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ABSTRACT

An adaptive digital matched filter structure is developed for the case
where the input signal is of known form and finite duration and the input
noise has a power spectral density which is all-pole. The effect of noise
spectrum identification errors onh system performance is investigated both
theoretically and experimentally. It is shown that, when the noise is highly
correlated, the adapting structure leads to significant improvement in the
output signal-to-noise ratio (and hence in the detection characteristics)
with relatively short measurement times. This suggests the use of switching
logic to allow noise adaptation only when measurements indicate a highly
correlated noise background.

1. INTRODUCTION

Most signal detection systems, particularly those which are optimum in
some sense, are designed to be operated in a fixed noise environment. It is
highly desirable in many situations to have available systems which are
relatively insensitive to input noise statistics. Such systems are partic-
ularly useful, for example, when the noise is stationary over only a short
time interval.

A reasonable approach to this problem is to consider detection schemes
which have been made adaptive to a class of input noises by the addition of
a noise-identification system. The increasing use of digital techniques and
the general availability of digital facilities permit the easy implementation
of such identification systems. Of particular simplicity are those designed
to estimate parameters in an assumed all-pole noise spectral density function

[1].

A wide class of detection schemes uses matched filters followed by
threshold comparators [2]. In fact, for the detection of signals of known
form in Gaussian noise, such detectors are optimum [2] in the Neyman-Pearson
sense [i.e. for a fixed false alarm probability (level) they give the great-
est probability of a hit (power)]. These matched filters have transfer
functions which depend on the input noise spectrum [3]. This paper considers
a class of adaptive matched digital filters; i.e. filters which operate on
sampled-data and whose transfer functions are determined from estimates of
the input noise power spectral density.

In the next section, the realizable transfer function of the matched
digital filter is obtained. Although the derivation is a straightforward
extension from the continuous case, it does not appear to be commonly avail-
able in the literature.

This work was partially supported by the National Science Foundation
under Grant GP-1647.
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2. MATCHED DIGITAL FILTERS

The matched digital filter is shown schematically in Fig. 1, where T is
the sampling interval and H(2) is the sampled transfer function of a linear
time-invariant digital filter with impulsive response h(nT). The input con-
sists of samples of a known signal s(t) and of an additive random noise n(t),
assumed to be a wide-sense stationary process with zero mean and power spectral
density #(z). The filter H(z) is to be chosen to maximize the output S/N
power ratio.

In complete analogy with the continuous case [3], the output noise
variance 9 and the squared output signal component at time t = NT can be
written as

N« 5 §a@aE oL (1)
and )

4 - [.i% $ u(z)s(z) 2" g | (2)
or

J - [-5%5 $ iz Yyszh 2™ gz ]2 (3)

where capital letters have been used to denote the z-transforms of lower case
time functions and where integration is around the unit circle in the counter-
clockwise direction.

It is desired to choose H(z) 8o as to maximize the ratioaﬁ@ﬂ or, equiv-
alently [4], the term ¥] - X;f where A is a Lagrangian multiplier. Differ-
entiating with respect to H(z~1l) under the integral sign and equating the re-
sult to zero yields

L flamsm N TEan Eialliy P (@)

Hence the integrand can be set equal to a function X(z) which is analytic in-
side the unit circle [5]:

-1, -N
H Z Z - )\ S‘zz !z x(Z) (5)

z

The noise spectrum can be factored into two components ¢+(z) and ¢ (2z)
having poles and zeroes only inside and only outside the unit circle respectively.
This factorization should be performed so that ¢t (z) does not possess a pole
or zero at infinity and so that ¢~ (z) [which is just ¢t (z~1)]1 does not possess
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a pole or zero at the origin [6]). Then Eq. (5) becomes

H(z)g"(z) _ ; S s T . X(=) (6)
Z z¢ (2) - ¢~ (z)

Now let the coefficient of A in Eq. (6) be expressed as a partial fraction
expansion of the form

