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What is the Filter Design Problem?T

K. Steiglitz T. W. Parks
Dept. of Computer Science Dept of ECE
Princeton University Rice University
Princeton, New Jersey 08544 Houston, Texas 77251

ABSTRACT

The usual way of designing a filter is to specify a filter
order and a nominal response, and then to find a filter of that
order which best approximates that response. In this paper we
propose a different approach: specify the filter only in terms of
upper and lower limits on the response, find the lowest order
which allows these constraints to be met, and then find a filter
of that order which is farthest from the upper and lower
constraint boundaries in a mini-max sense.

Previous papers have described methods for using an
exchange algorithm for finding a feasible linear-phase FIR
filter of a given order if one exists, given upper and lower
bounds on its magnitude response. The resulting filters touch
the constraint boundaries at many points, however, and are not
good final designs because they do not make best use of the
degrees of freedom in the coefficients. We will use the
simplex algorithm for linear programming to find a best
linear-phase FIR filter of least order, as well as to find the least
feasible order itself. The simplex algorithm, while much
slower than exchange algorithms, also allows us to incorporate
more general kinds of constraints, such as convexity
constraints (which can be used to achieve very flat magnitude
characteristics). ’

We will give examples that illustrate how the proposed
and the usual approaches differ, and how the new approach
can be used to control peaks in transition bands of multi-band
filters.

1. Introduction

There are two fundamentally different approaches to the
FIR linear phase filter design problem, the approximation
approach and the limit approach. In the approximation
approach, the length of the filter and a desired frequency
response are specified. The filter coefficients are determined
to minimize the maximum weighted error between the
desired and actual responses over the frequency bands of
interest. In the limit approach, a set of upper and lower limits
are specified for the frequency response. The values of filter
coefficients for which the frequency response remains within
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the prescribed limits are then determined.

In 1970, Herrmann published an article describing the
equations which must be solved to obtain a filter with the
maximum possible number of equal ripples {1] (later called
extra-ripple [2] or maximal-ripple [3] filters). This maximal
ripple design is neither an approximation approach nor a limit
approach. Rather, it is a hybrid approach where the filter
length and ripple size (equivalent to limits on the frequency
response) are specified and the band edges are determined by
the algorithm. Schuessler, in 1970, presented the work he and
Herrmann had been doing on the design of maximal-ripple
filters at the Arden House Workshop [4]. Hofstetter
developed an efficient algorithm for solving the equations
proposed by Herrmann and Schuessler and presented papers
with Oppenheim and Siegel at the 1971 Princeton conference
{5] and the 1971 Allerton House conference [6] describing the
algorithm and relating it to the Remes exchange algorithm.

Several papers on the Chebyshev approximation
approach to filter design appeared at about the same time.
Helms, in 1971 [7], described techniques, including linear
programming, to solve the Chebyshev approximation problem
for filter design. Parks and McClellan used the Remes
exchange algorithm [8,9] to solve the Chebyshev
approximation problem.

Hersey, Tufts, and Lewis described, at about the same
time, an interactive method for designing filters with upper
and lower constraints on the magnitude of the frequency
response [10]. The limit approach was also used by McCallig
and Leon in 1978 {11] and by Grenez in 1983 [12}

When a lowpass filter is designed using the Chebyshev
approximation approach, the 5 interrelated parameters are the
filter length, the passband edge Fp, the stopband edge Fs, the
passband error delp, and the stopband error dels. Relations
among these parameters have been determined numerically
for the Chebyshev approximation problem and design
formulas have been published [13]. With the help of these
design formulas it is possible to fix any 4 of these parameters
and optimize the remaining parameter. Since these design
formulas are not exact, several iterations of the design process
are usually necessary. For example, when the band edges and
deviations are given, an estimate of the necessary filter length
can be calculated using the design formulas. Usually the filter
with this estimated length will not be exactly the minimum
length required to meet the specifications and the the filter will
be designed again with a slightly different length until the



minimum length filter is obtained.

The use of transition bands will give good lowpass
designs but may cause problems for multiband bandpass filters
[14]. The frequency response is not controlled in the
transition band and may make large, unexpected, excursions
which make the design useless. The design formulas can be
used to modify the stopband specifications to eliminate the
unwanted excursions in most cases, but the choice of stopband
edges and appropriate error weighting functions is more of an
art than a science. The limit approach offers a way to avoid
unwanted excursions in multiband filter design. Upper and
lower limits are imposed on the response for all frequencies.
The limits imposed on the bands which otherwise would be
unrestricted transition bands eliminate the possibility of large
peaks in the magnitude of the frequency response, but do not
impose any particular shape on the response in these bands.

