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1. INTRODUCTION

When Laplace Transform techniques are used to analyse a lumped
linear system, the transfer function of the system can be expressed
as a rational function of the complex frequency variable s. The
poles of this rational transfer function represent roots of the
characteristic equation of the system, and the location of these
poles determine the natural modes and hence the dynamic response
of the system. Thus, if the designer can control the position of the
poles of the transfer function of a linear system, he can ensure that
the system will be stable and will have certain prescribed dynamic

characteristics.

The root-locus method enables the designer of linear feedback
amplifiers and control systems to relate the pole positions of
a closed-loop system to the poles and zeros of the open-loop system.
While the root-locus method is usually thought of as a way of
determining the poles of a single-loop feedback structure as a
function of the midband loop gain, it may be used to study pole loci
{n multiple-loop systems and as functions of parameters other than

loop gain,.

The root-locus method was introduced in 19L8 by W. R. Evanas.
Quickly‘after this, those elementary properties which enable the
designer or analyst to sketch the loci became well known, and

engineers adopted graphical and semi-graphical techniques.

Se



Generally, the fact that these loci are algebraic curves, often

of low degree, has seldom been utilizeds and the general properties

of the curves have uauaily been studied only with a view towards their
rapid construction. In the present work, the author has attempted to
present in a unified manner the well known properties of root loeil and
any extensions of these that his research has uncovered. It is shown

how the root locus for a higher order system is resirained by the loci of
its lower order sub=-systems. The algebraic equations of root loci have
been determined and classified, with special atitention given to those
casegs in which the curves are quadratic and cubic, A method is presented
for determining algebraically those frequencies and galns for which a
given system is on the threshold of instability. Finally, the loci for

a class of phase shift oscillator are found. This is an example of a
class of systems where the root-loci are quadratic and a completely
analytical root-locus analysis is more fruitful than a graphical

analysis,

6o
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2, DEFINITION OF THE ROOT LOCUS PROBLEM

We shall take tﬁe unity-feedback single=loop structure shown in
Figure 1. as the motivating system for the root-locus problem and
all that follows will be in terms of this basic system. Actually,
little generality is lost by the adoption of this simple model, since
most of the following results can be easily extended to any system

where a parameter enters linearly into the characteristic equation,

R(s) + c(s)
Ka(s) >
Reference Signsl Controlled Signal

Figure 1. The Basic Single-Loop System.

We shall assume that the open-loop irensfer function, KG(s), is a
rational function of s with real coefficients, and that the polynomials
N{s) and D{g) that are the numerator and denominator of G(s) are of
degree n and d, respectively. Sometimes, it will be convenient to
assume that the leading coefficients of N(s) and D(s) are unity. We
may do this with no loss of generality, since any constant factor in G(s)
can be absorbed in the gain constant K. Thus, KG(s) may be written:

el

N(s) G404 8 +0s,S¥eee & g (1)
" = K 5r0,
KGls) = KpGy b &b S b
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where

al'l 'bd =]

We may elso write the open=loop transfer function in factored forms

z
hy
phE=E)
LClsy= K -2
P d;
(s~ %)
s':\

where

(2)

Thus, G(s) has Z distinct zeros Z3s each of degree ny3 and P distinct

poles pj, each of degree dj.

Returning now to thé system of Figure 1., we may wrile

KG(S){R(S;'— C(s)} = C(9)

This equation may be anlved for the closed-loop transfer function

KG()

i

RG )

\
\
|
k

+ KGa(s)

(3)

(k)
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From this relation it can be seen that the zeros of the cli:sed-loop
system are the same as those of the open=loop system. The poles of
the closed-loop system, however, differ from those of the open Lloop
system, and are functions of the gain constant K. The closed=-loop
poles are solutions of the characteristic equation:

| + KG(6) = 0 ()

or

|
Gils)=z == (6)
K
We now define the locus of all solutions of Equation 6, for rezl
K, -00(K(+® , as the root locus of the open-loop function G(s).
In most of the literature, K is usually restricted to be positive,

so that our definition is more general than usual.

From Equation 6. we can see that when K=0, the closed-locp poles
coincide with the open~loop poles; and that as K becomes larre in
magnitude, the closed-leop poles approach the zeros of the cpen-loop
system. Thus, the root locus starts at the poles of G(s) for K=0 and

proceeds to the zeros of G(s) as K~>»a0 .

We may equivalenily define the root locus as all those values of s
for which G(8) is real. Thus alternate conditions for a point to be

on the root-locus is that it satisfy the eguations

(7

dm ) G} =0



or ARG{G(s)§= 0,fRT (8)

K= \2,3,

J G

From this it is clear that if we consider G(s) to be a mapping
from the s-plane to the G-plane, then the root locus as defined
above is the imape in the s-plane of the entire real axis in the
G-plane, This formulation gives the locus independently of the
parameter K, and will be useful in our subsequent investigation of

the algebraic equations of root loci.

10,



3. INTERPRETATIONS OF THE ROOT LOCUS PROBLEM

It is well known that if F(s) is an analytic function of the

complex variable s=c+jw in a region, and if
F(e+jw) = Blr) © JR(mw) (9)

then the functions Frand F; are harmonic in that region and the

curves (10)
F\_(c"m) = Const.

Fl(c'; w) = eowst.

are a set of mutbually orthogonal lines., In particular we may choose
Els) = An G () (11)

so that

LG = InlGE\ gF\RG [G(Sﬂ (12)

The lines of constant phase and constant magnitude of G(s) in the

s-plane are therefore a set of mutually orthogonal lines which represent
the solution of Laplace's Equation in the plane with certain boundary
conditions. Since the root loci in which we are interested are just

the 00 and 1800 phase lines in the solution of this potential problem, we
may consider the root locus plot as having come about in the solution

of some appropriate physical problem.



4
Evanag shows the analogy between flux plots and root locus plots.
This analogy is made evident if we substitute the factored form of G(s)
frop Equation 2. into Equation 12. and decompose the logarithm of the

product as followst

2 P

: (13)

InGe = Z_\";/Cn\s—g;\\—— Z:daLm\s-ﬁ_\ 13
3= 37N

2 9
ci| YmaRaszy - ] dyeee G

5 =

The condition that defines the root locus is

In G = HnlKl £ s R=abm7

Thus, on the locus we have

%“SQ’"\S‘QS\ = E&sh\s‘ﬂ\ = —DnlKl (15)
3 3
c B
L ny ARGLs-3) — QZ‘ 5 ARe(s-py= tRT
&

12.



13.

In order to produce analogous equations, we have only to consider
infinite line charges perpendicular to the s-plane at each of the
points where G(s) has a pole or a zero. To each line charge we assign
a charge +n& or -dj depending on whether it corresponds to a zero or

pole. Then at any point s in the plane, the potential is given by

2z P
Potential = Z\Al'@n"l S";é\ - Z 33%\6-1"‘,\ 4+ Cownst. (16)
I )=

By a comparison of this equation with Equation 15. It is evident that
1ines of constant potential in this system are anslogous to lines of
constant magnitude of G(s). Similarly, the field lines in this system
are perpendicular to the potential lines and are analogous to the lines
of constant phase of G(s). Rezall suggests the possibility of pursuing
the analogy with potential problems further, and provides references

to earlier work on potential curves.

Tsienzn suzgests as another physical interpretation of Equation 15,
the complex potentisl function of & two-dimensional irrotetional flow
of a perfectly incompressible fluid. In this enalogy, sourees of
appropriate strengﬁhs sre placed at tﬁe poles of G(g) and sinks of

appropriate strengths are placed at the zeros of G(s).

Perhaps the most easily grasped and hence the most valuable
interpretation of the root locus plot is that based on the contour

map of G(s). If we construct a surface whose height above the s=plane



is the magnitude of G(s), then the level curves are curves of

congtant masnitude of G(s), and the orthogonal tréjactories of these
curves are the curves of constant phase of G{s)., These latter curves
represent streamlines, which are the paths that an inertialess fluid
would take on the surface in a gravity field. Figure 2. shows such

a surface for a G(s) which has two poles., The streamline corresponding
to the 180°- phase line of G(s) is shown., This is then the part of the

root locus corresponding to a positive gzin censtent,

Jawor® has actually constructed such contours with rubber
membrenes and found root loci by laying thin flexible chains on these
surfaces, The potential analogy has also been followed through, and
theoretically, any of the physical interpretations may be used to find
root loci. We shall eccme back to some of these physical anzlogies

when we interpret the critical points of G(s).

