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A fully quantum mechanical model of two-component Manakov solitons is developed in both the Heisen-
berg and Schrédinger representations, followed by an analytical, linearized quantum theory of Manakov soli-
tons in the Heisenberg picture. This theory is used to analyze the vacuum-induced fluctuations of Manakov
soliton propagation and collision. The vacuum fluctuations induce phase diffusion and dispersion in Manakov
soliton propagation. Calculations of the position, polarization angle, and polarization state fluctuations show an
increase in collision-induced noise with a decrease in the relative velocity between the two solitons, as
expected because of an increase in the interaction length. Fluctuations in both the polarization angle and state
are shown to be independent of propagation distance, opening up possibilities for communications, switching,
and logic, exploiting these properties of Manakov solitons. Calculations of the phase noise reveal, surprisingly,
that the collision-induced fluctuations can be reduced slightly below the level of fluctuations in the absence of
collision, due to cross-correlation effects between the collision-induced phase and amplitude fluctuations of the
soliton. The squeezing effect of Manakov solitons is also studied and proven, unexpectedly, to have the same
theoretical optimum as scalar solitons.
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I. INTRODUCTION Carteret al.[1] and Drummond and Cart¢2] numerically
_ ) ) ) _solved the scalar quantum nonlinear Schrédinger equation
In classical field theory, solitons propagate undistorted iINQNLSE) based on a linearization approximation. The use of
the absence of perturbations. Quantum mechanically, howhe positive-P representation transformed the QNLSE into
ever, solitons undergo phase diffusion and wave packedtochastic nonlinear equations with noise terms. Later, this
spreading during propagatiqi—4]. Experimental evidence approach was extended to a vector, two-component theory
has confirmed these effedts,6], which have been the topic [24] to study the squeezing spectrum of orthogonal polariza-
of recent reviews7,8]. tions of light in a birefringent mediurhi25]. The theory of
In this paper, we investigate the quantum theory of Manascalar solitons was studied also in the Schrodinger picture
kov soliton propagation and collision. Manakov solitons areusing the Bethe's ansatz method to construct bound-state
a specific integrable instance of two-component vector soli€igensolution$26], as well as an approximate analysis based
tons described by a coupled set of Schrédinger equatior@n the Hartree approximatidl]. Another approach uses the
with cubic nonlinearity, solved by the method of inverse Wigner representation to derive approximate stochastic equa-
scattering in 19739]. Recently, it has been shown that tions[27]. Finally, a linearized approach to quantum s_olltons,
Manakov solitons demonstrate much more complex collisiorfl€veloped by Haus and Lp4], takes the classical soliton as
behavior than scalar, one-component solitons. By deriving &€ €xpectation value of the quantized field. Quantum effects
general two-soliton solution for the Manakov system,2PPearasa perturbation to the classical field, upon which are

Radhakrishnaret al. [10] showed that collisions are charac- Projected statistics correlated to a zero-point fluctuation
terized not only by a phase and position shitmilar to background, or vacuum fluctuations. This method forms the

scalar soliton collisions but also an intensity redistribution basis for the analytical results of this study, which has also

between the two component fields. This last property makegﬁgr; sgﬁltl)icé[;%fecond—orc[%] and self-induced transpar-

possible different applications for Manakov solitons, includ-
ing collision-based logic and universal computatjiGt—14].

Experimentally, energy-exchanging collisidds] and infor-

mation transfef16] have been demonstrated in photorefrac-
tive crystals. There exist several candidates for the physic
realization of Manakov solitons, including photorefractive |
crystals[15-19, semiconductor waveguidg¢&0], quadratic

This paper is organized as follows. In Sec. I, we quantize
the two-component field and derive the coupled QNLSE in
both the Schrédinger and Heisenberg representations. Sec-
tjion 1l reviews Manakov soliton perturbation theory, in

hich the soliton is parametrized into six operators. In Sec.
V, we calculate uncertainties in these soliton operators and
. ! ! ) _ fully characterize the vacuum-induced fluctuations of these
media[21], optical fiber[22], and Bose-Einstein condensates opgrators during propagation and collision. These computa-

[23]. tions reveal that the variance of fluctuations for soliton posi-
Several approaches have been' de\./eloped' to study .tl?ﬁm, polarization angle, and polarization state increase as the
quantum theory of pulse propagation in nonlinear rnecjlarelative velocity between colliding solitons decreases, as ex-
pected, because of an increase in the interaction length. But,

different effects in the variance of the phase fluctuations

*Electronic address: drand@princeton.edu arise, showing that the level of fluctuations after a collision
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can fall slightly below the variance level in the absence of by, Py t e
collision. All these fluctuations can provide both a limit on et et 2u(0y0y + 050,)U, = 0. 3

the performance of communication or computation systems

that rely on propagation and interaction of Manakov solitonsAlternatively, in the Schrddinger picture, we define a state
as well as guide future experiments confirming such effectsvector, |(2)), which is time dependent, and the quantum
In Sec. V, we show, surprisingly, that optimal detection ofoperators are those at0. The Schrédinger equation for the
squeezing in Manakov and scalar solitons is equivalent.  state vector is

