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Abstract. We explore the practical limits on throughput imposed by timing in a long, self-timed, circulating pipeline 
(ring). We consider models with both fixed and random delays and derive exact results for pipelines where these 
delays are fixed or exponentially distributed random variables. We also give relationships that provide upper and 
lower bounds on throughput for any pipeline where the delays are independent random variables. In each of these 
cases, we show that the asymptotic processor utilization is independent of the length of the pipeline; thus, linear 
speedup is achieved. We present conditions under which this utilization approaches 100%. 

1. Introduction 

Many problems are amenable to solution by a one- 
dimensional pipeline. Such an architecture has the prop- 
erty that, in principle, the pipeline can be made arbi- 
trarily long, with a proportionate increase in throughput 
on problems of the same size, and with no increase 
either in the complexity of the processor or the com- 
munication bandwidth. Examples of such designs in- 
clude systolic arrays for signal processing applications 
[1], chips for matching subsequences in DNA strings 
[2], and a machine [3] for the lattice-gas model of 
Frisch, Hasslacher, and Pomeau [4]. Each of these 
designs is a simple concatenation of identical stages, 
and the system has linear speedup--n stages have n 
times the throughput of one. 

To realize linear speedup, the period of computation 
(the time for each processor to complete a computation) 
must be independent of the length of the pipeline. In 
traditional, synchronous designs, the period of compu- 
tation is determined by the period of the clock. One 
important practical limit of synchronous designs is the 
need to distribute a clock so that the timing require- 
ments for inter-processor communication are satisfied. 
Typical methods of clock buffering do not guarantee 
that a clock pulse can be propagated reliably through 
an arbitrarily long chain of buffers (see Appendix 1). 
Unless the clock period is increased as the pipeline is 
made longer, accumulation of local variations can ulti- 
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mately produce violations of the clocking requirements. 
Self-timed signaling [5], [6] as described in this paper, 
ensures reliable communication with a period of com- 
putation that is independent of the pipeline length. 

Section 2-4 provide background material on self- 
timed designs. In Sections 5-8, we consider the through- 
put of a circular, self-timed pipeline with several models 
for processing and storage times. We consider fixed 
times and random times with bounded and exponential 
distributions. Under each of these distributions, asymp- 
totic linear speedup is realized. However, different con- 
stant factors are realized for the different distributions. 
For several, utilization approaching 100% can be ob- 
tained for arbitrarily long pipelines. 

2. Self-timed Pipelines 

In self-timed pipelines, the flow of computation is con- 
trolled by completion and acknowledge signals. As we 
will show, this form of control does not suffer from 
the asymptotic throughput limitations of synchronous 
designs described in Appendix 1. When Stage i com- 
pletes a computation, it sends a completion signal to 
Stage i + 1 (modulo n, the number of stages in the 
ring). When Stage i receives new input data, it sends 
an acknowledge signal to Stage i - 1. Figure 1 shows 
the self-timed pipeline that we will analyze in this paper. 

The boxes labeled fperform the computation; the 
circles labeled C store the results and control the flow 
of data. In this figure, data flows to the right on the 
upper branches, and acknowledge signals flow to the 
left on the lower branches. 
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Fig. 1. A self-timed pipeline. The processors are labeled f and the 
C-elements C. 

Register 6~- is the output register forj~ and simulta- 
neously the input register for j~+l. What this means iS 
that a new result cannot be stored in Cj+ 1 until3~+l has 
completed its computation using the old result and 
stored it in Cj+ 1. The contents of Cj cannot change until 
two things happen: (1)fj completes its computation of 
a new result, and (2) Cj+I acknowledges receipt of a 
result (which means that the old result from Cj has 
been used and can be overwritten). 

We can visualize this sequence of events by placing 
tokens on the signal lines. Figure 2(a) shows a situation 
at time tl: The token at the upper left input of Cj is the 
completion signal from3~; the token at the lower right 
input is the acknowledge signal from Cj+ 1. At time t2 
(figure 2(b)), Cj stores the new result, transferring the 
completion token to its upper right output and the ack- 
nowledge token to its lower left output, the lower right 

input of Cj_ I. At time t3, fj+l computes a new result, 
transferring the completion token to the upper left input 
of Cj+ 1 . 

What we have described in this section summarizes 
well known ideas from the literature of self-timed cir- 
cuits and sets the stage for the analysis of such pipelines. 
The token-passing view of the pipeline is a simple in- 
stance of a Petri Net [7]. The storage element Cj func- 
tions as a Muller C-element [5] insofar as control is 
concerned. In [8] it is shown that three-stage pipelines 
of this form function correctly regardless of the delays 
of thefand C elements. In [9] this result is generalized 
to pipelines of any number of stages (>  3). 