1.
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root locus ' (180°)

Figure 2. Perspective and top view of a contour map which shows
the root locus for two poles as a stresmline,
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Lo WELL KNOWN THE%_S_ USEFUL IN CONSTRUCTING ROOT LOCI

In this section we shall state the various well known theorems
which are commonly used to facilitate the sketching of root locl.
Proofs of these can be found in textbeooks such as Truxallg, Savantls,
etc., and we shall dwell only upon those pointe which are not generally
treated. Our inclusion of the 0%-locus in the root locus, for instance,

makes some of the material more general.

The general graphical procedure for constructing root loci is
based on Equations 15. By trial and error a point is found which
fulfills the condition on the angle of G(s), the second line of
Equations 15. The root locus may then be calibrated in terms of
gain by using the first condition of Equaticas 15, A plastie device
called the Spirule* facilitstes the rapid addition of angles and
multinlication of lengths. The desirsner has the following theorems

available to form a preliminary sketch:

Theorem 1. The real axis 1s always part of the root locus.
Segments between simple zeros and poles on the real axis are
alternately on the 0°-locus and the 180%-locus, with the serment

that terminates at +e0 on the 0%=locus,

Theoren 7. The root locus is symmetrical with respect to the real

axis.

# A patented device, available from The Spirule Company, 9728
Fl Venado, Whittier, Califcrnia,
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Theorem 3. The angle of departure @, of the root locus from the

ith pole is given by

= =
= ' ~R Yy ~ ARG 6-8.) ¥
didh = LriAREGg) - L dREE-F) £ A
i A% a7
1,3,5, - FoR \89'-Locvs
0,2, 4, FeR d-1oevs

Similarly for the angle of arrival of the root locus at a zero.

Theoren L. If N(s) and D(s) are not of the same degrees that is,
if n ¥ d, then the loci approach asymptotes for large 8 which are
at angles

¢5 Q& =6 For o°-Locus (18)
@ \n-d|

I

1)

G =+ 180% @360
= lh-d |

For IBOOALocns

k=0,1,2,¢00
These asymptotes radicte from the asymptotic cenbert

P z
AR = Z“ic'?s
3% 5=\

(19)
g =
® w=-d

1

If N(s) and D(s) are of the same degree, then DY Urz* the asymptotic
center and the asymptotic angles are given by the sbove equations, but

with D(g)=N(s) replacing D(s).



Theorem 5. If the difference in degree of N(s) and D(e) is greater
than 13 tnat is if d—h)l then the center of pravity of the closed-

*
loop poles, 01 , 1s invariant with K and is egual to the center of

-
gravity of the open-loop poles, G, . That is,
¥ = oo d-ny2 i
G-cu - =1 B ?
If dn=l, then the center of gravity chances with K and is given by:
. e B
cL oL n
(21)

These equations, and others that relste to the product of the loceci,

are useful in calibratine the locus with respect to K, and are

19 2k
discussed by Truxal and Yeh,

18,



Se LOCI WHICH CAN BE CONSTRUCTED IMMEDIATELY

Although we shall investigate the reneral &lrebralc form of the
rcot loel in & later section, it will be convenlient now to find
explicitly certain loei which can be constructed immediately. These
will be used often in the application of Theorem 8., of the following

section.

To find the equations of the circular loci; we shell use the

method succested by Eounation 7.; that is, we shall set

) (22)
bé,n{ s =0
This procedure was sucgested in a note by Lass7 « Consider, for
exanple, the poleezerc configuration shown in Figure 3.
3
SN \/ \/
= [ N o~
d\ d& Oéﬁ
Ficure 3. a pole-zero conficurstion that leads to a circular
root locus.
for which
(23)

(S"d'l)
(5 '&z\ (5"’0‘('3)

G(s) =

19,



20,

Instead of setting the imsginary part of G(s) to zero, we may more

conveniently set the imaginary part of its reciprocal to zero., Thus

|
0

%iég"' LQ””S (g0 - &) (4 jw -3 ) %

s (2k)
Rationalizing,
Jm{ (9= 40 = )g- 0= g S
ey + w?
After multiplying out, we have
w[ o - 20, y ol oy 2ol oy =y o3 *w»] = B (26)

The factor of W gives the real axis as part of the locus. The rest

of the locus is, completing the square,

. ' (27)
(-4 1w = CRLOICEEN

This is a circle with center at «,, and a radius which is the geomeiric
mean of the distances from the zero to the poles., If the zero lies
between the two poles, the right member of Equation 27. is negative

and there is no root locus off the real axis.



For one pole, one zero, or one pole and one zero, there is no
locus off the real axis. Fog two poles, the locus consists of the
real axis and a line 5'=‘constant through the center of gravity of
these poles. This locus can be considersc as 2 cirele with an infinite
radius, produced by moving the zero in Figure 3. to infinity. In
Fisure L. all the lower order loci that are straight lines or circles
are shown. Enough information is provided so that each locus can be

drawn with a straicsht edge and a compass.

Another locus which can be drawn immediately is that for a
multiple pole. In this case the locus coincides with the asymptotes.

Yeheh, and Lorens and Titsworth8 discuss this situation.
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6., FURTHER WORK ON THE GENERAL PROPERTIES OF ROOT LOCI

We shall turn now tc some less well known properties of root loci.

Our notation will be that of Ten’t 2nd the locus of and open-loop

function with n zeros and d poles will be denoted by T(n,d).
The following theorem is stated by Urel,

Theorem %, T(n,d)=T(d,n). That is, the locus is unchanged by the

interchange of the open-loop poles and zeros.
Proof: The locus is defined by

(28)

f,éw{ ce{ =0

which is equivalent to
(29)

e { il = ©

because G(s) is real when and only whenéigﬁs real, At any point

on the locus the open-loop function has a magnitude which is the
reciprocal of its former value, so that after the interchange of

poles and zeros K is replaced by'ﬁf. This theorem is useful for
classifying loci, since only half of the possible configurations need
now be considered. Figure L., then, gives all the loci T(0,2), T(2,0),
7(1,2), T(2,1), and T(2,2). T(0,1), T(1,0), and T(1,1) are Just the

real axis, as mentioned above.



l

The next theorem is stated by Evans” and again Yy Urll,

Theoren 7. If the open-loop poles are replaced by the clogsed=-lcop
poles for some given value of gzin, sy K = Ky then the root locus
for this new system is the same as that for the original system, ana

the locus is recalibrsted with ihe new gain

K'= kK=K (30)

Proof: The root locus for the original system is given by

(31)
|+ KG =0
The new open-loop system function is
G
\+ K G (32)
and the root locus for this new system is given by
c (33)
o= =R
|+ I+ K6

This cen be rewritten as

| +(K+K')e=0 (3k)

2L,
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which, as K varies from -0 tp +% , generates the same locus

as the original open-locp function. It is evident from a comparison
of Equations 31l. and 3k. that if a point on the original locus
corregspénded to a gain of K, this poinv on tne new locus corresponds

now to a gain K! = K%y «

Evansh introduces this idea to investigate the effect of gain
variationa »n the closed=loop pole positions, but the theorem is salso
useful in classifying loci. If one has found the root locus for a
particular conficuration, for example, then one knows immediately
other configurations that will have the same locus. For example,
if K is increased in a positive direction in Figure L. (b), the
poles will move together, coalesce to a double pole at the point
where the circle intersects the real axis; and then break away
from the real axis, moving along the circle, If the gain is fixed
at any of these values, and the resultant pole patiern taken as an
open-lnop function, the root locus will remain the same. From this

may be deduced the locus in Figure L. (c).

The next theorem is apparently originel with the author, and
enables the designer to use his knowledcre of the simple loci like

those in Figure L. when sketching higher order loci.

