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Part I is devoted to the general theory of digital filters.
The filtering theories for both continuous-time and discrete-time
signals are formulated in terms of abstract Hilbert space, with the
notion of a stable filter defined as a bounded linear operatox.
This abstract setting allows the z-transform to be defined with the
same generality as the Fourler transform. A specific Isomorphism i1s
then constructed which connects the filtering theories for continucus-
time and discrete~time signals, and in the Ilinear time-invariant
case the two theories are shown to be essentially identical. This

ns that meny optimizetion problems can be solved simultaneously

'

for continucus-time and digital systems.

‘In the second part, the isomorphism developed in Part I
is used to reduce the approximztion problem for digital filters to
that for continuous-time filters. This allows the designer of
digital filtering computer programs to use many of the concepts which
have proven important to the commumnicatlons engineer.

In the last part, the problem of estimating the power-
spectral~-density of a signal from equally spaced samples is discussed.
t iz shown that bandpass digital filters generate a class of spectral

windows which produce always positive estimates of the power-spectral-

ensity. The optimum bandwidth and shape of such a filter are then

oy

derived. Finally, a method for identifying unkmown parameters In the

power-spectral-density of a digital signal is presented.



PREFACE

Historically, methods for processing signals that are fune-
+tions of continuous time were developed long before the advent of
high speed digital computers. When high speed computing facilities
did become available, the communications and control englneers were
not the people who developed computing techniques. As a result, the
filtering theory that had been highly developed for continuous~time
signals was not applied in full force for the processing of digital
signals.

The main purpose of this thesis is to tle together the
theories of filtering digital and analog information. This will
enable the data analyst to carry over effectively to his domain many
of the concepts which have been important to network designers. In
particular, all the spproximation technigues developed for continuous-
time filters become availeble for digltal applications.

The strong link that is developed between the digital and
continuous domains will also be of theoretical value. It will present
to us a unified picture of signal and filtering theory, a plcture

that 1s equally appllicable to digital and continuous signals.



PART I: THE GENERAT. THEORY OF DIGITAL FILTERS

1. Introduction

It 1s easy to observe a parallel between signal theory for
signals with & continuous time parameter and signal theory for discrete-
time signsls. In fact, it Is common practice to develop in detail a
filtering theory for continuous-time signals and to pay less atten-
tion to the discrete theory, with the assumption that the derivation
in the discrete case follows the one for continuous-time signals

1:2:3

thout much change. Thus, without going into details, the

Wiener filber for a nolse-corrupted conbinuous-time signal is

5)

F (8) = [@m‘( | ¥T = ¢_ _(s)
= __" —3 S -
o Y(s) Y(s) &P 7 Tyri 7
snd the optimum filter in the discrete case is
(z)
H B of 7 —
Fiz)] = [ S ¥y =@ z ;
0( : Y(z) Y(z) _lIl\T|z|=1 ’ I':LI':(. ) i

where r is the uncorrupted signal and r; is the corrupted signal.
On the other hand, the two cases are always considered as distinct
and essentially different situations.

This correspondence between continuous and discrete phe-
nomens is far from accidental, however. In fact, when both theories

are axiomstized in terms of Hilbert space theory (I, and 1 theory),



they ere isomorphic. This simple fact is quite illuminating and
leads to a more unified theory of filtering and prediction.

Usually, it is assumed that the signals of interest are of
exponential order as t becomes Infinite. This leads to two-sided
Iaplace transforms which converge in a strip in the s-plane, or
double ended z-transforms which converge in an annulus of the z-
plane. This is replaced in Hilbert space theory by mean convergence
on the jw-axis and unit cirecle, respectively. In one sense the sig-
nal spaces I, and 1, are more restrictive, because they do not in~-
clude signals of positive exponential order. On the other hand,
assuming that we are dealing with physically real signals, the spaces
I, and 1, are more general and intuitively satisfying: roughly, they
include all signals whose total energy content is finite.

Qur main purpose in this first part, then, will be to Imbed
the theory of continuous-time signales In I, theory and the theory of
discrete-time signals in 1, theory; and to show that the filtering
theories for these two classes of signals are essentially the same.
We will thus arrive at a definition of digital filter that is as
general as the definition of continuous-wave filter, and we will
show that many problems in the design of discrete-time systems need
not be re-solved. As a by-product, we will see how well Hilbert
space theory is suited to describe linear filtering theory for

both continuous and discrete time.



While Youla, Castriota and (’,‘al"ILin,LL and other network theo-
rists have spplied I, theory to continuous-time network theory, to
the author’s knowledge 1, theory has not been applied to the z-
transform, and the isomorphism between I, and 1; has not been ex-
ploited by electrical engineers.

We begin with a review of the elements of Hilbert space

theory. 5,6,T

2. A Review of Hilbert Space Theory

We will adopt the widely accepted definition of abstract
Hilbert space. That is: a set E of arbitrary elements f,g,... (some-

times called functions or vectors) is termed a Hilbert space if:

I. H is a linear space.

IT. An inner product is defired in H as follows: to every
pair of elements f,g there is assoclated a complex
number (f,g) such that

1) (£,8) = (&%)

2) (of,g) = o£,8)

3) (fy+f2,8) = (£y,8) + (fz,8)

L) (f,£) = 0 if and only if £ = Q.

III. The space H is complete in the metric || #-g|| =
(£-g,7-g)%.
IV. H is infinite dimensional; that is, for any integer n
there are n linearly independent elements 1n H.
V. H is separable; that 1s, H contains a countable and
dense set. (This conditlon is often omitted, allowing

spaces of dimension higher than ;}'_’O).



Thus, a Hilbert space 1s a complete, separable, infinite-dimensional
Fuclidean space.

Historically, two concrete realizations of Hilbert space
play central roles. The first is the space Ig(a,b) » which is de-
fined to be the set of all complex—~valued Lebesgue meagurable func-
tions on (a,b) such that

b
[ l£(t) | -at < oo -

v

a

The inner product In this space is defined by

fo)
(f,g) = J £(t)e(t) at

Two functions in I, are considered equal if they differ only on a

ol

get of measure zero. Since the metric in this space ie (f-g,f-g)%~,
the sequence fn will approach f if
b

Tim Iz -£[® @& =0 i
N300

o

This will be called mean convergence and will be written

= Gle Temy fn . i
N—300
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The other Hilbert space is called 1. It

X = {:{:3:’:3,--t_’xn;-vq}

satisfying the condition

(0.0]

Y Pl
n=1

Here, the lmmer product iz defined by

w

% p—
(XJY) = !}_; R Yn .

n=1

27,

(Sometimes it will be convenient to think of 1, as containing double

ended SEQUERCES: 1aveX 15 X 5 XysXos-asjs The theory is really the
__J’ O.’ T Ir2d

O]

same ).

For us, the space Ip(-co, +oo) will play the role of the space
of continucus time signals, and 1, will represent the space of discrete-
time signals.

An isomorphism from one Hilbert space H; to another Hilbert .

space Hy 1s a one-to-one linear transformation U from H, onto Hp
such that (Ux,Uy) = (x,y) for every pair of vectors x,y in H;. An
isomorphism preserves all the structure embodied in the definition
of Hilbert space and iscmorphic Hilbert spaces are geometrically

indistinguishable and for our purposes can be considered as ldentical.

L,



The following theorem is central for our purposes:
Theorem 1. A1l Hilbert spaces are isomorphic.

The proof of this theorem 1s Interesting and useful. We now review
its main points.

1. Since H is separable, we can choose in H a countable dense
get. From this set we can construct an orthonormel set {h,,hs,hg,...}

that 1s complete iIn H. That is,

O is ifg
(ny,k,) {1 if 1=3

and linear combinations of the hﬁ are dense in H.

2. 'This implies that any element of H can be approximated with
arbitrary accuracy by linear combinations of the hi’ If we define
the partial sum of & generalized Fourier seriles by

n

S5y = Z B i

then the distance between Sn and f in the metric of H is smallest

when

e = (f,hk) -

In that case, we have in fact

28,112 = (£2) - ) lel* -
k=1



Now let n approach infinity. Since Sn is the best n-th order approxi-
mation to f, and since the orthonormal set {hy,hz,...} is complete,

we must have

1im Hf—S H2 = 0 s
N—>>C0 o
and hence
&
(gey =) lelf o =
=1

3. Conversely, let c;,cz,... be a sequence of numbers such

that

k=1

and construct the sequence of partial sums

n
fn = EJ ckhk §
=1
It then follows that
n+p
IR S
k=n+1

As n spproaches infinity the right side goes to zero. The left
side must also go to zero, and this implies that the sequence fn is

fundamental. The fact that H is complete in its metriec then implies



g -

that there is s 1limit funetion £ ¢ H such that

a8 n —> . It then follows easily that

ey (f,hk)
and that
Qo
(£2) = ) lo,P
k=1

T, ¥ : b 3 - - N 3
4, We now assign to each element in H the sequence {cl,cg,...;

of its Fourier coefficlents. By step 2 above this is an element in

}A_S

.. TFurthermore, by step 3, for each element {c,,cz,...} in I
there is an £ in H which has Fourier coefficients {01,32,--0}- This

correspondence is linear, one-to-one, onto, and preserves norm. It

therefore an isomworphism, and we have therefore shown that any

He
w

Hilbert space is isoworphic to Ip, and hence to any other Hilbert
space. In the case H = I(a,b) this procedure corresponds to
mepping a function to the sequence of its coefficlents in some ortho-
gonal expansion on the interval (a,b); such as an ordinary Fourier

series on (0,2x) or a Laguerre series on (0,00), for example.

With this review we go on to apply these ideas to more



10

. Axiomatization of Deterministic Signal Theory

0]

In most deterministic situations encountered by engineers,
the gignals are either functions of a continuocus time varisble or
a discrete time variable. In either case, the tobtal energy contained
in a signal is really finlte, even though we make up models which

deny this. For example, we say that a step input 1= applied to some

L}

ystem at t = 0 and we wrilte

5 clearly not realistic. The definition

pe
U

This

where T is very large; or the definiticn

=00 < b= O

0
f(t)z{
e 5wt < oo P

where @ is very small, describe the situation just as well. Thus,
without serious limitation, we can assume that any wave wlll have a
finite total enmergy. With this assumption, Hilbert space In(-c0,0),
with 1ts convenlent completeness and with its continuous Fourier
transform, provides a neat setting for our discussion of deterministic
signals which are functions of the continuous time parameter t.

Similarly, whern a signal is a function of discrete times,
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Tt dis now rather startling and
that L,(-c0,c0) and 1, are isomorphic.

\

could have been obtained by sampling

realistic model w
From now oxn, &

-

. Lo g
Iunecion

Inite nurber of analog signals.

Ll

=41

th many convenient methe-

function in L.(-00,00) Will be

in 1, will be called a dig

counterinbuitive to the engineer
After all, any signal in 1,

e
=l

discrete $times any one of an

b

The prcblem here is that the

)

meT—
_‘L_l

(

ping Lz(—oo,co) —~> 1, defined by sawmpling:

e i £avs s B ~20 0 (~2) s 0000 o B0 E) jws §

K
¢t

is not an isomorphism,
can be made iscmorphic
the same way, for example,

made lsomorphic to the Abellan

i, The Trsnsform Domains

1
3o}

)

wni can a conc:

F

signal spaces.
significance.
sampling analog esignals

Tt would still be

I T 4
1S0onmoIrpnlsi.

Nevertheless, Lg

an appropriate choice of mapping; In
the Abelian group of integers can be

group of even integers.

next goal will be to construct a specific iscomorphism
ete link hetween the analcg and digital
Naturally, we would like the mappling to have sones
The very natural correspondence provided by

has been ruled out because it is not an

desirable, however, ©to have the left



1z

half s-plane correspond to the interior of the unit cirele in the
z-plane, because these reglons seem to play analogous roles, even waen
signals have been sampled. To meke these ideas precise, we must

add the Laplace transform and the z-transform to our Hilbert space

The key theorem for the construction of 2 transform domain

8,9

for LQ(—oo,oo) is called Plancherel'’s Theorem:

Theorem 2. (Plancherel) IFf £(%) ¢ Ly(-c0,® ), then

A
&

F(s) = Lim | (t)e at (1-1)
o
A

exists for s = jw, and F(jo) e L,(-00,0).

Furthermore;
+go jjca
(£,2) = | [=e)? @ - % M) P as . (1-2)
(¥}
By o) -joco
and
3A
r st
£(t) = l.im | Hs)e =~ dt - (I-3)
A—>c0 J

1
Cote

Analytic extension of F(jw) to the rest of the s-plane (via (I-1)

xists, for example) will give us the Laplace transform.