In this paper we describe a very flexible design program
which combines most of the useful characteristics of the
approximation approach and the limit approach to FIR filter
design. We use the simplex algorithm for linear programming
to find the linear phase filter of least order which meets
prescribed limits on the frequency response and then
maximize the distance from the constraints. For a fixed order
filter, the bandedges can be adjusted to maximize or minimize
the width of a frequency band while still meeting prescribed
limits on the frequency response. Additional constraints, such
as convexity of the response to give flat magnitude
characteristics, can be imposed in appropriate frequency
bands. First, we describe the algorithm and the Pascal
program and then we give examples to show how this new
approach can be used to control excursions in the transition
band of a bandpass filter.

2. The Algorithm

For the purposes of this discussion we will assume that
the filter model is the following sum of cosines, corresponding
to an odd-order symmetric impulse response, although any
linear combination of known functions can be used.

m-1
Hk) = ¥ a;cosi @y
=0

H(k) is the real-valued frequency response of the filter at
frequency ®y, and the frequency points at which specifications
are made, oy, k=1, 2,3, ..., need not be equally spaced.

An upper-limit constraint at ), has the form
H(k) < Uk).

We will introduce a parameter y which represents the
distance between the frequency response and the upper bound,
s0 that some of the constraints will look like

Hk)+y < Uk).
Since we will be maximizing y, we will call those constraints
which have y in them optimized constraints, and those that

do not, hugged constraints. Similarly, lower bounds on the
frequency response will result in constraints of the form

H(k) 2 L(k)

or H) -y 2 Lk,

depending on whether the constraint is optimized or hugged.
Putting constraints on the second derivative of the

frequency response has been shown to be an effective way to

get filters that are very flat [1]. The second derivative is a
linear function of the coefficients, namely,

Hk) =

m-1 2
= X i%a;cos(i ay,
=1

so that convexity constraints can be written as linear
inequalities of the form

HU) <0 or H(k) 20.
When all the constraints are written down, we get the
linear programming problem
max y (PRIMAL)
subject to

ATa+n y<b

where the vector A has a 1 wherever a constraint is
optimized, and a O wherever it is hugged. The variables a
and y are unconstrained in sign. We will call this the
PRIMAL problem. The dual of this linear program is in
standard form, the most convenient for numerical solution:

min 57x (DUAL)

subject to

Ax=0, h'x=1,and x20.

We will solve DUAL using the standard two-phase
simplex algorithm [2]. Phase I searches for a feasible solution
to DUAL, starting from an artificial basis, and phase II
searches for an optimal solution.

It is a fundamental fact of linear programming theory
that the cost function of the DUAL always satisfies b7x> y,
the cost function of the PRIMAL, with equality if and only if
x and y are both optimal in their respective programs.
Therefore, if the DUAL cost 57x ever falls below zero during
pivoting, the optimal PRIMAL cost must be negative. This
means that the original filter approximation problem is
infeasible, and we stop the simplex algorithm whenever this
condition is obtained. Application of the simplex algorithm to
the DUAL problem therefore terminates in one of the
following conditions:

a)  Negative cost reached, implying that the original design
problem is infeasible;

b) Optimality is reached in DUAL with non-negative cost,
in which case the original design problem has a feasible
solution;

c) DUAL is unbounded, which implies that PRIMAL (and
the original design problem) is infeasible;

d) DUAL is infeasible, which implies that PRIMAL (and
the original design problem) is either infeasible or
unbounded.

A comment is in order as to why the variable y is
introduced in those situations when we are interested only in
whether there is a feasible solution to lower- and upper-bound



constraints. Computational experience has shown that with a
trivial cost function in the primal, the simplex method applied
to the dual sometimes cycles in realistic filter-design
problems, because of degeneracy. A non-trivial cost function
seems to provide enough direction to the simplex algorithm to
avoid such stagnation. Rather than take special precautions to
avoid cycling, we chose always to maximize the distance y
from the response to the constraint boundaries. (As we saw
above, it is not always necessary to complete the optimization
when the original problem is infeasible.) This has the
additional advantage of being useful for the final design when
the order is known, and also does not interfere with the
resolution of ties based on size of the pivot elements, which is
important for numerical stability (see [3]).