. d ~
Il. COUPLED QUANTUM NONLINEAR SCHRODINGER ih - 1¥(2) = Hly(2), 4)
EQUATION .
where the stat@/{(z)) can be expanded in Fock space as
The Hamiltonian describing a dispersive, two-component
system with nonlinear interaction is given p30,31 |H(2)=> a f dxg, -+, A% g, 7 s D
|
2 d .4+ 0
=t f dX<E 2020, + (0]}, + 0505050 X fanXas X Korts - Xnom2)
A=1 OX T OX n m
x TT o100 T 0304[0). (5)
+201050,0,) |, 1 =1 1=

In this expansion|0) is the two-component vacuurfy,, is a

normalized wave function for thea+m particle system-a

where normal ordering .Of the f?eld operatqrs haSATbeerbarticles in mode 1m particles in mode 2. The complex
adopted. The quantum field amplitude operatysand Uy coefficientsa, determine the photon statistics of the pulse.

correspond to annihilation and creation operators, respec- ithouah ienf . ~ di
tively, where \=1,2 represents the field component. The _Although exact eigenfunctions &f can be constructed, it
becomes technically inconvenient for a large number of

normalized time deviation from the pulse centerravels in o
a reference frame at the average group velocity of the tw osons. In such cases, we can use the Hartree approximation
33], which, essentially, determines the behavior of each bo-

field componentsi; and{l,, and the normalized parameter i th ¢ all the oth h b Han feel
represents the magnitude of the cutierr) nonlinearity. we ~ SON In the presence of all the others. Each boson then feels
e same mean-field potential, and the many-body wave

assume a lossless medium with an instantaneous electro on f b . d d £ sinal
response, which is valid for picosecond pulses propagating iff"ction fnm can be approximated as a product of single-
optical fiber for distances on the order of 1 km. The dimen-P0SON wave functions

sionless photon density in these scaled unitsuja G|, n m
wherey is a characteristic photon number scale that depends fom= 11 P06, 0] CDfﬁ)m(ij,t), (6)
on the given physical system. The first term in Et). rep- i=1 =1

resents secon(_j—order dispgr_sion, with highgr—order.dispersicwhich is normalized by
neglected, while the remaining terms are interaction terms,
which here dgscribe self- and cross-phase modulation due to D12 12gx= 1 )
the Kerr nonlinearity. nn+m :

The field operator§, (x) andﬁ{(x) are normalized in such _ _ _ 2
a way that they obey the bosonic equal-space commutatiorOupled equations of motion can be obtained gt by

relations using the time-dependent Hartree variational meth@l,
which yields
[Oh (X)), 0y (¥)] = S S = X'), 2 ol Pl
e T 4 2u(n- DO+ mE, Aol <o,

where\,\’'=1,2 and allother operators commute. Here we

choose equal-space commutation relations as opposed to the P2 R2p?

more formal equal-time commutation relations. Agreementj—" 4 ——Tf0 2u[n|®P]2+ (m-1)|®?2 2102 =0.

between these two approaches has been shown previously 9Z 28

[32]. (8)
The system described by the Hamiltonian of EL. can

be analyzed using both the Schrédinger and Heisenberg refS @ result of the Hartree approximation, the first of Egs.
resentations. In the Heisenberg npicture, in whichShOWS that theath boson of mode 1 interacts, in an identical

manner, with both the remaining-1 bosons of mode 1 and
all m bosons of mode 2, and similarly for the second equa-
tion. Equationg8) exactly coincide with the classical Mana-
kov equationg9] in the high photon number limit, in which
n~m>1. We have thus formulated the problem in both the
Schrddinger and Heisenberg pictures. In this paper, we will

