadlock?

The complexity of each of these two problems depends on the given buffer
configuration of G and on the given flow control procedure applied in G. There are
two possible buffer configurations for a network G (V, E). With a general buffer
configuration, each node vi V has an individual buffer capacity bi. With the regular
buffer configuration, the buffer capacity b is the same for all the nodes v V. We
consider four types of flow control procedures. The last three are commonly used in
existing packet switching networks to avoid performance degradation under near-
saturation input load.

(1) Unrestricted flow control. A node v accepts a packet p provided it has at least
one empty buffer available for storing p. There are no other restrictions on packet
moves.

(2) Isarithmic flow control IDA], [PR], [PRH]. With this form of flow control we
have an additional restriction on the total number of packets that might be contained
in the network at any given time. A packet can be generated in a node if this node has
at least one empty buffer and the total number of packets in the network is less than a
certain constant K.

704 SAM TOUEG AND KENNETH STEIGLITZ

(3) Individual end-to-end window flow control [GHKP], [KL], [PRH]. As in (1)
with the following additional constraint. Each (vi, v.) source-destination pair has a
constant kij associated with it; kij is an upper limit on the number of packets with source
vi and destination vi. Such a packet can be generated in the node vi provided vi has at
least one empty buffer and there are fewer than ki. such packets in the network.

(4) Regular end-to-end window]tow control [KL], [GHKP], [[RH]. As in (3) but

kii is the same constant k for all the (vi, vi) source-destination pairs.
The complexity of Problem 1 and Problem 2 under the different buffer configur-

ations and different flow control procedures is summarized in Table 1 and Table 2.

TABLE 1
Time complexity of Problem 1.

individual regular
Flow control applied unrestricted isarithmic: K end-to-end: kij end-to-end: k

General buffer conf.: Polynomial: Polynomial: NP-complete NP-complete
bi O(IEI) 0(I V31)

Regular buffer conf.: Polynomial: Polynomial: NP-complete NP-complete
b O(IEI) o(Ivl)

TABLE 2
Time complexity of Problem 2.

individual regular
Flow control applied unrestricted isarithmic: K end-to-end: kii end-to-end: k

General buffer conf.: NP-complete NP-complete NP-hard NP-hard

bi (in NP?) (in NP?)

Regular buffer conf.: NP-complete NP-complete NP-hard NP-hard
b (in NP?) (in NP?)

THEOREM 1. If the network G V, E) has a general buffer configuration and the
unrestricted flow control is applied, then Problem 1 is solvable in O([EI) time.

Proof. It is easy to verify that such a network has a deadlock state if and only if
the routes in this network form at least one cycle. A simple breadth-first-search along
the routes of G may be used to detect such a cycle.

COROLLARY 1. If the network G V, E) has a regular buffer configuration and
the unrestricted flow control is applied, then Problem 1 is solvable in O(IEI) time.

Proof. Immediate consequence of Theorem 1.
THEOREM 2. If the network G V, E) has a general buffer configuration and the

isarithmic flow control (with constantK) is applied, then Problem 1 is solvable in O([VI a)
time.

Proof. In such a network G there is a deadlock state if and only if the routes of G
form at least one cycle such that the sum of the buffer capacities of the nodes along
this cycle is at most K. A slight modification of Warshall’s algorithm can be used to
determine the minimal cycle formed by the routes in G (minimal in the sense that the

In the formulation of these problems both the buffer configuration and the flow control procedure,
with the corresponding constants, are given as part of the input.

COMPLEXITY RESULTS, DEADLOCK-FREE NETWORKS 705

sum of the buffer capacities of the nodes along this cycle is minimal with respect to all
the other cycles). [q

COROLLARY 2. If the network G V, E) has a regular buffer configuration and
an isarithmic flow control is applied, then Problem 1 is solvable in O(VI3) time.

Proof. This is a particular case of Theorem 2. q
In [VA] an exponential-time algorithm is given to solve Problem 1 when G has a

general buffer configuration and an individual end-to-end window flow control is
applied. We now prove that, in this case, Problem 1 is NP-complete and, consequently,
a polynomial-time algorithm is not likely to be found.

THEOREM 3. If G has a general buffer configuration and an individual end-to-end
window flow control is applied, then Problem 1 is NP-complete.