A special case arises unavoidably, however, when there
are no constraints designated as hugged. In that case, h=0
and DUAL is always infeasible. However, the constraint
matrix of DUAL in this case is not of full rank, having a zero
row, and phase I ends with an artificial basis element
remaining in the basis. The redundant row is disregarded in
phase II, and the optimization finds a solution to the original
problem (if any exist) with zero cost, corresponding to a
response that is allowed to touch any of the constraint
boundaries. Thus, the algorithm functions in a useful way,
even if a zero row is present in the DUAL constraint matrix.

The optimal value of the dual variable x has a well-
known and interesting interpretation. Suppose the constraint
values b are changed a small amount to b + db.* This changes
the cost function in the dual a small amount, but will not in
general change the optimal solution x to the dual. The new
value of the optimal cost function becomes y=57x+db’x.
Thus, x is the partial derivative of the optimal value of y
with respect to the constraint values b. Simplex finds an
optimal value for x that has at most m+1 positive entries,
and, by complementary slackness, each of these corresponds
to an extremum of the distance between the frequency
response and constraints (a "ripple”) in the case of an upper or
lower bound, or to a point where the second derivative is zero
in the case of a convexity constraint.

The simplex algorithm is used in the following three
modes, depending on what design task is desired:

a) Given m; <my,, find the minimum order m between
them such that the original design problem is feasible
(that is, such that DUAL has a non-negative optimal

solution), and optimize y for that minimum order;

b) Solve the original optimization problem for fixed order
m ;
c) Given a particular right (left) bandedge and a set of

constraints in which it occurs, find the largest (smallest)
value for that bandedge for which the original design
problem is feasible, and optimize y for that bandedge
value. (The optimum value of y will in general be
positive because the bandedge value is rounded to the
nearest gridpoint.)
What is the best search strategy to use in finding the minimum
order in a)? We might expect, because the cost of testing
feasibility increases with m, that the strategy with least
expected cost (assuming uniformly distributed answers)
probes to the left of the midpoint between the current left and
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right boundaries. However, computation of the optimal
strategies for probe-cost functions that grow as a low-order
polynomial in m shows that binary search is surprisingly near
optimal. More work on this problem is in progress, but binary
search appears adequate for this application. Mode b) allows
us to do things like find the best stopband rejection, while
keeping passband ripple within limits. Mode c¢) allows us to
do things like extend the end of a stopband as far as possibie,
while keeping the other constraints fixed. Binary search is
also used in ¢).

3. The Program

The algorithm described above was implemented in
Pascal, and the current version is available from the authors.
The authors’ intent is that the program be read and modified
by users, rather than used as a static package, and Pascal
seems well suited to this purpose: it is widely available,
cleanly designed, allows careful structuring, and hopefully,
good readability. For example, rather than code options for
odd- and even-order symmetric and anti-symmetric filter
models, the user need only change trigonometric expressions
at three points in the program.

As might be expected, the critical parts of the program
involve the treatment of tests which theoretically determine
whether quantities are positive, negative, or zero. These tests
determine when each of the various termination conditions is
reached, and roundoff error requires us to decide on how small
a positive number is considered zero, how small a negative
number is considered negative, and so on. Experience has
shown that a single parameter eps can be used for these tests
at several different places in the program, and that eps can be
fixed at 1072 for the range of problems used as examples in
this paper.

The only cases observed so far where serious
accumulation of roundoff error occurs is when a wide band of
frequencies is unconstrained, and the frequency response is
allowed to grow very large in those bands — say as large as
10%. The problem is manifested by the cost in phase I
reaching relatively large negative numbers before detecting
optimality, even though the cost in phase I is theoretically
non-negative. Of course, these designs are impractical, and
the accuracy problem irrelevant, but the program continues to
function in these cases.

Trading off space for running time is a serious issue in
the program design. At one extreme, we can pre-compute and
store the tableau entries, which avoids re-computation, but
uses a great deal of storage. At the other extreme, we can
generate the tableau entries on the fly, using the least space,
but the most time. As a compromise between the two, we can
pre-compute and store tables of the trigonometric functions
used for the tableau entries. We chose the first alternative
because it appears that execution time is a more serious
limitation than storage for the kinds of design problems likely
to be solved. If storage is a serious problem, references to the
tableau entries must be replaced by procedure calls that
compute the required values.