(a/az)ﬁx(x,z)z—(i/ﬁ)[ﬁh(x,z),I:|], wherez is the normalized
propagation distance, we can derive the coupled QNLSE
a0y POy ta ate n
IE + Yl + ZM(UIU]_ + ulzruz)u1 =0,
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investigate the quantum properties of Manakov solitons athe mean field and the quantum noise as the perturbation is
high photon number in the Heisenberg picture, since it lendgustified [3,35]. For typical photon numbers of 10this ap-
itself to a more straightforward analysis using classical perproximation is valid for propagation lengths on the order of

turbation theory techniques. 1 km in optical fiber.
The coupled QNLSE, Eq(3), can be written in vector Substituting Eq(11) into the coupled QNLSE and linear-
form as izing in terms ofAQ;, AQ, gives the following coupled set of
5 2 equations:
A z KX i?l + Tgl + 2[(2Jugof? + u?) Al + UFAT]
whereV = [Ez] and W' is the transposed complex conjugate . R -
of W. The form of the classical fundamental Manakov soli- ¥ Uzt oAU * Uzl A lz] = 0, (13
ton solution is[9] where the accompanying equation fdi, can be found by
Uso interchanging the subscripts 1 and 2. In genekall, can be
Vo= [Uzo] expanded adWV =AWV ,+AWV ... In this expansion, the per-

, ) turbation has been separated into two parts: a pairgoh
_ @[cos(d))exp(l 61) ]e p{(k - @Z_ kzz)} which describes changes in the soliton parameters, and a part
X X

= A ) | ~
2 [ sin(¢)explity) AV, due to dispersive waves that radiate from the per-
turbed soliton field, called the continuum. The first term

Ao -
XSGC}{E(X—XO— 2a2) |, (100 AW_, can be expanded to describe the changes in the six
. soliton parameters. Since derivatives of the classical funda-
where we seju=1, corresponding to the case of anomalousmental Manakov soliton solutiofEq. (10)] with respect to

dispersion where Eq9) admits bright soliton solutions. This the soliton parameters,, Xo, Ky, 61 5, and ¢ are solutions to
solution has six arbitrary integration constaf#s opposed to  Eq. (13), the expansion is

four in scalar soliton theojy They have been chosen so that )
Ay is the scaled amplitude, defined in such a way that AW = > f(X,2) AM(2)explid(2)),
J(Juygl®+|uyg2dx=A,, X, is the initial positionk, is the mo- m

mentum per photorifrequency, 6, , is the phase of each

component, andb represents the ratio between the absolute m e {Ag, %o, Ky, 01, 05, &}, (19
amplitudes of the vector components. For a Manakov soliton

composed of two orthogonal polarizationsjs the polariza-  WNere basis vectogsfm(x,z)s (Wo/ M)|ei,=0, Classical
tion angle. phase shiftd(z) = (Aj/4)z, and AM(z) represents the quan-

tum fluctuations of each soliton parameter. Without loss of

generality, we have selected a reference frame moving with
[ll. QUANTUM PERTURBATION THEORY FOR the soliton in such a way thag=k,=0. The vectord,, obey
MANAKQOV SOLITONS a biorthonormal relationship with adjoint vectags, satisfy-

Following the formalism of Haus and L&#], we intro- N9

duce the following perturbation into E):

Re(f gLfndX> =0mn MNe {Ao,Xo,kx, 01, 05, o).
(15

V=W,+AY, (11)

& Al . . :
whereAV =] ,." |, subject to the commutation relation . . .
[AUZ] ) The vectorsf,,, andg,, are given in the Appendix.

[Aly/(X',2),A0)(%,2)] = S 8(x - X'). (12) As in the case of scalar solitons, the six basis functions
R f(X,2) can be written explicitly as linear combinations of
This linearization separates the field operakointo its mean  the six basis functionf;, (x,2)| = andz. Given this property,
value ¥, the solution to the classical Manakov equations,it was shown that excitations of the continuum are orthogo-

and a remaindeAW, which describes the quantum fluctua- nal to excitations of the soliton paramet¢29)]. In addition,
tions and takes over the commutation relation Bf as the continuum disperses out totally &t . For these rea-

shown in Eq(12). Classical vector soliton interactions based SONS, We can neglect the continuum in the ar_1aIyS|s that fol-
on this linearization approximation were investigated re_!ows. .It should be. noted that a full set of excitation modes,
cently [34]. Our treatment uses similar perturbation theorymCIUd'ng the contlnu_um, h_as been found for the_ case of sca-
techniques, but with a quantum mechanical perturbation terd@’ @nd Manakov solitons in Ref§36,37, respectively.