Proof. Let G (V, E) be a network with a general buffer configuration and an
individual end-to-end window flow control. In Problem 1 we ask if such a network has
a deadlock state. This problem is in NP; we can guess a deadlock state and check its
consistency with the given buffer configuration and end-to-end window flow control in
polynomial time. We now show how to reduce (in polynomial time) the CNF-
satisfiabilit problem [AHU] to Problem 1. Let F FIF2. Fq be an expression in
CNF, where the Fi are the factors. Let Xl, x2,’ , xn be the literals in F. We construct
the following network G (V, E). The nodes V of G are given by the set

V {v } U {Fil for 1 _-<] _-< q } U {x, 2g, w,, for 1 _-< _-< n }.

The edges of G are given by the following set

E {(v, F)I for 1 <- j _-< q}

U {(w, v), (#,, v)l for l<-i<-n}

[.J {(Xi, Wi), (.i, li), (wi,i)l for l <--i<--n}

[,_J {(F/., xi)[xi is a variable in F/}
[..J {(El, i)l)i is a variable in Fi}.

The buffer capacity is b 1 for all the nodes except for the node v which has q buffers.
The routes in the network are the following:

1. (v,F/) for l<-j<-q.
2. (Xi, Wi, i, li), (We, IA) and (li, U) for 1 <=i<-n.
3. (F., xi) if xi is a variable in F..
4. (F/, $i) if .i is a variable in F..

The upper limit on the number of packets in each of these routes is set to one (this is
a case of regular end-to-end window flow control with kii k 1). We claim that this
network has a deadlock state if and only if F is satisfiable. Suppose F is satisfiable. In
each node F we generate a packet whose destination is the node xi or .’i where xi 1
or i 1 is a variable assignment that makes the factor F true. In each such xi or
node we put one packet whose route is (xi, wi, $i, i). The next node in the route of this
packet is either wi or i, and in such a node we generate a packet whose destination
is the node v. Finally, in v we generate q packets, one in each of the (v, F.) routes. A
variable assignment that satisfies F cannot include both xi 1 and $i 1; therefore no
(Xi, Wi, i, li) route has a packet in both the Xi and)i nodes; this is consistent with
the end-to-end window flow control upper limit of one packet per route. It is easy to
check that the network is in a deadlock state. Suppose now that the network has a
deadlock state. Then there is at least one cycle of deadlocked packets in this state.
Therefore, the node v must be in the deadlocked set of nodes, and there are q packets

706 SAM TOUEG AND KENNETH STEIGLITZ

filling all the buffers of v. Since we may have at most one packet in each of the (v, F.)
routes it must be that each (v, F.) route has exactly one packet stored at the source node
v. Therefore, each node F. must also be deadlocked and must contain one packet whose
destination is a node of the form xi or $i. Then, this xi or $i node must also be
deadlocked and its buffer must contain a packet in the (xi, wi, $i, #i) route. Since the
upper limit on the number of packets in this route is one, it is not possible that both xi
and $i are in the deadlocked set of nodes (therefore there can be no two F. and Fk
nodes with packets whose respective destination is xi and i). Let X be the set of xi
and i destination nodes for the packets in the F. nodes. It is now clear that assigning
the value 1 to all the variables in X is a consistent variable assignment which satisfies
all the Fj factors. [3

An example of a CNF Boolean expression, F= (Xl+X2)(il+X3), of the corres-
ponding network, of a variable assignment X satisfying F, and of the corresponding
deadlock state are shown in Fig. 2.

FIG. 2. Network deadlock corresponding to a satisfiable CNF Boolean expression.

In this case F1 (Xl -- x2) and F2 (il -[- x3). The corresponding network has the
following routes"

1. (F1, Xl), (F1, x2), (F2, $1) and (F2, x3).
2. (xi, wi, $i, i), (wi, v) and (i, v) for i= 1, 2 and 3.
3. (v, F.) for i= 1 and 2.

All the nodes have a buffer capacity of one packet except the node v which has a buffer
capacity of two packets. All the routes have an end-to-end window flow control of one
packet per route. A variable assignment satisfying F is given by X {x2, ix}, (i.e.,
x2 il 1). A corresponding deadlock state is the following. We have two packets in
v with destination F1 and F:, a packet in F1 with destination x, a packet in F2 with
destination $1, a packet in x2 with destination w., a packet in $1 with destination if1,
a packet in w: with destination v and a packet in 1 whose destination is also v.

