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THE APPROXTMATION PROELEM FOR DIGITAL FILTERS

I. INTRODUCTION

The problem of find.ing &8 realizable transfer function with a
prescribed magnitude or phase angle on the Jo axis has been an im-
portant one to the designers of continﬁous wave filters and compen-
sators. The Butterworth and Tchebycheff filters, together with
their high-pass and bandpass transformations, are well known solu-
tions to common approximation problems. The possibility o_f de-
signing digital systems in terms of frequency response, however,
has remained relatively unexplored since the early work of Sa.lzerl,
dcspite fhe advent of sampled-data systems and the increasingly
wide use of digital computers in control and measurement. It is
the purpose of tixis paper to explore some approximation techniques
for digital filters, and finally, to show the equivalence.of the
approximation problems for digital filters and continmuocus filters.
An immediate a._pplication is the design of spectral windows for
spectrum analysers when the input data is discrete?s 3. Also, when
some time d.elay is tolerable and a digital computer is available,
it might be practical to use a digital filter in tandem with a hold
eircuit to filfer a continubus wave. Hopefully, other applications

will be found.




The advantages of using a digital computer as a filtér
2,‘I‘,zs‘?'c.he flexibility, accuracy, and stability which can be readily
obtained, and which a;'l»';’cpractically impossible to achieve with
analogue hardware. The constants of a digital filter can be
set to a high degree of accuracy, can be changed very fast,
and are not subject to unwanted variation with temperature or
age. Furthermmore, with the use of pulse-code modulation for
low noise transmission of data over large distances, the avéil-
ability of signals already in digital form can make the use of
digital filters very practical.

First, let us clarify the notion of digital filter. The

term digital filter will be applied to any linear computation

scheme producing a discrete output time series y(nT) from a
discrete input time series x(nT). Thus, any digital filter
can be realized with an appropriately programmed digital com-
puter. Theoretically, a pencil and paper will serve as well.
In our context, the synthesis problem is trivial, for we need
only carry out the indicated computations. Lewit;l+ has con-
sidered the synthesis of digital filters with networks of open-
and short-circuited transmission lines.

A word about our nomenclature: Our definition is inde-

pendent of any physicael, continuous wave filter. Hence the




use of the term digital Arilter, ‘as opposed to a filter which

must always be the z-transform of some continuous filter.

II. THE TRANSFER FUNCTION, OF A DIGITAL FILTER

If a digital filter must operate in real time, only past
and present inputs are avallable., We cgll such filters real
time filters. They can be characterized by the following ca_n;

putétional scheme:

N
y(oT) = z 8y X (nT-KT) —i by (l-kT)
k=0 k=1

vhere T is the sampling period. If we use the two-sided z-

transform no‘l;at.:!.on5

O

X(z) = Zx(n'l?)z"n ,
n=-co
©

Y(z) = Zy(nT)z'n ,
n=-0o

z = 5T

(1)

(2)
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(1) vecomes

N M
Y(z) = z. akz'k X(z) - z bkz'k Y(z) . (3)
k=0 k=1

Thus, the transfer function is

N
-k
Y(z) 82
D(z) = xzz) - kZ" — ) (4)
A
1+ Zbkz'k

k=1

vhich is a rational function of z, whose magnitude is a
periodic function of w. The phase angle of D(z) is not
really periodic in_ ®, but increases by a mgltiple of_,z_x ‘.
every time w increases by _'211‘(_ To see ‘this, suppose that in-
side the unit circle in the z plane the number gf zeros of
D(z) minus the number of poles of D(z) is m. Then when w in-
cfeases by 2x, the point z traverseé the unit circle once in
the counterclockwise direction. Therefore, the phase angle
of D(z) increases by m2x. |

If a digitel filter D(z) requires P future inputs,

2-FD(z) will be a real time filter. On the ju axis, the




delay operator z~F does not affect the megnitude characteristic
and contributes only linear phase.

When all the poles of D(z) are inside the unit circle in
the z plane, we call D(z) & stable filter. The impulse response
of a filter that is noflstable will not approach zero as time
iqgreases. Since unstable‘filters.will genera}ly be of no
practical importance, we shell not accept them as solutiomns to

an approximation problem.