that describes vacuum fluctuations. The validity of this ap-

proach in soliton theory has been confirmed; corrections to IV ELUCTUATION OPERATORS

the linearization were calculated using the Bethe ansatz so-

lutions, where it was shown that, for high photon numper The quantum fluctuations of the six parameters can be

and phase shifts up {@'/4, the use of the classical solution as obtained by inverting the expansion in Ed4) to give
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. . - . 1 ?
Am(z) = RE{J ol (x)exd - |(D(2)]A‘I’(x,z)dx}, (16) (AR3)o = . f (19012 + g 0)[2) dx = 373
where multiplication by the phase factor éxpPb(z)) cancels R 1 A
the mean phase shift. Using Ed.6), the following pairs of (AKS)o= 2 J (JguX)|? + |ga(¥)[2)dx = e
noncommuting operators can be calculated:
o AA - 1 1
[AAg,A6y] = [AAg, A8, =1, (Ad=, f (91600 + 1201k =
[Aod 2811 = - tarl), &(1 +ﬂ_2>
A:92> :l f| (X)|2dX:¥
| (Adp)o 4 J1¢ A coL
Al [
[AOAd)!AGZ]:ECOt((ﬁ)! }<1+f>
- 1 3 12
. (A6D) :—J|g (X)Pdx = —5—. (18)
[AS%oAcAK ] =1, (17) a) Agsirt ¢

. ' The uncertainty products of the photon number and phase are
where all other pairs of operators commute. The first three yp P P

relations are photon number and phase commutators, , A a2 o L ﬂ_2 1

whereas the last is the commutation relation for momentum L2 (Ao C0S®)] Yo(A#)o = 12(1 + 12><3 t ol ¢> % 0.61,
and position. Since these commutators are conserved during

evolution, we have quantized the soliton excitation success- . . . 1 2 1

fully and there is no need to introduce additional noise ([A(AoSin ¢)P)o(A 63 = 1_2(1 +1_2><3 +m> < 0.61,
sources. A word of caution is in order. At values éfap-

proaching 0 orw/2, singularities in these commutators ap- (19

pear. At these values, a majority of photons are in one cOMynere the photon number uncertainty in each component is

onent of the soliton, where the scaled amplitudes of each. A - A s .
gomponent are proportional #, cos¢ andAogin ¢. How- given by A(Aocos¢) and A(Asin¢), and the uncertainty

ever, our linearization assumes a large photon numbeProduct for momentum and position is

Therefore, '_[hesg amplitude and phase relations do not hold in AS(A@)O(A)A% 0~ 0.27. (20)

this approximation for all values af. As a result, the theory

developed here is limited to Manakov solitons in which bothLike the scalar soliton, the Manakov soliton combines prop-

components have a substantially high photon nuniB8}l.  erties characteristic of both waves and particles and pos-

To establish a conservative estimate on the allowable ranggesses pairs of operators describing both properties. The un-

of ¢, we will assume pulses with photon numbers of 10 certainty products in Eq.19) show the photon number and

to propagate 100 m, an order of magnitude greater thaphase relationship characteristic of a wave, and(EQ). de-

the distance for which quantum effects become experimerscribes the position and momentum uncertainty product char-

tally observable[5]. Using these parameters, values ofacteristic of a particle. The lower bound on the first two

1° < ¢<89° will be valid for the chosen linearization. For expressions corresponds exactly to the uncertainty product

other values of, we demonstrate later in this section thatfor scalar solitong4]. These inequalities reach the lower

the soliton fluctuations approach the scalar soliton fluctuabound at the excluded values ¢+=0 and#/2, representing

tions because of a correspondence that arises at these limig.correspondence between the Manakov and scalar cases,
which should arise at these extremal values.

A. Propagation From Eq.(16), the fluctuation operatosm(z) at any po-

sition z are
In order to calculate the initial variances of the fluctuation R R
operators, we assume that the soliton is initially in a uniform AAy(2) = AAN0),
zero-point fluctuation background, so thatAl,Al))
=6, 8(x=x"), \=1,2, and albther correlations vanish. This ARy(2) = A%(0) + ZAQX(O)Z,
state is chosen because it contains a minimal amount of ini-
tial quantum noise and represents accurately the radiation Ak (2) = Ak,(0),

from a mode-locked laser. We can therefore compute the
variances of the vacuum-induced fluctuations using(E6).
atz=0

Ad(2) = Ag(0),

~ ~ AO ~
~ 1 = —
R0= [ (laast0l? + loaa/ = A, A2 = A0 5 802
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A - Ay - Manakov solitons can be applied similarly, in order to inves-
A6,(2) = A6,(0) + 5 AA(0)z. (21 tigate whether quantum noise will present similar obstacles
toward the realization of switching, logic, and computation
Consistent with scalar soliton theory, Eq21) show that based on Manakov solitori41-14. In addition, this theory
phase and position become correlated with amplitude andan be applied in the planning of new experiments to test
momentum, respectively. As a result, the soliton experienceguantum effects in this coupled system.
phase diffusion and wave packet spreading, while the ampli- A collision between scalar solitons induces a phase shift
tudes of each component and the momentum propagate uand a time(or, equivalently, positionshift [41]. Manakov
changed. The term responsible for wave packet spreadingpliton collisions demonstrate these same effects, with an
AXq(2), can be attributed to the group velocity dispersion ofadditional collision process that involves an intensity redis-

the Kerr medium, while the phase diffusion ternisf,(z)  tribution between the two component fieldg anduy, [10].