Theorem 8, Let T, be the root locus associated with G, , and let

1
T, be the locus associated with G,. Then intersections of T, and T,
are on the root locus ‘assoclated with Gy .Cp. Furthermore, the locus

for G, .G, cannot cross the remaining parts of Ty and Ts.

Proof: At any peint which is on both Tl and Top, G1 and G2 are both



2.

real, and hence so 1is Gl. GZ’ At a point on Ty and not on T,, G
is real and G2 is not; so that GI.G2 is not real and this point is
not on the root locus for Gl.GQ. Similarly for a point on T, and not

on Tl'

This theorem is most useful when the total open-loop function can
be broken up into the product of two other functions whose loeci can
be drawn immediately. Then the designer knows that the final loci

can cross these loci only at their intersectlons.

In 8ection 9. it is shown that the loci T(0,3) and T(3,0) are
hyperbolas, and their equations may be found in a manner similar to
those of the circular loci., However Theorem 8. now gives us a simple
procedure for constructing these hyperbelas. Consider the three-
pole open-loop function shown in Figure 5. (a). Now introduce a
pole and zero which coincide, as in (b), so that the open=loop
function and the locus is unchanged. We may now take the two real
poles as the Gl of Theorem 8., and the zero together with the
imaginary pair of poles as G,. As shown in (), T; is a straight
line and T? is a circle that is easily traced. The intersections of
Tl and T2 cive two points on the final locus T(0,3). By intro-
ducing another pole-zero pair along the real axis, another pair of
points may be found, and sc on. In this way the loci T(0,3) and
T(3,0) can be quickly sketched with a straight edge and a compass,

as shown in Figure 5. (d). These loci may in turn be used to sketch

higher order loei.



T |

i
(a) The open-loop function 2
i“
X
X— =
X
(b) The addition of a coincident pole and zerc does nnt chanre
the locus.
G

p 4
®

(¢) The composite loci, T(0,2) and T(1,2).

S
N

™

(d) The final locus constructed as above,

Fipure 5. A pgraphical procedure for constructing T(0,3) and T(3,0).

27,
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Figures £. and 7. 1llustrate a situation where a few simple
applicetions of Theorem 8, provide enourh information to sketch the
general shspe of the locus. The open-loop function is one that micht
have been encountered in a compensated transistor amplifier. The
asymptotes are drawn firstj; then the zercs and poles can be divided
into various groups for which simple loci can be drawn. For instance,
in Ficure £, the zero at =3 can be associated with the double pole at
-5 and a circle drawn, The locus for the remainin. iwo poles ls

a straight line through =3.5, and the intersections of these two loci
give two points on the final locus. Moreover, this circle and line
represent barriers for the final locus. Lnother circle-=line
combination is possible, and this gives two more points on the locus.
When the zero is associated with other pairs of poles, it lies
between them and produces no locus off the real axis, and the lines
for the remaining two poles represent barriers lo the locus. In
Ficure 7., the zero is at -li.5, the two cireles do nob intersect
their corresponding lines, and the four lines and two circles all
represent barriers to the locus. Here it can be quickly seen that
the part of the locus leaving the double pole must come back to meet

the real axis apain.

It becomes apparent in this éxample vhat it is usually to the
advantare of the designer to keép track of which parts of the root
i

locus are the 0°-phase lianes and which zre the 180°%phase lines.

The 0°~locus and the l80"-lccusics£‘n meet only at a zerg, pole, ora
§
L

muliiple point on the locus, an§ this restriction can be of con-
f !

siderable value in determining the behavior of some loci. For
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180°-1ocus
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0%-locus
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s(s+5F (5+1)

Figure6, The locus T(1,L) for the open-loop function
G =

sketched with the aid of Theoram 8,



0%-locus
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30,

180°-
locus

o R

Figure 7. The locus T(1,4) for the open-loop function

G(S):

5+ 45)

S(s+5) (s+7)

sketched with the aid of Theorem 8,



instance, in Figure 7., the part of the locus that leaves
the double pole can come back to meet the real axis only
on that part of the real axis that corresponds to the 180°-locus.

When a point on the root locus is found by Theorem 8.,
the part of the locus that the point iz on can be found by
determining which parts of the T; and T2 loci the point is ono
If a point is on the 0%-locus of Ty and the 180°-locus of Tps
for instance, the point must be on the 180°-locus of Gy °CGp .
On the other hand, if the point is on the 180%-locus of both

Ti and Ty, 1t is on the 0%-locus of Gy+Gpj and 80 one



32,

7. MULTIPLE POINTS ON THE ROOT LOCUS

In order that we may further investigate the general siructure
of root loci, we shall now concern oursclves with multiple points on
the locus; = points on the locus where the closed-loop system has
repeated poles. The following srgument is similar to that presented

3
by Bower and Schultheiss .

Consider that the point Gy -1/Ko on the real axis of the G-plane
is mapped into the point sy on the root locus in the s-plane, as

shown in Figure 8.

Sp-AE
G-plane So s-plane
Gy So=A8
;é_ﬂco?b_a_ I T

Figure 8. An infinitesmal part of the root locus plot in the
G-plane and the s=plane.

Tf we assume that G(s) is analytic in the vicinity of the point in

question, we may represent G(s) by a power series as follows:

ro- s B, -

where MG = G - G, corresponds to Ag = g - g, in the vicinity of the

point O, If we further assume that

dé
Es*L% E (36)
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then we may by taking As small enough, make AG as close to the

first term of Equation 35. as we wish. We shall write this as

. ab
NG = 4| B7 (37)

In order for the point s to remain on the root locus, G must remain

rezly but AG= —JE can be positive or negaetive. Thus b3 1s

hot = g
/dsL
(38)
This corresponds to an ordinary point on the root locus; the
infinitesmal line segment (G, = AG, Gg* AG) maps into the
infinitesmal segment on the root locus (sp= AS, 8p* hs), where the
d6
angle of As is determined by Jg|
L+ ]
dG
I T 5 =0 , however, the situation is different. By
Equation 35., we can see that for small As, AG 1s now given by
T
=
. 1_d6 e
= et e S (39)
If K 4s now varied about its center value KD, we have
_* AG
AS = (Lo)

1 d'6
2 d5 |,



7G|
= &t dstl,
(L)
when AG<0

Thus, the locus enters the point from two opposite directions and
leaves perpendicular to these directions as shown ia Figure 9.

This behavior

Figure 9. The behavior of the root locus in the vieinity of
a first order multiple point,.
can be observed at the intersection of the circular loci with the

real axis. In general, we have:

Theorem 9. At a point s, on the root locus for which the first r
derivatives of G(s) vanish and for which G(s) not infinite, the
closed-loop function has a pole of order r+l « In the vicinity of
Sys the root locus consists of p+1 straight lines which meet at

equal angles. Furthermore, the branches of the locus alternately enter

and leave.



The restriction that G(sﬁ) be different from infinity is necessitated

by the assumpiion that G(s) be analytic at the point in question. The
|

result is valid at a zeéro, however, and since the loecus forz;@jis the

same as that for G, the above result is valid at a pole of G after alf:

If G(s) has a zero of order p at 8,5 1t may be written

6= (5-5) FO®

(42)
where
Fls)y# 0,
then
)= v(5-5) FO + (§-S) F&
= {s-sY [‘r £ +(55,)F () .

so that G'(s) has a zero at 8, of degree one lower than that of G(s).
Thus, if G(s) has a zero of order r at 85y the first  p-1 derivatives
of G(s) vanish at 8,4+ and the locus in the vicinity of s, will consist
of r concurrent straisht lines. The locus will behave 8imilarly at

a multiple pole of G(s), bat of course, no derivatives will exist

at such & point,

*The behavior of the root locus in the vicinity of a pole or a zero of
G(s) is also given by Theorem 3.
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The zeros of O (8) can be divided into tws classest those due to
repeated zeros of G(s) and those for which G(s) is different from zero.

