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Abstract

We show that pairwise soliton collisions inN > 2 intensity-coupled nonlinear Schrödinger
equations can be reduced to pairwise soliton collisions in two coupled equations. The re-
duction applies to a wide class of systems, including N -component Manakov. This greatly
simplifies the analysis of such systems and has important implications for the application
of soliton collisions to all-optical computing.

PACS numbers: 05.45.Yv, 42.65.Tg, 42.81.Dp

Ever since their discovery [1], solitons have fascinated scientists in many widely dif-
ferent fields. Probably the best studied solitons are those of the (1+1)-D cubic nonlinear
Schrödinger equation (NLSE), (which models propagation in Kerr media, where the non-
linearity is proportional to the intensity of the field). There are two reasons for this. First,
the Kerr nonlinearity appears in many different systems. It represents a weak symmet-
ric anharmonicity, which is equivalent to weak saturation in a simple harmonic oscillator.
In many cases this is a valid model for the envelope of waves in plasmas, shallow water,
deep water, gravity, etc. [2]. The second reason is that Kerr solitons are mathematically
elegant—the (1+1)-D cubic NLSE is integrable. Unfortunately, its simplest generaliza-
tion (to more than a single transverse dimension) has no stable solitons [3]. However,
if we also consider the simplest generalization of the nonlinearity (when nonlinearity is
an arbitrary function of the field intensity), we can easily find many nonlinearities (e.g.,
saturable, cubic-quintic, etc.) that support stable solitons. Most centro-symmetric media
can be modeled with some of those equations. Consequently, there is an abundance of
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systems in which exciting multidimensional soliton phenomena (such as collisions, angular
momentum, etc.) occur [4].

Recently, motivated by the richness of the new phenomena emerging from general-
izations of the (1+1)-D cubic NLSE into higher dimensions and with different forms of
nonlinearity, significant interest has been drawn to the next natural generalization of these
equations: namely, to more than one mutually coupled field (so-called coupled NLSEs).
Solitons of coupled NLSEs are called vector solitons. In their simplest incarnation, such
equations have a coupling term that is a function only of the sum of the intensities of all
the fields (intensity-coupled NLSEs). Vector solitons were first suggested by Manakov [5],
with two nonlinear Schrödinger equations coupled through cubic nonlinearities. This pair
of equations is integrable and solvable analytically. Temporal intensity-coupled NLSE soli-
tons were proposed in optical fibers more than a decade ago [6, 7, 8], and evidence for
their existence has been recently reported [9, 10]. In the spatial domain, evidence for
the existence of Manakov solitons has also been reported in Kerr media [11] and in pho-
torefractives [12]. In contrast with the Kerr nonlinearity, the photorefractive nonlinearity
is saturable, but coincides with the Kerr nonlinearity in the limit of very low intensi-
ties [13, 14]. Another method of generating spatial Manakov solitons arises from cascading
optical rectification and the electro-optic effect [15], which facilitates the tuning of the in-
teraction parameters [16] through local field corrections. Finally, solitons of coupled NLSEs
should exist in Bose-Einstein condensates of cooled atomic gases, when multi-component
condensates are employed [17, 18, 19, 20, 21, 22, 23].

One of the most exciting phenomena associated with solitons is their collisions. In lin-
ear media, a localized wave packet propagates through another wave packet completely
unaffected by its presence. In contrast, solitons can exchange energy [4], bounce off
each other [4], spiral around each other [4], and display many other exciting interaction-
associated phenomena. Unfortunately, in the NLSE with Kerr nonlinearity, scalar solitons
affect each other only by a phase shift that depends only on the soliton power and velocity,
which are both conserved quantities. Thus, when two (scalar) Kerr soliton collisions occur
sequentially, the outcome of the first collision does not affect the second collision (except
for the uniform phase shift). It then came as a surprise that collision interactions between
vector solitons can be very strong [24]. Such strong interactions, besides being fundamen-
tally interesting, have also opened the exciting possibility of soliton applications to the
implementation of all-optical logic in a way that does not require fabrication of individual
gates [25, 26, 27, 28]. Computers based on these “virtual” gates could in principle be built
in any medium that supports appropriate solitons, and computation could be embedded in
homogeneous materials. Moreover, recent results [29] have demonstrated the feasibility of
performing quantum information processing in Bose-Einstein condensates, thus opening up
the possibility of using solitons in BEC media to perform quantum information processing.

