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ABSTRACT

An adaptive filter which reconstructs
a continuous signal from its samples is
described. This filter is based on the
minimum mean-square-error reconstruction
filter, assuming an all-pole model for
the sampled spectral density of the input
signal. The use of this model leads to
two important simplifications. First,
simple linear regression can be used to
identify the unknown parameters of the
signal spectral density. Second, the
resulting filter has an impulse response
which is of finite duration. These sim-
plifications lead to an adaptive filter
which is at the same time both generally
applicable and easily implemented on a
digital or hybrid computer. Experiments
with both deterministic and random inputs
are described which show that the adaptive
filter yields significant improvement over
a linear point connector or other commonly
used reconstructors with relatively low
order models and with relatively short
identification times.

I. INTRODUCTION

In many information processing
systems it is necessary to reconstruct
continuous signals from equally spaced
samples. Inexpensive devices for doing
this in real time have been widely used
for many years, the simplest of these
being low pass filters or zero-order
(boxcar) holds. These are adequate in
many situations. When redundant data is
unavailable or comes at a high cost, how-
ever, it may become feasible to increase
the complexity of the reconstruction pro-
cess, either to extract maximum informa-
tion from a digital signal or to minimize
bandwidth requirements. This suggests the
use of a reconstruction filter which adapts
to the spectral density of the incoming
sampled signal.

For the case where the signals are
wide sense stationary random processes,
where the processing is to approximate a
linear operation L on the continuous sig-
nal, and where a mean-square-error cri-
terion is used, the solution to the
optimum filter problem has been known for
several years [1,2,3]. Consider the
general solution illustrated in Fig. 1,
where the original continuous signal is
corrupted by additive noise n(t) before
sampling. The optimum reconstruction
filter, H(s), without regard to realiza-
bility is given by
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L(s)$ f(s)
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where
L(s) is the desired operation on the
input signal f(t),
¢ f(s) is the cross power spectral
Y density between f£(t) and
y(t) = £(t) + n(t),
¢ (z) is the sampled power spectral
YY" density of y(t), where z = eS
T is the sampling interval.

In order to construct the above
optimum filter it is necessary either to
know a priori the various self and cross
spectral densities, or to use some type of
identification technique to learn these
from the signals themselves [4]. 1In this
paper it will be assumed that only the
sampled signal is available for making
the identification as would be the cgse if
the reconstruction were at the receiving
end of a pulse code modulation system. A
previously described identification method
will be used [5] and it will be shown
that this method, based on an all-pole
model for the sampled spectral density
éyy(z), leads to simple and useful adaptive
réctonstruction filters.

and

ITI. THE IDENTIFICATION - ADAPTATION SCHEME
Consider first the case where the
original analog signal £(t) is uncorrupted

by noise. The sampled spectral density
¢r£(z), and the continuous spectral density
$rc(s) must be identified to synthesize the
optimum filter. It will be assumed that
the sampled spectral density is all-pole,

i.e. of the form

2
-—L— (2)
D(z)D(z )

fo(z)

where

p
D(z) = z dnz—n , do =1
n=o

and 82 is a positive real constant; or can
be approximated by such a form for suf-
ficiently large p. While this assumption
introduces an approximation problem, it
results in the following two vital simpli-
fications:
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1. The simple linear regression
technique described previously [5,6] can
be used to estimate the parameters dn
and B2. The identification proceeds as
follows: first the p + 1 mean-lagged-
products

c. = £

3 ifi+j j=0,1,...,p

are computed from the available samples of

f(t). Then the following estimates are
used:
a.] E c c c 7 7Me]T
1 0 1 2 TTTp-1 1
d2 cl CO <, ...cp_2 c,
c ...C c
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Experimental evidence [6] has indicated
that this all-pole model is useful even
when the spectral density to be identi-
fied is all-zero, if p is of the order of

4 to 8. This can be justified heuristi-
cally in the following way:
Suppose
-1
@ff(z) _ N(z)N(z_l)
D(z)D(z ™)

where N(z) and D(z) are finite polyno-
mials in z—1 with roots inside the unit

circle. Then this can be written
1 1
@_"(z) = — = —
rr D(z)D(z_Y)  p(z)p(z )
N(z)N(z™h)

where P(z) is an infinite series in z_l.
The all-pole model identifies D(z) as a
truncated version of P(z), which is valid
since the coefficients of P(z) converge to
zero in magnitude.