This can be seen by writing

c'e) = 6 SL = G(’)[adr?g”'em]

G(s) (k)
From this we can see that the zeros of G'(s) which are not zeros of
G(s) must satisfy the equation
_.Cim[f/mG(S)] = 0
as (L5)
Such points are called critical points or saddle points of G(s).
With the substitution of the product form for G(s), Equation LS.
becomes
4 z = %4 d
. oAy S
8 fnGt =) 3 Lee =0 (46)
5 i 3 =
= 3 A 4

This eguation mey be used to find possinle multiple points of the
root loeus., A eritical point of C(s), however, does not necessarily

lie on the root locus of C(s).
From Equation LA. we may deduce the following theoremss

Theorem 10. If G(s) has a pole or a zero at infinity; that is, 1f
n#d, then the maximum number of saddle points that can lie on the
root locus for G(s) is one less than the number of distinet finite
poles plus the number of distinct finite zeros of &(s). That is, if

S 1is the number of saddle points (counting multiplicities) on the
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root locus,

a L Pz - (L7

Proof: The coefficlient of aZ+P-1 when fractions are cleared in
Equation Lé. will be
Zz e
=S d, = -0 F0 (18)
L% = 29
AT P\

éherefore, FEquation L5. will be of degree P+2-1, and G(a) will

have P+Z-1 finite critical points, any number of which may be saddle
points on the root locus. Note that Equation Lé. may have multiple
roots, in which case the root locus may heve a multiple saddle point.
The behavior of the root locus at 2 multiple saddle point is ziven by
Theorem 9., since a saddle point of order ¥ corresponds to the firstr

derivativea of G vanishing.

Theorem 11, If G(s) has neither a pole nor a zero at infinity, but
P the center of gravity of the poles does not colincide with the

center of sravity of the zeros; that is, if n =d , but

7 3 (L9)
Eh} i F gdb P,s
< :

then

(50)
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Proof: By the above proof, the coefficient of 8P+Z'1 will vanish

in the equation whose solutions give the critical points of G(s), and
the desree of this equation will be of degree P*Z-2 or less. Moreover,
if the coefficient of 8F &=2 in Ejuatisn Lf. is computed, it is found

to be

Z:'“sl3

%:F\q-p
..‘b

Thus, if this coefficient does not vanish, G(s) has P+2-2 finite
eritical points, and the proof is complete. In the case of Theorem 11,
G(;) aan be considered to have a saddle point at infinity. If the
center of gravity of the poles and zeros do coincide, then G(s) has at
lesst two seddle points at infinity, and a more complicated condition

determines the number of finite critical points of a(s)

We shall now take up the interpretation of the preceding theorems
in terme of the contour map of G{s). At a single order saddle point
of (s}, the streamline enters the point from two opposite directions
and lesves perpendicular to these cdirections. This is illustrated in
Fipure 2. Thus, the contour map in the vieinity of such a peint will

be saddle-shaped, whence the name "saddle point". The following

argument, in slightly different terms, 1s presented by James C. Maxwelllo

in an :ruirle called "On Hills and Dales".

(51)
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Consider that we have a contour map with P distinct finite poles,
Z distinct finite zeros, and a pole or a zero at infinity. Let us
start with a plane resting on the |G| =0 level and 1ift it slightly.
We shall now have a small level curve surrounding each zero (including
the zero at infinity, if there is one). As the plane is 1lifted
gradually there are two ways zn which a saddle point will be formed,

leading to two types of saddle points:

Type 1. (Bar) A bar will be formed when two of the above regions

of depression merge. Such a situation is illustrated in Figure 10.

S
(a) (b)

Figure 10, (2) The level curves at the formation of a bar.
(b) The high and low areas around the bar,
Type 2. (Pass) A pass will be formed when two arms from one region
of depression meet to isolate a region of high ground. For a rational
function this region of high ground must lead to a pole. Bigure 11.

shows this situation.



(a) (b)

Figure 11. (a) The level curves at the formation of a pass.
(b) The high and low areas around the pass.

Suppose first that we have a pole at infinity. Then as the plane
i€ 1ifted to infinity, there will be formed Z-l bars and P passes.
If there is a zero at infinity, there will be formed Z bars and P-1

passes, Thus, there will be in all P+Z-l finite saddle pointsy in

agreement with Theorem 10.

The distinction between a bar and a pass is not always clear,

Consider, for example the function:

Sy IEE) (52)

s

Thie function has saddle points given by

y Vo \ _L =0
- fus = T YIS =

Lo.



or

(5L)

Thus, G(s) has saddle points at tﬁ§°¢ , and the contour map is
similar to that shown in Figure 12, If one of these two saddle points
is considered to have been formed slightly before the other as the
plane is lifted, the first becomes a bar and the second a pass. Note
that in this case the saddle points do not lie on the root locus, but
1ie rather on the 90°-locus and are at the intersections of the circle

and the line that are this locus.

Another interpetation of saddle points is that of Gauss as
presented in Walsh?? and Mhrdeng. Here the "force field" of a
rational function is constructed by placing a poilnt mass +nj at
each zero and a point mass -dJ at each pole. Then if the force at
any point due to a mass 1is inversely proportional to the distance to
the mass and proportional to the size of the mass, the force at any

point is given by

i 0y f ds (55)
FORCE OC - '5'1.-3‘ ' e Ff;
3'-'\ A=)

This is just the conjugate of Equation L6., so that the condition

that a point be a saddle point is equivalent to the condition that it



yw

P

/
{ .(@

“\-‘

Figure 12. The contour map for the closed-loop funetion

G(S) = (5—-04)5(5*0{)

with the 90°-locus shown.

L2,



be a point of equilibrium in the above force field. This fact is

useful in visualizing the possible locations for critical points.

The force field interpretation is the usual point of departure
for the study of locati i
y ons of critical points. The author has found,
however, that in so far as the root-locus problem is concerned, the
contour map interpretation is also useful. The preceding discussion,

in fact, leads neturally to the following pair of theorems, which seem

to be oripinal with the author.

consecutive
Theorem 12, If the portion of the root locus between twoszeros

(poles) is traced, there must be traversed an odd number of saddle
points, a saddle point being counted only if traversed so as to

subtend sn angle which is an integral multiple of 360°/(r+l) at an
r* order saddle point. Besides this condition the saddle points

are counted without regard to thelr multiplicities,

Proof: Consider a section of a root locus between two zeros, On this
a(s) = 4 ‘G(‘B)\ is a rezl continuous function of Wistance along the
locus, that does not change sign or become infinite, Therefore on the
locus between two zeros, G(s) must have an odd number of peaks and
troughs at which dG(s)/ds changes sign. These peaks and troughs
correspond to saddle points traversed in the manner stated in the
theorem., It is also apparent that if we travel along a line of

steepest descent (or ascent) and encounter a minimum (or meximum) height,
then we must be at a saddle point. To prove the theorem for the

locus between two poles, we need just consider l/G(s), which has the

same locus as C(s).

h3.



The proof of the following theorem 1s parallel to the above proof .

Theorem 13. If the portion of the root locus between a zero and a pole
is traced, there must be traversed an even (0 included) number of
saddle points, a saddle point being counted only if traversed so as

to subtend an angle which is an integral multiple of 160°/+1) at an
rth order saddle point. As before, the saddle poinis are counted

without regard to their multiplicities.

Another way of determining when saddle points are counted is to
note the direction of increasing gain on the branches of the root
locus. We count a saddle point only if the direction of increasing
gain on our path changes as we traverse the saddle point. Consider,
for example, the root locus at a second order saddle point as shown in

Figure 13.

\\ s
,/ N
\\

Figure 13. A second order saddle point.

The locus consiste of three lines meeting with 60° between them,
The poles and zeros on the branches must alternate if there are no

other saddle points on the portions cf the branches shown.



8. THE EQUATIONS OF ROOT LOCI IN POLAR COORDINATES

We turn now %o findiﬁg the general equations of root loci, in
polar coordinates in this section and in Cartesian coordinates in the
next section. We might be tempted to start with the factored form of
the open=loop function. Experience has shown, however, that since the
terms in the equations will be symmetric functions of the open=loop roots,
1% will more convenient to write the root loci equations in terms of
the coefficients in N(s) and D(s). These coefficients are them=

16

selves symmetric functions of the roots , and the resultant equations

will be more concise and easier to use.