COROLLARY 3. If the network G has a general buffer configuration and a regular
end-to-end window flow control is applied, then Problem 1 is NP-complete.

Proof. In the proof of Theorem 3, the window flow control constant was globally
set tok0.=k=l. [3

THEOREM 4. If the network G has a regular buffer configuration and a regular
end-to-end window flow control is applied, then Problem 1 is NP-complete.

Proof. The reduction of the CNF-satisfiability problem to Problem 1 given in
Theorem 3 can be modified in the following way. Each node in G is now provided with
q buffers, there is an additional set of q 1 nodes, {YI for 1 -<_ f -<_ q 1}, and except for
the node v, all the nodes w V have an additional set of q 1 edges directly connecting

COMPLEXITY RESULTS, DEADLOCK-FREE NETWORKS 707

them to the y. nodes forming q 1 (w, y.) new routes. Also, for each node y. (1 =< j <- q
1) there is an additional set of q edges directly connecting y. to the nodes Fk, for
1 <-- k <- q, thus forming q (yj, Fk) new routes. The end-to-end window flow control upper
limit for all the routes is still one packet per route. We first prove that if F is satisfiable
then the network has a deadlock state. We begin by constructing the network state
described in the first part of Theorem 3. Then, in each node w (w # v) that contains
exactly one packet in this state, we generate q- 1 additional packets, one packet for
each of the new (w, y.) (1 -</" =<q- 1) routes. Also, in each node y. (1 _<-] _-<q- 1) we
generate q packets, one for each one of the new (yi, F) (1 <= k <= q) routes. This is a
deadlock state. We now show that if the network has a deadlock state then F is
satisfiable. If the network has a deadlock state then there is at least one cycle of
deadlocked packets. Therefore, a node

w {v} U {y;I 1 -<_j -<_q 1}

must be in the deadlocked set of nodes, and there are q packets filling all the buffers
of this node. Since we may have at most one packet in each of the (w, F.) routes
(1 <= j <= q) it must be that each (w, F.) route has exactly one packet stored at the source
node w. Therefore, each node F. must also be deadlocked and must contain q packets.
Each one of the (F., y routes (1 <- k <_- q 1) can have at most one packet, so F. must
contain at least one packet whose destination is a node of the form xi or Yg. Then this
xg or Yi node must also be deadlocked and its buffers contain q packets; at least one
of these packets must be in the (xi, wi, g, vg) route. From here the proof is identical
to the last part of the proof of Theorem 3. 71

COROLLARY 4. Ij the network G has a regular buffer configuration and an
individual end-to-end window flow control is applied, then Problem 1 is NP-complete.

Proof. Theorem 3 shows that the problem is in NP and Theorem 4 shows that the
problem is NP-hard. 71

We now consider the complexity of finding deadlock-free routes in a network
under several buffer and flow configurations.

THEOREM 5. If a network G has a regular or general buffer configuration and the
unrestricted flow control is applied, then Problem 2 is NP-complete.

Proof. We are given a network G (V, E) and a set of source-destination pairs
of nodes with an unrestricted flow control, and we ask if there is a corresponding set
of routes such that G does not have a deadlock state. This is equivalent to the following
question. Is there a corresponding set of routes that do not form a cycle in G? This
latter problem is NP-complete. In fact, we can guess a cycle-free set of routes and check
the correctness of our guess in polynomial time, and therefore the problem is in NP.
We now show that the CNF-satisfiability problem can be reduced to it in polynomial
time. Let F FIFz Fq be a CNF expression, and Xl, x2,’.’, xn be the literals in F.
We construct the following network G (V, E). The nodes of G are given by the set

V {s}U{F. for l<=j<=q}U{xi,i, wi, @il for l<-i<=n}.

The edges of G are given by the set

{(S, Xi) (S, i)l for 1 =< --< n}

U{(Xi, Wi) (i, i)l for 1 <=i _<--n}

U{(wi,’i), (’i, Xi)l for l<-i<=n}

U{(wi, f])lx is a variable in F}
U {(vi, F.)l i is a variable in F}.

