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Abstract We describe applications of solitons and soliton collisions to the transport,
transfer, and beam-splitting of qubits carried by optical photons. The transport and
transfer realize the “flying qubits” necessary for quantum information processing,
and the beam-splitting leads, in theory, to an implementation of quantum computing
using linear optics. These proposed applications are embedded in a uniform optical
fiber and require no special device fabrication, no cooling,and no vacuum.

The pioneering papers of Feynman [1] and Deutsch [2] in the 1980s sparked the
rapid development of the field of quantum information processing. The theoretical
and experimental progress has been remarkable, with the development, for example,
of quantum error correction and a fast algorithm for factoring, and the exploration of
a wide variety of physical implementations. In the latter category, the optical photon
as the carrier of a qubit has played an important role in the experimental demonstra-
tion of quantum cryptography and other important applications to communications
and information processing. At the same time there has been tremendous progress
in our understanding of classical nonlinear waves, and, in particular, solitons in op-
tical fibers. In this chapter we will explore what role solitons and soliton collisions
might play in the development of quantum information processing with optical pho-
tons. For a more detailed account, the reader is referred to [3, 4, 5], from which the
material in this chapter was drawn.
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1.1 Photon trapping

A pulse traveling down a fiber forms a soliton when the dispersion, which tends to
widen the pulse, is counterbalanced by the nonlinear Kerr effect, whereby the elec-
tric field changes the index of refraction of the material. Such a soliton is called a
temporal soliton, as opposed to a spatial soliton, where a beam is confined spatially
when diffraction is counterbalanced by a nonlinear effect in the material. In this
chapter we will restrict our attention to temporal solitons. Hasegawa and Tappert
predicted that stable optical solitons will form in a fiber in1973 [6], and they were
observed experimentally in 1980 by Mollenauer, Stolen, andGordon [7]. Since then,
because of important potential applications to communications, there has been in-
tense activity in both the theoretical and experimental aspects of solitons in optical
fibers.

The induced waveguide What is important to us here is the fact the soliton cre-
ates a local distortion of the index of refraction that travels with it down the fiber.
This moving distortion can act as a waveguide that can trap and shepherd another,
much weaker, light pulse that can differ from the soliton in both frequency and po-
larization. The strong soliton pulse is called thepump, denoted byP, and the weak,
shepherded, pulse is called theprobe, denoted byu. We will follow the model of
such a pump/probe system that was laid out by Manassah [8]. Itconsists of two
coupled equations: the first is the standard, integrable cubic nonlinear Schrödinger
equation (3-NLS) that describes the formation of the pump; the second, which de-
scribes the propagation of the probe, is, in fact, preciselythe linear Schrödinger
wave equation with a potential determined by the pump.

The solution for the pump is the well known soliton solution,a complex wave
with a carrier and sech-shaped envelope. The relative phaseof two of these solitons
on collision determines the nature of the collision. In particular, when the relative
phase isπ , the collision is repulsive, and the induced waveguide willlook like a
smoothly bent waveguide. We will be using collisions of thistype throughout.

The solution for the probe is, as we might expect, an eigenvalue problem, which
we solve by separation of variables, using as ansatz the complex wave

u(z,t) = u(t)e−iEz , (1.1)

wherez is distance along the fiber, andt is time in the frame moving with the pump
soliton, which we refer to aslocal time. In the z direction it is simply a phasor
of constant intensity. In thet direction, which we can think of in thez-t plane as
the lateral direction in the induced waveguide, the probe ismore interesting. The
reduced equation with independent variablet is the associated Legendre equation,
with solutionsuℓm of degreeℓ and orderm that are non-singular, physically accept-
able, and zero at infinity for integersℓ ≥ m > 0. Lettingξ = tanh(kRt), wherekR

is a parameter that determines the energy of the soliton, each uℓm is the product of
(1−ξ 2)m/2 and a polynomial inξ of degree(ℓ−m) and parity(−)ℓ−m, with (ℓ−m)
zeros in the interval−1≤ ξ ≤ +1 [9, 10]. As functions oft the solutions of the re-
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duced equation take the form sechm(kRt) times a polynomial in tanh(kRt) of degree
(ℓ−m). The degreeℓ of the wave functions supported in the induced waveguide is
determined solely by the ratio of corresponding parametersin the pump and probe
equations, and is therefore fixed for any given physical fiberimplementation.

Assume, then, that the given fiber implementation is such that ℓ andm are in-
tegers, and denote the probe solution of degreeℓ and orderm by |ℓm〉. Then there
are exactlyℓ eigenfunctions supported by the induced waveguide, corresponding to
m = 1, . . . , ℓ, with corresponding energy eigenvaluesE1, . . . ,Eℓ. When the superpo-
sition of more than one of these co-propagate (the reduced equation is linear) the
difference in these energy levels causes beating in thez-direction (see Eq. 1.1), as
discussed in [8].