G(g) can be written in polar form by replacing s by Red® Thus, we

have
- @. . & ke (56)
;@ﬁg Z;GJAR e .
G 3 2 Sl |
]
\%£ e ZZ: \Dlygﬂ'éla

In order that the numbering scheme be apparent in the follewing
expressions, we shall write a_ and bd instead of unity. Ration-
alizing Equation 56, by multiplying by the conjugate of the

denominator:

aadh YL uet ) Z%W 15

2=0 — 20

= d TR [ 2 L -\18 ) L .\06 >
( LR € )(D’QR c ) D&\z ¢}
{=z0

L=zo =

(57)
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Lé.

We may now set the imaginary part of G(s) to zero as in Equation 6.

to obtain the equation of the root locus:

n 4 Iy)
Z L (g o, R aim (k-£)8 =0
hro L= (58)

The terms in the left member of this equstion mey be arrsnged in a

matrix with n+l rows and d+l1 columns as shown in Figure 14, (a).

Since the real axis will always be part of the locus, Rsin® will
always be a factor of Equation 58. The equation for the root locus

mey then be rewritten:

d Bt [ (59)
j/;p;a,ﬁ\oﬁl !:_m@ej@e =0

Since the locus will have conjugate symmetry, thils expression must
be even in 8, Therefore, there can be no terms involving sin® to an
odd power, and the equation must be algebraic in cos® and R. Ve

may in fact recognize the trigonometric functions in Equation 5%

as Chebyshev polynomials of the second kind as defined in the tables

1
of Chebyshev polynomials issued by the National Bureau of Standards 3:

A 1O
Up (wo®) = =5
(60)



del coJI‘L:t-nms
= A
O 4RO g pR5m10 o bRowE ~AbRaido -
& b S
+ @ bR O — b RamO ~GbRam16 ~b,R 43
2 * ¢
+ 0 BRuA26 iy B amd 0 —,b, Rau® -, 1o, % 4020 Jils
! (a) rd L
d*l columns
/ B, ol S 5 SN e
* 3
0 0%, —0,% RU(@6)-4 b, RUE) 0,0, R0 (e26)
0 L 3 4
+Gyb, UeR g RU@E)-4pROMeE) -
: Y o RUGe) :
£\, RY[e) 400R 0 —0bR —4bRY x
-, : N
Figure 1k, (a) A matrix, the sum of whose terms set equal to
zerogives the root locus,

(b) The same matrix with Rsin® factored out and in
terms of Chebyshev polynomials of the first kind.

L7,
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Thus the locus may be written in terms of these polynomials as

b @ Rl
)] Gyl  (o00) =0
k=0 KR & (f1)

Where

U =0

=

The corresponding matrix is shown if Figure 1L, (b). The above
reference gives explicitly the first twelve polynomials Un(x), and
will be convenient to use for writing the explicit equations of the
root loci for higher order systems. Un(x) is of degree n in x and
contains only even powers of x if n is even, and only odd powers of

x if n is odd.

These tables of the National Bureau of Standardst3 might also be
useful in numerical computations. For instance, if cos@ is prescribed,
the U_ can be looked up in tables, and Equation €1, will tecume, in
genersl, a polynomizl in R of degree n+d-l. The solutions of this
ecuation locste points on the locus along the rsdius vector at the
preseribed angle, Such a technique might be employed in situations
where the damping ratio, which is directly dependent on the angle 8,

is a design criterion;l’12.

We shall now illustrste the preceding by finding the locus for the

function

L8.



T (62)

Which has a double pole st the origin and.four zeros on the unit
cirele ot £30° and 2600 . We note first that the unit circle is the

root locus for the functions

~

., D -_iGOO
G (s) = g“?}w )6-€)
= (63)

and = _
- }s-€™)
S

G () =

whose product is G(s). Therefore, by Theorem 8., the unit circle must
also be part of the locus for G{s). By Theorem k., the asymptotie

certer will be =t

(6L)
— -;-.(G 4!) = |,3CC

and the asymptote will be perpendicular to the real axis. There will
be two saddle points at : 1, corresponding to the intersection of the

real axis with the unit circle. To find the other saddle points; we



may employ Egquation Lé.:

; g wn ot ¥ ot = 2 @0
s- e¥? 5o G G B g 5 (65)
Multiplying out and factoring, we get
2 1493 =
TANE T o s) =0 (66)

By Theorem 10. there can be at most four saddle points on the locus,
80 that by Theorem 1?, there must be one saddle point bebtween each

of the two complex zeros en the root locus, Thus is verified Ly
Eemation 6., which gives these saddle points as lying on the unit
circle with projections on the real axis midway between the projections

of the zeros. Finally, G(s) may be expanded to find the a, and b, 1

¢
¢t (@S 204 B)s- (@ S

GE = e g (67)

and the equetiocn of the locus written from the matrix in Figure 1l, (b).
The only non-zero coefficient in the denominator is b;l, and the

lcecus is

R 20,8 we b =0
20, Roue® + G R - &R -24,R Coo ¥ = (68)
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When the ai are substituted into this equation, and the unit circle

factored out, we have

L AL —
R(R-\)(QLmeﬁt‘f ¥ e08) = 0 (65)

The factor of R is due to the fact that besides the real axls there
is another branch of the locus passing through the origin, because

of the double pole.

Thus, besides the real axis, and the unit circle, we have the locusi

(70)

It is interesting to note that if R is replaced by 1/R , and ©

by =8, this locus is unchanged, so that the root locus for G(s)

is 4invariant under inversion with respect to the unit circle. This
might have been expected, since the inversion of the oripinal open
loop function G(s) 4is in this case just 1/G{s) » which has the same
root locus as G(s). The locus of Equation 70. is most conveniently

olotted by solving for Rcos® = ¢ as a function of Ri

Q" u.E)- R
G—’:ng’]“_gt 32 o 3

0
gl @

(71)

The entire root locus is shown in Figure 15,

51,



52,

Figure 15, The root locus
for the open-loop function

e - e Xs- e ) (s-&¥°)
S'l-

GG)=
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We have thus pgiven a procedure for findins- the equation of any
root locus in polar coordinates. Thus far the probliem of calibrating
this curve in terms of K has been ignored, and we shall postpone

have

this problem further, to the time when wepalso found the Cartesian

equations for the loeci,



9. THE EQUATIONS OF ROOT LOCI IN CARTESIAN COORDINATES

To find the root loci equations in terms of Sapd W , we shall
use an idea that was surrested by Bendrikov and Teodorchik2 in a
Russian journal, but which seems not to have been carried out. The

idea is that of expanding the N(s) and D(s) in a power series in &U .

N(s) is analytic everywhere in the s-plane, and can indeed be
expanded in a Taylor series about any O with an infinite radius of

convergence to obtain the identity:

(n)

[t @, ... AN @)
M) = N s g T ) S e 4, W (72)

Grouping the real and imeginary components of this expression, we

have

!
N(‘) 5 N (5) e
N(T-&(yﬂ) = [_N(B‘)-w N{ﬂ—\' 0-«} ﬁ"é E- = ,--é-"i""""‘* l (?3)

When this is also done for D(s), G(s) may be written:

" o[ B g0 (1)
G(s)={'?"'°')‘“"£?€£)* e f’ﬁgm N0,
(- Z0 ] [ 20T, ]

Multiplyine by the conjugate of the denominator, and setting the
imaginary part equal to zero, as before, we have as the equation of
the root locuss

o (3@ 0@, . | [ve e, oo o6 | =
(- | - B - a2 | =

o

She



We sha21l now collect terms in like powers of W 2,

ol 1! {? @l

) ] (L i " " ! 2
[ NE) Bl N D_w] i w{ﬂf‘i‘-’ D) _NERW V) o) Ne) 1_@1

o 3. . TRl e TRl
v ] \Y I W Ht ] iy ! y (?6)
Al MDey NED, N@)DE)_ NG DI, Neis)  Nlo) Dee)
] e SRS I 8l e Ay — ==
g 5 o 2 3t g 2l 4 | ' oo!
u—wbi - L] . -:: O

The coefficients of powers of «J) in this equation will be polynomials
in 6" , and it will be convenient to introduce the following notation

for these polynomlialss

(-9

R )
v N (@ D)
Qe = Z:(") v, (RN (77

yo

The root locus is then

\
Q

Qo) - w Qo) +w* Qe ~ (78)

The equation of the root locus for any rational function may be
written in the form of Equation 78., so that it will be desirable

to learn as much about the ¢ -polynomials as possible.
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Let us first consider Ql(d'). Writine the first two terms of

Q]_(‘T), we have

Q@ = NEDE - N
h-&d" b a’ La, N )‘l wad-% ( )
= dwm)s + \@-w)( W m}\ bl & "

+ ..