A natural question is how the complexity of collisions of vector solitons is affected
in going from N = 2 to N > 2 components. Recent analysis by Kanna and Lakshmanan
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in [30] has yielded explicit solutions for collisions in N -Manakov vector systems with N > 2
components. Having such solutions is indeed an important and fascinating result, but it
does not make the predictions of interactions between Manakov solitons easy in any sense.
In fact, a major effort was carried out by Kanna and Lakshmanan to find expressions for the
evolution of two and three solitons. The result, albeit analytic, remains complicated and
does not reveal the physical collision properties in a clear way. On the other hand, for the
2-Manakov system, the authors of [25] have developed a linear fractional transformation
that characterizes a collision between two Manakov solitons in a very simple and intuitive
way that highlights all the physical properties of a complex collision. The main purpose
of this paper is to point out that for many cases of interest, including N -Manakov, two-
soliton collisions in such higher-component systems can be reduced to two-soliton collisions
in 2-component systems [31]. The reduction does not rely on integrability, and applies to
any intensity-coupled NLSE. This reduction of complexity significantly eases the analysis,
provides useful intuition, and allows us to apply the considerable accumulated knowledge
of collisions in 2-Manakov to N -Manakov (including providing us with a simple analytic
expression for the outcome of soliton collisions). Most important, this result shows that in
contrast to what might be näıvely expected, and to what was previously conjectured [30],
no new complexity appears in the collision of two solitons by expanding the number of
coupled equations beyond two.

The coupled nonlinear Schrödinger equations (CNLS) that describe our system are:

i
∂~q

∂t
+∇2

T ~q + 2f(|~q |2)~q = 0 , (1)

where ~q(t, ~r ) = (q1(t, ~r ), ..., qN (t, ~r )) are the N complex fields of the system, f is a real-
valued function of a single real variable, the subscript T denotes the directions orthogonal
(transverse) to the direction of propagation, ~r are the coordinates transverse to the prop-
agation direction, and t denotes the propagation direction. The form of the nonlinearity
present in Eq. 1 appears in any centro-symmetric medium when the various field compo-
nents interact only through the combined intensity of all the fields. For example, in optics,
a soliton in Eq. 1 is composed of N mutually incoherent yet jointly self-trapped fields, with
the total intensity of the soliton equal to the sum of the intensities of the component fields.
This is consistent with the interpretation of the soliton as a vector in N -dimensional space,
with orthogonal components represented by the amplitudes of the component fields. As
another example, multicomponent Bose-Einstein condensates [17, 18] can often be modeled
by this system.

We first state two important properties of Eq. 1 above. These are well known, but we
include them for completeness.

Property 1 The total energy in each of the N fields (components) is conserved.
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Proof: Multiply the k-th component of Eq. 1 above by q∗k, k = 1, ...,N , and subtract from
the complex conjugate of the same equation, yielding

i

(
q∗k
∂qk
∂t

+ qk
∂q∗k
∂t

)
+

1
2

(
q∗k∇2

T qk − qk∇2
T q
∗
k

)
= 0 . (2)

Next, integrate this expression over the entire transverse volume. The two terms inside
the second parenthesis can be integrated by parts, which gives us four terms instead. Two
of these terms cancel each other identically, while the other two can be transformed into
surface integrals. This surface is infinitely far away, so the fields and their derivatives are
all zero there, and thus those terms vanish also. We conclude that the total energy in each
component is an invariant of motion:

∂

∂t

∫
trans. vol.

|qk(t, ~r )|2 dν~r = 0 , (3)

where ν is the dimensionality of the transverse space.