The quantum limit Up to now we have described the formation of an electromag-
netic probe wave trapped in the waveguide induced by a soliton, where this probe is
weak compared to the soliton. If we let the probe get weaker and weaker we reach
the point at which the probe can no longer behave like a wave, but must behave like
a particle—a photon.

We next must consider the critical question of whether it is possible to detect
a probe photon in the presence of the (much larger) pump. There are two ways in
which we can separate the probe and pump to make this detection feasible: First,
they can be orthogonally polarized in a polarization-maintaining fiber. Second, they
can be separated in wavelength. As discussed in more detail in [3], it is reasonable
to expect the detection of single probe photons in the collisions described here to
be possible at a wavelength of 1550 nm within about one or two kilometers of fiber.
This experiment would be the next step in pursuing a physicaldemonstration of the
ideas discussed in this chapter.

1.2 Photon transfer

distance along fiber

Fig. 1.1 Sketch illustrating the conditions for photon transfer when a fast soliton overtakes
a slower one.

We look next at the simple situation where a faster soliton which is not carrying a
photon overtakes a slower soliton that is, as sketched in fig.1.1. What happens, with
appropriate choice of parameters, is that the photon will betransferred to the faster
soliton, as shown by the numerical simulation illustrated in fig. 1.2. The repulsive
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Fig. 1.2 (Color online) An example of photon transfer. Top : The pump solitons in a repul-
sive collision. Bottom : The probe when launched in the state |11〉. The photon is trans-
ferred to the overtaking soliton. (See [3] for details.)

collision of the two pump solitons is shown at the top. At the bottom we see the
deflection of the probe wave (now a photon) to the faster soliton. The probe in this
case is in the single-peaked ground state|11〉. This setup and the ones described in
the following sections correspond exactly to what is known for classical waves as a
directional coupler, and such couplers induced by spatial solitons have been studied
since the 1990s [11, 12, 13].

In some sense the experiment we have just described is analogous to a photon
bouncing off a mirror: the photon is simply diverted. If the photon carries a qubit of
quantum information in a photon/no-photon representation, it is a flying qubit in the
sense described by DiVincenzo [14] in his well known paper outlining the require-
ments for a physical implementation of quantum computing and communication.
The present fiber scheme would then provide a means for routing flying qubits with
solitons.
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1.3 Beam splitters

If we change the system parameters we can arrange an experiment that corresponds,
not to an ordinary mirror, but to a half-silvered mirror—a beam-splitter. For this we
use a collision between pump solitons of order 2 instead of 1,and a greater relative
velocity, as shown in fig. 1.3.

Fig. 1.3 (Color online) The probe when launched in the state |21〉. In this case the soliton
collision takes place at a greater relative velocity and the system acts as an ordinary
non-polarizing beam-splitter. (See [3] for details.)

This is analogous to a non-polarizing beam-splitter. The photon is deflected or
transmitted with certain probabilities, in the case shown,both 1/2 for a 50/50 beam-
splitter. For a system that functions as a polarizing beam-splitter, we can use a probe
in a state that is the superposition of states|22〉 and|21〉. It turns out that with the
proper choice of parameters, the photon in state|21〉 is not deflected, while the
photon in state|22〉 is transferred. When the superposition of the two photon states
is used as the input probe, the modes are separated, just as anordinary polarizing
filter will separate the horizontal and vertical componentsof a light wave of mixed
polarization. An example of a polarizing beam-splitter is shown in fig. 1.4.

Note that in this soliton-induced beam-splitter, the modesof the probe play the
role of polarization axes, and these axes should not be confused with the polarization
modes of the fiber medium itself. It thus might be more proper to call this system a
“mode-separating” beam-splitter.

1.4 Manipulating photon phase

There is a missing piece if we want to accomplish general quantum computing, as
we shall see in the next section—we must be able to shift the phase of a single pho-
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Fig. 1.4 (Color online) Illustrating a soliton-guided polarizing (mode-separating) beam-
splitter. Top : The probe when launched in the excited state |21〉. The photon in this case
stays in large part with its original captor soliton. Center : The probe when launched in
the state |22〉. The photon is transferred to the faster soliton, as in the |11〉 case shown
in Fig. 1.2. Bottom : The probe when an equal linear combination of ground and excited
states, |22〉+ |21〉, is launched. The system is analogous to a polarizing beam-splitter.
(See [3] for details.)
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Fig. 1.5 (Color online) The probe signal in a phase shifter. A photon is being carried by
soliton A; The faster soliton C overtakes soliton A, picks up the photon, and ferries it to
soliton B, where it is deposited. In this example from [4] the overall phase shift achieved
is π . (See [4] for details.)