If dfn, §(6) 1s of degree (d*n-1) with a leading coefficient of
(d-n)} Similarly, if d=n, but if an_lfbd_l 5 Ql(e“) is of degree
d+n-2, with a leading coefficient of (an-l'bd-l)' It can be seen
from the first part of Equation 79. that if N(s) or D(s) has a
multiple zero, then Qy(¢™) will have a zero of one lower order at
that point. This accounts for (n-Z) + (d-P) zeros of Q( ). To
find the other roots we need only consider the logarithmic derivative

of G(s), whose zeros are the finite saddle points of G(s):

/ /
dig, ne| . N& D _g (80)
ds &Y, N(S) D)

Every roct of this equation also satisfies the equation

NS T -N (839 =0 (81)

and the finite saddle points are therefore roots of 01(6"). These
account for all the zeros of Ql( ¢ ), because if n¥d, we have P+Z-1
finite seddle points and (n-Z) + (d-P) zeros due to repeated roots of

G(s), makineg a total of n+d-l, as above. If n=d, but an_ljlbd-—l,

56,



there are P+Z-2 finite saddle points which means that Ql(oﬁ) is of
degree n*d-2, as above. In general, il can be seen that the degree of
Qi(ﬁ)f and the numdber of finite saddle points are determined by the
same conditions, so the saddle pocints and multiple zeros and poles of
G(s) will always account for all the zeros of Ql(é'). Thus, Ql(ﬁ‘) has
zeros of appropriate orders at all the finite saddle points of G(s),
whether they are on the root locus or noty; and at the multiple poles

and zeros of C(s). We can now write Ql(ﬁ‘) in factored form. If d¢n,

Q\(O’) — (d""\)(O'- SK\XG"'SK") i (G‘— Sk(“d")) - (82)

Where the 8y maYy be complex and are the zercs of the logarithmic

derivative (seddle points), and the multiple zeros and poles of G(s).

If d=n, but an_lfbd_l:

g

Q= (a:n,,"' \051-.) (G"- Sn.) ( o= \((Md-m) (83)

Higher order saddle points are, of course, represented in Equations 82.

and 83, by hicher order factors.

v
In general, Qr(c') will be of degree d+n¥fe It 1s evident from
Equation 77. that

Qua@= ) (8L)
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Qn""ﬂ 1 { 6) will have two terms:
(n(\)) D B ) D"C )
PN (a*) =k d" L (85)
da@=6) {55 6
or
4 B ~ng '
Quad (@) = 1) X_d“ By a’*"] (86)
or, if d¢ns
" Oy = D -1 (87)
Quan@ = 9 (d-"‘)EG"' d ]
8 4 is thg negative of the sum of the zeros of the numerator, and
bd-l is the negative of the sum of the zeros of denominater; all

the roots being weighted according to thelr mudtiplicity. Thueg, by

Equation 19. we may write that

Qurdn () = )" [@d-w) (- Co) f d#N (88)
and
e d=n
Quadn kd"\ = Q“\)‘A (\DA-\— a‘-. BT a’h-s :’: b<:\-\

Of course, only one of Qn+d and Qn+d-1 will appear in the equation

of the locus, depending on whether n*d or a*d-1 is odd,.
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The lower order loci may now be written in terms of the critical
points with little more effort. The circular loci, T(1,2) and T(2,2)

reduce to

W+ (0 S )0 Sm) =€ (89)

which is obviously the equation of a circle which intersects the

resl axis at s, and 8 .. The locus T(0,3) is

L —
Q@) - w =0 (50)

and

Q, ()= 3(F- Sey) (@7~ Swad
CQ3>L6j = |

(91)

so that the locus T(0,3) is

3= Su) (e =S) —w" =0 (92)

which is the equation of a hyperbola, as was mentioned in Section 6.

The loci T(1,3) and T(0,L) are the only cubic loci, and represent
the next order of complexity after the quadratic loci. For these
loci, QS is zero, and the highest power of # is w2. Thus, any line

o = cwsl. can intersect the locus in at most a pair of points.

Let us consider these cubic loci in detail.
By Equation 78. the T(1,3) locus is of the form

@l —w Qi) =0 (93)



Furthermore,

O! (c-) = 1(0—-— SK\)({" SVLXG-:" SKB)

Q) = =2(=%s) (9L)
Thus, the locus is
W&(F"d‘dﬂ) — (G—-" S\‘\)(G- Su.;)((f—- 5|r.3) =0 (95)
or
wrs - (o= Se (- Sus Y6™ Swd) (96)

(%)

The richt member of this equation must be positive for the locus to
non-real

exist; so that is the s) are all real, theplocus exists for

alternate intervals of the real axis, these intervals having as

end points the s, and the asymptotic center.

Equation 96. suggestza semi-graphical technique for findine this
cubic locus. First the critical points and asymptotic center are
located, and portions of the § -axis for which the locus exists are
determined. A point on the real axis is then chosen and the three
distances from this point to the three critical points are measured.
The product of these three distances is then divided by the distance
to the asymptotic center to give uJ? corresponding to the chosen

value of § .

If all the poles and zeros are real, the loci T(1,3) can be
broken down in two cases: the case when the zero lies outside of

the three poles; and the case when the zero lies between the poles.
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In the first case, by Theorem 12. there are three real critical pointsa:
two between the poles and one between the finite zero and the zero at
infinity. The locus must then be shown in Figure 14, (&), with an

oval on the 0%°-branch, If the zcro lies between two poles, on the

other hand, the locus may heve an oval or may not. The twe possibilities
end the limiting case are sketched in Figure 1f. {b), (c), and {d).

Here Theorem 8. is useful; a circle and three lines can be drawn

which all represent barriers to the locus. Examples of these loci

2l

and some other higher order loci are sketched in Yeh™ , and in

18
chapter 21 of The Handbook of Automatation, Computation and Control .

The other cubic locus, T(0,L), may be found as above, with the

only difference in the result being the sign of one term:

(97)
wz’(o’— G"w) — (G’— Sh)( o= 51‘.:.)(6“- Su3)'¢~ o

This curve is susceptible to the same analysis as that given the
T(1,3) loci. 1In fact, given the critical points and the asymptotic
center, the curve can be found with the seme semi-graphical technique,

except that the locus exists for the complementary segnents of the

2l L

real axis. Some examples of these loci can be found in Yeh Evans ,

; ‘
1

et, al., and will not be given here,

Figure 17. shows a tebulation of the firét fifteeh loci, with

the polynomialsa 1n.f'of decree v reoveceutfu by tne symbol P The
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>
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o

(2) (b)

(e) (a)

Figure 16, The four possifie T(1,3) loci with real poles and zeros.
( Complex pole-zero patterns with these loci can be found
by applying Theorem T.)
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T (0,1) only real axis

Tt only real axis

T(0,2) o= Sq line
T(1,2) o (q-g,,)(r-sgg =0 circle
TR | W (7S S =0 circle
| T3 | w*- 3(6"-5\‘\)(0‘.5,“) - hyperbola
#—Y (1,3) w"@—_(w) " CG'—Sm) (- Skz.)(c"sﬂj): o m cubic ok
T(QJS) PA- -\-PQ_NLA-W4. = U quartic
i
| % A
L1(3,3) Pe + P:Luu S =20 quartie
T(O)Jr) w,'{_o”- \’5;0)_ (G‘-vsg,)(f- Sk 0 - 5&3) =0 cubic