3. Basic Properties of the Self-Timed Pipeline 

From the rules governing the pipeline, it is easy to see 
that the number of tokens is invariant and equal to the 
number of stages. Let loopj be the cycle (input of 3~) 

(upper left input of Cj) ---" (lower right input of 
Cj-0 as indicated in figure 3. Each loop contains ex- 
actly one token, and it is either a completion or an ack- 
nowledge token. We say that each such loop is in one 
of the three states left, right, or down, according to the 
location of the token. By the rules governing the flow 
of data and signals, the number of loops in the down 
state is invariant. 

We call the processor j~ active if loopj is in state 
left. This corresponds to the intuitive notion of active: 
3~ begins a new computation when the token (i.e., new 
data) arrives at its input, and transfers the token from 
left to right when the computation is completed. In the 
same spirit, we say that Cj is active when loopj is in 
the right state and loopj+l is in the down state. This 
means that Cj is allowed to fire, sending an acknowl- 
edge back to Cj-1 and data forward to fj+l. 

If all loops were in the left state, all processors would 
be active. However, once these computations were com- 
pleted, all loops would be in the right state, and the 
pipeline would be deadlocked. For progress to be made, 

Fig. 2. Tokens in a self-timed pipeline. Part (a) shows the state when 
C-element Cj is about to fire; (b) shows the state after firing; and (c) 
shows the state after processor fj+l has completed its computation. Fig. 3. Definition of loopj. 
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C-elements must be enabled to fire; this requires that 
there be loops in the down state. 

We refer to a loop in the down state as a bubble. 
Let n be the number of loops in the pipeline, and b 
be the number of bubbles. The number of active proc- 
essors is bounded from above by n - b. The number 
of active C-elements is bounded from above by min 
(b, n - b) because every active C-element must have 
a loop in the down state to its right (and there are b 
such loops) and a loop in the right state to its left (and 
there are at most n - b such loops). 

4. Performance of Self-Timed Pipelines 

We describe the performance of a pipeline with two 
related quantities: throughput and utilization. The 
throughput is the total rate of computations made by 
all processors, ff  the throughput is proportional to the 
number of processors in the limit as the number of proc- 
essors goes to infinity, we say that the pipeline has the 
linear speedup property. The utilization U of a proc- 
essor is the fraction of the time that the processor 
spends computing. In the cases considered here, all 
processors have the same utilization. A utilization of 
100 % indicates that every processor is computing all 
of the time. The pipeline has linear speedup if the util- 
ization is bounded from below by a positive constant 
as the number of processors goes to infinity. In the anal- 
ysis of the following sections, we will derive exact 
values and bounds for utilization under various 
conditions. 

In general, the times for computation and storage 
operations are random variables. A realization of a 
pipeline is given by an initial state and an infinite set 
of values, the times for each operation. As shown in 
Appendix 2, Corollary 2.1, this completely specifies 
the operation of a pipeline. We assume that the random 
variables for computation times are independent and 
identically distributed; tf denotes a random variable 
with this distribution. Likewise, we assume that storage 
times are independent and identically distributed and 
write tc to denote one such variable. 

To compute the utilization of a pipeline, we must 
determine the fraction of the time each processor is ac- 
tive. By the strong law of large numbers, the average 
time per computation for any processor in a given reali- 
zation is E[(r] almost surely [10]. The average waiting 
t/me for a processor is the average time between starting 
successive computations. For each realization, the aver- 
age waiting time is the same for every processor. For 
the pipelines considered in this paper, the average wait- 

ing time is the same for almost every realization (see 
Appendix 2), and we denote it by T. In this case, we 
define 

u = E[{~] 
T 

5. Fixed Processing and Storage Times 

We first consider pipelines with fixed ty and tc and a 
single bubble (b = 1). Each time)~ completes a com- 
putation, loopj must cycle through states left, right, 
and down. The average waiting time T is the sum of 
the average times spent in each of the three states left, 
right, and down. The time spent in the left state is always 
tf, and the time spent in the right state is at least tc. 
Let Tdow~ be the average time spent in the down state. 
We have T > tf + tc + Taown. By a simple balancing 
argument, nTdo~, = T. Combining these two relation- 
ships yields T > [n/(n - 1)](tf + tc). To obtain a sec- 
ond bound on T, note that the bubble must travel around 
the ring each cycle; so T >_ nt c. We claim that for any 
pipeline the greater of these two bounds gives the exact 
value for 7~ therefore, the utilization U of the pipeline 
is given by 