;!
P
0]
B
e
ct
(0]
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We will also use Parseval's Taeorem:

Theorem 3. (Parseval) If f,g € Ly(~w,o), then

(I-4)

oo Joo
P e
(£,8) J (tVa(t) &t = —— | F(s)e(-s) ds .
23]
-00 -Jjoo

The theory required for the analogous construction of a

1»’\

z-transform evaluated on the unit circle in the z-plane; and think
of the Fourler coefficients a3 the values of our digital signal.

The Riesz-Fischer Theoren

co
Theorem 4 (F. Riesz-Fischer) If {f } e 1,, then
= B
N
. LRt
Hz) = lolond 31 £z (I-5)
() e )
n=-N

s 5 jor . .
exists for z = e'=, and FHe*—) ¢ L,(0,2%/T), where @ is the inde-

pendent varisble of Lﬂ(o,zﬁ/T), and this w is unrelated to the

i
W
Y =
=,




1k

ana

S el n: (g F(Z)vn dz (I 'T)

4 e g L . —

n 23{3 i Z

|z|=1
e c ! ; Sy o i

As in the analog case, the analytic extension of Fe™— ) to the rest
of the z-plane will coincide with the ordinary z-transform, which

is usually defined only for digital signals of exponential order.

Parseval's relation also holds:

Theorem 5. (Parseval) If {fﬁ},{gn} e 1, then

. oo r
1 el = Y £7 = -2 & Rz)a(zt) &2 .
(e liehl = ) fE=— g B ) == . (1-8)
D==00 ia!=l

To summerize, we have defined an analog signal space IE(—oo,oo);
together with its transform domain, which, when s = jw, is also
LB(-oo,oo). Anslogously, we have defined a digital signal space 1,;

JUE
e*™—", 1is

ether with its transform domain, which, when z =
Ly O,ux/l). We now are in a positlon to define a specilic isomorphism

between the analog and digital signal spaces via their transform domains;

a procedure which was hinted at before.

Remembering that we wish to map the jw-axis in the s-plane



onto the unit eircle in the z-plane, the familiar bilinear trans-

J._.... na, uJ.O

Z~1 l+s
%

Zh 1-s
is a natural choice. There is an additional factor regquired so that
the transformation wlll preserve norms. The Image {fﬁ} e 1, corre-

i
sponding to £(t) e Ly(-m,00) Will then be defined ag the seguence

L]

with the z-transform

z-1
z) = ( ) , where we use the underscore
to dencte digital domains.

Thus, the mapping p:ly(-00,00) —> 1, 1s defined by a chain which

goes from I,(-w,00) to L,(-co,00) to L,(C,2x/T) to 1, as follows:

:7(t) —> F(s) = i—il T(;:i):g(z) = {'“f'n} 1
(1-9)

The inverse mapping is easily defined, since each of these

steps is uniquely reversible:

) = i) —e £%)

£ —
—n = 1-8

The mapping p and Its relations to the various spaces are shown
schematically in Figure 1.
To show that p is indeed an Ilsomorphism, we first verify

that p preserves the inner product. t £ and g be any two analog
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gsignals. By Theorem 3 (Parseval's relation for analog signals), we

have
Joo
i
(£,8) = F(s)e(-s) as .
2xn)
...Joo
+
Tetting z = i : , this becomes, with some algebralc manipulatlion,
_t az
(£,8) = Fzlaly )~ -

2n]
|z |=1
Then, using Theorem 5 (Parseval's relation for digital signals), we

find thet u does preserve the inner product:

(£,8) = (1£1,0g}) -

i is obviously linear and onto. We can now show that p is one-to-one
in the following way: if f¥g, then (f-g,f-g) = (ﬂin}—ﬂgn};iin}ﬂign}) # 03
which implies that {f } # {g }, and hence that p is ome-to-one. This
establishes the fact that p is an Isomorphism.

We note here that under the isomorphisms p and pflfunctions
with rational transforms are alweys matched with functions with
rational transforms, this fact following from the nature of the
trensformation w. This is a great convenlence, since many of the

functions commonly encountered in engineering problems have transforms

which are rational funcilons of s or =z.



L7

In gur review of Hilbert space theory we ghowed how a set

of orthonormal Ffunctions generated an isomorphism between two Hilbert

N el

spaces. It should come &8 no surprise, then, to learn that the 1sco-

Py

worphlsm w could have been so generated. This section will be devoted

to finding this orthonormal expansion.

=

We start with the z-transform of the digital signal ﬂgnj

which is the imege under p of an arbitrary analog signal £(t):

I_J

o z+l Z+

co
Mzl = ok F (}E:£{> = E;-Eﬂ T :

—
} -

By (T-7), the formuls for the Inverse z-transform, we have
r
) 1\ Wz (z_l\, n dz
o= O F . Z s
! 2xi e Zl 7
!U‘
iz;=1
Ietting = i this integral becomes
e LlE = o 3 po N Ll < LT
-5
Joo

ds ; {T-11)

time functions as
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a

=1

2(t) 2 (%) &t s (1-12)

J
=G0

)

where the hn(t) are given by the inverse Laplace transform of the
factor appearing in the integrand of (I-11) with s replaced by -s.

Thus:

AN i
}kn(t) = o Eli?s <i—s )] ’

n s gooi

We see immediately that, depending on whether n > 0O or n <0, ln(t)
vanishes for negative time or positive time, respectively. By mani-
pulsting a standard transform pair involving laguerre polynomials

b &2 S k 3

we I1lnd: (I—lg)

L T Ln_l(zt) o1 R P S g .15 TR

l§

V (-1)™™ Nz e® n _(-2t) u(-t) , n = 0,-1,-2...,

(I-14)

where u(t) is the Heaviside unit step function, and Ln(t) is the

Laguerre polynomial of degree n, defined by:

eJG dn n -t
Lﬂ(t) = i -—-'--l;]-—- te ); B, = 0;1,2}--- .
- at™

co

The set of functilons [hr}n_l is a complete, orthonormal set on
U=

wn

(0,00), and are called Laguerre functions. They have been employed

| N 12 Lt 3 . . =
by ILee, Wiener, and others for network synthesis; and are tabulated



G S 12 S o) ane 3 s ; ; ; -
in Wiener, and, with a slightly different normalization, in Head

e G = b ¢ co i 5 5
and Wilson. The functions {A r}r—o gre similarly complete and
-n- =

orthonormal on (-c0,0), so that the orthonormal expansion of £(t)

corresponding to (I-12) is
(%) = Z £ A(%) g (1-15)

We see then, that the values of the digitel signal for n > O corre-

spond to the coefficients in the Laguerre expansion of £(%) for posi-

ital signal for mn < 0 corre-

i,

ci"
]— 'y
3
C
e
5
1
o
ok
i
i
ck
a
()]
<
1]
B
0]
wm
O
b
ot
3
[
jor]
i
(]
|

5

{
}4

spond to the coefficients in the Laguerre expansion of #(+) for nega-

tive T
There follows from this representation the fact that the
isomorphism p matches one-sided functicns wilh one-sided functions.

3 ¥ - 3 = : ~ Ao = s D ¥ o @ -
That is, £f(t) = 0 fort <0 if sud only if {f | = 0 for n < 0 and

Other orthonormsl expansions, such as the Hermite, for
example, will also generate isomorphisms; but these will not be as

convenient and as simple for our purposes as the Laguerre expansion.
v et ot .16 N : o
In particular, Kaubz, Gabor, Huggins, and others have considered

the construction of orthonormal functions for signal representation.

The fact that the mepping u is equivalent to a Laguerre

expansion can sometimes lead to a quick way of expanding a given time



i aa o — e
Iuncovion 1n & Laguer_c, series.

1,

transform of f(t) and expand this in a power series in z.

FTE0 S

chnls,

function

and
N2 (z+1)
Kz) = )
= e .
bz + 22 % 1
K R 3 £
"'\/_2 —— + o—— -
5 20
= - Lo =
Thus, by (i-195)s

l...l

I
[a¥]
il

indicated in (I-12).

Do |-
ol

N

&

To 1llus

20

problem of Incorporating within our

One need only find F(z) from the Laplace

and the way thet the mepping p works in general, consider The

These coefficients can be checked by carrying through the integrations

rate
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framework the concept of "filter" or "transfer function.” That is,
we wish to formalize the notion of a device which transforms one ele-
ment of Hilbert space into another. Such a device might be a net-
work of resistors, inductors, and capacitors which transforms one
analog signal into another; or it might be g digital computer which
trensforms one digital signal into another such signal. We assume,
mostly because we must to achieve any generality, that such filters

are linear. It is also reasonable to expect that 1f we limit the

energy content of the input function to a stable filter, that the

energy conbent of the output will be

Fortunately, operators with such wve been studied

B0, T

widely in comnection with Hilbert space. An operator A In a

Hilbert space B is defined as & transformation which attaches to each

element £ in H gome element AL whick

)

,.
[
10)]
m
ji
63!
@]
[N
13
jas
i]:-
o
Q

k3
6]
H
{
cl
¢
i
I =
W

said to bhe linear if

for any f,g in H and any ccrmplex nuwbers ¢ and p. Lastly, corre-
sponding to our energy reguirement, a linear operator is said to be

bounded if there is a positive real number M such that

5
IA
==

or all £ in H. The norm of the linear operator A is the infimum of

all such values of M, and is writien i!Aﬁ]. Eculvalently, the norm
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of A can be defined as
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Cne exemple of a bounded linear operator 1s the fourier

trensform. By (I-2) this operator has a rorm equal to*dl/Zﬁ. As

wother example, consider a simple low-pass RC sectlion with the trans-

;

er function

]

total energy

If an input wave F(t)

in the output will be
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We sre thus led to adopt the following terminoclogy: A

bounded linear operator on the space Ly, will be called a (linear

analog filter and a bounded linear operator on 1, will be called a

(linear) digital filter.

Tt is now a direct consequence of our axiomatic setup that
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any bounded linear operator is continuous in the metric of Hilbert
; @
gpace. That 1s, 1f ifn}n—l is a sequence of functions in the Hilbert

space H, and iIf f is a functior in H such that

1im B s e
i n
N—=00
then
1im {laf - &2} —>0
N300 ;
where A is & bounded linear operator. This follows immediately from

terion. If we insist on thinking in terms of pointwise convergence,

for instance, we lose continuity; as the following example shows:

Let & set of input functions to some network approach the delta func-
tion. The pointwise 1limit of the imput functlons is then O almos®
Ty

evervinere. DBub in gereral the cubput will not approach O, so that
o L

filbers will not be continuous in this frameswork. In a way, our

convergence criterlon is more natural Tthan pointwlse convergence:
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for a sequence £ to approach f in the mean we demand only that the

Ll
total energy of fp-f approach zero.

Since p can be thought of as a bounded linear operstor in
the abstract Hilbert space H, p is continuous. Similarly, the Fourier
transform is continuous. Also, gince 1, and LE(O,En/T) are isomorphic

Eilbert spaces, the z-transform as defined in Theorem 4 is also con-

Theorem 6. All bounded linear operators are combinucus in the metric
of Hilbert space. In particular, the following bounded linear cope

tors are continucus:

1. Analog filters

2. Digitsl filters

3. The Fourier transiorm
L, The z-transform

5. The isomorphism .

Since our signal sj are now equipped with operators, it
1s natural to exbend our iscmorphism p so that it matches operators

ct equivalently in the two spaces L, and 1,. More precisely,

3
¥
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if A is an analog filter, we define its imege w(A) = A in the following
way: let x be any digital signal. Then there corresponds to x a

unique analog signal p (x). The result of operasting on this analog
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gignal by the analog filter A, Aux (x), is also well-defined. This

emal can then be mapped by u into & unique digital signal

(=

(%), which we designate as the result of operating by

b
=

on X

& 23 Y S
e Tae Composive cperaitor
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A= pAy (I-17)

To avoid confugion between digital filters and z-transforms of digital

nals, we use the double underscore.

It is easy to see that the wepping p for Cperators is linear,
one-to-one, and ombo. Gilven a digital filter 4, Its corresponding

-
-

analog filter is i A p.  To show that the norm of an operaior is

oreserved under the mateching u, we need only car out the
= 4

=3
{

following

(1-18)

its digital image under p are just Two names for the same abstract
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done in an equally natural way. BSuppose A is an analog Tilter, a

war operator on the gpace L, of analog signals. The

nepped by the Fourler transform operator,

i )

space Ly, the space of Fourier trensforms.