ton. But the same ideas used in the previous sections can be used for this purpose.
A phase shifter can work as follows: Two solitons, A and B, arelaunched at the
same velocity in thez direction, first B, then A. Initially, soliton A carries a photon.
Soliton C, a third soliton, is then launched at a greater velocity. When C overtakes
A, the photon is captured by C; and C carries the photon with ituntil it overtakes B,
at which point the photon is transferred from C to B. The net effect is that soliton C
ferries the photon from A to B. The photon accumulates extra phase during the time
it travels at an altered velocity, and the amount of the phaseshift can be controlled
by adjusting that time. Figure 1.5 shows the probe in an example. The reader is re-
ferred to [4] for details about how the solitons and probe aredesigned to accomplish
this phase shifting.

1.5 General quantum computing

In 2001 Knill, Laflamme, and G. Milburn [15] published a surprising and important
paper: they showed that general quantum computing can be implemented using only
components we have described—beam-splitters, phase shifters—plus single-photon
sources and photo-detectors. The latter plays a crucial role in providing the neces-
sary nonlinear aspect to the system: feedback from photo-detectors. The reader is
referred to [15] for the details of this clever scheme, and to[16] and its references
for recent improvements.

We have thus described a way in which soliton-guided photonscan be used to
implement general quantum computing, at least in theory. Weshould quickly point
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out, however, that the scheme proposed by Knill et al. carries with it an overhead
that may be, although polynomial in the problem size as required by the theory, pro-
hibitively large. This is balanced, however, by the relative simplicity of the physical
components, most of which are either off-the-shelf or closeto it. In addition, the use
of soliton-guided flying qubits provides a natural and uniform way to implement the
required routing and switching.

1.6 Using dark solitons

Fig. 1.6 (Color online) Top : The pump signal, a dark soliton collision. Bottom : The corre-
sponding probe signal illustrating the case when the probe is not affected, the so-called
“zero-crosstalk” case [11, 17]. (See [5] for details.)
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Fig. 1.7 (Color online) The probe signal in the same induced waveguide with the probe
parameters adjusted so that probe is split equally. (See [5] for details.)

Dark solitons occur in the normal-dispersion regime of a fiber [18], and occur
as dips in a uniform background, in contrast with the bright solitons we have so
far been considering. They offer some real advantages over bright soliton collisions
in controlling light waves: First, dark solitons are known to be more stable in the
presence of noise and are generally more robust than bright solitons [19, 18]. Sec-
ond, the probe, which is of much lower intensity, peaks at thedip in the intensity
of its host soliton, thus increasing the signal-to-noise ratio and making it easier, in
principle, to detect. Third, the characteristics of the dark soliton beam splitter do
not depend on the relative phase or relative speed of the colliding solitons, whereas
bright solitons need to have their phases and speeds carefully controlled to produce
a given result. The improvement in signal-to-noise ratio for detecting single photons
may prove to be especially important in any practical implementation.

Figure 1.6 shows collisions of two dark solitons, and also illustrates the case
when the probe photon is unaffected by the collision, but simply remains with its
captor. The waveguides induced by dark solitons can be used to control photon
probes in the same way that bright solitons can, in contrast with the zero-crosstalk
case reported in [17], provided that the group velocity dispersion and nonlinear cou-
pling parameter for the fiber are chosen appropriately. These degrees of freedom are
readily available if we use different wavelengths and polarizations for the pump
and probe. For the probes corresponding to the degree-1 associated Legendre modal
functions, the dark soliton junctions behave in a way that isvery closely analogous
to a beam-splitter made of crossed optical polarizers, witha single parameter play-
ing the role of angle between polarizing filters. For the probes corresponding to the
degree-2 associated Legendre functions, the junction can act as a mode-separating
beam-splitter. Figure 1.7 illustrates such a dark-soliton-guided beam-splitter.
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1.7 Conclusion and open problems

We have seen how, in theory (and that is a big qualification), solitons in optical
fibers can be used to provide a kind of “substrate” for manipulating qubits. Trans-
port, transfer (and therefore routing), and even general quantum computing, using
the scheme of Knill et al. [15], all fit naturally in this picture. At the least, this way
of implementing flying qubits may prove of practical use in many quantum commu-
nication and cryptographic systems.

Open questions remain concerning the practicality of physical implementation:
are fibers, photon sources, and photon detectors available that have the required
physical characteristics? Perhaps the most logical next step, and a project of interest
in itself, would be the experimental verification of photon capture and transport in
an optical fiber, by both bright and dark solitons.

Also of interest are the questions, both theoretical and experimental, of the sus-
ceptibility of trapped photons to decoherence, as comparedwith that of ordinary
photons in fibers—a problem that, to the author’s knowledge,not been studied. It
would also be very interesting if soliton-guided photons could be used to realize
quantum repeaters.
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