u _ n  - 1 tf 
n t f + t c  ' n < g  

=5~ n>_~ 
n t  c ' 

where Y = tf/t C + 2. 
To see this, consider first the case when n _> ~. After 

the bubble leaves loopi (to loopj_ O, at least (n - 2)tc 
time units elapse before the bubble arrives at loopj+l. 
Therefore, processorj~ has completed its computation 
by the time the bubble appears at the lower-right input 
of Cj. The rate of progress is completely determined~ 
by the progress of the bubble, and the bubble spends ~ 
exactly t~ time units in each loop. Thus, T = ntc justi- 
fying the throughput in this case. The other case, when 
n _< ~, follows by a similar argument. As n ~ 0% the 
utilization of the pipeline with a single bubble is f~(1/n). 

To improve utilization, more bubbles must be added 
to the pipeline. Let s be the average spacing of bubbles, 
s = n/b. First consider a pipeline where all the bubbles 
are initially equally spaced. Because all processing and 
storage times are identical and the initial pipeline con- 
figuration is symmetric, each bubble will propagate 
identically (see Appendix 2, Corollary 2.1). Since the 
bubbles are indistinguishable, the analysis of the single 
bubble case applies with n replaced by s. Appendix 2, 
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Theorem 3 shows that for a large class of pipelines, 
including this case, the initial configuration of bubbles 
does not affect the utilization of a pipeline. We conclude 

u _ S - 1  t f  

s t f + t c  ' s < - ~  

_ t l  
- - -  s > _ g  

s t  c ' 

In either case, the throughput depends only on the 
average spacing of bubbles. In particular, it is indepen- 
dent of the length of the pipeline. Thus, for any fixed 
spacing, linear speed-up is achieved. Optimal perform- 
ance is achieved by choosing s = Y, which yields 

t f s = ~  
Uopt = tf + 2t~ ' 

Thus, linear speed-up is achieved by pipelines with fixed 
processing and storage times. Furthermore, utilizations 
arbitrarily close to 100% can be achieved for tf >> t~. 

6. Bounded  Process ing and Storage Times  

We now consider pipelines where tf and tc are speci- 
fied by their means and maxima. We derive lower 
bounds for throughput by deriving an upper bound for 
T. To do this, consider a pipeline where each computa- 
tion requires time exactly max(tf) and each storage re- 
quires time exactly max(t~). We will call this the slow 
pipeline. Let U '  and T'  refer to the slow pipeline. By 
definition, T '  = max(t f  ) /U  ', and from Appendix 2, 
Corollary 3.2, we have T <_ T'  which yields U _> 
(E[tf]/max(tf))U'.  Since these max(tf) and max(t~) are 
fixed, the analysis of the previous section applies, and 
U'  can be calculated. This yields the bounds 

U > s - 1 E[tf] max(~) 
- s max(~) + max(tc) ' s _< max(tc----~ + 2 

max(t f) >_ E[tf] s >-- + 2 
s max(to) ' max(t~) 

Again, linear speedup is achieved for any fixed s. If 
t c is sufficiently small and max(t/) is sufficiently close 
to E[tf], then utilizations arbitrarily close to 100% can 
be achieved for an appropriate choice of s. Upper 
bounds for U can be obtained in a similar manner using 
min(t/) and min(t~). 

It may seem pessimistic to estimate the utilization 
based on the worst-case delays. One would hope for 
a pipeline whose performance is determined primarily 
by the average processing and storage times. However, 

we can propose pipelines where the bounds given above 
are tight in the limit as the number of processors goes 
to infinity. For example, consider a pipeline where tf 
is 1/p with probability p and zero with probability 
1 - p, and tc = 0. This approximates the behavior of 
a pipeline where most operations are fast, but infre- 
quently computations take a long time. If the pipeline 
is operated with a single bubble, we can show that 
U = p + 1/n. In contrast, for a pipeline with processing 
times fixed at E[tf] = 1 and one bubble the analysis 
of Section 5 applies, and U~xed = (n - l)/n. In the 
limit as the number of processors goes to infinity, 

U _ E[tf] 

Ufixed max(tf) 

Thus, in the single-bubble case, linear speedup is 
achieved, but utilization is limited by the worst-case 
processing time. Better utilization can be achieved by 
adding more bubbles; however, this example shows that 
the performance of self-timed systems is not necessarily 
determined by average case-timings (as has often been 
claimed). 