= - o . ’ ERCT - s
The Fourier transform of the operator A, dencled by j~(éj, will

then be defined as an operator on this transform space so that if A
= o = ’
meps £ to g, then F(A) maps F(e) to G(s). Analogously to (I-17)
L]

above, we requlre

we performed for p, we find that the Fourier transform preserves the

e

norm of a filter:

3 =283 (z-21)
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where 3 ( ) denotes the z-transform of a digita

Again, the norms of filters are preserved:




We have now generalized p so that it pertains to filters
as well as to signals, and we have defined the transforms of filter

Thus, & diagram analogous to Figure 1 can be drawn for filters, and

this is shown in Tigure 2. The connectlon between the Fouriler trans-

CE Tar T3a-» e s e
9. Some Familiar Classes of FlLlters

-

sy R ) O e e i ey Ty — ) ) ]
Tn this section we will show how the preceding theory of

Pilters mucnly encountered in

s
5 e

engineering. For instance, tilme-invarianv

pressed by comvolution in the time domain and by multipliecation in

L T

the transform domain. Such time-invariant filtering is described in

-

the analog case by the following theorem:

neslon satisfying

-

is, let a(t) belong to Ly(-co,c0). ILet the operator A be de-

cr

M
e

Tired by the following convolution integral:
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Then A 13 an znalog filter with norn

Furthermore, the Fourier transform of the operator A is multiplica-

L - : a e e g B I ey meg o
tion by the function A(s), the Fourier transform of a(t).

snice of Schwarz's ine-

The proof of this theorem iz a direct consed

a

an be fourd in debail in Titchmarsh,” section 3-13.
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time-invariant filter

waose iy . sgtigfies | 3 Thus, any stvable RLC net-
7

case where

work is also apply to ©

s ==, B B i g - -y = £ -, S A e A - - ey - - B P, Pt
A is the identity operator Af = I, provided we are willing to admit

the delta function as

the identity operator is

clearly a bounded linear operator In its own right.
The following theorem for time-invariant digitsl filters

3 Tada oy o 3. = TR 0 " T P - ;
can be obtained in exactly the same wsy as Theorem T:

Theorem 8. Let {an} be a sequence of complex numbers satisfying
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by the fellowing convolutlion

dd
n=-20
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Furthermore, the z-transt of

is the image under u

by oy SRR, | B = "2 o it -3
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Therefore
¢_<Z) = ..t’:\.‘. ( Z—:L ) o
= Z+1
Thus, the transforms of filters which are equivalent

e G
A of Thecrenm

(I-25)

the space of digital signals

(I-26)
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isomorphiem p are relsted by a £imple change of variable. This ob-

Y

o1 Pk g et 5T e B P = e | P e T 1
gervation will be useful when we cconsider the & jeagehd

By reversing the roles of vhe time and transform domains in

=

f multiplication

bty bounded time functions, or, in electrical engineering terms,
amplitude modulation. More specificalily, we have the following pair

& L
01 Theorems

Theorem 9. Iet alt) be a bounded measurable function of time, and
let the operator A be defined on the clasg of analog slgrals by multi-
plication:

A7) = a(t)f(t) . (I-28)

T
1lter with norm

Theorem 10. Iet {a“j be a bounded segquence of complex numbers and
il
let the operator A be defired on the class of digital signals by

Alf} ={af) (I-29)




The proofs follow lmmediately from the relations

[ la(t)2(t) 2 at < Z‘{{tla(t)lf . J l2(8) [ a6
55 ' yes)

and
[¢0] z (eo]
T dlin Rl et R T
n=—Co n=-0co

When the transforms of a(t) and fén} are in Iy(~co,o0) and Iy(0,2x/T),
respectively, it can be shown that the transforms of these multipli-
cation operators are convolutlon cperators on the Jjw-axis or unit
circle. This representation is not important for us, however.

It 1s now easy to see that bounded linear coperators are not
in general commutative. That is, If A and B are two bounded linear
operators, then it iz not necessarily itrue that B(Af) = A(Bf). Take,
for example, the case where A is multiplication by u(t), and B is an
RLC filter. A and B do commute, however, in the special cases when
A and B are both time-inveriant filters as in Theorems 7 or &; or
when A and B are both multiplications as in Theorems 9 oxr 10. In
general, we have the followlng results concerning combinations of

7

operators:

Theorem 1l. If A and B are bounded linear operators, then A+B and AB

are also bounded linear operators, and
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10. A CGeneral Matrix Representation for Filters

We have seen In the last section how certain classes of
filters can be represented in the time domain by convolution with
time-invariant weighting functioﬁé or by multiplication. It would
be desirable, however, to have a representation valid for any bounded
linear operator. Such a representation can be coanstructed in the
same way that matrices can be constructed from linear operators on
a finite dirensional vector space; - thav is, by examining the e
of an operafor on a set of elements which forms a basis. Thus, if A
is a linear operator In a finite dinensional vector space of dlmen-
sion n, and if {31:92:~--:en} is a basis, we can assemble the fol-

lowing array of equations:

Ael = a1y = 81nCy o ainén

Il

e, as1€y tagge, t... Foageq

Pl
H
1
(&3]
O
(s

&

= an1e1 =+ amee A, =

In this way, every linear operator is associsted with a unique nxn
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nasrix {aJJ}. Conversely, every nxn matrix determines a linear
- .

operetor; for if x is a vector with components {xl,xe,...xn},

fog = AZ‘ce S (Zxa ) <, . (1-31)

1=l J=1 1i=1

Tiis procedure allows us to characterize bounded linear
operators in the infinite dimensional case, provided we impose an

appropriate cond1 lon on the elements of the matrices involved:

Definition: The infinite metrix {a }1 . is said to be bounded
Lefinition e Joounded

if for soms constant M we heve

: 4 P 4 s
1 2 Z 21 4%47 : < u Zixiiz > Zlyjlz (1-32)
Ij—-r i=-p i i1=-p J=-1

for any numbers x _,x s s Xy Xz ge eegt AN p—— 3
ny o Fpay2 e E L # g It ¥ RS AT
cw ey
We then have the following result, which is proved in Akhiezer

anéd Glazman:

o0
Thecorenr 12. Iet {ei}iw & be an orthonormal basis for the Hilbert
space H. Then every bounded linear operator determines a unigue

bounded infinite matrix {a, .} by

2 B gl p e TRsE)



Conversely, every bounded infinite matrix determines & bounded Ilinear

operator in the following way: If f£eH has the orthonormal expansion

Ut

co cO
s YOLY fia_.ij) pe S St (1-34)

J=—co i=-co

For a filxed basis, we write A~/ {a;j} whenever the bounded

linear operstor A admits the bounded infinite metrix representation

=k

{a..q_ =}. In analogy with the finite dimensional case, 1t can be shown
1J

that if A~ {a. .} and B~ {b, .}, then
1J 1J
i i 2
A+R N{aij-'bijj » (J_-SS)
and
W
AR . 5 R
BA ~v JLZ a’ikgkjf 3 | (I-36)

k=~00

vhere BA(F) = B(A(£)). We have thus comstructed a matrix-mechanical

representation of signal filters, very much I1ike that employed in

quantum meckhanics. Sometimes it will be convenient to think of a

filter zs being disconnected from both the lwnput and the output for

negative time. In this case‘we need only consider the lower right
co

guandrant of the matrix: {aij}i,j-—--l %
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Since the one-sided sequence {ai} is in 1,, A(z) must be analytie
cutside the unit circle.

11. Relationship to the Weighting Function Representation
in the Analog Case

The mapping p does not affect the matrix representation of
a filter, since it maps basis elements into basis elements. Thus,

if A is an analog filter and A 1s 1ts digltal image under [, we have

[o.0]
B(8) = ) ey )
J==c0
and
o
Ale,} = §: a5l .
Jj=—

The interpretation of the matrix representation {ai 3} is somewhat
more difficult in the analog case, however, because we do not usually
think of an analog signal as being represented by the coefficients
in its ILaguerre expansion; while we do think of a digital signal as
being made up of its values at the discrete observation times.
Furthermore, we usually think of an analog filter as being defined
in terms of the convolution Integral
o
Af(t) = £(7)a(t,t) dt ¥ (I-43)

~Q0
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We therefore have the formal eguivalence

(I-4k)

al%.%)

I
~1¢
=

(0]
i
[an

=

P

&
—

gy
ct

L]

=

The probler is: if A is a bounded operator, what kind of functilon
will (I-4k4) be. We would expect, in gereral, that a(t,7) will be a
distribution, but & theorem to this effect does not exist in the mathe-
matical literature and is certainly not cobvious. We will therefore
content ourselves with the formal connection 'sez-x.wr the bounded
matrix {a } and the welghting function a(%,T) given by (I-Ik).

/o=

'“be formals inverse to (I-4k) can be derived =s follows:

The effect of 4 on A (t is

co
r GO
A?xi(t) = J ?\i(f)a(t,‘f) at = 2 aij?tj("c) 2 (1-45
-0 'J:-—OO
Therefore,
co oo}
r r
j ‘
a..= | A %) A (o)a(t,t) dr dt. (1-k6)
1d { d Pt
J J
~-CO ~C0 iy

Here we have assuxed that (T-45) is in L. and hence can be expanded

In a Laguerre series.

J...-

transform multiplication by g}(z). Hence, the Fourier tTransform of
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the analog filter A will be multiplication by A ( ?L: > » and there-
fore a(t,t) = a(t-7). Conversely, if a(t,t) = a(t-1), the Fourier

transform of A w11l be multiplication by A(s), and hence the z-trans-
form of A will be miltiplication by A (-2

We see that an analog or a digital filter will be time~

This implies that
aij = aJ_i.

invariant when and only when ay 3 can be written a 9-1°

Those time-Invariant filters which are physically realizable
are of great importance in many fields. A time-invariant analog
filter A is called realizable if Af = O for t < O whenever f = 0 for
t < 0. Similarly, a time-invariant digital filter A is éalled realiz-
able if A{f } = 0 for n < 0 whenever {£ } = 0 for n < 0. It is an
important property of the mapping p that it always matches time-
invariant realizable filters with time-Inveriant realizable filters.
To see this, suppose first of all that A is a time-Inveriant realizable
analog filter. Iet {gn} be any digital signal for which {;n }=0
for n < 0. Then Its analog image £(t) is such that f(t) = 0 for
t < 0. Thugs Af = O when t 1s negative, and this implies that é{gn} =0

for n < 0. This shows that A I8 a realizable digital filter. The

same argument works the other way, and this establishes

Theorem 13. The mapping u for filters always matches time-Invariant
realizable filters with time-invariant realizable filters.

A time-invariant digital filter 1s realizable if and only if aij = aj_ 1
= O when i > J. Hence, it follows that a time-inverlant analog filter
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is realizable when and only when a’ij = aj-—i = @ £ 4 > I

We can thus characterize all time-invariant reallzable

filters by upper triangular infinite matrices of the form

o]

Q a.o ay 8p a3
LB R g i B e (T-47)
0 0 G, B U

0 0 0 0 a

Thus, & time-Invariant analog filter is determined completely by its
response to any ?»i(t) 5 Just as a time-invariant digital filter is
determined completely by its response to any e = oo o0, 100,00 00w ) s
Tt follows also that the response of a realizable time-invariant
analog filter to Ki(t) will have no 7\3 components when J < 1. That
is, the output vector in response to li('t) is orthogonal to lj(t)
when j < i. For example, 1f we apply 3\-2(1‘,} to a reglizable time-
invariant analog filter A, we would expect

@

%
J Ay (£) [f a(t-7) A, () d'r:| =0 .
0

-Coo

Using Parsevalls relation (I-I) and writing Ai(s) for the Laplace

transform of ?Li(t), this becomes
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Multiplication by A(s) in the transform domsin defines a bounded
operator; in fact, the analog filter A leaves the energy content of

any signal invarient. The digital filter A(z) corresponding to A(s)
1
is z~ , a unit delay. Hence, the matrix representatlion of these

operators is

a 1if 3=1+1

1

a.ij

I

It

0 otherwlse.

According to (I-4h4), then, the weighting function a(t,t) is

o o]
alt,r) = ) A (DA, (¢) : (1-48)
i=~c0
Assume, without real loss of gemerality, that t >0 and T > 0. (I-48)
then becomes

Io) .
alt,r) = ) MDA (8) . (1-49)
I=1

We now need the following two identities, which are given in Head

and Wils«an:la
®
) A(Or(8) = a(t-1) (1-50)
8=1
oo @
Z ls(q’-)lsm+l(t) e Z hs(T)hnﬁ—s(t) +2 )Ln+l(t"‘r) y
g=] 3 g=1

(1-51)



These identities are very useful for putting a(t,7) in closed form

when the filter is time-invariant. Putting n=0 in (I-51), we get

finally
a(t,t) = a(t~7) = = 6(t-1) + Ee—(t—’f) tlt=r) &
This checks with the inverse Laplace transform of A(s) = :;_S .
g

(I-46) can be checked similarly: the integral
o0

?Li('r)a(t,-r) ar

~C0

is equal to ?ui+l(t), and hence

o co
a3 = J lj(t) j li('r)a.(’t,'r} dr dt
~00 -®

is 1 when J = 1 + 1, and Zero otherwise.

