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Abstract

A practical method is described for designing recursive digital filters
with arbitrary, prescribed magnitude characteristics. The method uses
the Fletcher-Powell optimization algorithm to minimize a square-
error criterion in the frequency domain. A strategy is described
whereby stability and minimum-phase constraints are observed, while
still using the unconstrained optimization algorithm. The cascade
canonic form is used, so that the resultant filters can be realized
accurately and simply. Design examples are given of low-pass, wide-
band differentiator, linear discriminator, and vowel formant filters.
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l. Introduction

~ While the problem of choosing the coefficients of a
nonrecursive digital filter to approximate a-specified mag-
nitude characteristic has been thoroughly explored, the
corresponding problem for recursive digital filters remains
open [1], [2]. Design procedures for recursive filters
generally deal only with the piecewise constant case, and
involve transformations of well known continuous-time
filter designs, such as the Butterworth or Chebyshev. The
purpose of this paper is to describe a practigal method for
choosing the coefficients of a recursive digital filter to
meet arbitrary specifications of the magnitude char-
acteristic.

The proposed method uses the optimization algorithm
described by Fletcher and Powell [3] to minimize a
square-error criterion in the frequency domain. This
technique has been used to design continuous-time filters
[4]. In order to deal with the realization problem in the
continuous-time case, a network topology is usually
fixed, and the optimization method must incorporate the
constraints that the element values be nonnegative. These
restrictions are not present for digital filters, since any
coefficients can be used for realization. The resulting
digital filter must be stable, however, and this imposes the
constraint that the poles lie inside the uftit ¢ircle in the
z-plane. It will be shown how this constraint, and an
additional minimum-phase constraint, can be observed,
while still using the unconstrained minimization method
of Fletcher and Powell.

ll. Choice ‘of Canonic Form

The first important question to be resolved is the choice
of the canonic form of the digital filter. A general recur-
sive filter can be assumed to have the transfer function
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This so-called direct form suffers from the following diffi-
culties. First, if control is to be exercised over the pole
locations, the denominator must be factored at certain
stages in the optimization process. Second, the pole
locations may be extremely sensitive functions of the
coefficients b, for high-order filters [1]. This means that
the b, must be found to very high precision, and that the
error surface may be badly skewed. The cascade form
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avoids these difficulties, and has the additional advantage
of yielding the realization shown in Fig. 1, which is known
to be practical for high-order filters. This form also has

the advantage of making the zeros easy to find, a feature
not shared by a third possibility, the parallel form. For
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Coscade realization corresponding to the canonic form.

Fig. 1.

these reaons the cascade canonic form will be assumed in
what follows.

Ill. ‘Statement of the Problem

Suppose now that the desired magnitude character-
istic is prescribed at the discrete set of frequencies

W, -- -, Wy where W, is given in fractions of the
Nyquist rate. These correspond to values of the variable z
zi=eWir  {=1---,M. (3)

Call the desired magnitude at these frequencies Y,4. Then
the square-error-in the frequency domain is

M
Q) = X2 (| Y@)| — Yo @)

sl
where 8 is the (4K+1)-vector of unknown coefficients
&)

The problem is to find a value of 6, say 6%, such that for
all 8

6 = (al, bl) €y, dly Qaz, b2, 62,'d2, ey, A),.

Q(6%) < Q(e). (6)

This square-error is a nonlinear function of the param-
eter vector 6, and an iterative method must be used to
accomplish its minimization. Such numerical methods as
are available seek a relative (local) minimum from a given
starting point, and cannot in general be relied upon to find
the global solution. Computational experience, gained by
using different starting points for the same problem, often
gives some indication of the likelihood that a given local
solution is in fact global. In addition, a suboptimal value
of 6 can often provide a useful design.

V. Elimination of A and Calculation of the Gradient

The method of Fletcher and Powell appears to be the
most efficient and powerful nonlinear optimization
method now available [3], [4]. It need not be described
here, except to say that it performs a one-dimensional
minimization at each cycle, along a direction determined
by the gradient and an updated estimate of the Hessian.
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The double precision FORTRAN IV program DFMFP, sup-
plied by IBM in the scientific subroutine package [5],
was used without change. The Fletcher-Powell method
requires the computation of the gradient of Q with respect
to the parameter vector. This computation was per-
formed using double precision complex arithmetic in
FORTRAN IV,

The error function Q can be minimized analytically
with respect to A for fixed a;, b;, ¢s, d;; and 4 need not be
considered an unknown parameter. To eliminate 4 from
Q, define the 4K-dimensional parameter vector

d) = (al, bl: Cy, dl) as, bﬁ: Ca, dz, ] dx), (7)
and write
1+ aw! + biz?
Y(z,A4,¢) = A
CAe=All s (8)
= AH(z, ¢).
Then
M
Q4, ¢) = L (| AHG:, &) — YO (9)
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Differentiating with respect to | 4| and setting the result
to zero yields the following optimum value of | 4|, say
| 4*|: :
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The Fletcher-Powell method is then used to minimize the
new error criterion

0(4) = Q(A*, &). (11)

Notice that the sign of A* is immaterial, since it does not
affect the magnitude characteristic. It will be taken posi-
tive. The gradient of Q with respect to ¢ can be computed
as follows:

a0  aQ(A*, ¢)  9Q(A*, $) 04*
= +

Opn 0dn IA* Odn

n=1-.--,4K.