III. FOURIER SERIES TECHNIQUES

Guillemin6 has suggested the use of Fourler series in the
approximation pf magnitude characteristics of continuous wave
filterg. His approximation procedgre consists of employing a
bilinear t:ansformation‘of the frequency variable to make the
desired characteristic a periodic function of frequency, using
a truncated Fourier series in the new frequency variable, and
then reversing the transformapion to give aﬂrational function
of w. Since our desired characteristic is already periodic,
we can use Fourier series directly.

Suppose, then, that we are given the desired magnitude
characteristic M(w) of some digital filter. Since this is an

even function of o with period 2x/T, we can approximate it in




& least mean square error sense with the truncated Fourier

series

. ’ K !
Mw) ¢ z cme"jm“ﬂ‘

n=-K

where

T § Jwoall |
¢y = Cp = ™ M(w)e do .

iy

The digital filter

D(z) = z cm_Kz'm = K i cpz

n=0 : m=-K

will then approximate M(w), because when z=e'j‘dr

M) .

0

} e

m=-K

Io(z)] =

(5)

(6)

(1)

(8)

The series (5) is a cosine series, so that the only phase

shift of D(z) is that caused by the delay factor z-K. Thus,

if a delay of KT is tolerable, these filters can be considered

to introduce no phase distortion. The filters obtained by this




method will always be stable since they are polynamials in z-*
and will ﬁave poles only at the origin. In fact, the impulse
response of these filters will be zero after a finite number of

sampling periods.

Example 1.
As an example, suppose we wish to approximate the ideal low-

pass characteristic shown as a dashed line in Fig. 1. For con-
venience, take T=u/2, the cutoff frequency at w=l, and the Nyquist

frequency at w=2. From (6) we get

1/2 m=0
Cp = ¢ = (-1) (m-l)/z m=1,3,5,...
' - mx

0 m=2,4,6,...

The normalized magnitudes of the first three of these filters are

plotted vs. w in Fig. 1:

Curve A: D(z) = 2 + 1zt 4+ 1;-2
b8 2 T

Curve B: D(z) = - l— }z‘a + }z'a + lz-l - 1 z-e
x = 2 n 3n

Curve C: D(z) = 1_.1;-3 }z" + 1,8 L 1,61 -8 E_z-lo
5“ 3’( b1 2 x 5“

One disadvantage of this method is that the resulting digital




filters are always polyncmials in z-tand hence will not utilize
past_outpufs. While thig might be desirable when there are
storage problems, the class of filters is very restrictive and
in general w;ll‘not use camputing facilities efficiently.

As can be seen from the figure, another objecpionable‘fea-
ture of this method is the ripple and overshoot that is char-
acteristic of Fourigr approximations. One way of alleviating
this difficulty might be to use Fejér means | for.the coef-
ficients cy. Very high order filters will be required, how-
ever; to achieve sharp cutoff and good rejection in the stop
band. Because of the above disad?antages, we shall not pursue

the subject further.

IV. Z-TRANSFORMS OF CONTINUOUS FILTERS

Suppose that we design a continuous filter F(s) which ap-
proximates the dgsirgd digital filter_characteristics4'fo;
|o| < x/T, and is small outside this range. If F(s) has all

its poles in the left-half plane, the z-transform of F(s),

oo
ZEE g = ) Flo-m2, (9)

n=-00

will be a stable digital filter with approximately the desired




characteristics. The main difficulty with this is the addi-
tion of unwanted terms in (9) due to the aliasing of the fil-
ter function. If we use this idea, we'must use high order
filters with relatively low cutoff frequencies, so that the
characteristic decreases fast in |o| > x/r.

This method requires that we z-trensform our F(s). If
F(s) is of a high order, this is a laborious task. Further-
more, once Z [Fr(s)] is determined, the calculation of its
magnitu@e‘andﬁphasevfor_s;Jw will be a still more difficult
Job.' This means that the error introduced by the aliasing

will not be easy to assess.