708 SAM TOUEG AND KENNETH STEIGLITZ

The source-destination pairs are the following"
1. s-F. for l=</’=<q.
2. wi -.$i and 1 Xi for 1 _<- =< n.
We claim that F is satisfiable if and only if these source-destination pairs have a

corresponding cycle-free set of routes in G. We first note that the only routes connecting
wi with $ and with x are the direct ones using the (w, $i) and (i, x) edges.
Suppose F is satisfiable, and let X be a consistent set of variables that, when all are set
to 1, satisfy F. We can give the following cycle-free set of routes. The routes for the
s-F. pairs are (s, Xi, Wi, El. if X cT.X and Xi is in F., or (s, i, i, .Fj) if .i E X and)i is
in F/. The routes for wi-$i and i-xi are respectively (wi, $i) and (i, xi). Suppose
this set of routes forms a cycle; the only cycles in G are of the form (xi, wi, $i, i, xi),
which includes both the (xi, wi) and ($i, i) edges. Then, both xi and $i must be in
the set of variables X contradicting the consistency of X. Conversely, let R be a
cycle-free set of routes corresponding to the given set of source-destination pairs. We
showed that R must contain the (We, $i) and (i, xi) edges for 1-<i =<n. Since R is
cycle-free, it cannot contain both the (xi, wi) and ($i, i) edges for any 1-< =< n. For
each destination F. (1 <=]-< q) there must be a variable xi or i (and a corresponding
(xi, wi) or ($i, i) edge) such that the route from the source s to F. passes through this
variable. Let X be the set of these variables when f ranges from 1 to q. It is now clear
that X is a consistent set of variables that satisfies all the Fj factors. I-I

Let F be the satisfiable CNF Boolean expression and X be the set of variables
defined in the example given for Theorem 3. The corresponding network G and the
cycle-free set of routes are illustrated in Fig..3. The routes are (s, x2, w2, F1),
<S, 1, 1’1, F2), (wi, i) and (l)i, Xi) for i= 1, 2, 3.

X3

FIG: 3. The network G and a cycle-free set of routes.

THEOREM 6. If the network G has a regular or a general buffer configuration and
the isarithmic flow control (with constant K) is applied, then Problem 2 is NP-complete.

Proof. The unrestricted flow control is equivalent to an isarithmic flow control
where the constant K is larger than the total buffer capacity of the nodes of the network.
Then, Problem 2 with an unrestricted flow control can be reduced (in polynomial time)
to Problem 2 with an isarithmic flow control, and therefore this latter problem must
be NP-hard. Also, if we are given a network G with the isarithmic constant K and a
set of source-destination pairs, we can guess a corresponding deadlock-free set of
routes in G and then check in polynomial time (using Warshall’s algorithm) that the
sum of the buffer capacities of the nodes along the minimal cycle is larger than K.
Therefore, Problem 2 with an isarithmic flow control is in NP. E!

COMPLEXITY RESULTS, DEADLOCK-FREE NETWORKS 709

THEOREM. 7. If the network G has a regular or general buffer configuration and a
regular or individual end-to-end]:low control is applied, then Problem 2 is NP-hard.

Proof. The unrestricted flow control is equivalent to a regular or individual
end-to-end window flow control where the corresponding upper limits k or k;. are large
enough (for example if they exceed the total buffer capacity of the network). Then,
Problem 2 with the unrestricted flow conirol (shown to be NP-complete in Theorem
5) reduces in polynomial time to Problem 2 with end-to-end window flow control. [3

We do not know whether the problems shown to be NP-hard in Theorem 7 are in
NP or not.

5. State reachability, reachable deadlock states. Let G be a network and F be
the flow control procedure applied in G. We say that a network state S of G is reachable
with respect to F if, starting with an empty network G, there is a sequence of network
moves allowed by F that results in the state S in G. We may be interested only in
deadlock states that are reachable from an initially empty network G and redefine the
notion of "exposure to deadlock" as follows. A network G is exposed to deadlock if G
has a reachable deadlock state. An example of a non-reachable deadlock state S is the
following.

Consider the network G (V, E), where

V: {v, v, v}, " {Iv, vt, ivy, v), v, v)},

and each node has only one buffer. The routes in G are rl:
and r3: (/93, vl, v2), and the unrestricted flow control is used in G. Let S be the following
network state. A packet pl is in the node v2 along the route rl, a packet p2 is in the
node v3 along the route r2 and a packet p3 is in the node Vl along the route r3. It is easy
to check that S is a deadlock state which is not reachable from an initially empty
network G.