2. The impulse response of the opti-
mum reconstruction filter is of only
finite duration and the problem of its
unrealizability is eliminated if we allow
a delay of p sample periods. That is

h(t) = 0 for |t| = pT .

This has been shown elsewhere by the
authors [7] and will not be proven here.
Hence for the p-th order all-pole pro-
cesses only p samples in the past and p
in the future are needed for the best
possible reconstruction at a given time,
in the minimum mean-square-error sense.
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In other words, cnly a delay of p sam-
pling periods is necessary for the best
possible reconstruction. This delay of
pT is easily introduced if the recon-
struction is performed on a digital com-
puter. Yaglom [8] has referred to pro-
cesses of this type as p-th order Markov
processes.

For processes with all-pole spectral
densities, then, the optimum reconstruction
filter is given by substituting (2) into
(1) (L(s)=1 for reconstruction)

P P 4 a
h(t) = Ji_l[ Z z —EEE z_mznéff(s) 1
m=0 n=0 B
P P
=—E1;3 Z }: d d_ o (t-mT+nT) (3)
m=0 n=0

where oge(t) is the inverse z-transform of

©

¢epl2) =Z C"ff(nT)z_n

n=-—«

and can be computed uniquely from ¢¢¢(z),
the estimated sampled spectral density of
f(t), with the assumption that all poles

of éff(s) lie in the strip

n T .
- T < w < T in the s-plane .
In practical situations the sampling rate
will be fast enough so that this will be
a reasonable assumption. The specific
method employed is to partial-fraction
éff(z) as

2
B
§__(2)
£t D(z)D(z” 1)
-a.T
P A. b A.e L z
i i
= z -aiT 1 + z -a;T !
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Using this, h(t) can be computed from (3)
and the reconstructed signal is given by

A k+p
f(t) = E: £(nT)h(t-nT) (4)
n=k-p+1

where kT < t < (k+1)T. When this operation
is being performed on a digital computer,
the impulse response (3) is calculated



once at sufficiently small increments of
time and stored in a table, and the filter
(4) implemented as a moving average,
filling in points between sampling in-
stants. Fig. 2 shows a block diagram of
the identification - reconstruction pro-
cess. For the experimental results
reported in the next section, the adap-
tive filter was implemented entirely by

a digital computer.

If the continuous analog signal is
corrupted by an additive noise component,
n(t), the situation is slightly more com-
plicated. Assuming that only the samples
of y(t) can be used for the identification
procedure, the optimum filter cannot be
determined since it would not be possible
to estimate %_,.(s). However, it is nor-
mally reasonaﬁfe to assume that the sig-
nal and noise are independent and also
that there are periods when the signal is
not being transmitted when the noise alone
can be identified. With these assumptions
the optimum reconstruction filter is
given by:

(s) -

éyy(z)

¢ () (s)

tyy(2)

®
= = YY

H(s)

Thus the optimum filter when uncorrelated
noise is present is made up of two com-
ponents: the first,

yy(Z)

can be shown to connect the sample points
[7]1: the second,

attempts to average out the noise compo-
nent.
ITT. EXPERIMENTAL RESULTS

In order to investigate the perfor-
mance of the adaptive reconstruction
filter, the problem was simulated on an
IBM 7094 computer and the mean-square
reconstruction error was compared with
that of a zero-order hold, a first-order
hold, and a linear point connector. A
delay of p sampling instants is of course
inherent in the realization of the filter.
In most communication systems a small
delay is allowable so that for p-th order
all-pole processes one would probably
allow a delay of p sampling intervals in
any case. The adaptive filter was tested
on a variety of deterministic and random
signals. Some typical results are pre-
sented below.

Experiment 1. Deterministic Sine Wave.

An uncorrupted sine wave
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£(t) sin t

was sampled with sampling interval T=1.
230 points were used for identification
and a second-order spectral density model
was used (p 2). Fig. 3 shows the
resulting impulse response of the adaptive
filter. Since no noise was present and
since the sine wave has a second-order
all-pole z-transform, the identification
was near perfect, as was the reconstruc-
tion. The following tabulation compares
the adaptive filter with some common
reconstruction filters:

Normalized Mean-Square-Error

adaptive filter 0.0000
linear point connector 0.0039
first-order hold 0.0900
zero-order hold 0.1407

Experiment 2. Deterministic Triangle Wave.