Example 2.
To 1llustrat¢ this problem, consider the third-order maxi-

mally flat Butterworth low-pass filter with unit cutoff frequency:

1

8% + 282 + 28 + 1

F(s)

The z-transform is

0.3703z7' + 0.1346272

D(z) = _
1 - 0.3981z7! + 0.247427® . 0.043212"3

vhere sgain we have taken T=u/2. The normalized magnitude is

Plotted as curve A in Fig. 2. Because of the high cutoff fre-
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quency and the low order of the filter, the effects of aliasing
are quite pronounced - the cutoff is not sharp and the rejection

is poor.

V. CONVERSION TO THE APPROXIMATION PROBLEM FOR CONTINUOUS FILTERS

'l’he’ difficulties associated with the methods so far pre-
sented} cen be eliminated by Just reversing Gui:l.lexnin's6 procedure,
More explicitly, our procedure will be as follows: We start with
a d.egired digitp.l filter frequency characterisi:ic. (This may be
a magnitude, phase angle, real part, or imaginary part.) ABy the
inverse of the transformation used by Guillemin, we convert this
to a continuous wave filter characterisfic. This can then be ap-
proximated with a rational function, using any one of the many
procedures available for conti_nuous‘ filters. By then reversing
the .transformation, we get a rational function of z=e5T whose
frequency cha._racteristic approximates the one given. ' This method
allows us to apply all the known techniques for continuous filters
to the approximation problem for digital fili};prs.

The desired transformstion is the familiar bilinear trans-

formation

1+F
1-7%
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z -1
z +1

’ (10)

vhere 8 =g + JE is the frequency variable for continuous wave
filters, and z=e8T = e(a + Jo)T is the freq\iency variable for
digital filters. As shown in Fig. 3, the entire ,jc'B axis is map-

ped onto the unit circle z=ed%T 1n the z plane. When -s-=jfn', we

have ‘ :
l+ 50
z = eddl = ‘ jf ’ (11)
- 1\) .
or
2 -
® = arctan o . (12)
/n‘li',’r"-vl/'s

The eﬁtire w axis is thus mapped into atrdps¥ on the w axis
2n/T wide. Since the left-half s plane is mapped into the unit
circle in the z plane, a.ny continuous wave filter that has a.ll
its poles in the left-half § plane will become a stable digitsl
filter under the transformation (10).

Suppose now that we are given some periodic function of
®, C(w), that is to be the desired characteristic (ma.gnit_ud.e,“
phase, real or imaginary part) of a digital filter. C(%arctan w)
will then be the corresponding characteristic for a continuous fil-
ter. We then spproximate C(—;-arctan ®) and arrive at a rational

function of s, say F(s). Then F(

z-1
— ) will be a digital filter




12

that epproximates the desired characteristic.

Loosely speaking, we have taken the strip |w| 5_n/T and
stretched it out; done our approximation for a continuous fil- .
ter; and then squeezed the axis back into the original strip.
Notice that:there is no aliasing of the filter function. Al-
though the w axis is cqmpressgd, ﬁany of the widely used approx-
imation criterea, such es equal ;ipple, maximal flatness, etc.,
carry over directly to the digital fi;ter case., If a continuous
filter has magnitude M(w), phase ®(w), reel part R(w), and im-
aginary part I(w); then the bilinear-transformed digital filter
will have magnitude M(tan uﬂ'/?), phase ®(tan aff/2) in || < /T,

real part R(tan off/2), and imeginary part I(ten uff/2).

Example 3.

Suppose, thgﬁ, that we wish to approximate the same ideal
low-pass filter as in examples 1 and 2, The desired filte: mag-
nitude characterist;c has a perfect cutoff at ® =1 We can
therefore use the same Butterworth filter that we used in ex-
ample 2:

1

F(s) = .
82 +28% +28 + 1

z‘i , this becomes the digital filter

When we let 8 =
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1+ 327 + 3z=2 .4 z-3
D(z) = ' s
3+2z°2

vhose normalized magnitude is plotted as curve B in Fig. 2,‘
along with the z-transformed filtgr. Note that this is now a
meximally flat digitel filter. The point w2 corresponds to

@ = + 00, and the filter magnitude at this point is zero. The
phase characteristic is that of the continuous Butterworth fil-
ter (except for multiples of 2n), compressed repe@itively into

strips, the same way as the magnitude characteristic.

Example #.