We investigated the complexity of Problem 1 and Problem 2 under the new
definition of deadlock exposure; the results, quite similar to previous ones, are
summarized in Table 3 and Table 4.

TABLE 3
Time complexity o]: Problem with the reachable deadlock deCinition.

individual regular
Flow control applied unrestricted isarithmic: K end-to-end: kii end-to-end: k

General buffer conf.: Polynomial: NP-hard NP-hard
bi O(l’ I) (in NP?) (in NP?)

Regular buffer conf.: Polynomial: NP-hard NP-hard
b O([EI) (in NP?) (in NP?)

TABLE 4
Time complexity of Problem 2 with the reachable deadlock definition.

Flow control applied
individual regular

unrestricted isarithmic: K end-to-end: k;. end-to-end: k

General buffer conf.: NP-complete

bi
NP-hard NP-hard NP-hard
(in NP?) (in NP?) (in NP?)

Regular buffer conf.: NP-complete
b

NP-hard NP-hard NP-hard
(in NP?) (in NP?) (in NP?)

710 SAM TOUEG AND KENNETH STEIGLITZ

Let S be a state of network G (V, E). We define the precedence graph G’ o[G
relative to S as follows. G’= (V, E’) is a directed graph where (v, w) is an edge in E’ if
and only if when the network is in state S, there is a packet in w whose route passes
through the node v before reaching the node w.

LEMMA 1. With the unrestricted flow control procedure, i] the precedence graph G’
o]: a network G relative to a state S is acyclic then the state S is reachable.

Proof. The algorithm given in Fig. 4 shows how the state S can be reached in G.

begin
topologically sort the directed acyclic graph G’;
comment After this node sorting if (vi, v.) is an edge of G’ then </’;
for j -Ivl step 1 until 1 do

begin
successively generate and move along their respective routes, from their
source node to the node vj, all the packets that are in the buffers of v. when
the state S is reached;

end
end

FIG. 4. Algorithm]:or reaching the state S.

Consider the inner loop of the algorithm. Suppose a packet with destination v. cannot
be generated or passed to an intermediary node vi along its route, it must be that

1. the buffers of vi are full of packets, so >/’;
2. (vi, vi) must be an edge of the precedence graph G’, therefore <j; the

contradiction is obvious. 1
A cyclic deadlock state of a network G is a state in which there exists a cycle of

nodes in G such that the buffers of each node in the cycle are full of packets waiting
to be passed to the next node in the cycle, and the nodes which are not in this cycle are
empty.

LEMMA 2. With the unrestricted flow control procedure, if a network G has a
deadlock state S then it has a reachable cyclic deadlock state.

Proof. If G has a deadlock state S then the routes of G contain a cycle, and
therefore G has a cyclic deadlock state So. According to Lemma 1, if So is not a
reachable state then the precedence graph G’ of G relative to So must have at least
one cycle V - v2 - v l. We can construct a cyclic deadlock state in the following
way (without regard for reachability). We begin with the empty network G and we
consider the edge (Vl, v2) of the cycle. This edge is in the precedence graph and, by
definition, there must be a packet in v2 whose route r passes through the node v before
v2. We successively fill the buffers of V and of all the intermediary nodes along the
route r up to (but not including) v2 with packets with route r. We do the same with the
edge (v2, v3) and the successive edges of the cycle until we reach a node whose buffers
are already full of packets2 and a cyclic deadlock $1 is thus formed. Note that $1 involves
a subset of the routes in So, and the deadlocked packets in each such route are one step
nearer to the source of the route than they were in the state So. If S is also not a
reachable deadlock state then the corresponding precedence graph contains a cycle
and the same process can be repeated to yield a new cyclic deadlock state $2 (and so
on). This process eventually results in a reachable deadlock state. In fact, let be the

This eventually occurs since/91 /92 /91 is a cycle; note that it may occur before all the edges

in the cycle are considered.

COMPLEXITY RESULTS, DEADLOCK-FREE NETWORKS 711

length of the longest route in G, then after at most new nonreachable cyclic deadlock
states generated by this process we have a cyclic deadlock state where every deadlocked
packet is at the source of its route. Such a deadlock is reachable (the corresponding
precedence graph is acyclic).

