Circulant Markov
Chains as Digital
Signal Sources

CLIFFORD T. MULLIS @d KENNETH STEIGLITZ

Abstract—This paper is concerned with the class of Markov
chains with circulant transition matrices. We show that such chains
generate random processes whose spectral densities are of a particu-
larly simple form, and that they provide a partial solution to the
problem of synthesizing Markov chains that generate processes with
given spectral densities.

I. Introduction

Sittler [1] showed that if real numbers are associated
with the states of a finite Markov chain, the chain gen-
erates a random process with a rational spectral density,
the poles being at the eigénvalues of the transition ma-
trix. Thus, a hardware implementation of a Markov
chain can be used to generate a digital signal with the
same spectral density as would be obtained by filtering
white noise with an appropriate linear filter (but, in
general, with a different amplitude probability density).

This suggests the following problem, which can be
called the approximation problem for Markov chains:
given a spectral density D, find an n-state Markov chain
and an assignment of output numbers to states so that
the associated random process has a spectral density as
close to D (in some prescribed sense) as possible.
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In the case that D is approximated by a rational func-
tion D*, we may also want to consider the synthesis prob-
lem for Markov chains: given a rational spectral density
D*, find a Markov chain and an assignment of output
numbers to states so that the associated random process
has a spectral density D*.

This paper is concerned with the class of Markov
chains with circulant transition matrices. We will show
that such chains generate random processes whose
spectral densities are of a particularly simple form, and
that they provide a partial solution to the synthesis
problem.

. Preliminary Definitions
Let
P‘ = (Po‘, Sty pn—l‘) (1)

be the row vector of probabilities of being in state 7 at
time £; =0, - - -+, n—1; and let C be an n Xn stochastic
matrix. Then a Markov chain is defined by the transi-
tion equation

pt+l — pta (2)

Definition: A circulant Markov chain (CMCQC) is a
Markov chain whose transition matrix satisfies

(©)ij = ¢(i—i) mod - (3)
Thus, each row of C is a circular right shift of the pre-

ceding row. The first row of C will be denoted by the
row vector

y Cn1)- (4)

Definition: A circulant Markov chain random process
(CMCRP) is the discrete-time random process {xt} de-
fined by

c = (co *

xt = as ) (5)
if the chain is in state  at time ¢, where
a= (a, -, an1) (6)

is a row vector of real numbers whose sum is 0. A CMCRP
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is completely specified, then, by two row vectors ¢ and a,
and we sometimes express this fact by writing CMCRP
(c, @). We will assume in what follows that C has a single
eigenvalue at 1 and n—1 eigenvalues in the open unit
disk. This will ensure that the CMCRP is ergodic [2].
Given a row vector v, we define the polynomial v(x) by

2(x) = vt v+ vt )]

Thus, bec;.use C is a stochastic matrix, ’
¢1) =1 (8

and because a is zero sum,
a(1) = 0. )
If the rotation matrix R is defined by
~EE
110

we can write
C = ¢(R). (11)
Finally, the characteristic polynomial of R is x*—1, so
its eigenvalues are the n distinct roots of unity
W, k=0, -,n—1 (12)
where
w = exp [j2x/n]. (13)

lll. The Spectral Representations of R and C
The matrix R has the spectral representation [3], [4]

n~1

R = Y +*Li(R) (14)

kw0

where L:(R) is the Lagrange polynomial
n—1 n—1

LR =JIR-)/ TT (@ ~0w) (15
=0 (2]
iptk iyek

A straightforward calculation yields

B(R) = - L) (16)
where {§(x) is the column vector
1
W =" a7
;ﬂ-l

and ¢*(x) is the conjugate transpose of {(x).
Hence we have the spectral representation

1 a—1
R= ;g () P*(H). (18)

For a wide class of functions g(-), which includes poly-
nomials, we also have

247

11 .
gR) = - kE gl g ()* (w*) (19)
()
and hence
. 1 n—1
c= ¢(R) = - 2 (@)Y (). (20)

IV. The Correlation Function and Spectral Density of
CMCRP(c, a)

The spectral representation allows us to obtain a simple
expression for the correlation function of CMCRP(c, a).
Sittler [1] shows that the correlation function of
CMCRP(c, a) is

r(r) = aMC'a’ 21)
where
M = diag () (22)

and , is the steady-state probability of being in state 7.
In the case of a CMC,

1_

M=-1I (23)
n .