(12)

The second term is zero, since 4* is chosen to minimize
Q. Hence by (9),

a0

M

=24* Y (A*|H(z:, ) | — Y9 M - (13)
n Tl 64;,.
Writing
|H(z;, §) | = [H(z:, 9) HG,, ' (14)
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we have
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which can be computed directly from (8) using complex
arithmetic.

The subroutine which calculates ((¢) and grad Q(¢),
given ¢, is summarized below.

1) Calculate
E 1+ a2t + bz ?
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2) Calculate
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3) Calculate

Bi=A*|H;| - Y& i=1---,M. (18)
4) Calculate
M
Q=2 B (19)
=1
5) Calculate
d l H.‘l 1 — OH;
= Re {H. }
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1 _— Z,'_l
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2,71
- | B Re{ }
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and similarly,
a | H.I Z,'—2
= | H;| Re { } (21)
abk 1 + a2t -+ b;,z,-"’
d l H,' , 2! ‘
=—|H.~|Re{ } (22)
ack 14+ czi™! 4 dipzi 2
al H.I 2.'_2
= — |H;| Re - (23)
ddy 14 azit + dezi
6) Calculate
a0 ¥ 5| H,
aQ =24* Y E; |¢ l, n=1,---,4K. (24)
n Tl n
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The elimination of A4 as an unknown parameter reduces
by one the dimensionality of the search performed by the
optimization program. An additional savings in computa-
tion time is achieved by computing the z; once at the
beginning of execution and storing them for later use.

V. Stability and Minimum-Phase Constraints
Suppose Y(z) has a real pole at z=a. Replacing this by
a pole at z=1/a is equivalent to multiplying by the func-
tion
22— a

z2—1/a (25)

which has magnitude |a| when z is on the unit circle.
Hence the inversion of a real pole with respect to the unit
circle does not affect the shape of the magnitude char-
acteristic. Since the gain constant A is chosen optimally,
((¢) is not affected at all by such inversion. Similarly,
0($) is unaffected by inversions of complex pairs of poles,
or real or complex pairs of zeros. At convergence of the
optimization program, poles and zeros will appear ran-
domly inside or outside the unit circle, depending on the
starting point of the iteration, and upon the course of the
iteration itself. It will be taken as a design criterion that
all the poles and zeros lie within the unit circle. The poles
must do so in order that the filter be stable. The zeros
lying inside the unit circle ensure that there is no excess
phase.

VI. Final Strategy and Example 1: A Low-Pass Filter

At first thought, it would appear that the following
procedure would yield an optimum transfer function with
all its poles and zeros inside the unit circle.

1) Use of the optimization program to minimize ((¢)
without constraining pole or zero locations.

2) At convergence, invert all poles or zeros outside the
unit circle.

If the optimization program is started anew from the
result of step 2, however, it is found that further reduc-
tion in Q($) is sometimes possible. The following example
will show how this can happen. Consider the specification
of an ideal low-pass filter with cutoff frequency at one-
tenth the Nyquist frequency:

W = 0.00,0.09 (0.01); Y¢=10
W = 0.10; Y4 =05 :

(26)
W = 0.11, 0.20 (0.01); ¥¢ = 0.0 _
W =02 10 (01); Y¢=0.0.

This specification weights frequencies below W =0.2 more
heavily than those above. If the optimization for a one-
section filter (K=1) is started at

¢ = (0,0, 0., —0.25)’ (27)
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convergence is obtained after 93 function evaluations.
The resulting zeros and poles are given below and are
plotted in Fig. 2(A):

zeros: 067834430 + j 0.73474418

(28)
poles: 0.75677793, 1.3213916.
The corresponding value of the error criterion is
0 = 1.2611. (29)

Notice that the two poles are very nearly inverses of each
other. After inversion, 62 more function evaluations are
required to produce convergence' to the following param-
eters (see Fig. 2(B)):
' zeros: 0.82191163 +j 0.56961501
poles: 0.89676390 +j 0.19181084
A = 0.11733978
0 = 0.56731.

(30)

The introduction of a complex pole pair is prevented in
the first sequence of iterations by the fact that one pole is
inside the unit circle and one is outside. After inversion,
the two poles can split and become a complex pair, lead-
ing to the final minimum. The magnitude characteristic
of the final filter is shown in Fig. 3. '

The following algorithm was used to allow such con-
vergence to take place.

1) Use the Fletcher-Powell optimization program until
convergence takes place, or for a maximum of 25
cycles, and go to 2.

2) If any poles or zeros are outside the unit circle, invert
them and go to 1. Otherwise, go to 3.

- 3) If convergence has not taken place, go to 1. Other-
wise, go to 4.
4) Print out the final parameters and stop.

Fig. 3 also shows the resultant filter characteristic for
K=2, corresponding to the following parameters at
convergence:

zeros: 0.92538461 +j 0.37902945
0.61137175 +j 0.79134343
poles: 0.93121838 +j 0.27718988
0.86454727 +j 0.13353860
A = 0.024867372
Q = 0.033959.

