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Serious roadblocks have been encountered in several areas of computer appli­
cation, for example in the solution of intractable (NP-complete) combinatorial 
problems, or in the simulation of fluid flow. In this talk we will explore two 
alternatives to the usual kinds of computers, and ask if they provide some hope 
of ultimately by-passing what appear to be essential difficulties. 

Analog computation, the first alternative to standard digital computation 
was all but abandoned in the early 1960's, but has a long and rich history. (See 
the textbooks [16,171, for example.) We will use a very general notion of what 
analog computation means - we will not restrict ourselves to the kind of analog 
computer that uses operational amplifiers, diodes, and so on. Rather, we will con­
sider any physical system at all as a potentially useful computer, provided only 
that we can communicate with it. We will then attempt to formulate precisely 
the following question: Can analog computers solve problems using reasonable 
(non-exponential) resources that digital computers cannot~ 

The study of this question leads us to formulate a strong version of Church's 
Thesis: That any finite physical system can be simulated efficiently by a digital 
computer. By "efficiently" we mean in time polynomial in some measure of the 
size of the physical system. This thesis provides a link between computational 
complexity theory and the physical world. If we grant that P 0/= NP, and Strong 
Church's Thesis, we can then conclude that no physical device solving an NP­
complete problem can do so efficiently. We will propose such a device and explore 
the physical implications of our argument. While we will be able to make certain 
statements, the important questions in this field are unresolved, especially those 
dealing with quantum-mechanical systems. 

A cellular automaton (CA) is in general an n-dimensional array of cells, 
together with a fixed, local rule for recomputing the value associated with each 
cell. CA's were originally proposed by von Neumann as a mathematical model to 
study self-replication. More recently, they have received attention as possible 
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models of general nonlinear phenomena, and have been used for nonlinear image 
processing in the biomedical and pattern recognition fields [31. We will mention 
recent work on the use of CA's to model fluid flow. 

Cellular automata offer an ideal vehicle for studying highly parallel, pipe­
lined computation structures, such as systolic arrays. We will describe the design 
and testing of a custom VLSI chip for implementing a one-dimensional, fixed CA, 
which has a total throughput of more than 108 updates per second per chip [41. 
We will then discuss the processor/memory bandwidth problems that arise in 
higher dimensional cases, which are important in fluid dynamics. 

We will then describe certain one-dimensional automata that support per­
sistent structures with soliton-like properties - a phenomenon qualitatively simi­
lar to those observed in certain nonlinear differential equations. This suggests 
ways to embed computation in homogeneous computing media, and leads us to 
speculate about how we can overcome the limits of lithography in large-scale 
integration. 

2. Measuring Complexity 
We begin by reviewing the usual way of measuring complexity for digital 

computer algorithms, and then discuss the extension of these ideas to the analog 
world. 

A very effective and robust model for digital computation is the Turing 
Machine, which is characterized by the following components: 

a) A tape with cells that can hold symbols from a finite alphabet. Without 
changing the essential features of our model, we take this to be the binary 
alphabet, the symbols to, I}. An unlimited supply of tape is available, but 
only a finite number of cells is ever used. 

b) A head that moves on the tape. The head sees the symbol at its current 
position. 

c) The machine is at any time in one of a finite number of states. 

d) A finite set of rules, which play the role of the computer program. Given the 
symbol under the head and the current state of the machine, these rules 
determine at each time step what the new tape symbol shall be, whether the 
head then moves left, right, or remains stationary, and what the new state 
shall be. Of course time is discrete, and each application of the rules is 
counted as one time step. 

A critical feature of this model is the fact that the sets of symbols, of states, and 
of rules, are all finite. This is in sharp contrast with the usual models for analog 
systems, which are usually differential equations, and which have a continuous 
time parameter, as well as continuous state variables. 

A finite number L of cells at the beginning of the tape are initially set, and 
these correspond to the program input. The number L is then taken to be the 
size of the input, measured in bits. We will measure the input size to an analog 
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device in the same way, as a sequence of bits of length L. It is important to 
notice at this point that an input of length L can represent a number as large as 
2L. 