-1, _-N -1, ~N -1, -N
S(z )=z . [s8(z )=z s{z )z
- z¢™(2) a [ z¢~ (2) ]+ * z¢~ (2) ]- (7)

where the term [ ], contains only poles which are inside the unit circle and
the term [ ]_ contgins only poles outside the unit circle. Then Eq. (6) can
be written as

-1 -N -1, -N
+ S(z )z = X S(z )=z
= zz 2 - A z¢~ (2) ]+ Bé%%T + A z¢~(z) ]— (8)

If the function H(z) is physically realizable, then the left side of Eq. (8)
is analytic outside the unit circle; the right side is analytic inside the
unit circle by definition; therefore both sides must be equal to a constant
which can be shown to be zero [7]. Since the value of A is arbitrary for our
purposes [3], it may be set equal to unity and we have

-1, -N
_ z S(z )=z
H(z) = gy |22 ]+ (9)

as the transfer function of the realizable matched digital filter. 1If
physical realizability can be ignored, then it follows directly from Eq. (4)
[or from Eq. (9)] that the matched filter is [8]

-1, N
¢(z)

S(z

H(z) = (10)

when the signal s(t) is of finite duration, N can always be chosen large
enough so that s(z=1)z"N is analytic outside the unit circle. (This is
equivalent to delaying the signal long enough so that it vanishes for negative
time.) 1If, in addition the power spectral density ¢(z) of the noise is all-
pole, then N can be chosen large enough so that the term [ ], in Eq. (9) is
analytic outside the unit circle. 1In this case the matched filter transfer
function reduces to Eq. (10) where N 2 [degree of S(z‘l)] + [degree of
1/¢~(z)]. sSince the noise has been assumed to be all-pole, its spectral
density can be written as

¢(z) = 1/[D(z)D(z 1)) (11)
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where the polynomial D(z), given by

D(z) = 1+ @ R S apz'P (12)

has zeroes only inside the unit circle. Note that any scale factors can be
ignored since they do not affect the S/N ratio improvement.

For the all-pole case, the matched filter is given by

H(z) = s(z H)p(z)p(z"Hz¥ (13)
The output noise variance of Eq. (1) becomes
dz
N=- 557 Iste)n(a | (14)
and the squared output signal component 4Y is given by Eq. (3) as
1 2 dz72
= [ 35 § Istaani=) 12 &2] (15)
Thus the greatest (optimum) output S/N power ratio is
= J = 2 dz
Popt = @hlope = 73 3 Isain(z)|? & (16)
For the white noise case, the matched filter of Eq. (13) becomes
H(z) = s(z Hz¥ (17)

When the noise spectrum is unknown, it would be reasonable to use this
matched filter. Then, if the actual (but unknown) spectrum is given by Eg.
(11), the output S/N power ratio would be

1 r de 2
g l:ﬁ-]' Pls(z) | 7]
Py = (/.")W = (18)
§| l2 dz
Zﬁ] D(z) z

The adaptive scheme to be considered will be discussed in the next section
nd is based on approximating the polynomial D(z) of Eq. (12) using estimates

a; of the p parameters a; in that equation:

A A - -
D(z) = 1+a.z% + ...+ sz P (19)
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A
The adaptixe matched filter H(z) will then be given by Eq. (13) with D(z) re-
placed by D(z). The S/N power ratio at the output of this filter when the in-
put noise is actually given by Eq. (11) will be

L fls(z Bz 12427

215
P = (9/y) (20)
adapt adapt A
P N P 1 §1s(z) (D(z ]2|2dz
2m3 D(z) z

3. ADAPTIVE SCHEME

The adaptive scheme is based on the estimation of the p parameters of
he noise power spectral density, ¢ = (&3, @3, ..., Gp). The computed estimate
a of o is used to adjust the parameters of the matched filter, as shown in
Fig. 2. The estimation technique has been described previously [l] and is
based on least mean square regression. The basic steps in the identification
computation are as follows:

1. From N sample points of the input signal, the p + 1 mean lagged
products are computed:

N-j
. z P =
fj = N—j yiyi+j J = 0, o o e po (21)
i=1

2. The pxp matrix F = (fli_.ly i, 3=1, . . ., p) is formed and in-
verted. 3

A
3. The estimate & is computed from

o>
1l
0
w
Hh

(22)

It has been shown [1] that the error vector ﬁ,- o is asymptotically normally
distributed with zero mean and covariance matrix asymptotic to F'l/(N-p),
{with the normalization implied by ¢(z) = 1/D(z)D(z-1)]. Thus the per unit
standard deviations of the errors in the coefficients are roughly N-1/2 which
gives some basis on which to investigate the effect of parameter identifica-
tion errors on S/N improvement.