@31)

The final parameters obtained from the K=1 design were
used as a starting point for the K=2 optimization, and
376 further function evaluations were required for con-
vergence.

1 The convergence criterion for this and all succeeding examples
corresponds to the parameter EPS=10"* in DFMFP.
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Fig. 2. Pole-zero configurations for the low-pass fiiter
designs. (A) Intermediate local minimum. (B) Final
minimum,

Fig. 3. Magnitude characteristic of the one- and two-section low-
pass filters of Example 1.
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VIl. Examples
Example 2: A Wide-Band Differentiator
Consider the following specification,
W = 0.0, 1.0 (0.05); Yi =W, (32)

which represents a linear amplitude characteristic, and
hence an ideal differentiating filter, ignoring considera-
tion of the phase for the moment. The one-section design
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Fig. 4. The approximation error for the one-section wide-band differ-

entiator filter.

Fig. 5. Phase characteristic of the one-section wide-band differentiator

filter,
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converged after 96 function evaluations to the following
design:

zeros: 1.0000000, —0.67082621
poles: —0.14240300, —0.71698670
A = 0.36637364
Q = 2.7480 X 104

Fig. 4 shows the approximation error over the entire band
of frequencies from zero to the Nyquist frequency. Of
particular interest is the fact that the approximation is
within about 1 percent of maximum over this entire range,
in contrast with designs based on guard-band filters, which
usually are accurate only up to about 80 percent of the
Nyquist frequency (see [1]). Fig. 5 shows the phase
characteristic, which approximates the phase of an ideal
differentiator ‘with an additional lag of one-half sampling
period. Thus, this design introduces significantly less lag
than designs reported in [1]. '
Starting with the one-section design above, 500 more
function evaluations produced convergence to a more

(33)
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accurate two-section approximation, with 0=6.15X10-".
This two-section filter exhibited a similar characteristic
ripple near the Nyquist frequency, and had almost the
same phase characteristic. This points out the desirability
of extending the method to include specifications on the
phase characteristic.

Example 3: A Linear Discriminator

For the next example, consider the specification
W =00,10(005); Yi=|1-2W| (34

which represents a linear discriminator with a zero at one-
half the Nyquist frequency. After 40 function evaluations,
the following one-section design was produced:
zeros: 0.00000000 +j 1.00000000
poles: +0.49614741
A = 0.35765018
0 = 1.2299 X 102,

(35)
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Fig. 6. The approximation error for the two-section linear discrimi-
nator filter,
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Fig. 8. Magnitude characteristic of the three-section vowe! formant fiiter
Circles indicate specification points.

Fig. 7. Phase characteristic of the two-section linear discriminator filter.
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One-hundred and thirty more function evaluations pro-
duced convergence to the following two-section design:

zeros: 0.00000004 +; 0.99999931
0.81492900, — 0.81492888
poles: 0.84492845 — 0.84492830
0.37204922, — 0.37204934
A = 0.36676649
0 = 1.0807 X 10~

As might be expected, the resulting pole-zero patterns
are symmetric with respect to the imaginary axis, within
the precision allowed by the convergence criterion. Figs.
6 and 7 show the approximation error and phase char-
acteristic of the two-section filter.

(36)

Example 4: A Yowel Formant Filter

Fig. 8 shows the specification of a filter which is to have
a magnitude characteristic corresponding to the formant
for the vowel D (as in “law™) [6]. The principal require-
ments are taken to be that peaks occur at W=0.06, 0.08,
and 0.26; with values of 1.0, 0.5, and 0.25, respectively;
and that troughs occur midway between these peaks, with
values one-half the lower peak. This design problem is
considerably more difficult than the previous ones, since
it involves approximating a rather arbitrary and complex
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shape. An acceptably good design required three sections,
1809 function evaluations and 2 minutes 34 seconds of
computation time on the IBM 360/65. The final design is
also shown in Fig. 8 and corresponds to the following
parameters:

zeros: 0.93470084, — 0.99966051
0.62177384 +; 0.62464737
0.97101465 +j 0.21383044

poles: 0.64343825 +; 0.70167849
0.96361229 +j5 0.19280318
0.93515982 +; 0.20909432
A = 0.041075206

-

0 = 9.4712 X 10,

@7

Vill. Conclusions

A practical method has been described for designing
recursive digital filters with arbitrary, prescribed magni-
tude characteristics. Examples have been given of such
designs with 1, 2, and 3 cascade sections, corresponding to
5,9, and 13 parameters. The most difficult of these designs
takes about 2.5 minutes of computation time on the IBM
360/65 computer.

The important considerations in the development of
this method have been: 1) a strategy for ensuring that the
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resulting filters are stable and minimum phase, 2) elimina-
tion of the gain factor 4 as an unknown parameter, 3)
choice of the canonic form of the filter, and 4) choice of
the unconstrained optimization algorithm.

Further work along these lines might take into account
specifications on the phase characteristic, and arbitrary
weighting of the errors at different specification points.
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