In the case of a Turing Machine, the only resources used by a computation 
are time and space, the former being the number of discrete time steps, and the 
latter being the number of tape cells required by a given computation. In the 
analog case, the situation is not so clear. There is certainly the time taken for 
the computation, and the volume occupied by the device. But there is also the 
energy used, the maximum force employed, the largest electric field, and so on; in 
other words: any physical quantity that might have a real cost associated with it, 
and which might be bounded by physical constraints. We call these quantities, 
collectively, the resources used by the analog computer. We can then speak of a 
computation by an analog device as taking polynomial resources if the resources 
are bounded by a polynomial function of the input description length L, and 
similarly for computations that take exponential resources. (We usually use the 
term exponential to mean not polynomial.) 

3. An Analog Computer that uses Polynomial Resources 

We now give an example of a simple computation that can be performed by 
an analog computer using polynomial resources. 

The Maze Problem: A graph G is defined on an nX n array of nodes, and each 
node can be connected only to the nodes adjacent to it in a column or row. The 
problem is to determine if there is a path from the upper-left corner node s to the 
lower-right corner node t. (See Fig. la.) 

( 0..) ( b) 

t 

Fig. I a) The maze problem; b) A longest If-t path. 

This is not a hard problem for a digital computer; in fact, it can be solved in a 
number of steps proportional to the number of edges. A natural way to approach 
this problem with an analog computer is to build an electrical network that has a 
terminal for each graph node, and a wire wherever an edge appears in the graph. 
We can then apply a voltage source across the terminals 8, t, and measure the 
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resulting current flow. The terminals sand t are connected if and only if there is 
a "positive" current flow. 

We need to more precise about what constitutes a positive current, about 
how long we need to wait to make our decision, and about how expensive the 
network is. Assume for this purpose that each edge is represented by a wire of 
rectangular cross-section with width w, length d, and height h, all of which can be 
a function of n, provided that w doesn't grow faster than d. 

Assume first that there is a path from s to t. The longest such path can have 
O( n2 ) edges, as shown in Fig. lb. The resistance of each wire is proportional to 
its length, and inversely proportional to its cross-sectional area, so that the total 
resistance between sand tis 

(1) 

where kl is some constant. Notice that if d, w, and h are held constant, the 
closed-circuit resistance grows as the square of n, or linearly with the number of 
nodes. 

Next, consider what happens when there is no s-t path. The open-circuit 
(leakage) resistance Rop is proportional to d, inversely proportional to the area hd, 
and in the case leading to the lowest resistance, our worst case, inversely propor­
tional to n2 . This is because there can be in effect no more than n2 wires in 
parallel across an s-t cut. We thus have the asymptotic lower bound 

1 
Rop ~ k2-­

n2h 
where k2 is another constant, but much larger than k1. 

(2) 

Combining these two inequalities, we can find an asymptotic lower bound on 
the ratio between the closed- and open-circuit current: 

(3) 

If we plan to distinguish successfully between the closed- and open-circuit cases, 
we need to ensure that this ratio is large enough to make possible reliable meas­
urement. We see from this analysis that the scaling ratio wid < 1 cannot 
prevent ultimate disaster as n grows indefinitely. What makes this circuit work 
in a practical situation is the fact that 

(4) 

Thus, the device will work effectively for a large range of n, as we might expect. 
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However, we also see from this analysis that there is a limit on the size of 
problem, determined by the technology, beyond which this device simply will not 
function. It appears that this is an unavoidable limitation in all physical devices 
that we construct to solve arbitrarily large instances of problems. Suppose, for 
example, that we try to use water, and model the edges of the maze by pipes. We 
then need to worry about making the pipes heavy enough to support water pres­
sure that grows indefinitely. If we use microwaves, we need to worry about loss, 
and so on. But we can accept the fact that there is a large regime in which a dev­
ice will operate well; the same is true of any real digital computer, even for 
polynomial-time problems. 