4. Bandpass Example

We illustrate some of the features of the new algorithm
with a bandpass example. The specifications for a bandpass
filter are given below:

Frequencies for Stopband 1 0.00t0 0.08
Frequencies for Passband 0.25t0 0.37
Frequencies for Stopband 2 0.40 to 0.50

Maximum Passband Deviation 0.1
Minimum Stopband Attenuation 20 dB

The problem is to find the minimum length linear phase filter
which meets these specifications and has well-behaved
transition bands. First, the Chebyshev approximation
approach is shown to produce a large peak in the first
transition band. Then then the new algorithm is used with
limits on the response in the first transition band to eliminate
the transition band peak, and finally the first stopband is
widened, thus reducing the transition width and eliminating
the peak in the transition band.

The first step in the approximation approach is to
estimate the necessary length using the simplified design
formula 3]

dB-13

1466F T

where OF is the the transition band width and dB is the
stopband attenuation in this special case where the error
weight is the same for all bands. While this formula wasn’t
intended for bandpass filters, it sometimes gives reasonable
estimates when the width of the smallest transition band is
used for 8F . For this example, the estimated value of N from
this formula is 17. In fact, after a few iterations, it was found
that a length of 25 was necessary to meet these specifications.
The frequency response for this design is shown in Figure 1.
On the scale of Figure 1, there appears to be a problem in the
transition band, but in the bands where the Chebyshev error
was minimized, the response looks good. In Figure 2, the
frequency response is shown on a different scale to show the
extent of the peak in the first transition band.

To illustrate how the new algorithm can give about the
same response as the approximation approach, the filter was
designed requiring the response to be within limits of +/- 0.1
in the stopbands and within the upper and lower limits of 1.1
and 0.9 in the passband. The minimum filter length was
found to be 25. In the passband the distance from the
constraints was maximized, using up any slack resulting from
the fact that the filter length must be an integer. The response,
as shown in Figure 3, still has the undesirable transition peak.

To eliminate the transition band peak, additional limits
were placed on the response in the first transition band. The
new algorithm found that the filter length must be increased to
N = 27 in order to meet these new, stricter, limits. The
response of this length 27 filter is shown in Figure 4 along
with the imposed limit on the transition band. As in Figure 3,
the distance from the constraints is maximized in the
passband.
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Q 9.1 .2 2.3
Frequency

Fig. 1. Frequency Response: Chebyshev Approximation

N=25.
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a a1 2.2 2.3
Freguency

Fig. 2. Transistion band peak of Figure 1.
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Fig. 3. Frequency Response for Limit Design, N = 25.

1.2

a.2 8.3 2.4 9.5
Frequency

Fig. 4. Frequency Response with Transition Limit, N = 27,

Another alternative for eliminating the transition band
peak is to fix the length at N = 27 and push the upper edge
of the lower stopband to the right, maximizing the width of
the first stopband, thus reducing the width of the first
transition band and eliminating the transition band peak. The
file of input parameters for this case is shown in Figure 5 and
the resulting frequency response is shown in Figure 6.
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5. Conclusion

Several approaches to the FIR linear-phase frequency-
domain filter design problem were considered. A new
algorithm, using the simplex method of linear programming,
was proposed which is very general and can incorporate a
wide variety of constraints on the frequency response of the
filter. An application of this new algorithm to the problem of
eliminating transition peaks in bandpass filters was given.
There are many other types of constraints which may be
incorporated depending on the answer to the question, "What
is the filter design problem?"

min and max order: the same, 30 order is fixed.

14 14

r bandedge is pushed to the right

2 number of constraints to be pushed
12 which constraints to push

100 no. of grid intervals

limit type of constraint

upper limit

+
arithmetic interpolation between left and right endpoincs

ug means that distance to this constraint is not optimized
0 .08 left and right band edges

11 upper limits at left and right edges

limit type of constraint

- lower lLimit
arithmetic interpolation between left and right endpoints

means that distance te this constraint is not ptimieed

0 .08 left and right band edges
-.1 -1 lower limits at left and right edges
limit type of constraint

' upper limit
arithmetic interpolation between left and right endpoints

optimize distance to this constraint is optimized
.25 .37 lett and right band edges

1.1 1.1 upper limit at left and right edges
limit

arithmet:c
optimize
.25 .37

-9 .9
limit 1
N

repeat for fourth constraint

arithmetic
hug

.4 .5
1001
limit

repeat for fifth constraint

arithmetic
hug

.4 .5

-.1 -.1
end

repeat for sixth constraint

5. Parameters
.2 =

Fig. for Pushed Bandedge, N=27.
1 . . .