Tt should he noted that the complexity of the representation
of snalog filters as compared with digital filters 1Is reflected in
the identification and synthesis problems. To identify & time-
varying digital filter, one need only apply signals {Ei} and read

the coefficients &y from the output. Synthesis involves only the

J
setting of coefficients in a digital computation program. In the
analog filter case, however, there 1s no such natural and convenlent

basis. If we apply hi(t) as a testing function, we must then resolve
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the output inmto a ILaguerre series and use a formula like (I-4L) to
arrive at a weighting function. Even then, we are left with the
problem of realizing a(t,T) In the general case.

Sti11, it is a significant and not widely mentlioned fact that
any analog filter, even a time—varying one, can be characterized by
an Infinite matrix of numbers. More important, this fact has not
been put to full use In the development of ildentification techniques.
In fact, most identification techniques, whether they are based on a
weighting function representation, a differential equatlion model, a
time~varying transfer function model, or an orthogonal filter expan-
gion, usually assume that the system is stationary over short measure-
ment segments. The matrix representation, on the other hand, is a

very general representation, valild even for fast varying systems.

12. Optimization Problems for Systems with Deterministic Signals

We are now in & position to see how some optimization prob-
lems can be solved simultansously for analog and digital signals.
Suppose, for example, that a certain one-sided analog Input signal
r(t) 1s corrupted by a known one-sided noise signal n(t), and that
we are required to filter out the noise with a stable, realizable
time~-invariant filter H whose Laplace transform is, say, H(s). If

we adopt a least-mean-square error criterion, we require that

@
J (r-H(r+n))® &t = min. (1-52)
(o2
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As described by Chang,” this can be transformed by Parseval's relation
to the requirement
joo
A
27

[R-E(R+N) ][R-E(R*N) ] d8 = min. , (I-53)

~Joo

where R,H, and N are functions of s, and the overscore indicates that
s is replaced by -s. It can be then shown, using an adaptation of
the calculus of variations, that the realizable solution for H(s),

say Ho(s), is given by

B (s) = [ERE] (1-5%)

where

W = (RN)(RN)

and Y has only left-half plane poles and zeros, and Y has only right-

half plane poles and Zeros. The notation [ indicates that a

]LH:P
partial fraction expansion 1s made and only the terms involving left-
half plane poles are retained.

The fact that a least-mean~square error criterion is used
means that the optimization criterion (I-52) can be expressed in the
axiomatic framework of Hilbert space. Thus, in tﬂe Hilbert space

Lo (~0,00), (I-52) becomes

| r - B(x#n) || = min. (I-55)
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If we now apply the mapping p to the signal r-H(r+n), we see that

|r-Em) || = [weaem) )] = |rEzw)]

(I-56)

since p preserves norm. Hence Eo is a solutlon to the optimization

problem

| z-E(zxm)| = min (1-57)

Furthermore, since p matches one-slded analog signals with one-sided
digital signals, and since p matches realizable time-invariant analog
filters with reslizable time-inveriant digital filters, we see that

Iio is the solution to a digital optimization problem that 1s completely
analogous to the original aralog problem. In addition, the general
solution (I-54) csn be translated into digital terms by replacing

the left-half plane by the unit cirele in an appropriate way. Thus,

s (1-38)

H (2) = _-[#;:4;;:;]
L -yl m

where

o= EHEL -

Now R, E__IO, a.nd_]_\_I_ are funections of z; the overscore Indlcates that =z

l —_—
is replaced by z ; Y and Y have poles and zeros inslide and outside

of the unit circle, respectively; and the notation [ ]DI indicates
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that only the terms in a partial fraction expansion with poles Inside
the unit circle have been retained.

In other optimization problems we may wish to minimize the
norm of some error signal while keeping the norm of some éther system
signal within a certain range. In a feedback control system, for
instance, we may want to minimize the norm of the error with the con-
straint that the norm of the input to the plant ?e less than or equal
to some predetermined number. Using Lagrange's method of undetermined
multipliers, this problem can be reduced to the problem of minimizing

a quantity of the Torm
[e]® +& {27 (1-59)

where e is an error signal, i is some energy limited signal, and both
e and i depend on an undetermined filter function H. Again, if Ho(s)
is the time-invariant realizable solution to such an analog problem,
then go(z) will be the time-invariant realizabie solution to the
analogous digital prcoblem.

Tt is almost always important to us that the solubtlon to an
optimization problem be realizable, but we may want to allow as a
solution a time-varying filter. Unfortunately, the isomorphism p
does not necessarily match realizable time-varying analog filters
with realizable time-varying digital filters. We thus cannot show

thet optimization problems which allow time-varying scolutions are
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equivalent in the analog and digital cases. TFurthermore, since any
kmown isomorphisms Involve orthogonal expansions of the analog signals
over semi-Infinite or infinite ranges of time, It appears that an
isomorphism between LE(—oo ,00) and 1, which preserves the realizability
of filters camnot be constructed. Thus, In order to show the equivalence
of an analog with a digi'!ﬁal optimization proﬁlem, we require that
the allowed cless of filters, say {? » be Invariant under a particular
isomorphism. Another way of looking at the problem is to say that
we are really demanding that the entire optimization problem be express-
ible in the terms of gbstract Hilbert space. Thus, when the class
is the class of time-inveriant realizable filters, we can character-
ize é in abstra.cf Hilbert space as the class of all bounded linear
operators A for which aij = a’j—i and aj-—i =@ forr 1 > Je

We can therefore state that any optimization problem which
can be expressed solely in terms of abstract Hilbert space can be
solved simultaneously for analcg and digital systems. In partlcular

we can state:

Theorem 14 Iet v be an isomorphism between I,(-c0,00) and 1.
Further, let the following optimization problem be posed in the analog
signal space Lp(-co,00): TFind analog filters Hy,H,,... ,H which
minimize some function of some norms in a given analog signal trans-
mission system and which are iIn a class of filters ﬁ . Then if the

class of filters E is invariant under v, the corresponding digital



problem is equivalent to the original amnalog problem In the sense

that if one can be solved, sc can the other.

‘ o .
As we have Seen, the case where fz is the class of time-invariant
realizable filters, and v is p, is an important application of this

result. In this situation we have the following correspondences:

IS e Z
Left-Half Plane 2 Inside Unit Clrcle
jo-axis e Unit Circle
Right-Half Plane A utside Unit Circle

) \
Bl i dz
2t J Ve8]
& |z |=1

13. Random Signals and Stabtistlcal Cptimization Problems

While the consideraﬁion of systems with deterministic signals
is important for many theoretical and practical reasons, 1t is more
often the case that the design engineer knows only the statistical
properties of the input and disturbing signals. TFor this reason,
the design of systems on a statistical basis has become increasingly
important In recent years. In this section we shall show that the
idea of lin_king continuous theory with discrete theory can be extended
to a brecad class of random phenomena; ﬁamely, gtationary, ergodic

processes with well-behaved correlatlon functions and spectra.
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Because a complete axiomabtilzation of random processes 1s a
very complex affair, we will simplify matters by approaching the sub-
ject through the correletion functlon. This Is not nearly so restrictive
as it might first appear, because physical siochastic processes almost
always have correlation functions that are of exponential order, and
their spectra are almost always bounded and continuous. For a more
complete discussion of random signal theory and generalized harmonic

analysis, the reader is referred to Wiener. 8,12

Accordingly, we
assume that random signals are stationary, ergodic, and have Zero mean.
Tf x(t) and y(t) are two such random signals, we assume further that

+the cross-correlation function

;ﬁw(-r) = E[x(t)y(t+7) ] (1-60)

dies down exponentially with Increasing i'rl. The notation E[ ] means
"ensemble average of". Since the processes are ergodic, (I-60) can

be expressed as a time average:

H

g_(r) = Lim — =(t)y(t+r) & (T-61)
Xy TS0 ,
g o

Now let XT('t) and yT(t) be the same signals as x(t) and y(t) for
0 <t <T, but zero outside of this range; and let X(s) and Y (s)
be their Laplace trensforms. The crogs-spectral-density function 1is

then defired by
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oo

i 5
@w(.s) - Tlim ~i E[};I(-S)YT(S)] . (1-62)

It 1s a classical result of generalized harmonic analysils, called

Wiener's theorem, that ¢%y(t) and @xy(s) are transform pairs:

0
@Xy(s) = gf}v(t)e“s-t &, (1-63)
-~
end
J@
85 (t) = — [ @w(s~*»)e‘°"t SER (1-64)
- g
~iee

In the important case when x=y, the variance of x is given by (I-64):
Joo

El] =4 _(0) = :}: j 2_(s) ds - (1-65)

~Jco
As we might expect, a parallel thecry exists in the digital
case. Here, 1if Xy

random processes, the cross-correlation function 1s defined by

and Iy are two discrete staticnary, and ergodic

(@) = Elxgxy 1. (1-66)

Again, with ergodicity, we have

n

Nimm {%‘ iz;ixim} . (1-67)

4w =



The cross-spectral-density is a function of z, defined by

1 - ;
¢ (z) = lim —= EB[x(z )Y (=)] (I-68)
Xy bt N Xl\ N
where )cN(z) and YN(Z) ‘are the z-transforms of signals which coincide
with x; and v for 0 <1 <N, and which ars zero outside This range.

As in the analog case, ngxy(n) and (ny(z) are transform pairs:

™

LN

®KY(Z)= 1im $ ga'w(n)z"n i (1-69)

B—>00 o x

which exists on the unit circie if we assuwme that the correlation

function dies off exponentially as n —> o0j; and
I 2

AORE gE O (1-70)
v
\z \zl

The veriance of the signal x,, in analogy with (F-65); 18

B[] =4_(0) = = qE 0_(z) = - (1-71)

271& Z
J
|z ]=1
The parallel with the determinisgtic case is so strong when

tae random theory is put in the above form, that the introduction of

the mapping u presents no problem. Consider (I-62), for example.
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If we map the transformed analog signal XT(S) to [-Jé/(z+l)]XT 2”1:> P

we should map Xf(-s) to

1

:;ﬂL*j%C{fg .

+ L Zi L

Similarly, Y&(s) ghould map to [*Jé/(z+l T, (:ZJJ_/, In accordance

with (I-68), we define the mapping p by

. 2 B
M ¢3‘-‘.‘}"(t) ——>®W(S) *-‘;--E;i—);" (I)}Qf(;%-l/ =9 (z) %9_/}@.(3) .

The reverse mapping goes

4o {8} —> 0, la) > . B ( iz ) = @_(&) ~> g L8]

I-g®
(I-73)
Wé.haﬁe thus defined & mapping which maps analog to digital cross-
correlation functions. The important invariants under p are the

quantities

]

g,,(0) = EIx(t)y(£)]

and

£,,(0)

E [Xn'.‘}'n ] E]

which correspond to the inner product in the deterministic case. To

verify that these are preserved under p, put t=0 in (I-64):
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Jco
4 fo) = == ¢ (s) ds .
Xy and Xy
_jog
If we now méke the change of varilaeble s = f} ; we get
1
¢ (O) & (‘l: o (Z-:l) -2 do
Xy 2xJ 7 W Nz (ga1)2
|z|=1 ‘
1 | &z
== b ( = nmm——
2wy PG
1z]=l
=g (0) .

Since all of the steps in (I-72) and (I-73) are reversible and give
unique results, the mapping p is clearly one-to-one and onto.

It is easy to see from (I-62) that if x(t) is passed through
the time-invariant filter H(s) and y(t) is passed through the time-
invariant filter G(g), the resulting cross-spectral-density isl

®Hx,GyCS) = H(—S)G(S)@xy(S) . (I-74)

Also, if a digital signal X is passed through the time-invariant

digital filter H(z) and ¥, through G(z), we have1

1L

QHXn’Gyn(Z) = H(z~ )G(z)@xnyn(z) . {I-75)

Hence, the mapping p can be extended to time-invariant filters by
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mapping F(s) to Hz) = F ( i:i ) , as in the deterministic case.

With the mapping p defined for correlation functions, we are
now in a position to show the equivalence of certain analog and digital
statistical optimization problems. Suppose, for instance, that in a
particular analog signal transmission system we wish to choose a
realizable time-invariant filter H which minimizes the mean-square-

value of some error signal e(t). Thus, we require
E[ez] = Sﬁee(o) = min. ) (1—76)

where ¢ee(o) depends, of course, on H. If H Is the solution to this
problem;, then Eo will be the solution to the analogous digital prob-
lem: that is, the digital problem with correlation functions @xy(z)
instead of @xy(s), and with filters E(z) instead of F(s). More
generally, the problems of minimizing some funetion of some mean-
square-values by appropriate choices of realizable time-Invarilant
f1lters are equivalent in the analog and digital cases.