Next, consider how long we need to wait (asymptotically) before we can 
make a reliable decision. This is determined by the RC time constant in the 
closed-circuit case. The greatest possible capacitance across the terminals of the 
voltage source can be no worse than proportional to the total surface area 
between wires, or O(n2dh), and inversely proportional to the inter-wire distance d, 
assuming w grows slower than d, for a total capacitance that is 0( n2h). The larg­
est total resistance is O( n2 d/( wh)), by (1). The time constant is therefore 

(5) 

Thus, letting w grow as d, we find this "analog computer" takes time O( n4), pro­
portional to the square of the number of nodes. We can also check that the total 
mass of the machine, and the power consumption, are also polynomial, provided 
we are in the regime of operation provided by the technology constants kl and k2. 

4. Analog Machines that use Exponential Resources 

It is all too easy to construct analog computations that require exponential 
resources, simply because of our previous observation that L bits in the input can 
encode a number as large as 2L. An example is provided by A. K. Dewdney's 
"Spaghetti Analog Gadget" (SAG) [22), for sorting integers, a polynomial-time 
problem for a digital computer. Instructions for this analog computation follow: 

Spaghetti Analog Gadget 
1) Given a set of integers ai to be sorted, cut a piece of (uncooked) spaghetti to 
the length of each of the numbers. 
2) Assemble the pieces in a bundle, and slam them against a flat surface, so that 
all the pieces are flush at one end. 
3) Remove the pieces that extend farthest at the other end, one at a time. The 
order in which the pieces are removed from the bundle sorts the integers from 
largest to smallest. 

The difficulty here is that the pieces are cut to lengths proportional to the 
integers in the input data, but these are encoded in binary. The pieces of 
spaghetti code the numbers in unary, instead of binary. Thus, the machine uses 
an exponential amount of spaghetti. 
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We might try to circumvent this problem by using a logarithmic scale to size 
the spaghetti. This will keep the mass of the machine polynomial, but raises a 
new problem. We will then need to distinguish between ends of pieces that are 
exponentially close in size. In the presence of fixed measurement noise, this will 
require an exponential scaling to keep the measurements reliable, again leading to 
exponential mass. Ail proved in [1], there is no way around this difficulty if we 
insist on representing input numbers by single analog quantities. The digital com­
puter can represent a single number by a (theoretically) unlimited number of 
registers, and that seems to be an essential difference between digital and analog 
computation, and the source of the term "analog(ue)". 

We now take up the question of whether an analog computer can solve a 
problem that is intractable for digital computers. To this end we will consider 
NP-complete problems, problems as difficult as any in the wide class of NP prob­
lems, and widely considered to require exponential time on digital computers. 
(This belief is usually expressed in the conjecture that P =i' NP.) 

5. Strong Church's Thesis 
We now need to emphasize an important distinction between statements 

about Turing Machines, or digital computers in general, and analog computers. In 
the former case, our statements can be made and proven with mathematical pre­
cision - they are, in fact, mathematical statements. When discussing analog 
devices, however, we are making statements about what will happen in the physi­
cal world, and the correctness of our conclusions depends on the models we 
choose. For example, we choose to describe the electrical gadget for the Maze 
Problem by the usual electrical models, including Ohm's law. Our prediction of 
its speed of operation depends on a differential equation model. 

Thus, there is always room to refine our model of analog computers, and it is 
never guaranteed that predictions of behavior will be correct. For example, we 
ignored the inductance in the circuit and its effect on its time-domain behavior; 
we assumed that the noise environment does not interfere with the measurement 
of current as the size of the device grows to infinity; and so on. 

To carryover the ideas of complexity theory from the mathematical realm 
to the physical, we need something that will relate the two worlds in some way. 
Such a connection between mathematics and the informal world is provided by 
Church's Thesis, also called the Church-Turing Thesis [12,13]. The usual way of 
stating it is that the Turing Machine completely captures the notion of computa­
tion; that is, that anything that can be computed at all can be computed by the 
Turing Machine. In our context, we can view this as stating that the Turing 
Machine can compute anything that an analog device can. 