8.2 Q.3 2.4 2.5
Frequency

Fig. 6. Frequency Response for Pushed Bandedge, N=27.




6. References

{11 O. Herrmann, "Design of Nonrecursive Digital Filters
With Linear Phase,” Electronics Letters, Vol. 6, pp.328-
329, May 28, 1970.

[2] T.W. Parks, L.R. Rabiner, and J.H. McClellan, "On the
Transition Width of Finite Impulse-response Digital
Filters," IEEE Trans. Audio and Electroacoustics, Vol.
AU-21, pp.1-4, February, 1973.

{31 L.R. Rabiner, JH. McClellan, and T.W. Parks, "FIR
Digital Filter Design Techniques using Weighted
Chebyshev Approximation,” Proceedings of the IEEE,
Vol. 63, no. 4, pp.595-610, April 1975.

[4] O. Herrmann and H.-W. Schuessler, "On the Design of
Selective Nonrecursive Digital Filters" presented at the
IEEE Arden House Workshop on Digital Filtering,
January 12, 1970.

[5] E.M. Hofstetter, A.V. Oppenheim, and J. Siegel, "A New
Technique For the Design of Non-recursive Digital
Filters" Proc. Fifth Annual Princeton Conference on
Information Sciences and Systems, pp.64-72, March
1971.

[6] E.M. Hofstetter, A.V. Oppenheim, and J. Siegel, "On
Optimum Nonrecursive Digital Filters" Proc. Ninth
Annual Allerton Conference on Circuit and System
Theory, pp.789-798, October 1971.

(71 H.D. Helms, "Digital Filters with Equiripple or Minimax
Responses," [EEE Trans. Audio and Electroacoustics,
Vol. AU-19, pp.87-94, March 1971.

(8] T.W. Parks, "Extensions of Chebyshev Approximation
for Finite Impulse Response Filters," presented at the
IEEE Arden House Workshop on Digital Filtering,
January 10, 1972.

91 TW. Parks and JH.  McClellan, "Chebyshev
Approximation for Nonrecursive Digital Filters with
Linear Phase," /EEE Trans. Circuit Theory, Vol. CT-19,
pp 189-194, March 1972

[10] H.S. Hersey, D.W. Tufts, and J.T. Lewis, "Interactive
Minimax Design of Linear Phase Nonrecursive Digital
Filters Subject to Upper and Lower Function
Constraints," /[EEE Trans. Audio and Electroacoustics,
Vol. AU-20, pp.171-173, June 1972.

[11] M.T. McCallig and B.J. Leon, "Constrained Ripple
Design of FIR Digital Filters," /EEE Trans. Circuits and
Systems, Vol. CAS-25, pp.893-902, November, 1978.

[12] F. Grenez, "Constrained Chebyshev Approximation for
FIR Filters," ICASSP-83, Boston, MA, pp 194-196.

[13] O. Herrmann, L.R. Rabiner, and D.S.K. Chan, "Practical
Design Rules for Optimum Finite Impulse Response
Low-pass Digital Filters,"” Bell Syst. Tech. J., Vol. 52, pp.
769-799, July-Aug.1973.

[14] L.R. Rabiner, J.F.Kaiser, and R.W. Schafer, "Some
Considerations in the Design of Multiband Finite-
Impulse-Response Digital Filters,” [EEE Trans. Audio
and Electroacoustics, Vol. ASSP-22, pp.462,472,
December 1974.

609

[15] J.F. Kaiser, K. Steiglitz, "Design of FIR Filters with
Flatness Constraints," Proc. 1983 IEEE Int. on Acoustics,
Speech, and Signal Processing, Boston, Mass., pp.197-
200, April 14-16, 1983.

[16] CH. Papadimitriou, K. Steiglitz, Combinatorial
Optimization: Algorithms and Complexity Prentice-Hall,
Englewood Cliffs, New Jersey, 1982,

[17] K. Steiglitz, "Optimal Design of FIR Digital Filters with
Monotone Passband Response," [EEE Trans. on
Acoustics, Speech, and Signal Processing, Vol. ASSP-
27, no. 6, pp.643-649, December 1979.



