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A fully quantum mechanical model of two-component Manakov solitons is developed in both the Heisen-
berg and Schrödinger representations, followed by an analytical, linearized quantum theory of Manakov soli-
tons in the Heisenberg picture. This theory is used to analyze the vacuum-induced fluctuations of Manakov
soliton propagation and collision. The vacuum fluctuations induce phase diffusion and dispersion in Manakov
soliton propagation. Calculations of the position, polarization angle, and polarization state fluctuations show an
increase in collision-induced noise with a decrease in the relative velocity between the two solitons, as
expected because of an increase in the interaction length. Fluctuations in both the polarization angle and state
are shown to be independent of propagation distance, opening up possibilities for communications, switching,
and logic, exploiting these properties of Manakov solitons. Calculations of the phase noise reveal, surprisingly,
that the collision-induced fluctuations can be reduced slightly below the level of fluctuations in the absence of
collision, due to cross-correlation effects between the collision-induced phase and amplitude fluctuations of the
soliton. The squeezing effect of Manakov solitons is also studied and proven, unexpectedly, to have the same
theoretical optimum as scalar solitons.
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I. INTRODUCTION

In classical field theory, solitons propagate undistorted in
the absence of perturbations. Quantum mechanically, how-
ever, solitons undergo phase diffusion and wave packet
spreading during propagationf1–4g. Experimental evidence
has confirmed these effectsf5,6g, which have been the topic
of recent reviewsf7,8g.

In this paper, we investigate the quantum theory of Mana-
kov soliton propagation and collision. Manakov solitons are
a specific integrable instance of two-component vector soli-
tons described by a coupled set of Schrödinger equations
with cubic nonlinearity, solved by the method of inverse
scattering in 1973f9g. Recently, it has been shown that
Manakov solitons demonstrate much more complex collision
behavior than scalar, one-component solitons. By deriving a
general two-soliton solution for the Manakov system,
Radhakrishnanet al. f10g showed that collisions are charac-
terized not only by a phase and position shiftssimilar to
scalar soliton collisionsd, but also an intensity redistribution
between the two component fields. This last property makes
possible different applications for Manakov solitons, includ-
ing collision-based logic and universal computationf11–14g.
Experimentally, energy-exchanging collisionsf15g and infor-
mation transferf16g have been demonstrated in photorefrac-
tive crystals. There exist several candidates for the physical
realization of Manakov solitons, including photorefractive
crystalsf15–19g, semiconductor waveguidesf20g, quadratic
mediaf21g, optical fiberf22g, and Bose-Einstein condensates
f23g.

Several approaches have been developed to study the
quantum theory of pulse propagation in nonlinear media.

Carteret al. f1g and Drummond and Carterf2g numerically
solved the scalar quantum nonlinear Schrödinger equation
sQNLSEd based on a linearization approximation. The use of
the positive-P representation transformed the QNLSE into
stochastic nonlinear equations with noise terms. Later, this
approach was extended to a vector, two-component theory
f24g to study the squeezing spectrum of orthogonal polariza-
tions of light in a birefringent mediumf25g. The theory of
scalar solitons was studied also in the Schrödinger picture
using the Bethe’s ansatz method to construct bound-state
eigensolutionsf26g, as well as an approximate analysis based
on the Hartree approximationf3g. Another approach uses the
Wigner representation to derive approximate stochastic equa-
tionsf27g. Finally, a linearized approach to quantum solitons,
developed by Haus and Laif4g, takes the classical soliton as
the expectation value of the quantized field. Quantum effects
appear as a perturbation to the classical field, upon which are
projected statistics correlated to a zero-point fluctuation
background, or vacuum fluctuations. This method forms the
basis for the analytical results of this study, which has also
been applied to second-orderf28g and self-induced transpar-
ency solitonsf29g.

This paper is organized as follows. In Sec. II, we quantize
the two-component field and derive the coupled QNLSE in
both the Schrödinger and Heisenberg representations. Sec-
tion III reviews Manakov soliton perturbation theory, in
which the soliton is parametrized into six operators. In Sec.
IV, we calculate uncertainties in these soliton operators and
fully characterize the vacuum-induced fluctuations of these
operators during propagation and collision. These computa-
tions reveal that the variance of fluctuations for soliton posi-
tion, polarization angle, and polarization state increase as the
relative velocity between colliding solitons decreases, as ex-
pected, because of an increase in the interaction length. But,
different effects in the variance of the phase fluctuations
arise, showing that the level of fluctuations after a collision*Electronic address: drand@princeton.edu
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can fall slightly below the variance level in the absence of
collision. All these fluctuations can provide both a limit on
the performance of communication or computation systems
that rely on propagation and interaction of Manakov solitons,
as well as guide future experiments confirming such effects.
In Sec. V, we show, surprisingly, that optimal detection of
squeezing in Manakov and scalar solitons is equivalent.