We now go one step further, and formulate a stronger version of Church's 
Thesis that relates complexity in the two domains. (A similar idea has been pro­
posed by R. Feynman [14].) 

Strong Church's Thesis (SCT) An analog device can be simulated by a Tur­
ing Machine in time that is a polynomial function of the resources it uses. 
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What this says, essentially, is that any piece of the physical world can be simu­
lated by a digital computer without requiring time exponential in any measure of 
the size of the piece. SCT is not susceptible to mathematical proof; it is in fact a 
statement about physics that mayor may not be true, as is the usual Church's 
Thesis. Only by postulating a particular model for a piece of the physical world 
could one hope to prove it. For example, it is proved for systems described by a 
certain class of differential equations in [1]. 

We are going to consider the possibility of using analog computers to solve 
NP-complete problems, which are generally considered to be intractable in the 
sense of requiring exponential time. Furthermore, all the members of the class 
are equivalent to each other in the sense that if one can be solved in polynomial 
time, they all can. Thus, either they are all in P (P = NP), or none is (P =/:- NP). 
The reader can find more on this subject in [15]. 

SCT now allows us to make the following kind of argument. Suppose an 
analog device solves an NP-complete problem using a polynomial amount of 
resources. Then the fact that we can simulate it in polynomial time with a Tur­
ing Machine means that there is also a Turing Machine that solves the problem 
in polynomial time, and so P = NP. If we then take as postulates P =/:- NP and 
SCT, we have a metamathematical argument that the given device cannot 
operate using polynomial resources. We will study such a device in the next sec­
tion. 

6. An Analog Machine for an NP-complete Problem 

The NP-complete problem we will solve is called PARTITION [15]: 

PARTITION Given a set of positive integers 5 = {WI' W2, .•. , wn}, is there a 
non empty subset 5' of 5 with the property that the elements in 5' sum to 

n 
exactly (1/2) I: Wi ? That is, does there exist an 5' that partitions 5 into two 

i=1 
equal-weight subsets, those in 5', and those not? 

The analog device we will construct will represent the integer Wi by a cosine sig­
nal with frequency Wi. We observe first that by using the fundamental opera­
tions of addition, subtraction, and squaring of signals, we can form the product of 
two cosine waves, which also consists of the sum of cosine waves at the sum and 
difference frequencies. This follows from the following identities: 

4cosx cosy 2[cos(x+y) + cos(x-y)] (6) 
(cosx + cosy)2 - (cosx - cosy)2 

From this we see that we can synthesize a signal at the frequency W with O(logw) 
such operations, and so the synthesis of these signals requires only a polynomial 
amount of equipment. 
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In the same way we can construct the signal 

" " 111 II coswi 
i=1 

(2-n)I:COS(Wl+ I: ±Wi) 
i=2 

(7) 

where the outer sum is over all 21>-1 combinations of + and - in the inner sum. 
We can then determine if one of these sums is zero by integrating over one 
period, from t = 0 to 211". In fact, that integral will be zero if and only if one of 
the inner sums in (7) is zero, and this is equivalent to there being a solution to 
the partition problem on the numbers {wJ. Thus we have shown that the follow­
ing problem is NP-complete, a result due to Plaisted [15, 18]: 

COSINE PRODUCT INTEGRATION Given a set of positive integers 
S = {WI> w2, ... , wn}, does 

(8) 

Figure 2 shows a sketch of a device that will make this decision, using 
adders, subtracters, squarers, an integrator, and a threshold detector. While we 
have tried to make the operation of this PARTITION machine as practical­
sounding as possible, the main point of the preceding discussion is that it will not 
work in practice, in the sense of requiring resources exponential in the length of 
the input data. Where does the machine founder? Perhaps providing enough 
bandwidth for the integrator is the problem. Perhaps noise will obscure the dis­
tinction between zero and not zero. Perhaps the accuracy requirements on the 
square-law device are prohibitive. As satisfying as it might be to find the flaw in 
its operation, it is not necessary to analyze the device; if we accept that P ~ NP 
and Strong Church's Thesis, it cannot work efficiently in practice. 