We now conclude the speciflce discussion of the mappling p.
Tt has proven useful in tying together signal and filler theory for
the analog and digital cases. When the filters involved are realizable
and time-invariant, when the deterministic signals involved are gilven
for all time, and when the random signals are statlonary and ergodic,
we have in fact shown that the analog and digital cases are just

two interpretations of the same mathematical theory.
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Tk ta Reduction Filters

It is often desirable In the processing and analysis of digl-
tal time series to reduce a large number of data points to a digital
signal with lese frequent data polints. This Sec%ion 1s devoted to a
discussion of digital filters for which the output data rate is lower
than the input data rate.

Suppose that a digital signal has data points occurring every
T geconds, and that it is desirable to reduce this signal to one with
data points every NT seconds, where N is an integer. Let AW denote
a realizsble, bounded, linear filter which accomplishes this, let
fi(iz...,-l,o, 1,2;...) denote the imput data point occurring at t=1iT,
and let gi(iz...,-I:T,O,M, 2NT,...) denote the cutput data point
occurring at t=iT. By the general matrix representation of such a

filter, we can write

T N .
gy = Z £i855 5 3= eee, TT0,NL AN,
=-
where aij =G for 3. 2 s a;j represents the output at time j due to

an input at time 1, provided that j is a multiple of N. In the time-

Invariant case, we have (1-78)

J

' N .

gj = z fiaj-di 3 3 = c--J“MJO)NT’ZNT,---J
1=-c0

where ag = 0 when n < 0. Now the filter of (I-78) can be represented

as the series connection of two elements: Iirst the ordinary time-
e
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invariant filter A defined by By = aﬁ, and then a switch which closes
only when t is an integral multiple of NT. Thus, we have proved
Theorem 15. Every bounded, linear, time-invariant data reduction

N cascade
filter A can be writien as the series combination of a bounded,

linear, time-invariant digital filter A, and a bounded, linear digital

Tiiter BN defined by

Iy (1 if i=3=kV%, wheres k is an integer
- l o 7

bij ~ 0 otherwise.

If we were to use a data reduction filter, we would usually
be interested in the frequeney response of the ottput as compared
with the input. Since the effect of the time-invariant digital filter
A is well-known, we need only consider the effect of the intermittant
switch BN. With this end, le% g(t) be any analog signal with sample

pointe g(iF) = gy The freguency function associated with the digital

signal g. (really G(z) with z = o3y do Then®
0
T, 1 e i 4
G (Jw) = . ¢(jo + jn2gx/T) , (1-80)
=-CO

where G(jo) is the Fourier transform of g(t), and GT( jw) denotes
the Fourler transform of the sampled functilon

o0
Y g(1)s(t-1). (1-81)

1=-c0



Also, in the same way, the frequency function associated with the

cutput function BNgi is

©
NT, . il SN :
¢ (Jo) = —— S @(jo + jn2x/NT) y (1-82)
L et
n=-oo

From (I-80) and (I-82) we see that

N-1
GNT(jcn) = -i E e (jm + Jk2x/NT) 3 (1-83)
k=0 '

Equation (I-83) can be thought of as representing a "sub-aliasing”

operation. In order that there be no overlapping and loss of informa—
, s . b AlFE A v sy

tion, it is sufficient, for example, that G (jw) have significant

magnitude only in the ranges —11/1\?'? <o+ kEJT/T = n:/N‘I‘, where k is an

: S Al 3 . ' NT, .

integer. In this case, G (jw) can be reconstructed from G (o)

with a digital filter having a frequency response with magnitude unity

in these intervals and zero outside these ilntervals. This is a digital

analog to the familiar sampling theorem. We see then that if a

digital signal is prefiltered with appropriate bandpass digital
filters, it can be reduced to & signal with a lower data rate while
retaining desired parts of its frequency function.

In the random case, the relation

N-1 |
o Jw) = —i_ z o (30 + jkox/NT)
k=0
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can be derived in exasctly the same wey, where @T( jw) is the power-
spectral-density of The random digital signal with data points every
T seconds, and @NT( jw) is the power-spectral-density of the reduced
random signal.

The case of data reduction is but one example of the need
for a method of designing digital filters with a prescribed frequency

response. This problem is treated in the next part.



PART IT: THE APPROXIMATTON PROBLEM FOR DIGITAL FILTERS*

1. Introduction

The problem of finding & realizable transfer function with
a prescribed magnitude or phase angle on the jw-axls has been an Iim~
porbant one to the designers of continuous wave filters. The Butterworth
and Tchebycheff filters, together with their high-pass and bandpass
transformations, are well-known solutions to common approximation
problems. The possibility of designing digital systems In terms of
frequency response, however, has remained relatively unexplored since
the early work of Salze:c',lT despite the advent of sampled-data systems
and the increasingly wide use of digital computers in control and
measurement. In the following sections we shall explore some approxi-
mation techniques for digital fil
An immediste applicatlon of such techniques 1s the design
of effective prefilters for data reduction and reconstruction programs
for dlgital systems. In Paxt ITI we shall see how such approximation
techniques bear on the problem of the power spectrum analysis of
discrete data., Also, when some time delay is tolerable, 1t may
sometimes be practical to use a digital filter in tandem with a
data reconstruction deviece to filter an analog signal. With The

development of faster, more compact computers and data transmission

¥ The results in this part were reported by the author in reference 2z.



systems with higher bit rates, the possibility of substituting digital
processing for analog processing of signals is becoming more attrac-

tive.

2. Equivalence to the Approximation Problem for Analog Filters

Having seen the close correspondence between diglital and
analog filter theory, especially in the time-invariant case, we should
suspect that the respective approximation problems can somehow be
connected. This is indeed the case. In fact, the wapping p is pre-
clsely the tool that can provide the link. It should be noted that
I_,e‘;ryrial8 used the mapping p to show how digital filters can be syn-
thesized with networks of open- and short-circuited transmission lines.
It was not appreciated at that time, however, Just how powerful a
link a bilinear freguency transformation provides between digital
and analog theory.

In order to avold confusion between variables, we shall use
s = 0+ jo for the frequency variable for analog filters, and

Z = e(g+3~@)T for digital filters. When we make the transformation

z—1
l.l. 5 = Z-I- < (II"‘:L)

the entire jw-axis is mapped onmto the unit circle in the z-plane,
and the entire w-axis is mapped inbto Intervals on the w-axis 2:1/T

wide (see Fig. 3). When s = jw, we have, in fact, the following
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connection between w and w:

; o
g = odeT _ 1He (TI-2)
1-Jw
or
W= -—}:i--arcts.u We
= A

Suppose now that we are given some periodic function of W,
C(w) say, that 1s to be the desired characteristic (magnitude, phase
angle, real or imaginary part) of a digital filter. ¢ (—-—?-—arc:‘tan w)
will then be the corresponding characteristic for an analog filter.
We can then approximste C (—%——arctan w) as an analog filter charac-—
teristic, using any one of the many procedures available for enalog

filters. We thus arrive at & rational function of s, say Als).

Then A(z) = A ( ji ) will be a digital filter whose characteristic
approximates the desired one. Since the left-half s-plane 1s mappad
inside the wnit circle in the z-plane, stable poles of the analog
filter A(s) will become steble poles of the digital filter é(z).
Ioosely speaking, we have taken the interval |_¢_D_| i '.rf/T and
stretched it out; done our approximation for an analog filter; and |
then squeezed the w-axis back into the original interval. Although
the w-axis is compressed, many of the widely used approximation
criteria, such as equal ripple, maximal flatness, etc., carry over

directly to the digital filter case. If an analog filter A(s) has



magnitude M(w), phase angle @(w), real part R(w), and imaginary part
I(w); then the corresponding digital filter é(z) will have magnitude
M(tan w/2), phase angle ®(tan off/2) in |w| < x/T, real part

R(tan &T/2), and imaginary part I(tan wT/2).

As an illustretive example, suppose we wish to approximate
the ideal low-pass characteristic shown as a dashed line in Figure k4
We have taken the cutoff frequency to be &t @ = /2T, one-half the
Nyquist frequency. The analog filter A(s) should therefore, by (II-3),

have an ideal cutoff at
w = tan /2 = 1 - (II-%)

Iet us now use for A(s) a third-order maximally flat Butterworth low-

19

pass filter™ with unit cutoff frequency:

1

Ag) = - .
g2 + 25 +28 +1
When we let s = Z'i , this becomes the digital filter
“'l F_a _3
1 + 3z + 3z +. =
i 3+ z”

whose normalized magnitude is shown plotted as curve B in Figure L.
A(z) is nov a maximally flat dlgital filter. TIts response is zero
at the Nyquist frequency ® = x/T, this point corresponding to in-

Pinite frequencies for the analog filter F(s). The filter A(z)



can be implemented in a hand or machine computation according to
(1-41), section 10. Thus, if £, and g, respectively, are the inmput

and output dlgital signals;

1
8y = —3-(fi BBy g B F £ (I1-6)

T T aay T 8y_p)

A typical application of such a smoothing operation would be to re-
move high frequency noilse prior to halving the number of data points.
As a more elaborate exemple of a smoothing routine, suppose
we wish a low-pass filter with a sharp cutoff at one-quarter the
Nyquist frequemcy, ® = x/4T. Thls corresponds under the mapping

to the frequency
® = tan o/2 = tan x/8 = 0.41k2 . (II-7)

Suppose further that we desire the digital filter to have equal
ripple in the pass band. We might then start off with the fourth-
order Techebycheff filter having about 10% ripple (62 = l/ 5), and

with & cutoff frequency at w = L:

1
g% + 1.03ks® + 1.5358° + 0.8306s8 + 0.3062

Alg) = (I8

If we substitute (8/0.4142) for s, we get
: (17-9)

o
g% + 0.h28hg® + 0.26338° + 0.059038 + 0.009011

A (s) =
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which has a cutoff frequency at o = 0.4142. We then substitute

= E;J]: to obtain the desired digital filter:
(II-10)
L - i B 3 4 = =
1 + L=z + bz + 4=z + .z
L(z) =

1.760 = h.703z"l + 5.527z“2 o s.zzsz"s + o..'(81+9z‘4
Figure 5 shows the normalized magnitude of this Tchebycheff equal
ripple digital filter. If this filter were used prior to a one-half
data reduction, noise at frequencies greater than half the Nyquist
frequency would affect the resulting signal very little. IT the
power-spectral-density of the resulting reduced digital signal were
measured, it would be desirable to correct for the ripples in the fre-
quency characteristic of the filter A(z). The design of a high-pass
or a bandpass digital filter follows the same patiern.

We have thus seen how the mapping p allows us to reduce the
approximation problem for digital filters to that for analog fllters.
The technique deseribed allows the designer of digital information
processing systems to deal with signals in the frequency domain in
much the same way that the communications engineer deals with analog

signels.

3. Comparison with Fourier Series Techniques

Guilleminl9 has suggested the use of Fourler seriles for the

approximation of magnitude characteristies of analog filters. His



approximation procedure consists of using the wapping u to convert
the desired characteristic to one that is a periodic function of fre-
quency, using a truncated Fourler series in w to approximate this,
and then inverting the transformation p to give a rational function of
w. Since we deal directly with periodic magnitude characteristics as
a function of w, we can use Fourler serles directly. Thus the use of
Fourier series isg a natural choice for the design of digital filters,.
and Guillemin reversed our program and used it for the design of analog
filters.

Suppose, then, that we are given the desired magnitude charac-
teristic M(w) of some digital filter. Since this is an even function
of ® with period 2x/T, we cen epproximate it in a least mean-square-

error sense with the truncated Fourier series

X
- - JnuT :
M(w) = 2 e, e 4% 4 | (II-11)
n=-K
where . /T
e L JnaT
¢, =B, F j M(w) e & " (IT-12)

-x/T

The realizsble digital filter

2K K
é(z) = Z e x o s Z e 2 2 (Tr13)
n=o0 N=—K



will then have a magnitude characteristic which approximates M(w),

because when z = e'jiﬂ
K
A=) =] ) e, 2] =ue . (IT-1%)
n=-K

This technique is perticularly valuable for two reasons.
First, since the series (II-11) is a cosine seriles, the only phase
distortion is that caused by the delay factor 2%, Thus , if the
delay of KT is tolerable, there is essentially no phase distortion.
1

Second, these filters are polynomials in z  and have no denominator.

Therefore, their implementaiion

By ™ ke PO g g T hee v ap (1I-15)

does not require the storage of outputs. This leads to programs
which can be easily effected by simple speclal purpose computers and
which require a relatively swall amount of storage capacity.