and A@Z(z), result from the combined effects of self- and This last property has been applied recently to show

. collision-based logic and universal computat{di—14.
cross-phase modulation. 1t should be noted that these A quantum description of scalar soliton collisions has

propagation-induced fluctuations do not present a fundamerb-een treated by several authors, primarily in the context of

]Eal t“r.T:'t to thﬁ perftcr)]rrrtl?)n?ﬁ Offtﬁ particular agpllcgtlon. (;n uantum nondemolition measuremef§,40,42,43 In or-
act, it was shown that both of these propagation-oependeig, . study the quantum fluctuations in a collision of two

tev]:/fgjtesi/gﬁ gyl;?eﬁ?ggggd with the insertion of a near-resonaghanakov soIiton;s, we assume that both solitons are initially
From Eqgs.(18) an,d(2.l) the variances of the six soliton well separated in space, n such a way that they can be

: ! . treated as the sum of two independent fundamental solitons.

parameters at some arbitrary pomare The perturbation of each soliton can then be decomposed

(AA%(Z)) = A into a linear combination of its six fluctuation operators. Af-
' ter collision, however, the solitons become quantum-
mechanically entangled. Therefore, the twe(si for each
(AR(2)) = is + &22, soliton) post-collision operators will depend nontrivially on
3 3 the precollision operators. As in our previous analysis, we
neglect the noise contributions that arise as a result of inter-
~, Ay actions between the continuous spectrum and each soliton
(Ak(2)) =75, field.
The classical position shift of soliton 1 after a collision
1 with soliton 2 is given by[44]:
(AF@2) =7,
o st AT AY n( K ‘k(2)|2{ __AYAY PECNCE
AE,DA(()Z) |k(1) + k(2)~|2 |k(l) + k(2)*|2 1“1
- 1/ 1 A
(Aéﬁ(z)>=—<1+—)—+—zz, .
3\7 12/Agcod(¢) 4 + aP a2 ) (23
3
(A65(2)) = %(1 + I—;)m + %zz. (220 where  ki=[AV/2]+ikY, oV =cospVexp(i6)),

oV =sin </>(i>exp(iag), j=1,2 is thesoliton number, and

These six equations describe fully the evolution of vacuunk'? > K@,

noise for the six parameters of a Manakov soliton in the ~ The position fluctuation in soliton 1 because of the colli-

absence of collision. The initial frequency fluctuations caussion can be calculated by

a quadratic increase in the variance of position fluctuations

as a function of propagation distance due to the group veloc- 95X

ity dispersion of the medium. In addition, the variance of AKY =3 WAr”n(O),

phase fluctuations of each component increases quadratically m

with propagation as a result of zero-point amplitude fluctua-

tions, which couple to the Kerr nonlinearity. Amplitude fluc- me {Ag) KD gl gd) . (24)

tuations obey Poisson statistics, and the variance of polariza- TxoTL T

tion angle fluctuations, an identifying characteristic of vectorrhe gyverall fluctuation of the position operator of soliton 1

solitons, is independent of the distance propagated. can therefore be generalized from H@1) to include one
collision

B. Collision

It has been shown previously that vacuum noise causes AR (2) = ARGV(0) + 2AKP(0)z + AKX, (25)
sufficient wave packet spreading to give rise to large error
rates in cascaded logic gates based on scalar soliton collFhe variance of soliton position after one collision can like-
sions[40]. Calculating the vacuum-induced fluctuations of wise be calculated
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(1) (1) (1) 1000
S A R LN Y
3AL% T 3 3 ok

(A%§"%(2)) =

26) 800
The last two terms in Eq26) arise due to collision, in which
the first results from a cross-correlation between the fluctua-

tions in veIocity,A@f(l)(O), and the collision-induced position
shift.
The classical postcollision polarization and carrier phase

)+

D
o
o

(ax"(2))

of soliton 1, ai(l , after a collision with soliton 2 are de- 200
scribed by[44]
@ () @, 0 @) ° ' ' ' ' '
o = e (e + ah ) al 20 o, @ 50
(D+
i (1) A(2) 1/20 . . . ~(1)2 .
1- Ao A |a(1)a(2)* + a(l)a(z)*|2 FIG. 1. Variance of position fluctuation&X;"“(z)) with and
KD + k22 17 2 72 without collision as a function of the scaled propagation distance

27) for varying relative velocitydk,.