The second proposition states the invariance of solutions under unitary transformation.

Property 2 If q(t, ~r ) satisfies Eq. 1, then so does Uq(t, ~r ), where U is any (constant)
unitary matrix.

Proof: Follows directly from that fact that the form of our nonlinear term respects the
symmetry of the unitary group, U(N).

Now consider a collision of two N-component solitons. Before the collision, the two
solitons are well-separated, are moving at some angle towards each other, and can therefore
be written in the form

~q(t→ −∞, ~r ) = ~α1ψ1(t→ −∞, ~r ) + ~α2ψ2(t→ −∞, ~r ) , (4)

where we write a lowest-order soliton of Eq. 1 as ~αψ(t → −∞, ~r ). By “lowest-order
soliton”, we mean the soliton that has no nodes, and has the same modal profile for all
components. The intensity profile of this soliton does not depend on the propagation
distance. For example, in the case of the (1+1)-D cubic coupled nonlinear Schrödinger
equation, ψ has the usual sech shape.

The simple (but key) observation is that the vectors ~α1 and ~α2 lie in a 2-D complex
plane within a complex N -D space. Consequently, we are free to pick a unitary matrix (the
choice of this matrix is typically not unique) that maps ~α1 to ~α1

′ = U~α1 = (a, 0, ..., 0) and
~α2 to ~α2

′ = U~α2 = (b, c, 0, ..., 0), where a, b, and c are complex numbers. That is, we can
“rotate” the coordinate system so that all the energy of the two colliding solitons resides
in the first two coordinates. We will denote the rotation of any vector ~v by ~v ′ = U~v.
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A concrete construction of the matrix U is as follows. Pick the orthonormal basis
(~β1, ~β2) in the ~α1-~α2 plane which has ~β1 parallel to ~α1, and ~β2 orthogonal to ~β1 (a Gram-
Schmidt orthonormalization). The conditions that U~β1 = (1, 0, ..., 0) and U~β2 = (0, 1, ..., 0)
determine the first and second columns of U−1, respectively. These conditions ensure that
~α1 and ~α2 are mapped as required. It is a necessary and sufficient condition for U−1 to be
unitary that its columns be orthonormal, so the rest of the columns of U−1 can be filled
in easily, which then also determines the unitary U .

Now, since Eq. 1 conserves the total energy in each field, we are guaranteed that
after the collisions, ~q ′(t → +∞, ~r ) will still be only a 2-component field (components for
k = 3, ...,N will be zero). (This can also be seen by direct inspection of Eq. 1.) Therefore,
the complexity of this particular collision has been reduced from an N-component problem
to a 2-component problem. Once we obtain the solution ~q ′(t → +∞, ~r ), the simple
transformation U−1~q ′(t→ +∞, ~r ) gives us ~q(t→ +∞, ~r ).

Collisions of the kind described above are particularly interesting for their potential
use in soliton computing [25, 31, 27, 28]. Consider the case when after the collision,
the two solitons are well-separated, are moving at an angle away from each other, and
can be written in the form ~q(t → +∞, ~r ) = ~αAψA(t → +∞, ~r ) + ~αBψB(t → +∞, ~r ).
This holds exactly for some integrable cases of Eq. 1, and is an excellent approximation
for many other physically important cases of Eq. 1 that are nearly integrable, such as
arise in media with saturating nonlinearities (see, for example, the review of such spatial
soliton systems in [4]). When this is the case, solitons can be used to carry information
and perform logic operations solely through pairwise collisions [32]. The reduction above
plus the simple linear fractional transformation of states for the 2-Manakov case [25] then
provides a powerful analysis tool, while such a transformation is not available for N > 2
components.