(1, 

<t~ 

-f-Q3 

+\-w'eshold 

Fig. 2 The PARTITION machine. 
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In fact, however, it is not hard to locate one flaw that would become evident 
if we tried to solve large instances of PARTITION with such a machine. Each 
distinct partition of the wi contributes a zero-frequency term to the integrand in 
(8), and that results in an integral with value 2-11, from (7). Therefore, if there is 
only one such term we must distinguish between the values 0 and 2-11• If there is 
a fixed level of noise, we would then need to scale by an exponential factor to 
accomplish this discrimination. In other words, the machine proposed operates 
with an exponentially small signal-to-noise ratio. Somehow, it seems that P =f:. 
NP and SCT together imply that there is an irreducible level of noise in the 
world. 

In [1] another analog machine for an NP-complete problem is described. A 
device constructed with gears, levers, and cam-followers is constructed that osten­
sibly solves the NP-complete Boolean Satisfiability problem. (Actually, the special 
case called 3-SAT.) This problem does not have integers in its input description, 
and the flaw in the operation of the machine is perhaps less obvious than for our 
PARTITION machine. The link that Strong Church's Thesis provides between 
the mathematical and physical worlds is strong enough to allow us to make non­
trivial statements about certain physical systems. 

7. Cellular Automata 
We next turn our attention to another way of thinking about computation, 

cellular automata. In one sense this subject does not present the kind of funda­
mental difficulties we encountered when we studied analog computation. There is 
nothing that can happen in a cellular automaton that, in principle, cannot be 
simulated by Turing Machine. Rather, the interest lies in the organization of the 
computation. A cellular automaton can reflect the way that computations are 
performed in nature, and so can be a more natural framework than a conven­
tional serial computer for studying certain phenomena - the kinds of phenomena 
that occur in systems with a large number of identical, locally interacting com­
ponents. The important features of a cellular automaton are the uniformity and 
locality of its computations. 

A cellular automaton has three components: 

a) A discrete, finite state space E containing the value 0, usually the additive 
group mod k on the integers {O, 1, 2, "', k-l}. Often k = 2, in which 
case we say the automaton is binary. 

b) A set of sites or cells called the domain A, usually a discrete regular lattice 
of points in n dimensions, often simply equally spaced points on a line or cir­
cle, or a rectangular or hexagonal grid in the plane. Each site in the domain 
has a value in E associated with it, and we refer collectively to the domain 
and the state values associated with each site as the state of the automaton. 
We also refer to n as the dimension of the automaton. 

c) A rule <I> which, given the state at discrete time t, yields the state at time 
t+ 1. The rule uses as arguments the values in some fixed neighborhood of 
each site. 
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Thus, the rule cP can be thought of as "re-writing" the values at each of the sites, 
for times t = 1, 2, 3, ... , given an initial state at t = o. We will always assume 
that the initial state has only a finite number of sites with non-zero values, and 
so can be finitely described. 

The cellular automaton was invented by von Neumann to study self­
replication [19]. Today, there are two main reasons for studying the model: first, 
as a model for physical phenomena; and second, as a model for computation in 
regular networks, such as neural networks. We will naturally concentrate here on 
the latter category, but we should mention some recent, exciting work in the first 
category, the application of cellular automata to fluid dynamics, as an alternative 
to the numerical solution of the Navier-Stokes equation [23,24]. 

The idea behind the fluid dynamic machines is to model the behavior of a 
fluid by a collection of particles which can move around a lattice, with fixed rules 
for what happens at collisions. Under certain circumstances, and with the right 
rules, it can be shown that the average velocity fields obtained do in fact coincide 
with solutions to the Navier-Stokes equation [25]. So far, the most successful 
computations use a hexagonal grid in two dimensions, and each site is assumed to 
have up to 6 particles, possibly one traveling towards each of the 6 neighbors of 
the site, and possibly a particle at rest at the site. Thus, 7 bits suffice to describe 
the state at a site. The rules need to be carefully designed so that momentum 
and mass are conserved. When the automaton is started from an initial random 
state with a certain population density, numerical velocity fields are obtained by 
averaging over blocks of sites, typically 48 X 48 sites square. Results so far illus­
trate the development of vortex streets, and other qualitative phenom~na associ­
ated with turbulent flow, for low effective Reynolds Numbers. 