where i=1,2 is the soliton component. The variances _ Each of these plots demonstrates the relative effect colli-
~y - - i sions induce on the vacuum fluctuations of Manakov soli-
(Ag?(2)), (A63(2)), and(A65(2)) can be determined from Eq. 1ons e show these calculations for 20, which provides
(27) to include collisions in the same manner@s,"*(2)).  at least 5 collision lengths as given k. /2, in order to
By straightforward manipulation of Eq27), an expression insure the validity of the asymptotic collision formulas given
can be obtained for the collisional phase and polarizationin Egs. (23) and (27). In Fig. 1, it is clear that the term
angle shiftsa‘ai(l) and 6¢Y. The total variance of soliton quadratic inz dominates the overall position noise. The two
phase and polarization angle after one collision is then giverollision terms of Eq(26) each introduce positive contribu-
by tions to the fluctuations, as evidenced by the curves with and
without collision. It is not surprising that, as the relative

(AGY2(2)) = (AGV2(0)) + A(.;mzz*_Agl)z(?&Hi(l)z velocity between the two solitons is decreased, the fluctua-
' ' 4 PN tions increase because of an increase in the interaction
PYV A length. _ o _ _
+ 27('1)@@(1)2(0» +<A50i(1)2>’ (283 The variance of polarization angle fluctuations is shown
1

in Fig. 2. Since(A¢¥?) is independent of propagation dis-

o tance, we show the fluctuation effects as a function of rela-

(AB2(z)) = 1 N 1 35¢ (M52, (28D) tive velocity ok,. As expected, a decrease in relative velocity
47, 27, (9¢,(1> results in a subsequent increase in the variance. Furthermore,

o - , _ the variance approaches the no-collision va{te?),, as
where A58 and As¢Y are defined in the same way as

cTe . 4 A given in Eq.(22), in the limit of low interaction strength.
AW in Eq. (24). It is remarkable that the variance of po-
larization angle is independent of propagation distance. .
Due to the quadratic dependencies @i%3(2)) and —A=A=05

; e B AD=AD=1 |-
(A#(2)) on the scaled propagation distanephase diffu- o At
sion and wave packet spreading can become limiting factors ~ § [ AT=AT=2
in communications or computation systems using Manakov
solitons, even without considering collisions. As an example,
(A%%(2)), (AdX(2)), and (A#%(2)) are calculated for a two-
soliton collision using Eq926) and(28) and plotted in Figs.
1-3, respectively, as both a function of the propagation
distancez and the relative velocity between the colliding e L
solitons. The parameters of soliton 1, 2 for these and all e LI
subsequent calculations areA;,=1,1; k:=0,-5k,; ¢ ot .
=37/10,7/6; 6,=0,0; 6,=7/3,27/5, unless otherwise ok,
noted. The velocity dependence of these effects are investi-

FIG. 2. Variance of polarization angle fluctuatiofs$®2) dur-

gated by varying the relative velocigk,= k" -k we will
concentrate only on one phase operator, noting that the bg;y coliision as a function of the relative velocisk,. Each curve,
havior of both{A #2(2)) and(A #5(2)) is qualitatively identical ~ corresponding to varying photon numbers, approaches the no-
for the studied cases. collision limit (A¢?), given in Eq.(18).
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700 . T . T . 10 r r T T
600 |- —AN=pAP=05
g 1 L AD=AD=1 | 1
/\500-3; ........ A= AP =2
- -
éi 400 -
@ 4
Z 300
~ [ 7
20F e e 1 -
100 =" |7 I
....... Skx =0.5
0 1 1 0 1 1 1 1
20 30 40 50 2 4 6 8 10
z Bky
FIG. 3. Variance of phase quctuatiomb(ll)z(z)) with and with- FIG. 4. Variance of polarization state fluctuatiofsp'V2) dur-
out collision as a function of the scaled propagation distanfce ing collision as a function of the relative velocigk,. Each curve,
varying relative velocitysk,. Detail of the behavior is shown in the corresponding to varying photon numbers, approaches the no-
inset. collision limit {(Ap?), given in Eq.(30).
In Fig. 3, we find, surprisingly, that the soliton collision . csé @) 1 =\ 1
) : : (ApP)o= S\1+— |+ (30)
slightly reduces the variance of the phase fluctuations. In P/o A, |3 12) " al