7. Exponent ia l  Process ing and Storage Times  

We now consider a case where the worst-case process- 
ing and storage times are not bounded. We show that 
linear speed-up (relative to expected processing time) 
is still achieved. To exploit techniques from queuing 
theory, we make two simplifying assumptions: 

1. The operations of the processor and the C-element 
are combined into a single operation. This could be 
achieved by taking the acknowledge signal to Cj-1 
from the output of 3~+l instead of the output of Cj. 

2. The time for the combined operation of storage and 
computation (to + tf) is exponentially distributed 
with mean r. 

With this change, the left state is never visible. When 
loopj_l is in state right and loopj is in state down, a 
transition is enabled that brings loopj_l into state down 
and loopj into state right. Because this could be effected 
by delaying the acknowledge inputs of C-elements, the 
throughput of this modified pipeline is less than or equal 
to the throughput of the original pipeline (Appendix 2, 
Theorem 2). 

A segment refers to a sequence of adjacent loops be- 
tween bubbles plus the bubble on the right. Each seg- 
ment can be viewed as a queue. A transition which 
lengthens a segment corresponds to an arrival to the 
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corresponding queue; a transition which shortens a seg- 
ment corresponds to a departure. A segment of  length 
one corresponds to an empty queue (no departure possi- 
ble since bubbles cannot be destroyed). Let k be the 
rate of arrivals to a queue; the average waiting time T 
is s /k .  A segment can grow if the successor segment 
has a length greater than one, and the time for the tran- 
sition which lengthens the segment is exponentially dis- 
tributed with mean 7-. Thus, ~ = (1 - pO/7,  where 
Pl is the probability that the length of a segment is one. 
Thus the utilization of processors can be determined 
once the distribution of segment lengths is known. 

By the symmetry of the ring, the segment lengths 
are identically distributed. Furthermore [11], these 
lengths are independent random variables as b ~ co. 
This is an M/M/1 queuing system [12]. The departure 
rate is 1/r: whenever a segment includes more than two 
loops, the bubble can move. The expected length of an 
M/M/1 queue is (1 - Pl)/Pl; accordingly, the expected 
length of a segment is l ips.  Since the average segment 
length must be n/b = s by the definition of segments, 
wehavepl  = 1Is. From this, we have T = rsV(s - 1) and 

lim u = S -  1 E [ ~ ]  
n ~ o o  S 2 7" 

From this result it follows that choosing s = 2 max- 
imizes the asymptotic value of U, and that this maxi- 
mum value is U = E[tf]/47". As mentioned above, this 
is a lower bound for utilization, because the simplifica- 
tions made for the analysis were conservative. For any 
fixed s, linear speedup is realized. 

We have shown that asymptotically good utilizations 
can be realized even when the worst-case processing 
time is unbounded. In contrast, the clock period of a 
synchronous system must be longer than the worst-case 
delay. The above result demonstrates that a self-timed 
pipeline can operate with performance determined by 
the average processing time instead of the worst-case. 

8. Exponentially Distributed Processing Times with 
Fixed Offset 

We now show that a self-timed pipeline can achieve high 
utilization even when processing times are unbounded. 
We consider processing times that are exponentially dis- 
tributed with an offset: 

~( t < to 
tz(t) 

e -  x(t- to) t o _< t 

To simplify the analysis, we assume tc = 0. (The anal- 
ysis of Section 7 corresponds to tf = O, t c exponential 
with parameter  r.) 

We cannot give exact analytic results for this case; 
instead, we derive approximate results for three cases 
depending on the spacing of bubbles, and we present 
the results of  Monte-Carlo simulations that confirm 
these approximations. 

1. Close spacing: s < <  kto. Because there are many 
bubbles, a loop will most often proceed directly from 
the right to the down state without waiting. In the 
limiting case as s goes to zero, the average time spent 
in the right state is zero. By arguments similar to 
those in Section 5, (s - 1)Tdown = E[tf].  Occa- 
sional waiting in the right state can only slow down 
the pipeline; thus, 

U < (s - 1)/s, s < <  to (1) 

Monte-Carlo simulation shows that this bound is 
close to the actual utilization. 

2. Intermediate spacing: s = kto. Both waiting for new 
data and waiting for bubbles occur frequently. Based 
on Monte-Carlo simulation, we observed 

U < kto/(1 + kto), s ~ to (2) 

is an upper bound and reasonable approximation. 
This is the region of maximum utilization. 