In the one-pole case when the signal is a single pulse, S(z) = 1, the
S/N improvement can be found directly in terms of the pole position a and the
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error in the coefficient measurement €. It is

Padapt  _ _1+ o’ (1- 2¢2 | [0-®)(-(me)?)] + € )
Pey 1 - a2 1+a2 [(1-a?) (1+(%+2€) %)) + &4 /,
(23)
with
p 2
opt = 1l + a (24)
pw l - az .

Figure 3 shows the average S/N improvement as a function of pole position

for various errors which correspond to record lengths of roughly 200-1000
points. It is seen that when the noise is highly correlated (Ia near 1)the
effects of measurement errors are not great and allow significant improvement
over a single fixed filter. Only the case when S(z) = 1 will be considered in
the remainder of this paper, since the introduction of signal parameters tend
to obscure the results. The use of longer signals allows integration of signal
energy and will usually lead to performance improvement. It is of interest

to note that when the noise is nearly white (la| near zero), the measurement
errors result in a filter which is less effective than the fixed filter of

Eq. (17). Thus, if the noise is relatively uncorrelated, it may not be
profitable to attempt noise adaptation. This suggests that switching logic

be used to allow adaptation only when measurements indicate a highly correlated
noise background. The switching criteria would depend on the record length,
the signal-to-noise ratios, and the relative costs of false alarms and misses.

When the noise spectral density has more than one pole, similar results
obtain, although the calculation of average S/N improvement for all ranges
of the parameters becomes inconvenient. Figure 4 shows the results for the
two-pole case as a function of a, when a; =0.5. It is seen that for nominal
errors in the coefficient identlilcatlon the average S/N improvement is again
a relatively insensitive function of measurement errors, and that good per-
formance can be obtained when the noise is highly correlated. It is ex-
pected that this conclusion is valid in higher order cases.

4. EXPERIMENTAL RESULTS

In order to investigate the behavior of the adaptive matched filter un-
der realistic conditions, the proposed adaptive scheme was implemented on an
IBM 7094 computer. The correlated noise was obtained by filtering rectangu-
larly distributed independent random numbers. Record lengths of 1000 points
were used, and 10 single pulse signals were added to the noise sample at dis-
tributed points in time. Of importance are the actual distribution of the out-
put S/N for various input S/N; the detection possibilities based on the out-
put amplitude density distribution; and the behavior of the system when the
noise is not all-pole (the structure problem).
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Figures 5 and 6 show measured output S/N improvement in the one-pole
case for low and high input S/N ranges, respectively. It is seen that the
average S/N improvement agrees with the theoretical results of Fig. 3, but
that the statistical spread depends heavily on the signal level. For small
input S/N, the S/N improvement is rather unstable. This is to be expected
since some signals in this case tend to become completely submerged in the
noise. For larger signals the operation of the adaptive filter becomes
more consistent, as would be expected intuitively. PFig. 7 shows a plot of
the measured mean and variance of the S/N improvement for a single fixed
pole at 0.9 as a function of the input S/N. The decrease in the variance
of S/N improvement is quite pronounced. The average S/N improvement de-
creases with increasing signal strength because the signals present inter-