THEOREM 8. If the network G V, E) has a general or regular buffer configuration
and the unrestricted flow control is applied, then Problem 1 (with the new definition of
deadlock exposure) is solvable in O(IEI) time.

Proof. If such a network G has a reachable deadlock state then the routes in G
form at least one cycle. If the routes of G form a cycle then G has a cyclic deadlock
state and, by Lemma 2, it has a reachable deadlock state. So, G has a reachable
deadlock state if and only if the routes in G form at least one cycle. An O(IEI) time
breadth-first-search along the routes of G can be used to detect such a cycle. !-1

THEOREM 9. If the network G V, E) has a regular buffer configuration and a
regular end-to-end window flow control is applied, then Problem 1 (with the new
definition of deadlock exposure) is NP-hard.3

Proof. It is easy to check that the polynomial time reductions of the CNF-
satifiabilit problem to Problem 1 given in the proofs of Theorem 3 and Theorem 4
involve reachable deadlock states.

COROLLARY 5. If the network G V, E) has a general or regular buffer configur-
ation and an individual or regular end-to-end window jqow control is applied then
Problem 1 (with the new definition of deadlock exposure) is NP-hard.

Proof. Immediate consequence of Theorem 9. I1
Note that, at the present time, nothing is known about the complexity of Problem

1 (with the new definition of deadlock exposure) when an isarithmic flow control
procedure is applied.

THEOREM 10. If a network has a regular or general buffer configuration and the
unrestricted flow control is applied then Problem 2 (with the new definition of deadlock
exposure) is NP-complete.

Proof. We are given a network G (V, E) and a set of source-destination pairs of
nodes with an unrestricted flow control, and we want to determine if there is a
corresponding set of routes such that G does not have any reachable deadlock state.
In the proof of Theorem 8 we showed that, with any set of routes, G does not have a
reachable deadlock state if and only if these routes do not form a cycle. Then our
problem is to. determine if there is a set of routes that do not form a cycle. This problem
was shown to be NP-complete in the proof of Theorem 5.

COROLLARY 6. If the network G V, E) has a general or regular buffer configur-
ation and an isarithmic or an end-to-end window flow control is applied then Problem 2
(with the new definition of deadlock exposure) is NP-hard.

Proof. The NP-complete problem of Theorem 10 can be easily reduced to the
problems stated in the corollary: isarithmic and end-to-end window flow control with
large constants are equivalent to unrestricted flow control.

[AHU]

[DA]

REFERENCES

A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.
D. W. DAVIES, The control of congestion in packet switching networks, IEEE Trans., COM-20
(1973), pp. 546-550.

Note that it is not known whether these problems are in NP.

712 SAM TOUEG AND KENNETH STEIGLITZ

[G]

[GHKP]

[KL]

[PR]

[PRH]

[RH]

[TO]

[TU]

[VA]

K. D. GUNTHER, Prevention of buffer deadlocks in packet switching networks, IFIP-IIASA
Workshop on Data Communications, Ladenberg, Austria, pp. g.15-g.19.
A. GIESSLER, J. HAENLE, A. KOENIG AND E. PADI, Free buffer allocationman investigation
by simulation, Computer Networks, 2 (1978), pp. 191-208.
L. KLEINROCK, Oueueing Systems vol. II: Computer Applications, John Wiley, New York,
1976.
W. L. PRICE, Simulation studies of an isarithmically controlled store-and-forward data com-
munications network, Proc. IFIP Congress 74, Stockholm, August 1974, pp. 151-154.
W. L. PRICE AND J. D. HAENLE, Some comments on a simulated datagram store-and-forward
network, Computer Networks, 2, (1978), pp. 70-73.
E. RAUBOLD AND J. HAENLE, A method ofdeadlock-free resource allocation andow control
in packet networks, Proc. ICCC 76, Toronto, Ont., Canada, August, 1976, pp. 483-487.
S. TOUEG, Design of deadlock- and livelock-free packet switching networks, Ph.D. Thesis,
Dept. of EECS, Princeton University, Princeton, NJ, 1979.
S. TOUEG AND J. D. ULLMAN, Deadlock-free packet switching networks, Proc. th ACM
Symposium on the Theory of Computing, Atlanta, GA, May, 1979, pp. 89-98.
V. AHUJA, Determining deadlock exposure for a class of store and forward communication
networks, IBM J. Res. Dev., 24 (1980), pp. 49-55.