3. Large spacing: s > >  kto. Waiting for bubbles to 
arrive is the primary cause of lost utilization. We 
present a more detailed analysis of this case below. 

We compute an estimate based on the rate of flow 
of bubbles around the pipeline for the case that s > >  
kto. Since tc is zero, a loop is a bubble for a positive 
amount of  t ime only if it becomes a bubble while its 
predecessor is still computing a new result. Estimating 
the actual waiting time between computations with the 
average, T, this happens with probability approximately 
e --x(7"-t~ When a bubble stops at a stage, the average 
length of the stay is 1/k. This yields: 

S e_X(T_to  ) = T 
X 

It is easy to verify that in the limit as s goes to infinity 

T ~  to + ~ l o g  logs ~- Xto 

Since this assumes the bubble always arrives after to, 
this analysis provides a lower bound on average waiting 
time, and thus an upper bound on utilization. In the 
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Fig. 4. Util ization vs. bubble  spacing  wi th  )Xto = 10. Upper  bounds  

shown by solid curves are labeled by equat ion number .  The dots are 

the results o f  Monte -Car lo  s imulat ion.  

limit as s ~ 0% T ~ co, and the bubble arrives after 
to with probability approaching one. This yields 

U ),to + 1 = , s >> )% (3) 

Xt0 + log logs -  Xto 

These three upper bounds provide a good approx- 
imation to the utilization of the self-timed pipeline. 
Figure 4 shows data obtained from Monte-Carlo simu- 
lations along with the three upper bounds for a pipeline 
with to = 0.9, X = 10, (i.e., mean 1.0, variance 0.1, 
processing times) and t c = 0. For distributions with 
Xto sufficiently large, utilizations arbitrarily close to 
100% can be realized, even though the worst-case proc- 
essing time is unbounded. 

9. Conclusions 

We have shown that self-timed pipelines can achieve 
linear speedup with utilization close to 100%, under 
a wide variety of processing time distributions, includ- 
ing unbounded distributions. The variation in process- 
ing time is absorbed by bubbles, processors which are 
temporarily idle. By introducing bubbles, the pipeline 
can operate at a rate which is closer to the average proc- 
essing time than the worst-case. 

The theorems of Appendix 2 provide a general frame- 
work for analyzing the throughput of self-timed pipe- 
lines. In particular using Corollary 3.2, performance 
bounds (both upper and lower) for many other process- 
ing time distributions can be derived from the results 
presented in Sections 5-8. The C-element protocol has 
a natural extension to higher dimensions. The bounds 
from Section 6 (bounded distributions) also apply to 

this case. In particular, assuming bounded processing 
and communication time, two-dimensional processor 
networks can also realize linear speedup. For higher 
dimensional networks, the delays of non-nearest neigh- 
bor communication may limit performance to less than 
this. Our future work will include investigation of 
higher dimension cases, especially for more general 
distributions. 

The techniques presented here can also be applied 
to synchronous designs. The C-element ring can be 
used instead of a buffer chain to distribute clock pulses 
in a pipeline with locally synchronous stages. Feedback 
between stages in the C-element protocol guarantees 
correct functioning independent of all delays; thus, this 
design does not suffer from the limitations of buffer 
chains described in Appendix 1. This approach com- 
bines the simplicity of synchronous design (for the indi- 
vidual stages) and the robustness of self-timed designs 
(for interstage timing). 
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Appendix 1. Synchronous Pipelines 

In this appendix, we examine clock buffering for syn- 
chronous designs and show that many typical designs 
cannot guarantee both linear speedup and reliable pipe- 
line operation. The arguments are adversarial, so the 
results show that failure is possible, although not nec- 
essarily probable. More work needs to be done to 
understand when the limits of synchronous clocking are 
reached in practical systems. 

In [13], Fisher and Kung present several clock dis- 
tribution designs. Because signals are necessarily atten- 
uated when propagated large distances, these designs 
must be implemented with chains of buffers, as illus- 
trated in figure 5. They require the skew introduced 
by each buffer to be bounded. Under this assumption, 
they claim that arbitrarily long pipelines can be con- 
structed with a clock period that is (asymptotically) in- 
dependent of the size of the array. The difficulty with 
their argument is that they neglect variations in clock 
skew during operation of the circuit--for example, be- 
tween leading and falling edge, or from pulse to pulse 
([13], Assumption AS). 
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clock-in ~ ~  �9 �9 �9 

Fig. 5. A linear array of processing stages, clocked by a linear array 
of buffered clock signals, after [13]. The buffers are labeled "B," 
and the processing stages "S?" 