From (19) we also have that

_ 1 n—1
Crt = = 3 [l (o). (24)

k=0

Substituting (23) and (24) in (21), we get

1 n—1
r(r) = — X [e(@)]" | ag(eH) |2

7 kmo (25)
{1 n—1
= — T[] | s |2 (26)
N ko :
The sequence
1a(w"), k=0,-+-,n—1 (27)
n

is the inverse discrete Fourier transform of the sequence
of output numbers

ai, i=0,.---,n—1 (28)
We denote this by writing
4; = - alwh), k=0,--.,n—1 (29)
n
Denote the eigenvalues of C by
v=c), k=0,---,n—1 (30)
Hence we can write
n—1
r(r) = 20 | ] (31)

k=1

where we have used the fact that 4,=0 from (9). We
see from this tha:t the poles of the spectral density are
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determined solely by the transition probability vector

¢, and their relative weights by the magnitude of the

inverse discrete Fourier transform of the output vector a.
The spectral density of CMCRP(c, a) is then

n—1 1
%) = T | ule] + -1] e
k=1 1 — ot 1 — ms
where £ is on the unit circle, When # is odd
(n—1)/2
() = 2, | Ai|?22Re
. k=1
[ ! 41 1] (33)
1 —yg! 1 — s

and when » is even

(n/2)—1

1 1
®(z) = Y, | A2 Re[ + —1:|
1 — sl 1 — s

o1

+ An 2 [ - 1] . 34
. I /,l 1 - ‘y,./gz_l 1-— “Yni23 ( )
Incidentally, when % is even

Yale = C("‘l) (35)

V. A Partial Solution to the Synthesis Problem

A general rational spectral density without repeated

poles corresponds to a correlation function of the form
r(r) = X Byl (36)

=]
where some B; may be negative and the complex v
"occur in conjugate pairs. Hence we cannot hope to syn-
thesize a general spectral density using CMCRP’s, since
(31) implies that the B, are nonnegative. We can, how-
ever, state the following synthesis procedure for the
restricted class of densities that correspond to correlation
functions (36) with nonnegative weights B;.

Theorem: A Markov chain can be constructed with
any correlation function of the form (36) with B:>0,
i=1,.--.,m.

Proof: Consider the correlation function

ri(r) = B[y + (v*)"] (37

where B;2>0. Choose 7, large enough so that v; liesin the
polygon with vertices at the 7; roots of unity. A prob-
ability vector ¢ can then be chosen so that

w = exp [j2x/ni]. (38)

Choose the sequence a;, j=0, - - -, n;—1 as the discrete
Fourier transform of the sequence _

Aj = V/Bi(by + 8nri), (39

Then from (31), this CMC, say C;, has r:(7) given by (37).
A similar procedure works if 7, is real. Now implement
each chain C; with independent random numbers and

7i = cw),

F=0,+ -, m—1.
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add their outputs. Since the output random processes
are independent, the spectral density of the sum of the
outputs is simply (36). This new construction is a Markov
chain that may be considered a direct product of com-
ponent CM(C'’s, Q.E.D.

This synthesis procedure may use many more states
than necessary. However, circulant chains of high order
can be implemented in a natural way with digital hard-
ware, since the vector of transition probabilities repre-
sents a fixed set of transitions in a fixed table.

The following example demonstrates that correlation
functions with negative coefficients can be obtained:

- -
o,
2 2

p-|l 21! (40)
16 3 6
111
|3 3 3_

a=(4 3 —=7) (41)

77
r(r) = — (5) + 5 0. (42)

Thus chains other than circulant chains must be consid-
ered in any attack on the general synthesis problem.

Vi. Comments

Equation (31) can also be derived from (21) by using
the fact that the discrete Fourier transform diagonal-
izes circulant matrices [5]. _

Prof. W. Schuessler of the University Erlangen-
Nuernberg has brought to the authors’ attention related
work, which the reader may wish to pursue [6]-[11].
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