As another illustration of this method, suppose we want a
low-pess digital filter"with equal ripple in the pass band.
Take T=r/2, the cutoff at w=4, and the Nyquist frequency at

w=2, The continuous filter must have its cutoff frequency st
® = tan al/2 = tan x/8 = O.41k2 .

Suppose, then, that we start with the YR _order Tchebycheff fil-

ter with about 10% ripple (e? = 1/5), and a cutoff frequency at

w=1:

1

F(s) = .
s* + 1.0348® + 1.5358° + 0.83068 + 0.3062
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If we substitute s/(0.4142) for s, we get

B .
84 + 0.428U8® + 0.26338% + 0.059038 + 0.009011

F, (5) =

which has a cutdff»frequency at @ = 0.4142. We then substitute

- z -1
s = T T to obtain the desired digital filter:
z

-1 -3 -3 -4
D(z) = 1+ 4z™t + 6273 + 423 + 2 .

1.760 - 4.70327 + 5,5272-2 - 3,225z~3 + 0.7849z~*

Fig. b shows the normalized magnitude of this Tchebycheff equal

ripple digital filter.

VI. USING DIGITAL FILTERS TO MAKE CONTINUOUS WAVE FILTERS

We cgnclude with sqmg rgmarks apout constructing a con-
tinuous wave filter with a sampler, a digital filter D(z), and
a data reconstruction circuit st). With reference to‘Fig. 5,
the overall transfer function is

" Y(s)

(o) = D*(s)H(s) ,

vhere D*(é) = D(esT) s

and X*(s) 1is the Laplace transform of the saﬁpled input. Note
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that the transfer function is with respect to the samp;ed
(aliased) input signal. Thus, we must sample at a frequency
at least twice as great as the bandwidth of x(t) in order that
the filter chgmcteristic repzfesent the action of the filter on
the original signal in the range |w| < u/'I‘. Any transmission
outside this range does not represent transmission at all, but
represents spurious harmonics of the input slignal.

Let us assume for the purposes of discussion that H(s) is
e simple hold circuit (a zero-order hold), and that we want to
convert a digital filter to a continuous filter vhose magnitude
gharacteristic is small for |w| > :t/T. Ideally, then, we would

want |H(Jw)[ to be 1 in |w| < /T, and zero elsewhere. Actually,

we have
-8T ' “
H(s) = ——° , (13)
sT
and
LIESTIR et L

|B(jw)| has its first zero at @ = 2x/T, which is twice the Nyquist
frequency, and has lobes of appreciable magnitude well outside the
range Iu)l < n/T. The overall transfer function therefore has

spurious responses at high frequencies. This is an unavoidable
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consequence of an imperfectvreconstruction device. It is evi-
dent.that a fairly crude low-pass continuous filter placed at

phe output, with a cutoff frequency near the Nyquist frequency,
would be effegtive in reducing the harmonics in the output. It

is also desirable to compensate for the fallipg off of the magni -
tude of the hold circuit in the pass band by appropriately sheping
the dig;tal filter characteristic. This technique, plus the use
of a low-pgss continuous wave postfilter, will probably make it
uneconomical to use hold circuits more complicated than a simple

clamp.

Example 2

As an exsmple, we use the hold circuit of (13) with the
D(z) of example L. The resulting low-pass magnitude characteris-
tic is_showp in Fig. 6. As mentioned before, the high frequency
pass ban@s are not truly in the transfer characteristic, but rep-
resent harmonics of the aliased input signal.

It is interesting to note that the filtering characteristic
of our finalAsystem can be changedvas faat as the coefficients
ip the dig;tal camputer program can be changed. If we used band-
pass digital filters, for instance, we might then be able to‘'use
our computer system to replace a bank of fixed filters or a fre-

quency sweeping system.
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\ § Plane
z Plane
o=+ ~@=0
@w=—-00
“Unit Circle

(X X w*0 @0 a-lo w*00 @?r0 XY}
w--%"-r w-—:.'— w=[0 w-g w-?r—" w—
Fig. 3
The § Plane, The z=eS] Plane, And The jw Axis;
When z= s,

I—%
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Fig. 5

DATA

| RECONSTRUCTION

CIRCUIT
H(s)

y (1)

A Continuous Wave Filter Constructed From A Digital. Filter.
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