Consider differences in delay between leading and 
falling edges in the buffers of figure 5. Let tZh be the 
delay for a rising edge, thl for a failing edge, and ta = 
max(tlh) -- min(thz). Without loss of generality, assume 
ta > 0 (otherwise, the following argument applies 
with h and l interchanged). It is possible, in the worst- 
case, that each stage delays rising edges by max(tth) 
and falling edges by min(thl). The high portion of each 
clock pulse output is then t a shorter than the input 
pulse (or non-existent). Given enough stages, the clock 
pulse completely disappears. 

To prevent pulses from disappearing, a one-shot 
could be added to the output of each buffer. When the 
input of the one-shot is high and the output is low, the 
one-shot generates a high output pulse that has a dura- 
tion of at least wh and does not fall before the input. 
Likewise, the one-shot guarantees that the length of the 
low output pulse is at least wl. To show that this does 
not produce a reliable buffer chain in the worst-case, 
we construct a counterexample in two steps. The first 
step exploits variations of delays through the one-shots 
to produce a string of minimum-width clock pulses. The 
second step exploits variations of width requirements 
to force a clock pulse to be missed by a buffer. 

For simplicity, we assume Wh = Wl = w. Each buf- 
fer delays pulses (from input to output) by some amount 
t. Due to variations as the circuit operates, t and w are 
random variables. We assume that they are bounded 
with ranges At = max(t) -- min(t) and Aw = max(w) 
- rain(w). We assume the input clock is symmetric 
with high and low intervals of ~- (where ~" > w). 

If  the first stage delays the first (e:g., rising) edge 
by max(t) and all subsequent edges by min(t), then the 
first pulse has a width of 7- - At at the input to the 
second stage. I f  the first k stages delay the first edge 
by max(t) and all subsequent edges by rain(t), then the 
first two edges are separated by max(r - kAt, w) at 
the output of Stage k. Narrowing of the separation to 
less than w is prevented by the one-shot. If  subsequent 
stages continue to delay the first edge relative to the 
others, the interval between the second and third edges 
will be reduced, and so on. Thus we can produce an 

arbitrarily long sequence of successive pulses separated 
byw. 

The second step of the construction exploits varia- 
tions in w. Suppose that such a sequence of pulses, 
separated by min(w), encounters a stage which imposes 
a separation of max(w). Because a one-shot must have 
finite memory, the stage must ultimately lose a pulse. 

Appendix 2. Properties of Self-Timed Pipelines 

In this appendix, we derive three theorems for pipe- 
lines. First we present a sufficient condition for live- 
ness. Then we give a proof that the waiting time cannot 
be decreased by increasing the delay of one or more 
operations in a realization. Finally, we show sufficient 
conditions under which the average waiting time T is 
well defined. 

Let n be the number of processors (and therefore 
the number of storage elements) in the pipeline, b be 
the number of bubbles, and s = n/b be the average spac- 
ing of bubbles. All operations on processor, storage ele- 
ment, and loop indices are implicitly modulo n. Each 
loop (as described in Section 3) can be in one of the 
three states down, left, or right. 

THEOREM 1. For any pipeline with 1 < s _< n, and 
for any distributions for t c and tf, at least one proc- 
essor or C-element is active at any given time. 

By the definition of s, 1 < s < n is equivalent to 
1 _< b < n, which means that there is at least one loop 
that is a bubble and at least one loop that is not a bub- 
ble. Since the loops are arranged in a ring, we can find 
a j such that loopj is in state down and loopj_i is in 
state left or right. I f  loopj_l is in state left, then proc- 
essor J)_ 1 is active. Otherwise, loopj_l is in state right 
and C-element Cj_ 1 is active. In both cases the claim 
is established. 

The next theorem shows that the throughput of a self- 
timed pipeline cannot be increased by slowing down 
any one or more operations. In general, the times for 
computation and storage are random variables. A reali- 
zation is an initial state and a delay for each operation. 
The initial state can be specified by a function q where 
q(j)  is the initial state (down, left, or right) of loopj.  
The delays of computation and storage operations can 
be specified by a positive (but not infinite), real valued 
function, delay(i, j ,  what), where i is the iteration, j 
is the position in the ring, and what is either processor 
or C-element. In particular, delay(42, 17, C-element) = 
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1.23 means that C17 takes 1.23 time units (after its inputs 
are both available) to perform its 42 nd storage opera- 
tion. Likewise, we define start(i, j ,  what) to be the time 
at which the inputs become available for whatj to start 
its i th operation. We write delay~ <_ delay2 to denote 
that for all i, j ,  and what, delay~(i, j ,  what) < delay2(i, 
j ,  what). We define start~ < startz in the same manner. 