addition, longer interaction lengths, due to a smaller relative
velocity, will decrease the variance further, as shown in théMloreover, the fluctuations increase as the strength of the
inset of Fig. 3. From the third term on the right-hand side ofinteraction increases. The extent to which these effects will
Eq. (289, we observe that this variance depends on the slopbinder the performance of any particular system remains a
of the classical phase shift during collision with respect totopic for future work.
the amplitude of the pulse. This slope is always negative, as
can be F;een more sirrl?ply from the CIF(')assicaI ex%ress?on for the V- SOLITON DETECTION AND SQUEEZING
collision phase shift for a scalar solitdkg. (27b) of [41)). The generation of squeezed states of light has attracted
The effect of increasing one soliton amplitude with respect tanuch interest in quantum information and computation, in
another causes it to receive less phase shift from the smalleddition to enabling measurements below the shot noise
soliton, and vice versa, resulting in an overall reduction oflevel. Squeezing of scalar solitons is a well-known effect,
the phase variance. experimentally observed for both pairs of conjugate opera-
From Figs. 1-3 it is apparent that the collision-inducedtors[5,6]. Natural questions to ask are how the squeezing of
fluctuations can seriously affect and perhaps limit the perforManakov solitons can be accomplished and how it compares
mance of systems that use Manakov solitons. Existing stratwith the scalar case.
egies for Manakov soliton computing and logic depend criti-  The soliton operators can be extracted using a balanced
cally on the complex-valued polarization stgie=u;o/Uy  homodyne detection scheme that performs a projection onto
=cot¢ exdi(6,—6,)], defined as the ratio between the, the desired operat¢d]. The experimental setup is shown in
andu,, component$11-14. Fluctuations irp are calculated Fig. 5. The orthogonal polarization components of two

through a perturbative approach in which pulses, an inputAV¥(x,z) and a local oscillator(LO)

fL(x,z)E[Iz], are separated in a polarization beam splitter
(PBS. The PBS for the LO is not shown in Fig. 5. Each of
Ap(2) = a—pA[;H @A:gl(z)+@A:92(z)_ (29)  the two components mix in a 50-50 beam splitter and are
4 96, 96, detected by photodetectors. The difference of the output cur-
rents is summed and integrated to complete the measure-
) o ) ment, and the outpu¥l(z) is [4]
Sincedpl/ 96,=—(dpl 36,), it is found that fluctuations of the
polarization state are independent of propagation distance. Mo + -
This result suggests that, in the range of validity for the M(@) = Re(f fL(Xl)A\P(XJ)dX)’ (31)
linearized perturbation meth¢a,35], collision-based soliton
computing may be limited only by the relative collision ve-
locity and number of collisions, and not by the total propa-
gation distance. The variance of polarization state fluctua- f |fL(x,2)|%dx=1. (32)
tions is plotted versus relative velocity in Fig. 4. With
increasing relative velocity, the variance approaches the na&Zomparison of Eq931) and(16) shows that by appropriate
collision variance, given by shaping of the LO pulse, any of the six soliton operators can

subject to the normalization condition
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be detected. Furthermore, since these six operators evolve sured in an identical fashion. The minimum valueRi&),
their own subspace, this measurement scheme suppressgmject to the constraint in Eq35), is found using the
any contributions of the continuum. Thus, by setting the LOmethod of Lagrange multipliers, resulting in

pulse proportional tay,(x)exdi®(z)], we can measure the ) 2 o
fluctuation operatordm(z). Moreover, it was observed that Ropl(2) = 1+ 205(2) - 2do(2)[1 + P5(2) ], (37)
because of the linearity of this detection process, any lineaghere

combinations of the operators can be measured as well, pro- . L L o

vided a LO that is a linear combination of the adjoint func- Dy(2) = _®(Z)l<AAg>o< )} . (39

+

tions is used29]. AR AR

The soliton operators become correlated with propaga- o (A6
tion, as can be seen in EqR1), which show the coupling Using Eqgs.(18), we find that

that exists between photon number and phase, and between

position and momentum. Using a LO that is a linear combi- Dy(2) = @ 75 (39)
nation of particular soliton operators can allow a reduction in 1 1+ 77_2
the amount of detected noise, and thus make the observation 3 12

of squeezing possible. To demonstrate optimal squeezing of ) ) ,
phase and photon number in a Manakov soliton, we choogWhich corresponds exactly to the optimum achieved previ-

the LO to be ously in scalar soliton squeezifg,45]. This result suggests
_ that, regardless of the amplitudes of each component of the
fL(X,2) = [CaGa,(X) + €490, (X) + €494, (X) JeXxiP(2)], Manakov soliton(or, equivalently, the value ap), the opti-