On the other hand, the fact that these filters are poly-
nomlals in z—l means that there is a losg of several degrees of
freedom. This usually leads to magnitude characteristics that have
the ripple and overshoot characteristic of Fourler serles approxi-
mations. Looking at this problem in another way, we can consider
these Fourier series filters, or any other polynomial filters, as

power series approximations to rational functions, since by (I-%0)

any time-Iinvarient digital filter can be written as an infinite series:
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2 a r!)_‘i
L7 .
;i

i=-c0

Az) =

We would therefore expect a finite polynomial in z

(T1-16)

1
to have more

ripple and overshoot than a properly designed rational functilon,

whose power series does not terminate.

To Illustrate these points, suppose we again want a low-

pass digital filter with a cutoff frequency at one-half the Nyquist

frequency.
in Flgure 6.

coefficients:

('1/2 5
(_l)(n-l)/z

nx

i

The normalized magnitude characteristics

resulting digital filters are plotted in Figure 6:

Curve A: A(z) = - —%—z‘ § g
= T 2 T
2 2
Curve B: A(z) = e B
= S Es 2
2
Curve C: A(z) = L o e s o i
= 57 3%

We note the ripple and overshcot deseribed above.

this @ifficulty would be o use Fejer meansZ0r2T

of the

M(w) is the ideal characteristic shown as a dashed line

Equation (II-12) then yields the following Fourler

PR 08 . PO (II-17)

BslisBusne

first three of the

(I1-18)
e -
- ]
97T
5 8 8
R N T T
515 OTC

One way to alleviate

of the coefficients cn.
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This would produce smooth approximations, but at the expense of
having a slower cutoff and poorer rejection in the stop-band. In

any event, If we need a digital filter with a magnitude characteristic
that is both close to ldeal and smooth, we must use elther polynomials

of very high order or rational functions.

. Comparison with z-Transforms of Analog Filters

We take up now‘a' another approximation method; one that at
first appears natural, but is actually not very promising. Suppose
that instead of taking the p-transform of an analog filter, Als),
we take the ordinasry z-transform. In this case, the resulting digital

filter is given by

|

@

Z Ajo + jn2x/T) . (1I-19)
n=-00
Typically, A(s) would be designed so thet it approximates the desired
digital filter characteristic for |o| < n/T, and is small in magnitude
outside this range. IF A(s) then has all its poles inside the left-
half plane, A(z) will be a stable digital filter with approximately
the desired characteristic. The main difficul‘byuwith this method
15 the addition of unwanted terms in (II-19) due to aliasing of the

Pilter function. To use this idea, we must start with analog filters

which have carefully tailored characteristics with sharp cutoffs and



good reJection in stop-bands, and all this leads to high order filters.
Furthermore, finding the z-transform of a high ordex filter

invelves a great deal more work than just letting 5 = -—Z-;-l—; and when
Z

we are done, we must recalculate the magnitude or phase characteristic
of the result to assess the errors Introduced by the allasing of the
original characteristic. A1l in all, the p-transform Is much better
suited for the purpose of converting analog filters into useful digital
filters.

To illustrate the @bove, consider again the third-order

maximally flat Butterworth low-pass filter that we considered in

section 2:

A(s) = = : (11-19)

g2 + 28" + 28 + 1

The z-transform of this filfer is

2

_-l —
0. 3703z + 0.1346z (TI-20)

é(Z) - I 2 .
1 - 0.3981z" + 0.247hz” -~ 0.04321

The normalized magnitude characteristic of this digital filter is
plotted as curve A in Figure L, which also shows the magnitude charac-
teristic of the p~transformed filter. Because of the relatively high
cutoff frequency of A(s) (one-half the Nyquist frequency), and because
of the low order of A(s) , the effects of the aliasing of the filter
characteristic are quite pronocunced -- the cutoff is not sharp and the

rejection is poor.
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In summary, the mapping p converts the approximation prob-
lem for digital filters to the approximation problem for analog
filters. This latter problem has received a great deal of atitention

over the past fifty years, and we are fortunate to be able to use

it to our purposes.

5. Pullding Analog Filters with Digital Computers

We conclude part IL with a discussion of the possibility of
constructing an analog filter from a sampler, a digital filter, and
e data reconstruction device. Such a system wouild probably be im-
plemented in real time using a digital computer. The advantages of
using a digital compuber as an analog filter are the flexibility,
accuracy, and stability which can be readily obtained, and which are
practically impossible to achieve with enalog hardware. The coeffl-
clents in a digital computer program can be set to & high degree of
accuracy, can be changed very fast, and are not subject to unwanted
varistion with temperature or age. Furthermore, with the use of
pulse-code modulation for the low nolse transmission of signals over
large distances, the avallability of signals already in digital form
can meke 1t more feasible to filter in real time with a digital com-
puter. Ultimately, however, whether such a scheme is practical
depends on the state of computer technology.

Suppose then that we sample an analog signal f(t), pass the
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resulting digital signal through a digital filter 5(2) s and then
reconstruct an analog signal with a data reconstruction circuit H(s).

The Taplace transform of the output signal is
sT
G(s) = Ale™ )H(s)F*(s) 5 (T
where F#*(s) 1s the Laplace transform of the sampled input. We can
thus write a transfer function with respect to the sampled input:

G(s) _ 2L S. ] |
———-——F*(s) A(e™")H(s) (II-22)

We assume now that we have sampled ab a frequency at least twice as
great as the bandwidth of £(t). Then, in the range |w| < x/T, the
transfer function (II-22) represents the effect of the system on the
original signal, and outside this range represents spurlous harmonics
of the input signal caused by lmperfect data reconstruction. These
upper sidebands can be removed with & simple low-pass analog post-
filter having a cutoff frequency near the Nyquist frequency.

As an example, suppose that H(s) is a zero-order hold:

1 - e—sT
W) = i s (1I-23)
o) | - |EEEEE] (13-24)

|H(jw) | has its first zero at twice the Nyquist frequency, and has
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lobes of apprecisble magnitude well-outside the range ]wl < -rr/T.
Hence, the overall transfer function (II-22) will have spurious re-
sponses at high frequencies unless these are filtered out. Suppose
now, &s an example, that we use the Tchebycheff filter (TII-10) of
section 2 as our digital filter A(z). The normelized megnitude of
the resulting digital filter~hold combination is shown in Figure 7.

We note that the shape of the digltal filter é(z) is slightly dis-
sin WT/2 \
Wl /2 i

necessary, the magnitude characteristic of A(z) can be compensated

torted in the pass-band by being multiplied by | i
to correct for this distorticn.

It is interesting to note that the filtering characteristic
of our final system can be changed as fast as the coefficients in the
digital computer program can be changed. If we used bandpass digital
filters, for exemple, we might then be able to use the system to

replace & bank of fixed filters or & frequency sweeping system.



PART ITI: APPLICATICNS TO POWER SPECTRUM MEASUREMENT

1. Imtroduction

Tr;e concept of power-spectral-density hds become an important
tool for the analysis and synthesis of many types of physical systems.
As a result, there 1s a pressing need for ways to estimate the power-
spectral-density of a signal from a finite record of that signal.
Originally, analog methods provided the only practical way to do
this. These methods wsually involve the selection of a narrow band
of frequencies with a bandpass analog filter; and then a measurement
of the power density of the signal in this band. Too wide a pass~
band results in an averaging of the spectral density over an exces-
sively wilde range of frequencies, with a resulting decrease in reso-
Iution; while too narrow a pags-band results in excessive statistical
fluctuations of the estimates. In 1954, C’nang23 derived an expression
for the optimum bandwidth for the spectrum analyzer and showed that
the optimum shape for the spectrum analyzer wag semicircular.

In recent years, when high speed digital compubers became
available, methods for spectrum analysis based on equally spaced
samples of the silgnal of Interest were developed. These methods were
at first divorced from the concept of a bandpass filter, until the
concept of a spectral window was introduced. Still, the connection

between the analog and digital methods of spectrum estimation has



remained obscure. One goal of this part will be the clarification
of this connection. We begin with a review of the methods for spec-
trum analysis of equally spaced data, based mostly on the work of
Blackman, Tukey, and Pre55.24’25’26
First of all, if a random signal is sampled, the sampled
power spectrum of the resulting digital signal is related to the

original spectrum by

cOo

JoT, _ 1 2 s s 2% :

o _(2%) = 4 ) o (o +ay=5), (11-1)
n=-oo

where T is the sampling interval. We see immediately that we must
sample at a rate fast enough to reduce undesirable allasing of the
original spectrum. Otherwise, the spectrum we measure, @Xx(z) will
not be an accurate reflection of the spectrum of the original signal.
Assuming that we have sampled fast encugh, and have pre-
filtered the original snalog sligpal to reduce high freguency noise
if necesgary, we can compute estimates of the autocorrelation func-
tion. We assume throughout this part that we have observed samples
X1,%pse-- Xy OF the original signal x(t), and that N is go large that
we can neglect end effects. Thus we compute the (m+1) mean lagged
products ' (I‘* )
N- k|

£ = ; }i XX '
k” TWE] s s

1=1



These fk‘are unbiased estimates of the autocorrelation function

ngﬂ( ks

Mo o = g!xx( k) " (IT1-3)
No—=00

Since the power spectrum is given by (I-69):

N
5 (z) = lim z §_lep™ o, (IIT-4)

we are led to the estimsate

m
A R, &
CDXX(ZO) = ) Ty % 5 (IIT-5)
k=-m

where zO = eijT, and mo is the frequency of interest. This estimate
is krown as the periodogram. These estimates are statistically un-
stable because they give equal weights to all the fk’ while the :E‘k
for larger k are much less rellable. This suggests weighting the

sum (II-5) in the following manner:

Z w £ (ITI-6)
k=-m
where
LR "

The expected value of this estimate is



m
A : e
E@m(mo) = 2 Vi gﬁﬂ(k)zo
k=-m
m
- ' 1 k dz -k
= Z wk<_“27rj @ﬂ(z)z = )Zo
T |z]=
A m
i . k -k
T T2md ®XX(Z)< Zwkz . ) Z
lz]=1 el
/T
T
e o -_—
= { @H(w) 1(@_&0) a (III-7)
-x/T
where
m
W(z) = 2 w (III-8)
k=-m

is a weighting function which determines an estimate of @m(m) and

is called the spectral window. By a convenient gbuse of notation we

.eJ(_DT)

write (Dm(w) instead of ém[‘ . The problem of choosing a good

spectral window has recelved much attention. A good evaluation of

many spectral windows can be found in Grenander and Rosenblatt. &t

2. A Class of Windows Generated by Digltal Flilters

If we now try to mimic the analog method for spectrum analysis,

using digital filters instead of analog filters, we are led to a
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special class of estimates iInvolving a special class of spectral
windows. Suppose then that we design a bandpass digital filter that
1s tuned to the particular frequency w_, say D(z). Iet us pass the
digital signal Xy e s Xy through this filter to obtain an oubpub
sequence yyye«« ¥y The power density of this output signal is
then the average energy:

N

§ w)== Y7 . ! (11-9)

= o’ T N
i=1
The expected value of this estimate is

(0)

3|
(=]

—

—
I

20%) - 6,

i

- dz
e qk D(z)D(z" ) o_(z) =
/T

M 2 '
S |D(w) | @H(m) aw (III-10)

~x/T

so that these estimates correspond to the weighting function

W(w-mo) = |D(w) |? P (Tre-1i)

Thus, this speclal class of estimates has the desirable property of

having a weighting function that is always positive. This means
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that no matter what the shape of the original spectrum, the estimates
will always be positive, a situation that is not always true for the
more general estimates using windows W(m»wb). We therefore have
eliminated the problem of negative power leaking through a side lobe
of the weightlng function.

Tn general, the implementation of the estimate (ITI-9) will
necessitabe running the digital signal Xy through the digital filter
D(z) for each frequency of interest. This is a decided disadvantage,
because of the long time that this would take on a computer. In the
special case when D(z) is a polynomial, however, we can compute the

estimates directly from the f,. To see this, write

k
x : 1 )
el —%r“ L vi = aEd q!D D(z)D(z" ) X(z)i(z ) jz
T |z |=1
(III-12)
where we define
Bz = 5 * %o ; + xsz—z +oea. + XI\“Z- : (II1-13)
Assuming that
K
Xz) = zz dkg—k "
k=0
(IIT-12) becomes
K
éﬁx(mb) = E: 44,5 , ; (TIT-14)



which is just as easy a quaantity to calculate on & computer as
(III-6). The coefficients dk will, of course, be different for
each frequency of interest.