THEOREM2. LetR~ = (ql, delayx) andR2 = (q2, delay2) 
be two realizations of a pipeline. If  ql = q2 and delay 1 

<- delay2, then starta <_ start2. 
Assume otherwise. Then, of all operations that start 

earlier in R 2 than in R1, let (i, j ,  what) be the first. 
If  what = processor, this means that the output of 

the preceding C-element changed sooner in R2 than in 
R~. By the choice of (i, j ,  what) to be the first violation 
of the claim, this C-element started its operation no 
earlier in R z than in Rv Furthermore, the C-element 
in R 2 took at least as long to complete its operation as 
the one in Rz by the hypothesis delayl <_ delay2. Thus, 
the input to 3~ became available no earlier in R2 than 
in R~. A contradiction. 

I f  what = C-element, a similar argument leads to 
the required contradiction. 

Corollary 2.1. Let R 1 = (ql, delayO and R2 = (q2, 
delay2) be two realizations of a pipeline. If  ql = q2 and 
delay~ = delay2, then starfi = start2. 

Proof Since delay~ <_ delay2, Theorem 2 implies start~ 
< start2. Likewise, d e l a y  2 <_ de lay1  implies start2 <_ 
startl. Therefore, startl = start2 as claimed. 

Corollary 2.1 shows that the behavior of a self-timed 
pipeline (as described by starting times of operations) 
is completely determined by the initial state and the 
delay function. 

We now give a condition that guarantees that utiliza- 
tion depends only on the distributions of processing and 
storage times and the number of bubbles in the pipeline. 

Condition 1. For any fixed i, j ,  and what, delay(i, j ,  
what) is a random variable. Condition 1 is satisfied if 

1. All of these random variables are independent. 
2. For fixedj and what, the resulting family of random 

variables are identically distributed. 

The first condition requires that the time to perform 
any given computation or storage operation is indepen- 
dent of the time to perform other operations. The sec- 
ond condition requires that any given processor (or 

storage element) has the same distribution of computa- 
tion (or storage) times for all iterations. 

We now introduce the idea of restarting that will 
allow us to analyze aggregate properties of (almost) all 
realizations. For any integer k, after each processor and 
C-element has completed exactly k operations, the state 
of the pipeline is identical to the initial state. The restart- 
at-k of a realization R = (q, delay) is a realization 
R'  = ( q, delay)  such that delay' < delay and all proc- 
essors and C-elements complete their/d h operation at 
the same time. In particular, we consider the first proc- 
essor or C-element to complete its /(h operation; let 
this occur at time rk. We reduce delays (in delay' rela- 
tive to delay) for operations in progress at this instant 
so that they will also complete at time 7 k. Finally, we 
set the delays of all remaining operations of iterations 
at or before k to zero to guarantee that each processor 
and C-element completes its/d h operation at time rk. 
By construction delay' <_ delay and by Theorem 2, 
start' <_ start. Since the pipeline is restarted to a fixed 
state (independent of the state before the restart opera- 
tion), and the delays of computation and storage oper- 
ations are independent random variables (assuming 
Condition 1), the behaviors of the pipeline before and 
after the restart are independent. The restart-every-k 
of a realization R = (q, delay) is a realization R '  = 
( q, delay') such that delay' < delay and all processors 
and C-elements complete their mk th operation at the 
same time for all integer m > 1. 

THEOREM 3. If  a pipeline satisfies Condition 1, then the 
limit 

T = lira start(m, j ,  what) 
,n-* ~ m 

exists almost surely and has the same value for all j 
and what, and all initial states with the same number 
of bubbles. 

Proof In the following, we assume i < b < n to guar- 
antee that the pipeline is alive. Otherwise, the pipeline 
deadlocks, and the limit is infinity for all realizations. 
We first show that the limit exists for any fixed initial 
state and for any integer k, when each realization is 
replaced by its restart-every-k version. We then show 
that in the limit as k goes to infinity, the limit for the 
restart-every-k version is the limit for the original pipe- 
line. Finally, we show that this limit is independent of 
the initial state, j ,  and what. 