(33) mum amount of achievable squeezing when using the LO
given in Eq.(33) is identical to the scalar soliton theory. The
which will detect, from Eq(31), the operator squeezing rati®,(2) is plotted as a function of the classical
phase shiftb(z) in Fig. 6. Although there is no advantage in
the optimal squeezing of Manakov solitons, this calculation
is aimed at systems using vector solitons, the performance of
which could be improved through proper measurement.
In order to study the squeezing effects for an arbitrary LO,
c,i(AAg)(ﬁcﬁl(A@f)wciz(A??%)O: 1. (35) @ numerical approach would need to be taken, where one
could investigate, for example, the squeezing in each polar-
We consider only the LO of Eq33), which gives rise to ization component. This lies outside the scope of the current
optimal squeezing, because this measurement will lead to theaper and remains a topic for future work. The use of a
maximum reduction in the noise floor that exists in opticalnonideal LO adds another level of complexity to the problem

M(2) = caAAg(2) + ¢, AOL(D) +C, AGD).  (34)

According to Eq.(32), the coefficients,, Co,» andcg2 must
obey the condition

detection. because it requires incorporation of the continuum.
The squeezing ratio is defined as
~ VI. CONCLUSION
R(2) = M2) (36) , :
o <,\7|2(0)>' In this paper, we have developed an analytical quantum

theory of Manakov solitons based on a linearization approxi-
According to this definition, squeezing is observed whenmation that separates the soliton into classical and quantum
measurement of the quantum noise at the output is less thamechanical parts. Using perturbation theory, effects due to
the input. The inputvacuum state and output state are mea- the quantum field were investigated in which analytical ex-
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ample, pulse position, which is subject to increasing jitter as

a function of the distance propagated. This theory can both
provide an upper-bound limit on the performance of commu-

nication or computation systems using Manakov solitons and
serve as a guide to designing new experiments to test the
fundamental quantum properties of such nonlinear waves.
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APPENDIX

FIG. 6. Optimal squeezing ratiBy,(2) vs classical phase shift The vectorsf(x,2), defined in Eq(14), are
®(2) using the measurement scheme of Fig. 5.
cos(¢)expli 6y) } {_ A
4

pressions were derived, describing the evolution of the six on(X'Z) Llh((ﬁ)exp(la)
physical soliton parameters with and without the effects of 2
collision. Vacuum-induced fluctuations were also described - tanl-( )}secl‘( )

using this theory. Manakov solitons were shown, like scalar

solitons, to undergo phase diffusion and wave packet spread-

ing due to the Kerr nonlinearity and dispersion of the me- cog ¢)expli f;)

dium, respectively. However, different effects describing the fxo(x,z) :[ } ta nk(—x)seck( )
evolution of the polarization angle and polarization state ap- sin(¢)expli ;)

pear in Manakov solitons, and both of these parameters were

found to be independent of propagation distance. By varying ¢ _| codp)expioy) || .
. ; ) O k(X2 = . . iX
the relative velocity of the two solitons, collision effects x sin(¢)exp(i 6,)
were studied for the position, polarization angle, and polar-
ization state fluctuations. It was found that the variances of +AoztanI-<A—0x>}@ secb(ﬁx)
these fluctuations increase with decreasing relative velocity, 2 2 2

as expected. Calculations of the Manakov soliton phase fluc-
tuations showed the effect that the collision-induced phase - sin(¢)explify) | A, A
variance can actually fall below the level of fluctuations in fy(x,2) = cos d)expli 6,) > sech X/,
the absence of collision. We have also shown that, like the 2
fundamental scalar soliton, the fundamental Manakov soliton
undergoes a squeezing effect. Surprisingly, the optimal f, (X,2) {
squeezing was proven identical to scalar soliton theory. 1

These results suggest avenues for future work on applica-
tions of Manakov solitons. Since fluctuations of the polariza- 0 Ao A,
tion angle and polarization state are independent of propaga- fo,(X,2) = sin(dexplioy) | 2 secl‘(—x). (A1)
tion distance, applications exploiting these quantities will not 2
suffer the same limitations as applications based on, for exfhe vectorsg,(x), defined in Eq(15), are

cogp)explify) | A %@)
0 :|I > sec X/,

_ | 91a | _| cod@)explioy) I‘(A—())
On) = L»J - Linw)exrxiaz) }A"Sec X

00— {glx] _ {cos(qs)exp(i o) ]Xsecy< gox>
P = g | ™ Lsin(p)exptioy 2°)

[ ou cosw)exmal)}Ao ) ,( )
gkx(x)‘[gzj Lm(d))exp(mz) tanf 2 x)seeh %)
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o] —sirw)exp(iel)]g (ﬁ)
940 = {gij - [ cospexplity 2N 2%

1 .
05,00 = | 7 | =| cog¢) B [1—®xtank<®x> ise0V<A_OX>,
1 0 | . 5 2% 5
~ 0 - [ O ] AO AO . AO
=g | 7| =2 expiing || 1T 212N X [T %) A2
9,(X) ™ o ex 02)_{ > xtan!-< ) X)_I secr( ) x> (A2)
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