= 4

T(h)iﬂ PA +Pw + W' =0 quartic
- A

T(24) Pg 4 Py’ 4+ R =0 quintic

0 4 P e Bt b=

T(B)A)‘ et AW AWy w =0 sextic
ﬂﬂr-}fi‘) P+ Wy Py o swblzo sextic
T(O,S) \:} b % St =0 quartic

Figure 17. The first fifteen root lociy Pr is 2 polynomial in &

of degree r,




equations of the lower order loci as found above are also given in
this table, Yehgh gives the explicit equations of the lower order
loci, but to the author's knowledge these equations have not before

been expressed in terms of the criticsl polnts, as in the equations

in Figure 17,

It may happen that, under some conditions of symmetry, a locus
decomposes into the product of lower order curves. Consider, for
example, a pole-zero configuration that is symmetric in a line 0= ' .
(We require also that there be an even number of poles and an even
number of zeros exactly on the line = ¢ Y. Then it is clear that
at any point on the line the net phase of the open=loop function
must be some multiple of 180°. Alternatively, we may argue as in
Theorem B. that G(s) is the product of real factors, and hence must
be real., The line §=¢ is then part of the locus, and (0~ ' ) must
be a factor of the equation of the locus. In the next section, we
shall encounter another example of the factoring of higher order

loci into low order factors.

Tt is often of interest to find the intersection of the root locus
with the ‘A_N -axis. Since poles in the right half plane will lead
to unstable behavior of a system, these points represent critical
values of gain, for which the system is on the threshold of stability.

To find these points, we shall let 6=0 in Equation 76. recognizing that

\2)
_DL--(-Q) == @'v (98)

and



w2 haves

(1ob-ab,) (4 b= by 4, b, -G,

¥ B b byl b e s 0, b, o ag ) (99)
- PR :O

The real solutions of this equation will pgive the values of W ab

which the locus crosses the éy’—axis.

We shall now take up the question of determining the gain

constant K at a point on the locus. We may of course calculate the

value of C(s) at the point, and recognize that
- - (100)
= - 00

G(s)

The following simplification, however, has been polnted out by

Sollecito and Requela, and by And&yickl « As in Equation 73. we

may write N(s) as NR"S’J Ny where WNg and Ny are real

polynomials in O and () . We may write D(s) similarly, and

Equation 100. becomes

K= — (101)
NR *-SVJ N-r

K is real, so that the real and the imaginary parts of these

expressions must both be in the proportion-K. Thus

De - ’DI

(102)
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We may now write K in terms of the coefficients in the open~loop

transfer function. First, in terms of ¢ and ¢’ @

-~ " W
_-"f_é_c’:—)-_w"_;%%{).\r w‘.@_.iﬂ__ yiw

o! 4!

K‘—— =3 r n
N{e) 2 N'(e) 4 N (o) e
o z! A

or in terms of the polar cnordinates R and 6

& " Akl
ﬁi‘%ﬂ Coo 0 Zﬁ%‘% 200
(= - k= =- BT
n b L ke
7 Gy kO Z:%R 2.0
&:0 =

This may be rewritben in terms of the Chebyshev polynomials of

the first and second kind13 H

T (08) = ané

s MO

'\J\_\((‘«MQ) = o O
s0 that 4 i d 4
| Zbag T (%00) Zb&@ U (e
e k=1 B

" = - ™

b= = b g-1
2:_&122 T, 0) Z@AQ ()

“w=0

(103)

(10L)

(105)

(106)



Again, tables can facilitate computation for higher order systems.

To find the values of X for polnis on the intersection of the
locus with the Jw -axis, we may substitute =0 in Equation 103.,

or Co@ =0  in Equation 10L. %o obtain

2 &
R O o —byw'+ brw” — -

o
e —
K

2 4
d‘o.a_aw‘.;auw"_.. e a,l,d,}w +Qs|.\)__ .

where « in this eguation is an sppropriste crossover poini, as

in Equation 99. Note that if either N(s) or D(s) is a constant, that

both the numerator and the denominator of the righimost fraction
in Equation 107. vanish, and the first fraction must be used for
calculations.
(O}
N ()
Tt might also be mentioned here that lerms such as ) 1

can be conveniently evaluated numerically by an iterative synthetic

division process.

(107)
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10, THE ROOT LOCI FOR A CLASS OF PHASE SHIFT OSCILLATORS

We have thus treated the general properties of the root loci
for rational transfer functions, and have investicated the ~enersl
form of their equations. We shall now be concerned with the more
spacialized problem of finding the loel for transfer functions
dasrived from certain lterative structures. Putting aside the
practical importance of such gn investigation, we shsll be interested
in studying how the symmetry of the network is reflected in the root

locis

In Figure 18, there is shown the peneralized model that we shall
here consider. The open-lonp network consists of N identical
cascaded symmetrical T-sections, each with a series impedance
z,(s)/2 and a shunt impedance Z,(s). Tnis artificial line is
terminated in an amplifier with a sain of A(-© < A<+ ), which will
be assumed to have an infinite input impedance and a zero output
impedance. The output of the amplifier in series with some
hypothetical input voltege, Vir, is then connected to the input of
the network, forming & closed-loop system, the locus of whose pole

positions as a function of A we wish te find,

23

It is well known that the open=loop transfer function Vq/?o

is given by

| LU—
Vo QHQJh‘“Y

(108)
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| |
Z.fa i, '
AY' e 11\‘_ Io % § =y " I
! 2 |
Vm -V" ZL ?2" T | ,
s i _ :

Figure 18, A generalized phase shift oscillator, consisting
of N identical cascaded symmetrical T-sections and a non-
reciprocal coupling A between the Nth mesh and the OYR mesh.
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where the propagation constant7amﬁg€ is a2 function of s and is

glven by
C/ﬁQ’QVY—“‘ = i = ’L+.
e l*;,\.zl," 3% (109)

We have also introduced the complex variable U= x*aﬂ-. For a
low=-pass R-C structure, which we shall come to consider as basic,

Z.=% and Z?=1/BF so that the variable u is simply related to

a3 &
g as follows:

gCs
U= 1+ "2 (110)
g
or
RC w
= E

(111)

We shall find the root loci in the u-plane, and then consider the

transformations necessary to go to the s-plane for different

structures,



As Weber23 points out, the structure we are dealing with is a
finite lumped constant system for which we can write Kirchoff's
equations in the usual manner, We should expect, therefore, that
the transfer function is a rational function of s. Indeed this is

the case, since the transfer function can be written

‘ ‘ (112)

coﬁil[}chng (& SH 'T7;(Qt+-§§§;)

Ya
v

so that Vn/VO is just the reciprocal of a Chebyshev polynomial in

| ¥ — Z « The N poles of ithe open-loop system will occur when
2%
Q,e@-&v NY =0 (113)

or when

NY= T (ame)E me=o (11)

(115)

uﬁR = 1+J3'Cﬁ¥2 %T+ME) (?M“ )
= N
wm= 0L, "’

8o that the poles lie on the x-axis and are the projections on the

x-axis of unit vectors from the origin at the angles :L”ﬁ:—’—‘} .



We know by Theorems 10, and 12, that there must be exactly N-l

saddle points on the real axis., To find these, we set

2 %)= Gbaam) =9

(116)

or Gﬂ’f | EgJ?”lLl 7:
U R vl el e vl s

______Iﬂ,éﬂﬂﬁég;tl]i = 0
.,C(JNT M Y (117)

The solutions of this equation occur when both

bl vy =0
and Y {%O (118)
or when
e JEEEOMOMLT
K | 7 0, N,an
G
Th
i (120)

]
wihgz o yy ok S By
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The critical points, Xpes lie then on the x-axis at the projections

T, p

of the unit vectors from the origin at the ancles 4é N

he

situation for N= is shown in Figure 19.

The asymptotes for the loci are just tpe extensions of the vectors
whose projections locate the critical poihts. It is evident also, that
when N is even, the poles are evenly symmetric about x=03 and as
discussed before, the line x=0 will be part of the root locus. It
is clear, thém, that the loci must take the general form shown in
Figure 19. For the low-pass R-C structure, the image of the 5“’-axis
in the u=-plane is the line x=1, so tha% when the rightmost branch
of the locus in Figure 19. crosses the line x=1, the phase shift

oscillstor with a low pass RC phase shifter will oscillate.