Let startk be the starting times of a restart-every-k 
version of a realization. We consider 
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T k = lim startk(m' j '  what) 
m~o~ m 

Let 6k(1 ) = startk(1, j ,  what) and 6k(m) = startk(m, j, 
what) -- startk(m - 1, j, what). Then we can write the 
above limit as 

m-~o m i=l m-~oo m i=0 ~ h=l 6k(ik h) 

Because the operation of the pipeline before any restart 
is independent of the operation after the restart, the 
sums over h are independent random variables. Thus, 
by the strong law of large numbers [10], the limit exists 
almost surely. Since start k <_ start, we have 

lim inf start(m, j, what) > Tk 
m--* oo m 

We now derive an upper bound, and show that these 
two are equal in the limit as k goes to infmity. In a pipe- 
line with b bubbles, the difference at any time in the 
number of operations performed by any two processors 
or C-elements is at most b + 1. Therefore, the number 
of processor delays that are decreased by each restart is 
at most n(b + 1). Likewise, at most n(b + 1) C-element 
delays are decreased in the construction of delay'. The 
largest difference in starting times between the original 
realization and its restarted counterpart would occur 
if these operations were performed sequentially in the 
original. Let 

(i+ 1)k n - 1  [d  
gapi = Z Z elay(h, j, processor) 

h=(i+l)k-b j=0  

delay(h, j, C-element)l + 

For each i, gapi is an upper bound on the decrease of 
starting times due to the i th restart. This yields 

start(m, j, what) 
lim sup 

m~oo m 

-< lim 1 ~ l l l g  ~ - -  ) l  
m-~o m i=0 ~ api + 6k(ik + h 

h=l  

Applying the strong law of large numbers again, the 
right side of the inequality becomes 

1%7-~ l 1 
m--*colim m 2.~i=0 ~ (E[gap] + Tk) 

Taking limits as k goes to infinity yields 

lira sup Tk < lim inf start(m, j, what) 

start(m, j, what) 
< lim sup 

m~oo m 

< lim inf IE[~aP]  + ~--,~o Tk~ 

almost surely. E[gap] is bounded by n(b + 1)(E[(f] + 
E[tc]); therefore, limE[gap]/k = 0, and we conclude 

k- -~  

lim inf start(m, j, what) = lim sup start(m, j, what), 
m-~ m m--* oo m 

almost surely. Therefore, for any fixed initial state the 
limit exists almost surely as claimed. 

The final step is to show that this limit is the same 
for all initial states with the same number of bubbles, 
and for allj  and what. Let ql and q2 be two states with 
the same number of bubbles. Let T~ and Tz be their 
respective values of the above limit. We note that a 
pipeline initially in state ql can be brought into state 
qz by setting the delays of a bounded, O(nb), number 
of operations to zero. Thus, Tz < 7"1. By symmetry, 
we have T~ < Tz and therefore T2 = T1. As noted above, 
the difference in the number of operations performed 
by any two processors or C-elements is at most b + 1. 
Because each loop completes any finite number of oper- 
ations in a finite amount of time, the difference between 
starting times of different loops and processors is insig- 
nificant in the limit. Thus, the limit exists and is the 
same for all initial states, and for all j and what. 

Corollary 3.1. If a pipeline satisfies Condition 1, then 
its utilization is defined. 

Proof The average waiting time is 

T = lim start(m, j, what) 
m-.+ r m 

By Theorem 3, this limit exists almost surely. Therefore, 
the utilization U = E[tf]/T is defined. 

Corollary 3.2. Let P~ and Pz be two pipelines that satisfy 
Condition 1 and have the same number of processors 
and bubbles. Let F~ and C~ be the distribution func- 
tions for processing and storage times respectively in 
t'1, and F2 and C2 be the same for P> If  F~ _ F2 and 
C~ > C2, then Tt -< Tz. 
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Proof By Theorem 3, T~ and T2 are defined. By Theo- 
rem 2 and the monotonicity of averages, it is sufficient 
to exhibit a mapping from realizations of P1 to realiza- 
tions of P2 with the following two properties: (1) the 
realization in P2 has a delay function that is greater than 
or equal to that of the realization in/1, and (2) the map- 
ping preserves the probability of measurable sets. If 
F~, C~, F2, and C2 are continuous this can be achieved 
for each realization and by mapping delay~(i, j ,  proc- 
essor) to F f  1 (F~(delayt(i, j, processor))) and likewise 
for C-element delays. Since FI -> Fz 

F21(Fl(delay~(i, j ,  what))) >_ delayl(i, j ,  what) 

as required. If one or more of the distributions are not 
continuous, suitable variations of this simple mapping 
will produce the required result. 
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