Whether this approach is ultimately of practical importance in fluid dynam­
ics depends on whether the calculations required can be made highly parallel. 
This is one way in which the cellular automaton model shines; its great regularity 
and simplicity invite deep pipelining and custom VLSI implementations, and the 
parallelism obtained this way may more than compensate for the primitive 
nature of the individual computations. This is especially true if one-dimensional 
pipelining can be used. To illustrate the way in which one-dimensional computa­
tion can be pipelined to an arbitrary depth, we will describe briefly a custom 
VLSI chip that was designed and tested at Princeton. 

8. Cellular Automata: Notation and an Example 
We first set down some notation to describe cellular automata. Let a~ be the 

state value at time t and position i, -00 SiS +00 , and 0 S t S +00. The 
next-state rule is of the form 

(9) 

We also usually assume that cP preserves zero, 
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<1>(0,0, ... , 0) = ° 
The next value of site i is a function of the previous values in a neighborhood of 
size 2r + 1 that extends from i - r to i + r. Given initial states at all the sites, 
repeated application of the r~le <I> determines the time evolution of the automa­
ton. 

As an example, we will describe a particular binary, one-dimensional auto­
maton with r = 2, denoted by Wolfram [21 the rule-20 totalistic cellular automa­
ton. This is perhaps the simplest automaton that exhibits very complicated 
behavior, and may in fact be universal in the sense of having the power of a Tur­
ing machine. The rule is called totalistic by Wolfram [2], because the next-state 
function <I> depends only on the sum of its arguments. Let that sum at time t 
and position i be denoted by sf, 

Sl 
I 

The rule is the following with r = 2, 

i+r 
~a~ 
i-r 

Sf even but not ° 
otherwise 

(10) 

(11) 

We will call any rule of this form a parity rule. It is called rule-20 because the 
binary expansion of 20 is 10100, and this string determines which values of Sf 
yield an output value of 1, by the l's at bits 4 and 2, counting from the right and 
starting with 0. 

Figure 3 shows the evolution of this automaton, and illustrates an interest­
ing feature, namely the presence of persistent structures that we will call parti­
cles. The figure shows two examples of particles of different speeds colliding des­
tructively. Particles are quite rare in this automaton, and almost all collisions 
are destructive. Later on we will describe other automata in which particles are 
much more common, and collide non-destructively. 

Based on extensive experimental evidence, Wolfram [21 has classified the 
behavior of cellular automata into four types: 

1) evolution to a homogeneous state (analogous to a limit point in nonlinear 
differential equations), 

2) evolution to separated stable or periodic structures (analogous to limit 
cycles), 

3) evolution to chaos, and 

4) evolution to complex, often long-lived structures. 
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The last type of behavior, exhibited by the rule-20 cellular automaton, will 
be most interesting to us, because it will suggest ways in which computation 
can be embedded into the operation of the automaton. 

Fig. 3 Destructive collisions in the code-20 cellular automaton. 

D. A Custom Systolic Chip for a Cellular Automaton 
A chip was designed to implement the rule-20 cellular automata described 

above. The implementation is interesting from the point of view of the kinds of 
systolic arrays used to achieve highly parallel computation for signal processing, 
and we will describe it here briefly. 

Fig. 4 Bit-serial systolic array for a cellular automaton. 
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Figure 4 shows how a simple concatenation of bit-serial processors can be 
used to perform the updating operation. Each processor consists of a (2r+ 1 )-bit 
shift register which holds the argument bits, and fixed combinatorial logic 
which performs the calculation of the next-state function <P. The operation is 
synchronous, and each major clock cycle a new output bit is produced by each 
processor, and the contents of the shift registers advance one cell. 

o 0 0 0 

o 

0 0 0 

--0 0 .. 0 .. 0 0 .. t- o -

ti "'e 

Fig. 5. The computational wavefront. 