Whether we use this last method and restrict D(z) to be =
polynomial or we use & rational function of z and run the signal
through the filter for each measurement, we can now use the approxi-
mation methods discussed in part 2 to design spectral windows. It
is very easy to use different windows for different parts of the
spectrum, for we have complete control over the shape of the window
at all times. We have thus seen how the measurement of power-sgpectral-~
density for discrete signals can be thought of in terms of filtering

and energy measurements, Jjust as in the analog casge.

3. The Mean-Square-Error of These Estimates

With a view towards deriving the optimum digital filter
for these estimates in a mammer similar fo Chang’s,23 we will now

calculate the mean-square-error:

(w,) 1= . (III-15)

A
2
g = E[@Xx(mb) =R

This mean-square-error can oe broken up into two parts; first the

square of the bias:

(v1as)® = [o0_(a) - 8_(a)° (111-16)
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and second the varilance

variance = E[g(ab)}z = [E@%X(ab)]a 5 (III-17)

¢® = (pias)® + variance ’ (III-18)

From (III-10), we have

/T

i
2m

~5/T

bias = 0 (a,) - |D(w) |2 o, (0) & . (1II-19)

We see from this that the bias error is due entirely to the fact
that the welghting function is not a §~functlon. For this reason

25
" error, after Chang.

we may call it the "blurring'
The varlance is soméwhat more difficult to calculate. TIFrom

(II-9) we have first
¥ N
2 . ik 2_2 L
E[@(mo}] = "—1\;2_ Z E[ynym] “ (III-20)
n,m=1

In order to evaluate these fourth-order moments, we now assume that
the original signal has a normal probability distribution function.
With this assumption, the digital signal vy 1s also normally dis-

tributed, and using the cheracteristic functlon for the Vs we get

Elyoya] = ¢;y(o) £z sa’gy(m—n) 5 (III-21)
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Thus,
N
E[g(m )12 = 42 (o) + oLl E; ¢> (m-n) - (III-22)
" vy N g
Ii,m=l

Also, we have

[?g(w )I? = &2 (0) (III-23)

S A A
50 that

N .
variance = el z g§2 (m-n) 1 (III-24)
N L
n,m=1

This can be put in terms of the power-spectral-density of the ¥y

by using formula (I-T70):

/T
o ot ()2 B - T JnesT
gﬁw(n) = e jg @w{Z)Z = e J @w(m) e aw
|z|=1 -x/T
(1I1-25)
Hence, we can write

(II1=26)

/T x/T .

e_Jv(mlﬂwa)T ny(w:.)@yy(%) Aoy Aoy

Il

o~ =

variance = —EE—(T/Eﬂ)a
N

-x/T -x/T Verg

Using the identity

N 2 sina—-g—(mln-wa il
' E;e‘jv(“h““b)Tl - : (11I-27)
v=1 : i sinz—%—(wl—mz)T
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this becomes (III-28)

.

;r{f/T rTf/T,c:.:i.n2 —%—-(wl—mg)T

variance = %—(T/Z:rr)z ] ] @W(ml)(pw(%) dmg o, -
N A

R RC Tk

The inner integral in this expression 1s known as FejJer's integral,

and is discussed iIn Carslaw, i and in Titchmarsh. 0 The essential
result is that
2 L
8in TNQ}T
1im - -:f.f— N olw) (III-29)

N—>00 s::nz -%—wT

That is, the Fejer kermel tends to a &-Tunctlon with increasing .
Since in our case N is very large (usually larger than 50 or 100 for

a meaningful spectral analysis), we can write as a good approximation

7/ T
2 E 2
= e o) I8 ¥
variance = W(m} dw
—J‘E/T
w/T
A & 2B e

-5t/ T

Thus the variance is inversely propor't.ional to N, which iIs in agree-
at

ment with Grenander and Rosemblatt, ' who used a different derivetion
that applies to spectral windows that are not necessarily generated

by digital filters. Furthermore, 1f we nermalize by the square of



the area under the window:
rc/T

[ gﬂ |D(w) 1 dw] 4 (III-31)

-:r/'I’

+the variance is inversely proportional to the length of the record NT,
which agrees with the analog case. We thus have derived an expression

for the mean-square-error of the digital filter estimates:

7/ T
& = [@m( 5) = —%—j-t— ID(w) 1P @m(m) dm]z
-/T
(:E/T (I1I-32)
.8,

i, The Optimum Digital Fllter

Our program now is to find the digital filter shape that
minimizes this mean-square-error, thus following the derivation that
Changzs pfesented for analog filters. Accordingly, we represent the
digital filter characteristic |D(w) 1® vy v*(Q/a), where Q = W
wo ig the center frequency to which D{w) is tuned, and A is some
kind of bandwidth such that U° (Q/A) is swall for o] >A  We thus
focue our attention on only one main lobe of the digital filter

characteristic, at @ = w,. We assume also that the filter z) is



sharply tuned ‘o W s B0 that we can write to a good approximation

7t/

e ( |D(w) |« ¢° (@) @
N 2=x XX
-7t/T
/T
_ e & 2 a
= = o (o) |D(w) |* d» . (III-33)
-5/ T
This becomes In our new notation:
o}
e
i ot i D A l{ U*(Q/n) &n (ITT-34)
variance = —— —5— O\ | ¢
o

To express the bias simply, we expand the spectral density @H(w)

in a power series aboub ®

(Dm(w) = (IJXX(wO) + @;'m(mo) (a)—wo)

1 n = =
+ —— o T % —
= @ (mo)(a)-wo) (IIT-35)

Assuming that the area under the filter characteristic 1s one, or,
equivalently, that our estimates are adjusted by dividing by the area

under the filter characteristic, the bias term (III-19) becomes

/T
bias = k. gﬁ @;;x(a)o) |D(w) la (m—cno);a dw
-1t/ T
Ioe)
= .55_, 27 (@) J o/ £ o (III-36)

=00



where we have also assumed that U°(Q/A) is an even function; that
our filter has & symmetrical magnitude characteristic about the
resonance frequency.

We seek to minimize the normalized mean-square-error, glven

by
ezom= ﬂ/; r eo:; - g
V lD( ) |2 dw:f (T/Z:IT)EL2 j U*(Q/n) GQ]
/ -~

(TII-37)

For convenience of notation, we now define the following integrals:

I-= jﬂ v (Q/a) alo/n) , (IIT-38)
= Lf i (oV/NT(eV/NRE-T( Y/N B (II1-39)
—~00
@
x= [ oo/ atwm (TT1-40)

With these notations, the normalized mean-sgquare-error becomes:

2 1
c = T[@;‘g{(ﬂ)o)] —— A4 +

norm

1
— 7 (III-%1)

which is exactly the same as Equation (23) in Chang's paper, 23 ‘hich

was derived for an analog filter instead of a digital filter. Hence,
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the rest of the derivation is identical to that for the analog case;,
and we are done.
Thus, the opbtimum bandwidth, obtained by differentiating

(III-41) with respect to A end setting the result equal to zero, is

=2
@m(wo ) X

£=($>[ = L (TII-Lk2)

0! (w) 17

We have therefore shown that the optimum bandwidth is inversely propor-
tional to the length of the record avallable for spectral analysis.
This optimm bandwidth was derived by CGrenander and Rosenblatt for
two specific windows; we have here shcwn that it holds in general
for windows gemerated by digital filters.

The normalized mean-sguare-error in the case that the band-

width is chosen optimally is

2 _ 5 - -8 r: fi \11-6 FT” .r: -ll’ I{ J‘
B = T (Eﬂ/N’T) LQH\%) J L‘QH\&JO)] -?—— -
(IIT-43)
Since
. L kO B P
Ff 2 s \/—D .K_-. J = - 8 [— 1 f 27{ )
,\j enom 2 I [@XX(CDO)] (PJCX.(GJO) \ T J
(IIT-Lk)
we can define the error coefficient
ll' .2
K = ’\/_5 K'J N (ITI-45)

e 2 g



89

W 5

which is a quantitative measure of how small an expected error can
be achleved with filter characteristics of different shapes. As

ng shows, the opbtimum shape for the functlon U iIs given by

uQ/a) =0 p for @] > A
_ (ITI-46)

Pa/a) = M1 - (@/8%) , for [0] <A.

This being obtained by setting the first order varlation of K_ with
©

respect to U equal to zero. This semicircular filter shape gives
K = 0.66. The shape of the filter is actually not too critical,
providing thet the bandwidth has been chosen well, and providing that
the side locbes of the digital filter characteristic in the region

0| > A are small. Thus, the ideal rectangular filter shape

ula/a) =0, for Q] > A

(TTI-47)
o(Q/A)

I
ja

, for lal <A

yields X = 0.68, which is close to optimum. Thus, the bandpass
transformations of a low-pass Butterworth or Tchebycheff filter would
serve well as spectral windows, although the Fourler series filters

would be easier to implement using (ITI-1k).

5. Prevhitening Techniques

We thus see how the approximatlion technigues described in
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part 2 can be applied to the design of spectral windows. These
approximstion techniques are also especlally useful In prewhitening
spectra before the sbove estimation methods are applied. The idea
-

of prewhitening has been strongly advocated by Blackman and Tukeyfgo
for a few reasons, one of which can be seen by examining the expression
for the mean-square-error (ITI-41). his error depends directly on
the second derivative of the spectrum at the measurement point, which
appears in the bilas term. If we could somehow flatten the spectrum
before measurement and then compensate for this after the estimates
have been computed, we would reduce the bilas term without affecting
the variance. Another advantage of measuring an essentially flat
spectrum is that there is then 1little possibility of an unreasonsble
contribution from a peak in the spectrum that happens to correspond
to a minor lobe in the spectral window.

Therefore, if we have a rough idea of the shape of the
spectrum we are measuring, we can approximate this shape with a

digital filter D(z), so that
2 )
D) [F =0_(«) . (TTI-18)

We can then pass the original signal xy through a digital filter
l/D(z) , producing a signal with a relatively flat spectrum. Esti-
maetes of this power-spectral-density are then computed in the usual

sy, and then corrected by multiplying by |D(w) |°.  The techniques
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deseribed in part 2 are well-suited to accomplish this prewhitening

in an organized way.

. The Identification of Power Spectrum Parameters¥

Suppese now that a system designer needs to know the power-
spectral-density of some signal. Assuming that he has an ldea of the
bandwidth of the signal, he can obtain samples of it, calculate the
mean lagged products fk’ alnd. then use scme spectral window to estimate
the spectral-density. What he gets after this procedure are estimates
gt points along the frequency axis, usually equally spaced. If th
results of this spectral analysis are going to be used for anything
besides a visual presentation, the designer will have to put this In
some closed analytical form. One way to do this is suggested by the
mapping p. The points of the power spectrum can be transformed by
the mapping u &s in Equations (I-72) and (I-73). The measurement
points now represent the spectrum of an alalog signal, and this can
be put in the form of a rational functlon of s by using Bode A
method of semi-infinite slopes. The reverse mapping p"l will then
vield a rational function of z, which is a form which can be used for
explicit design. This procedure leaves much to be desired. First

of all, it involves two consecutive approximations and the accuracy

of the final result is difficult to gauge. Second, it 1s not easily

¥ The Tesults in the remzinder were reported by the author in reference
28.
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mechanized on a computer, and is hence Ili-suited for real time
application as an identification method for adaptive systeus.

Tt would therefore be desirable to have a method of measuring
power-spectral-density that yields an analytical form for the answer.
The technigue of prewhiténing suggests the following method of accom—

plishing this: Suppose we pass the signal of Interest x, through a

i

digital filter D(z) of some canonic form, and then adjust the coeffi-
jents of D(z) so that the output is in some sense most nearly white

noise. Then we have

D) [* 0_(a) =1 , (II1-49)

go that
|
o (z) = s (III-50)
. D(z)D(z" )

cen be used as an analytical expression for the unknown power-spectral-
density.

If this program is to be carried out, the following con-
sideration is important: The most time consuming, and hence expensilve,
step In a spectral analysis is always the computation of the mean lagged
products fk' Hence, we would Iike to ‘ca.lculate only one set of these
for each spectrel analysis. If we assume that D(z) is a polynomial
in z-l , the output mean lagged products can be expressed in terms of
the input mean lagged products rather easily. On the other hand, if

D(z) has even one pole; It becomes Intractable to express the output



mean lagged products in terms of those of the input, and the mean
ged products of the output must be recalculated for each cholce

of coefficients In D(z); and this becomes Impractical. Hence, the

1
mrocedure outlined 1s only practical when D(z) is a polynomial in z .
At first, the following method was tried om a compuber.
D(z) was assumed to have the form
l 3
D(z) =1 +az + bz 3 (ITI-51)

s

the input mean lagged products were computed, and the appropriate
mean lagged products of the output of D(z) were computed from these.
The criterion for whiteness was that the autocovariance determinant

£ the oubtput signal be maximm. By the method of steepest ‘descent,

O

he coefficients a and b were found. The methed converged nicely,

e

but gave good results only when the unknown power spectrum was of

the appropriate form:

o (z) = E ) (III-52)
= D(z)D(z" )

Furthermore, The extremal seeking procedure becomes less relisble

when more urnknown coefficlents are introcduced.