We shzll now find the algebraic formulas for these loci. The

closed=loop transfer function is

W |
Vin C}ﬁﬂLJQY-— A

(121)

so that the root locus is given by

MNY‘; A (122)

An equation similar to this is encountered in the derivation of the

pole distribution of a Chebyshev filter, and our method of solution
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Figure 19, The root locus for a L section phase shift oscillator
in the u=cosh? plane,




will be similar to that of Seshu and Balsbanianl’.

Let us write ')/-‘—‘0(-*'66 and expand the cosh{N7Y ) in Equation 122.

ool (vt \NB) = ol coots 91 | il & Linl @)

. (123)
= A"‘JO
The solutions of this equation depend on the magnitude of A, and are
coall Mok =1 ‘
e YRVNPS (121)
o NB = A
and
caaliNel = Al
& £ A -

Consider first the case IA‘ £\ + From Equation 12kL.,

=0
Q:#M\A (126)
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u is then given by:

a= b= ol e B (127)

whereupon

(128)

This part of the root locus corresponds to the real axis,

Vhen
A=0, the closed-loop poles are at the criticsl points.

When |A|>| , certain branches leave the real axis, Under this
condition, we have from Equation 125.

1\l
z|-
=
A

(129)
,££ - c>)2-)‘*) 70
- k)g);) . A L0

k even corresponds to the branches that leave the real axis for
positive Ags

and k odd corresponds to the btranches thet leave the



real axis for negative L. We may then find u as sbove:

ool ()@ ) = cm—QoLcm{% 4 6M&M€

(130)

substituting for °<and ‘5 !

zﬂi5=

= Wa_.(;‘;cpmlb‘l) o B bk (o) i

(131)

or

flsz)

I\

r= ol RN o %
4o aidh (e m) i £ x

Q 0)1)4’"“ A>o
} 75 0 b

k is a discrete variable, representing the branch of the root locus
that we are on. If we consider k fixed, we may eliminate the
continuous variable A from these equavions to get the equation of

the locus. We can do this by dividingz each equation by the circular

UL



?ao

function on the right, squaring, and subtracting equations, obtaining:

e 5y 4 .

(133)

Note that kf0, Ny2N.....in this equation, because we divided hy
xﬁm,1L?§ . Thus the root locus consists of K-l hyperbolas inter-
secting the real axis at the critical points given by Equation 120,

We may write the loci in terms of these critical points as

5 2 et - i
K - 4 =) i (134)

-
1; Ve Iﬁ; Xy = oo <7

If we eliminate k from Equations 132, by dividinc by the

hyperbolic functions and adding the equations, we obtain

,K:L ug 2 ‘ (135)

Gl Ewl W) (el )

This equation represents intersections of the root locus with the

contours of constant A, and is valid only for |A|>\ , and only
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for values of (x,y) on the root locus. Thus the points on the root
locus correspending to e value of |AlY| lie on an ellipse given by

Equation 135,

We have found tha¥ for any number of sections in the iterative
structure under consideration, the root locus in the u=1+21(s)/222(s)
plane consists of the hyperbolas of Equation 134, Thus, the symmetry
in the structures has allowed us to decompose the root locus into
quadratic factors. To find the loci in the s-plane, we must map the

curves from the u-plane to the s-plane by means of the transformation

w=14 12.[(.5)/223(5)

(136)
In the more complicated cases, this may be impractical; but we may
find points where the locus ¢rosses the éLJ-axis by transforminc the
4w -axis into the u-plane, and finding the intersections in the
u~plane of the hyperbolas with this image of the dhl—axis.
As noted before, for the low-pass R-C structure whose T-section
is shown in Figure 20, (2), we have
ReC
(137)

7
=
£
e

so that we can obtalin the loci in the s-plene by just shifting .the

/
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o ANV N
e &
= e <
(a)
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o

(b)

Figure 20, (a) A low-pass R-C T-section that may be used in
2 phase shift oscillator.

(b) A high-pass R-C T-section.



hypercolas to the lelt one unit and adjusting the seale, In terms

of the normalize. variable RCs, the .lcci for ihis case are given byt

%
(1+ %) (Re<sy )"

== = (138)
g At TN

{l;}gw,.- A2 0
‘Q\: !_)3) S;,. ALO

To find the intersections of this locus with the fﬂ-axis, set O=0 +to

obtain
g T
(R_Q_w_ )1 - M (139)
‘ ot 4 T
or
RCw = +2 "/&: T — %QL'%) (1L0)
N

To find the gain correspondings Lo these intersections, we may

substitute for y in Equations 132 to obtain:

: c il
A = M{NM(@N (2:’7-",; )} (1k1)
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It is clear from Figure 19. that when A>0a pole moves along the

¢ ~axis to the right and will eventually cross over into the right

half plane. From Equation 132. we can see that this corresponds to

k=0, and that the crossover point corresponds to A=+1, If A L0,

the first crossover point is given by Equation 132, for k=1, so that
the gain required for oscillation in & phase shift oscillator with a

low=pass iterative phase shifting network is

AM -y WENM‘@A§>] (1k2)
and the frequency of oscillation is
W ogep = fé‘g_(;l'@“m(%)) (113)
e T e

In a high-pass R<C structure whose T-section is shown if Figure 20, (b):

BalkS o
U= 1+ 47 (s = Y7 apes (14k)

This is the transformation for the low-pzss case with RCs replaced by
1/RCsy so that the root locus in the RCs-plane for the high-pass
R-C structure is the inversion with respect to the unit circle of

the root locusg for the low-pass structure. The high-pass locus for

82,
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Figure 21. The root locus for & i section high=pass R~C
phase shift oscillater shown as the inversicn with respect
to a unit circle in the RCs plans of the hyperbolic locus
for the low-pass case, (The low-pass locus 1s shown dotted)



N=l 48 shown in Figure 21. This idea of turning the root locus plot
L

"inside out" is mentioned by Evans.

Consider now the arrangement shown in Figure 22, Here the input
terminals of the amplifier with gain A' are connected beilween the
input and output terffﬁ.nals of the ladder network. To find the

transfer function vEﬁin ; we may write

\/N _...__.l....—-—-—-- = VB"A’\J&' "‘Vm
Vg QM-RNY ' ""P\'VS —-VHJ
or
T
Vin N Y N
Coony — |

The closed=loop poles are given by

!

A =
Cﬁda.N 1= Al

or

(145)

(146)

(147)

(1L8)
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—Vu -
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()

Figure 22. Another kind of phase shift oscillator, which has the
same root locus as that shown in Figure 18., except for the
calibration with respeect to gain.



which is the same locus ss the one found sbove, except that A is

replaced by A'/(A'-1)., The new open-loop function is

Vg _ Queldny—1 (119)

so that the new open~loop poles are the same 2s before, but there

are now zeros at every point where the gain A was +1 on the old locus.
On the nther hand, it can be seen from Equation 148, that where there
were zeros on the old locus, there are now points on the new locus’
where A'=1, Figure 23. shows the locus for a low-pass E-C structure
for N=l and for the new connection of the amplifier., This locus is,
of course, the same as that for the old connection, except that it is
recalibrated in terms of gain according to Equation 118, with zeros
where & = | . If the new connection were used for the network whose
locus is shown in Figure 21., there would be a 3rd order saddle point
at the origin, corresponding to a gain of +1, Thus the connection
shown in Ficure 22. leads to systems where a high order saddle point

appears on the root locus,

When L-C T-sections sre used, or when resonatine arms are used
in the T-sections, the transformation represented by Equation 136,
becomes complicated. The author has not attempted to analyse how the
hyperbolas in the u-plane behave under these transformations. Suffice
it to Bay that we have indicated a way of treating analytically the
root=loci that arige when certezin iterstive structures are used in a

feedback arrangement.

8,
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Figure 23. The locus for the amplifier connection of Figure 22,
when the ladder network consists of L low-pass R-C sections.
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