To illustrate the reduction in the N -Manakov case (f(I) = I in Eq. 1 for (1+1)-D), we
consider the collision of two 3-component solitons, with corresponding component vectors
p = (1/

√
17)(2

√
2, 2
√

2, 1) and q = (1/
√

17)(3
√

2, 3
√

2,−7), and velocities ±2. A unitary
matrix U that maps these to solitons with energy in only the first two coordinates is

U =

 1/
√

2 1/
√

2 0
0 0 1

1/
√

2 −1/
√

2 0

 , (5)

which yields Up = (1/
√

17)(4, 1, 0) and Uq = (1/
√

17)(6,−7, 0). A beam-propagation
program using the split-step Fourier method was used to integrate the collision of the 3-
component solitons p and q in Eq. 1, and the results are shown in Fig. 1. This example was
chosen to illustrate the transfer of energy between components; in fact, the peak energy of
p in the third component is increased by a factor of 16.6 by the collision with q.

To check our reduction procedure, a (2-component) collision between Up and Uq was
simulated, the results transformed by U−1, and the energy at the peaks of the solitons
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compared with the direct integration above using p and q. The peak energies of the three
components all agree to within at most 0.4% error, which is the order of accuracy expected
from the numerical integration method used.

The linear fractional state transformation in [25] predicts the results of the 2-D col-
lision as follows. The polarization state ρ is defined as the ratio of the first and second
components, and the state of a right-moving soliton after the collision of a right-moving
soliton in state ρ1 and a left-moving soliton in state ρ2 is

ρ1
′ =

aρ1 + b

cρ1 + d
, (6)

where a = (1 − h∗)/ρ∗2 + ρ2, b = ρ2/ρ
∗
2, c = h∗, d = (1 − h∗)ρ2. The coefficient h∗ =

(k2+k∗2)/(k1+k∗2), where k1 and k2 are the usual soliton parameters. (An analogous formula
gives the state of the left-moving collision product.) In our example, k1 = 1+i, k2 =

√
5−i,

and the soliton states are ρ1 = 4 and ρ2 = −6/7. The prediction of Eq. 6 was checked
against the numerical simulation with error consistent with the accuracy of the simulation.
In summary, we have found the results of a collision of two solitons in the 3-Manakov
system using the simple analytic formulas available for 2-Manakov. That is, following our
procedure, one can analytically predict the outcome of the collision of two N -Manakov
solitons, for arbitrary N .

The reduction described here has a very simple geometric intuition behind it: A unitary
coordinate transformation can always be found that transforms all the energy in a colli-
sion of two solitons to a two-dimensional complex subspace, and no energy will leave that
subspace during the collision. The reduction does not rely on integrability, and applies
to a much wider class of coupled systems than N -Manakov. Consequently, any charac-
terization of pairwise collisions using polarization state in 2-CNLS, including the succinct
transformations for the 2-Manakov system, carry over to N -CNLS. One important, per-
haps counterintuitive, implication of our reduction is that the collision of two solitons in
N -component systems is analytically no more complex than such collisions in 2-component
systems.

We do not claim that there cannot be utility or interest in using soliton collisions in
the N -CNLS system for N > 2. For one thing, the reduction described here does not
apply to general collisions of three or more solitons in N -CNLS (it applies only to pairwise
collisions). Furthermore, even if the collisions are well separated, each pairwise collision
must be analyzed in its own 2-D subspace. In fact, we can see that if we have three N -CNLS
solitons, we can always find a 3-D subspace to which the system can be transformed; for
four N -CNLS solitons, we can always find a 4-D subspace, and so on. This consideration
does give us an upper bound on how complex these more general collisions can be.

The model we study can readily be experimentally tested with spatial solitons in optics:
using photorefractive materials, or liquid crystals. Alternatively, it can be tested on matter-
wave solitons in Bose-Einstein condensates.
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Figure 1: Collision of two 3-component solitons as described in the example. Shown are |q1|2,
|q2|2, and |q3|2, respectively. The scale is normalized. Each component of each soliton interacts
with the same component of the other soliton (shown in the figure), and also with the intensity
of the other two components (this interaction is not explicitly visible in the figure). Note the
transfers of energy between solitons, especially pronounced in the third component.
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