Tt was then found that the above problem 1s equivalent to

a well-known problem in mathemstical statisties: That of estimating

the coefficiente of an auboresressive scheme. The solution of this

lstter problem can be found in the literature; a good discussion is
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given by Hannan, for exsmple. Thus, when D(%z) is assumed to have

D(z) =1+ auz +pZ +... taqz? (ITI-53)

a completely analytical expression for the coefficlents G, can be
derived in terms of the mean lagged products of the input signal.

The method camnot be exbtended to the case where D(z) has poles, for
essentially the same reason described gbove. Thus, it is the respon-
sibility of the experimenter to ensure that the unknown spectrum can
in fact, be represemted closely by the form (ITI-52). Some ways of
getting around this problem will be discussed later. We now present
the solubtion to the identification problem deseribed above when

1
D(z) is a polynomial in z .

7. Statement of the FProblem

We make the following assumptlions:

1. N points of the signal of interest are available:

Xy s Xogemeo s X
17422 7 2

and N is large enough so that end effects can be neglected.

2. The signal is normally distributed with zero mean, and

is stationary and ergodic.

3. The signal has a power-spectral-density which can be
closely represented by

(R e . (ITI-5%)
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D(z) =1+ @z + g+ ... * apz’P (IIT-55)
has all of its zercs iInside the unilt cirele in the

=

zZ-plane.
¥ r () 2
The problem 1s to estimate the parameters o ,05,.. .,ozp, and B ;3 glven

the N observed points of the signal.

. The Most Iikely Estimates

The solution given here will be essentially the same as that

29

except that our argument will be in terms of power

Define a new signal y. by passing x. Through the digital
ok,

i

filter D(z). Thet is, put

v, =X, T %, 4 + oeew T OX. III-56
b S | a¥y.2 ap i-p ¢ ( )

or, in z-transform notatlon

Y(z) = D(z) X(=z) ;

The stochastic variable ¥y is rnormally distributed. Furthermore,
its power-spectral-density is
=1 2 ek
®w(£) = D(z)D(z" ) e_(z) =6~ (ITI-57)
so that the signal T3 is gaussian distributed white noise with mean

square value 52. The Joint probability density functlion of the



observed sample (y1,¥ase-- ,:y'w) is then

N
~ il 2
p(YlJyﬁJ"'JyN) = N/2 N €xD k-‘ ) S yi) .
(27)7/ "B S |

(III-58)
The maximum likelihood estimates of the unknown parameters;
denoted Ty Oy,8s,...,0_, and f°; arve obtained by meximlzing this proba-

bility. Thus the following set of equabtions must be solved:

o log P(Y12y2J""yﬂ)

If

0,3 = L,B5m0n ;18 (IIT-59)

cl

Q/

J

and

d log D{Y1sTasesesTy)
e M (IIT-60)

pel
~

g

When (ITI-56) is substituted in (IIT-58) and the indicated operatlons

are carried out, the most likely estimates result:
=~ A - .i_ = -‘1-—1 ™ —t
A : 1 : = i i i
Cly :1 % fo T, g P l]f_)"'li E fl i
| ! - o = i E
| & | S A T I
1 b e
| A, AR TR R £
[T S E . 1 x |. , (ITII-61)
: e gl
i 53 vew S £
| -1 |
L P PP < 4 i ph
and
P
BN AA AL b o Pl
a = L iaj lli*’dl i P él*l &E"‘E’. et asfa it (IJ.I-'OZ)
i,J=0
cee + 8
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where the f. are the mean lagged products

-3
£, - ? X, s (3>0) . (11-63)

In summery, then, the following computations are performed:

1. From the N sample points of the signal, the mean lagged

products f 2T ,...,T"P are calculated In accordance with
(II1-63).
2. The pxp mabrix (f;*‘jl‘. i,J = 1,.+.,p) 1s formed and inverted.
3 J (j = 1,...,0) are celeulated from (ITI-61).
L, [L\e is ealculsted from (III-62).

These compubatlonal steps are shown diagramatically in Figure 8.

9. Verdiebility of the Estimates

Tf this identification method is to be used for any practical

purpose, some knowledge is required about the accuracy of the est lmaues

P - A
for a given N. It can be s-:nown29 that the vector O - ¢ defined by
T A 3
A L o
b-a=|8 -~ | (III-64)
:ﬁ |
{ ‘ |
! |
i i
H - {
LA i
L ey {
P P .l

is asymptotically rormally dlistributed with zero mean and covariance

Pgs SRR
matYlx
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2 | 1
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== | = - . r‘
A-p ) . , {
i '
- . - {
| i
i /
1
- d& -1 ’ %o _j
This can be estimated convenlently by
- -1
1 » P o o ¢
L Is s i i
| "o A p-1
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(ITI-66)

which does not use any quantities which have not already been cal-

culated.

The Gistribution of the estimste B° is difficult to caleu-

lste since it is a wore complicated function of the T 5 L=

easy, however, to derive the distribution of

i) »

s A W

5 EJ Iy T Ej %y o] s
1=1 1, j=o

I5 is

(ITI-67)

and this will glve some (optimistic) indication of the varisbility
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of B°. With this In mind conglder the random varlable

N

) i | ITI-6

(7,/8)° = (ITI-68)

4

i=1
This ig the sum of squares of independent, normally distributed ran-
dom variables whose means are zZero and whose variances are 1. This

=2
random variable i1s therefore ¥ ~distributed with N degrees of freedom.
o B O S . - 2
Cramer™ " showe that with Increasing N the y distributlon becomes
asymptotically normal with mean N and standard deviation N 2N. There-
fore, the random variable (ITI-67) is esymptotically normally dis-
p o 2 ; 5 T / e

tributed with mean B~ and standard deviaticn Z/N B ; and hence

by M L3 ) b : L} = 03 = d =]
N2/N B” can be used as a low estimate of the standard deviation of B .

10. Extension to Spectra with Zeros

Az mentioned before, the assumption that the unknown spectrum
7 2
does not have any zeros is rather restrictive, and the derivation

breaks down when a more general form for ®xx(z) is assumed. There

o

L

e some situations when something can be done to extend the method,

o

nd these willl now be discussed.

Suppose that the signal of interest has an unknown power

spectrum of the form

2 N(z)n( z'-l )
D(z)D(z~ )
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Then the signal can be prefiltered by a digital filter 1/N(z) (or
an equivalent analogue filter). The resultant signal will then be
of the requisite form and the method described in this paper caan be
used to determine the pole locations and 52.

As another example, suppose that the signal of interest, X s
is the sum of two independent signals; one of which has a known power
spectrun (such as white noise of & given amplitude), and the other

of which has only poles in its power spectrum. That is, suppose

S— ¥ { TIXZ-T70)

o_(2) = & (2) + ——Fmr
D(z)D(z"" )

X

The aubocorrelation function of the signal is, then, the sum of known

and unknown corponents:

!

¢ (n) =g (a) + 4 (m) . (I11-71)

The known components can be subtracted from the computed fn and the

resulting mean lagged products
2, = #5000 11~ FE (1), -ees £ - () (T1-72)

cen then be used to estimste D(z) and B.
Other situations suggest themselves. Some pole locations

may be knewn in advance, for instance. These poles can be removed
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before analysis by a digital or analog filter. Alternatively, the

meximum likelihood equations (III-59) and (III-60) can be reworked.

1l. An Example

To demonstrate the method, a sequence of 210 independent
normal random numbers was passed through the digital filter

1
1/(1-.52" ). The resultant time series then had a power spectrum

l(ESZ . : (III-73)
(1-.5z~ )(1~.52)
Thus for this sigrnal, assuming p = 2,
Cy = -5
Gy = 0u0 (ITT-T4)
8% = .00397

Three mean lagged products were compubed:

f = .00624,

(o]

s = 00307, (ITI-75)
fg = .OOlJ-I-T,

and (ITI-61) used to give the estimates

-. 495,

Il

< OOTC; (III-76)

N
I

. 00LT3 N
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The estimated covariance matrix of the &j was calculated from (ITI-66):

. 0048 -. 002k
~. 002k . 0048 , (LII-TT)

and it 1s seen that the é 3 are well within one standard deviation

of the Oéj. The optimistically estimated standard deviation of éz is

Ve/u B° = (1/10)8° (III-78)

so that the 16 percent actual deviation is not unreasonable.

Figure 9 shows plots of the actual and the estimated power
spectrum. Also shown are the results of a conventional spectrum
analysisZ® using a Hemming window and T mean lagged products. Note
that more than twice as many multiplications were required by the
conventional method to produce similar accuracy, and that the results

are not in a form that is suited for direct use.

12. Applications of the Identification Method

The above Identification method is especially promising for
use in an adsptive loop; first because it can be Implemented in real
time by a computer, and second because it gives direct estimates of
parameters that can characterize a signal or a plant. Thus, the
following method of self-optimizing control is suggested: A controller

is designed whose optimum or near~optlmm operation depends on the
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knowledge of the parameters CQy,... ,ozp and 82 of the power spectrum

of some signal In the system. From a record of this signal of length
N the estimates él,...,ép and £° arve perfodieally calculated by a
digital computer and used to adjust the controller. In a particular
application, the choice of N is an important problem. N must be
chosen large enough so that the estlimates of the power spectrum
parameters are accurabte enough to be useful. On the other hand, N
should not be 8¢ large that the system reacts to obsolete Informatlon.

The ldentification method described zbove may also be used
as a first step in a conventional spectral analysis. After D(z} is
estimated, the original signal can be passed through the filter D(z)
and subjected to further spectral analysis by conventional methods.
If the form assumed for the spectrum was appropriate the output will
be nearly white, and this procedure will amount to an "automatic"
prevaitening technique which can be used in conjunction with conven-
tional spectral analysis.

Finally, it might be mentioned that the identification
method can be used with the adaptive information processing method
described by Chang. -

We have seen in this part how the concept of digital filtering
can be applied to the problem of measuring the power-spectral-density

of a digital signal. We first showed how the 1ldea of bandpass

filtering can be carried over from the analog case to the digital
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case to generate spectral windows that always glve positive estimates
of the spectrum. Furthermore, we have pointed out along the way how
digital filters can be used to advantage as prefilters and postfilters
much as analog filters are used for continuous signals. Foxr these
applications, the approximation techniques described In part 2 are
especially useful. ILastly, we described a method of identifying
unknown parameters in a power spectrum of an assumed form; a method
which is promising as an identification program that can be incor-

porated Into an adaptive loop.
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SUMMARY

Our main goal has been to tie together the theories of
filtering digital signals and analog signals. With the axiomati-
zation of filtering and signal theory in terms of Hilbert space,
we saw how an Isomorphism could be constructed between the analog
aﬁd digital signal spaces which allowed us to transfer many concepts
from one domain to the other. The use of Hilbert space showed how
the z-transform can be defined with much the same generality as the
Fourier transform, and led to a definition of stable filters that
can be used in both the snalog and the digital cases. We then saw
how any such filter, whether time-varying or not, could be repre-
gented by an infinite matrix of numbers. In particular, we saw
+hat in the time-invariant case the digital and analog theories are
essentially identical. Thus, many comuon optimum-filtering problems
can be solved simultaneously for analog and digital signals, both
in the deterministic and the random case. We also looked at data
reduction filters and their interpretation in terms of frequency
response.

In part 2 we showed that the approximation problem for
time~invariant digital and analog filters were equivalent, and we
discussed some methods that were particularly applicable to the

design of digital filters for some common purposes, such as
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prefiltering prior to data reduction. We showed in particular how
Fourier seriles can be used to design digital filters with prescribed
megnitude characteristics that were polynomials in z-l , and hence
could be implemented economically.

Part 3 was devoted to the application of these ideas to the
problem of measuring power-spectral~density from digital Information.
We saw in particular how bandpass digital filters could be used as
spectral windows which always give positive estimates of the power-
spectral-density. We then derived the optimum bandwidth and the op-
timum sha.pel for such digital filters, following the results of
(3?(1:’:\.n§3235 for analog filters. Throughout this discussion we indicated
how the approximation techniques of part 2 could be used effectively
in the processing of digital information; prewhitening being an
example. We then presented a method of identifying unknown para-
meters in a power spectrum. This method results in an enalytical

form for the spectrum, and is sultable for a systematic prewhitening

program, or for use in an adapbive control loop.
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Fig. 1. A schematic representation of the mapping

i and its relations to the various signal spaces.
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Fig. 2. A schematic representation of the mapping
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