fere with the noise spectrum identification and degrade the estimate of
oy .
1

To gain more insight into the operation of the filter under different
signal level and noise conditions, the input and output amplitude densities
for a 1000 point record and a one-pole noise spectral density were tabulated
Figs. 8 and 9 show these densities under adverse conditions [relatively low
correlation (a, = .7) and relatively low signal strength (input S/N = 1.5)].
It is seen tha% in this case the signals that are not buried in the noise
are recovered by the matched filter. The detection probability in this
case is typically increased from 3/10 to 5/10 with a much lower test level
(false alarm probability). Figs. 10 and 11 show the input and output ampli-
tude densities when the signal strength is higher (input S/N = 2.0) and the
noise more correlated (a = 0.9). Here the improvement in detection capa-
bility is more pronounced, and the detection probability is raised from
about 3/10 to very nearly 1 with a very small level. The "T" and "U" sym-
bols at the top of Figs. 9 and 11 indicate the amplitude of the matched
filter transient response at points adjacent to the signal. Thus, the false
signals in these plots are associated with real signals and are not proper-
ly false alarms. This indicates a trade-off between detection capability
and determination of time of occurrence.

Another important consideration is the behavior of the filter when
different order approximants are used in the noise spectral density model.
When the noise is actually all-pole it is important that the order of the
approximant be at least as great as the actual order of the nolise spectral
density. This is illustrated in Fig. 12 which shows the measured mean and
variance of S/N improvement for ten single pulse signals in 1000 record
points as a function of the number of poles used in the noise model. The
noise in this case was all-pole with 3 poles at £j.8 and -.5. For first
and second order approximants to the noise spectral density, the performance
is relatively poor; for a three-pole model the performance is relatively
good; and for larger numbers of poles the performance is practically un-
affected by the order of the noise model.

This is in contrast to the behavior of the filter when the noise is
all zero. Figure 13 shows the measured mean and variance of the §/N im-
provement for ten signals when the noise background has the spectral density

#(z) = (1 - .9z71)2(1 - .9z)2 (25)

In this case the performance improves steadily with the number of poles in
the noise model and finally stabilizes for p = 6. Thus when the noise is
not all-pole it is important to use a large number of parameters in the all-
pole model. It is noteworthy that significant S/N improvement can be ob-
tained in this case, despite the fact that the model chosen is inappropriate.
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Since the performance of the adaptive matched filter depends largely
on the noise being highly correlated, it is interesting to investigate the
filter's behavior with a periodic, deterministic noise background and single
pulse signals. This was done with 200 point records of repetitive sine,
square, and triangle waves with 3 scattered single pulse signals. A third
order noise model was assumed. The amplitude of the noise background was
decreased by factors of 435, 748, and 2610 respectively, without decreasing
the signal amplitude. This indicates a marked ability of the adaptive
scheme to mimic highly regular structures and suggests the use of such
schemes in pattern recognition problems.

5. CONCLUSIONS

This paper indicates that useful noise adaptation can be achieved for
signals in correlated noise with an all-pole model for the noise spectral
density. The qualitative performance of the adaptive loop of Fig. 2 can be
described as follows:

1. Performance is relatively insensitive to identification errors, thus
allowing short measurement times and fast adaptation in quasi-stationary
environments.

2. The adaptive matched filters can be useful in conjunction with threshold
detection if the noise is highly correlated.

3. The use of high order all-pole models is justified for a wide variety of
noise spectral densities, provided that the time required to measure p + 1
nean lagged products and invert a pxp matrix is tolerable.

4. The adaptive matched filter is very effective in removing highly regular
deterministic patterns from random signals.
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MEAN AND VARIANCE OF SN IMPROVEMENT —=

NPUT SN —»
Fig. 7 - Measured mean and variance of S/N improvement for

10 single pulse signals in a 1000 point record vs.
input 8/N for fixed one-pole noise.
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FOR 10 SIGNALS IN 1000 POINTS

MEAN AND VARIANCE OF S/N IMPROVEMENT

T ¢ (14 642210+ 52')(1+ 642 2)(1+52)

INPUT S/N =32

S .

3 4 S5 €6 7 8

NUMBER OF POLES —=
N NOISE MODEL

Fig. 12 - Measured mean and variance of S/N improvement for
10 single pulse signals in a 1000 point record vs.
number of poles in the noise model.Noise spectral
density is all-pole.
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Fig. 13 - Measured mean and variance of S/N improvement for
10 single pulse signals in a 1000 point record vs.
number of poles in the noise model. Noise spectral
density is all-zero.
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