At any given moment, each processor is fully occupied, and so the array 
achieves maximum parallelism. Note, however, that it is also true that at any 
given moment, each processor is working on the generation after the one of the 
preceding processor, as shown in Fig. 5. Thus, the calculation proceeds along a 
northwest-to-southeast wavefront. In an actual implementation, the data is circu­
lated through some number N of processors, and each complete circulation results 
in an update of the one-dimensional array by N generations. 

The fixed processor for rule-20 was implemented in 4 J1 nMOS, using a 5-bit 
static shift register and a PLA for the update function <P. The small chip of 
3.1 X3.8 J1 holds 18 such processors, in 3 columns of 6 processors each, plus the 
inter-processor wiring and pads. Of the 16 chips that were returned from the 
MOSIS fabrication facility, 9 were fully functional at speeds of at least 6 Mhz. 
This implies an effective computational rate of greater than 108 site-updates per 
second per chip, and illustrates the power of the bit-serial systolic approach to 
one-dimensional computation in such automata. 

If this idea is extended to two-dimensional automata, it requires local storage 
of two full rows of state values at each processor, as opposed to (2r+ 1) site values 
in the one-dimensional case. This fact means that many fewer processors can be 
fit on a single chip, and thus reduces the amount of effective parallelism that can 
be achieved on a chip. The approach is still very useful in two-dimensional appli­
cations such as image processing [26]' and is now being studied at Princeton for 
fluid dynamics applications [271. 
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10. Parity-Rule Filter Automata 
We will now discuss a slightly different kind of automaton, called Filter 

Automata [5). The original motivation for studying them came from digital signal 
processing [7). Noticing that the usual kind of cellular automaton corresponds in 
its data access pattern to a finite-impulse-response (FIR) digital filter, it is 
natural to see what happens when the corresponding infinite-impulse-response 
(IIR) pattern is used. This corresponds to replacing the update rule (9) by one 
that scans left-to-right, and uses new state values as they become available, 

(12) 

Some experimentation then shows that these filter automata with the parity rule 
(11) are especially interesting for a number of reasons. Naturally, we call these 
the parity-rule filter automata, parameterized by the neighborhood width r. 

Fig. 6 Some particles in the r = 2 parity-rule filter automaton. 

The first interesting thing to observe is that these automata support a very 
wide variety of particles. Figure 6 shows just a few of these for the r = 2 parity­
rule filter automaton. For each r, there is a unique zero-speed particle (shown 
rightmost), and all the other particles move to the left. There is also a unique 
fastest particle, called the photon, which consists of (r+ 1) consecutive 1 's, moving 
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to the left at a speed of (r-l). 
To classify a particle, we interpret the bit strings in its (periodic) evolution 

as binary numbers, and define the smallest such number as the canonical code of 
the particle. Obviously, this is a unique way of identifying a particle. We also 
refer to the number of generatiol)s before repetition as the particle's period, the 
number of sites moved left in a period as its displacement, and the ratio of dis­
placement to period as its speed. 

The number of distinct particles grows rapidly with r. An exhaustive search 
program yields the following numbers of particles with canonical code width up 
to and including 16: 

radius number of particles 
2 8 
3 198 
4 682 
5 6534 
6 13109 

These particles come with a variety of displacement/period pairs. 

The next interesting thing about the parity-rule filter automata is that parti­
cles pass through each other, sometimes with their identities preserved, and 
sometimes not. Figure 7a illustrates some identity-preserving collisions for the 
r = 3 automaton, while Fig. 7b shows collisions that don't preserve identity, for 
the same automaton. 

Close inspection of Fig. 7b shows a collision in which two particles come 
together and interact in such a way as to produce two different particles traveling 
in parallel (the second and third particles from the left at the bottom). This 
shows that the parity-rule filter automata are in general not reversible in time. 