The case of a deterministic triangle
wave, where the all-pole model is not
exact, illustrates the effect of model
order on the accuracy of the identification
and reconstruction. One cycle of the
triangle wave was

{ 4(t-1)
" 4(3-t) 2<tsa4a

and this periodic wave was sampled every
0.6 seconds so that the sampling instants
would not usually coincide with the cor-
ners of the triangle wave. Again 230
points were used in the identification.
First, Second, Fourth, and Sixth order
models were used for the sampled spectral

0t =2

£(t)

density, with the following results:
MSE For MSE For MSE For MSE For
p Adaptive Linear First-Order Zero-Order
Filter Point Hold Hold
Connector
1 0.0976 0.0752 1.029 1.429
2 0.0474 " " "
4 0.0347 " ! "
6 0.0131 " " "

It is seen that at least a second-order
model is required to out-perform the
linear point connector. For higher order
models the performance of the adaptive
reconstruction filter improves steadily.
Fig. 4 shows the corresponding impulse
responses. Fig. 5 shows the typical
behavior of the first-order adaptive fil-
ter which is similar to the linear point
connector. Fig. 6 shows the behavior of
the sixth-order adaptive filter. As in
the case of the sine wave, the adaptive
structure, when the model order is



appropriate, is able to "recognize" the
character of the wave and produce a
linear filter which will perform much
better than any conventional reconstruc-

tion device.
Experiment 3. Random Signal.

In a more realistic situation, the
signals are random rather than determinis-
tic., To simulate this, the output of a
normal random number generator was fil-
tered by the low pass digital filter

10(1-a)>
(l—az_l)3

and the resulting signal was interpreted
to be the original and continuous input
signal £(t). Every tenth sample of this
signal was taken as input for the adap-
tive reconstruction process. Curves of
the normalized mean-square-error vs. a
fvhich determines the bandwidth of the
original signal f£{t)) are plotted in Fig.
7 for the third-order adaptive reconstruc-
tion filter, the linear point connector,
and the zero and first order holds. As
expected the error decreases with the sig-
nal bandwidth for all these filters. With
only 260 points used for identification,
the adaptive filter performed signifi-
cantly better than the other conventional
filters.
Experiment 4. Sine Wave Plus Random Noise.

To illustrate the performance of the
adaptive scheme when noise is present,
white gaussian noise n(t) with zero mean
and unit variance was added to a deter-
ministic sine wave so that

y(t) 4.5 sin t + on(t)
The samples of n(t) were uncorrelated and
the continuous spectral density of n(t)
was flat and bandlimited te half the sam-
pling frequency. Fig. 8 shows the
resulting normalized mean-square recon-
struction error vs. the standard deviation
of the noise, 0, for the second order
adaptive filter with 290 points for iden-
tification, for the linear point connector,
and for the zero and first-order holds.
With small noise the adaptive filter is
much better than the others, because the
identification is effective and the situ-
ation is like that in Experiment 1. As
the noise level increases the advantage
gained by identification decreases and the
behavior of all the filters tends to
become similar,
IV. SUMMARY

An adaptive signal reconstruction
filter has been described which is based
on the minimum mean-sguare-error recon-
struction filter with an all-pole model

490

for the sampled spectral density of the
input signal. The use of this model leads
to a simple identification scheme and a
filter with an impulse response which is
of finite duration. As we have seen these
simplifications lead to an adaptive filter
which is easily implemented on a digital
computer.

Experiments performed with both
deterministic and random inputs have
shown that the filter yields significant
improvement over a linear point connector
and zero and first order holds with rela-
tively low order models and with relatively
short identification times. When the
additional cost and time for reconstruction
can be justified this adaptive filter per-
forms significantly better than conven-
tional reconstruction devices.

The way the adaptive filter would be
used depends on whether or not an analog
signal were desired. The filter as imple-
mented on a digital computer can only fill
in data points and so effectively increase
the sampling rate. If an analog signal
were desired a simple hold circuit might
follow the adaptive reconstruction at a
sampling rate many times the original.
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Fig. 8 Normalized Error vs. 0 for
y(t) = 4.5 sin t + on(t) .
Experiment 4

Note: n(t) generated by a normal random
number generator with zerc mean and unit
variance.