At this point the similarity of these particles with the solitons supported by 
differential equations [10,11] becomes apparent. These "solitary waves" occur in 
nonlinear systems, and are characterized chiefly by the non-destructive nature of 
their collisions. The close connection with the solitons supported by the nonlinear 
lattices of Hirota and Suzuki [11] is being studied at Princeton with Nayeem 
Islam [21]. 

The particles illustrated in Fig. 6 that appear to be composed of several 
resonating particles traveling in parallel also have their counterpart in physical 
solitons, where they are called "puffers". 

Many further properties of the parity-rule filter automata have been proved 
by C. H. Goldberg, in a forthcoming paper [28]. For example, he shows that they 
are inherently stable, in the sense that an initial state with a finite number of 1 's 
always leads to states that also have a finite number of 1 'so 



188 

Fig. 7 a) Identity-preserving collisions in the r = 3 parity-rule filter automaton; 
b) Identity-destroying collisions in the same automaton. 

11. Phase Shifts and Embedded Computation 
We now discuss the possibility of encoding information in the particles sup­

ported by these filter automata, and of processing this information by way of the 
collisions. 

As in physical solitons, a collision produces a shift in the trajectory of each 
particle, which we can think of as a translational phase shift. It always happens 
that when a fast particle catches up with and passes through a slow particle, the 
slow particle is thrust backward from where it would otherwise be, and the fast 
particle propelled forward. This can be verified for the examples shown in Fig. 7. 
(Incidentally, physical solitons behave in exactly the same way.) We can thus 
think of the position of a particle relative to some constant-speed reference as 
representing information that is changed on collision, the translational phase of 
the particle. As a simple example, we might encode a 0/1 bit in the translational 
phase according to whether its position relative to a reference is even/odd. 

There is another kind of phase inherent in the motion of a particle - the 
relative state of the particle in its periodic path through different configurations. 
This, too, can be changed by collision, and we call these orbital phase changes, as 
opposed to the translational phase changes. If we liken the motion of the particle 
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to that of a wave packet, we can think of the translational and orbital phases as 
those of the envelope and carrier, respectively. In what follows, we will refer to 
the composite translationaljorbital phase as simply the phase of a particle. 
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Fig 8. A carry-ripple adder embedded in an r = 5 parity-rule filter automaton. 

A simple example of a non-trivial computation that can be performed by col­
liding solitons is described in [20], and we summarize the idea here. The computa­
tion is that of a carry-ripple adder, and is illustrated in Fig. 8. The carry bit is 
represented by the phase of a fast particle entering the scene from the right; the 
addends are represented by pairs of slow particles. Solutions of this form were 
found for r = 5. Another solution was found for r = 3 with 3 particles per 
addend pair. 

Some work is involved in making such a scheme work. We need to make 
tables of the phase changes that result from collisions, and then we need to 
search for combinations of particles that behave in the way we want. This can be 
automated as a search for paths in a constructed graph, and the details are in 
[201. We can think of this part of the problem as "programming" the embedded 
computation. 
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The idea of using persistent moving structures to do computation is not new; 
for example, Conway's game of Life [8) is able to mimic the operation of a gen­
eral purpose computer, and so is capable of universal computation. Similar 
embeddings are described in [9). There are two important differences here: first, 
we are dealing with a one-dimensional "computer", and second, as we have seen, 
we do not need to initialize the states of the automaton to reflect a logical organi­
zation, such as gates, registers, etc. The computation can be encoded very natur­
ally in the serial input stream. 

On the other hand, our present knowledge of the power of such computation 
is very limited, and it is not known if the parity-rule filter automata are univer­
sal. We do not yet know much about how to program such machines. 

An important aspect of this notion of computation is that a medium can be 
used to compute, without tailoring the medium to the particular computation, 
either by designing its "wiring", or by initializing its states. If it were possible to 
synthesize such a medium at the molecular level [6), we would avoid the problems 
posed by the limits of lithography, and could have a computer that functioned at 
that level. The approach also suggests analogous computation with physical soli­
tons [21], and, in a more speculative vein, possible explanations of some kinds of 
brain function. 
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