II. COUPLED QUANTUM NONLINEAR SCHRÖDINGER
EQUATION

The Hamiltonian describing a dispersive, two-component
system with nonlinear interaction is given byf30,31g

Ĥ = − "E dxSo
l=1

2
]

]x
ûl

† ]

]x
ûl + msû1

†û1
†û1û1 + û2

†û2
†û2û2

+ 2û1
†û2

†û2û1dD , s1d

where normal ordering of the field operators has been
adopted. The quantum field amplitude operatorsûl and ûl

†

correspond to annihilation and creation operators, respec-
tively, where l=1,2 represents the field component. The
normalized time deviation from the pulse centerx travels in
a reference frame at the average group velocity of the two
field componentsû1 andû2, and the normalized parameterm
represents the magnitude of the cubicsKerrd nonlinearity. We
assume a lossless medium with an instantaneous electronic
response, which is valid for picosecond pulses propagating in
optical fiber for distances on the order of 1 km. The dimen-
sionless photon density in these scaled units ism̄uûl

†ûlu,
wherem̄ is a characteristic photon number scale that depends
on the given physical system. The first term in Eq.s1d rep-
resents second-order dispersion, with higher-order dispersion
neglected, while the remaining terms are interaction terms,
which here describe self- and cross-phase modulation due to
the Kerr nonlinearity.

The field operatorsûlsxd andûl
†sxd are normalized in such

a way that they obey the bosonic equal-space commutation
relations

fûl8sx8d,ûl
†sxdg = dll8dsx − x8d, s2d

wherel ,l8=1,2 and allother operators commute. Here we
choose equal-space commutation relations as opposed to the
more formal equal-time commutation relations. Agreement
between these two approaches has been shown previously
f32g.

The system described by the Hamiltonian of Eq.s1d can
be analyzed using both the Schrödinger and Heisenberg rep-
resentations. In the Heisenberg picture, in which

s] /]zdûlsx,zd=−si /"dfûlsx,zd ,Ĥg, wherez is the normalized
propagation distance, we can derive the coupled QNLSE

i
]û1

]z
+

]2û1

]x2 + 2msû1
†û1 + û2

†û2dû1 = 0,

i
]û2

]z
+

]2û2

]x2 + 2msû1
†û1 + û2

†û2dû2 = 0. s3d

Alternatively, in the Schrödinger picture, we define a state
vector, ucszdl, which is time dependent, and the quantum
operators are those atz=0. The Schrödinger equation for the
state vector is

i"
d

dz
ucszdl = Ĥucszdl, s4d

where the stateucszdl can be expanded in Fock space as

ucszdl = o
l

al E dx1, ¯ ,dxndxn+1, ¯ ,dxn+m

3 fnmsx1, ¯ ,xn,xn+1, ¯ ,xn+m,zd

3 p
i=1

n

û1
†sxidp

j=1

m

û2
†sxn+jdu0l. s5d

In this expansion,u0l is the two-component vacuum,fnm is a
normalized wave function for then+m particle system—n
particles in mode 1,m particles in mode 2. The complex
coefficientsal determine the photon statistics of the pulse.

Although exact eigenfunctions ofĤ can be constructed, it
becomes technically inconvenient for a large number of
bosons. In such cases, we can use the Hartree approximation
f33g, which, essentially, determines the behavior of each bo-
son in the presence of all the others. Each boson then feels
the same mean-field potential, and the many-body wave
function fnm can be approximated as a product of single-
boson wave functions

fnm= p
i=1

n

Fn
s1dsxi,tdp

j=1

m

Fn+m
s2d sxn+j,td, s6d

which is normalized by

E uFn,n+m
s1,2d u2dx = 1. s7d

Coupled equations of motion can be obtained forFn,n+m
s1,2d by

using the time-dependent Hartree variational methodf33g,
which yields

i
]Fn

s1d

]z
+

]2Fn
s1d

]x2 + 2mfsn − 1duFn
s1du2 + muFn+m

s2d u2gFn
s1d = 0,

i
]Fn+m

s2d

]z
+

]2Fn+m
s2d

]x2 + 2mfnuFn
s1du2 + sm− 1duFn+m

s2d u2gFn+m
s2d = 0.

s8d

As a result of the Hartree approximation, the first of Eqs.s8d
shows that thenth boson of mode 1 interacts, in an identical
manner, with both the remainingn−1 bosons of mode 1 and
all m bosons of mode 2, and similarly for the second equa-
tion. Equationss8d exactly coincide with the classical Mana-
kov equationsf9g in the high photon number limit, in which
n,m@1. We have thus formulated the problem in both the
Schrödinger and Heisenberg pictures. In this paper, we will
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investigate the quantum properties of Manakov solitons at
high photon number in the Heisenberg picture, since it lends
itself to a more straightforward analysis using classical per-
turbation theory techniques.

The coupled QNLSE, Eq.s3d, can be written in vector
form as

i
]

]z
Ĉ +

]2

]x2Ĉ + 2msĈ†ĈdĈ = 0, s9d

whereĈ;f û1

û2
g andĈ† is the transposed complex conjugate

of Ĉ. The form of the classical fundamental Manakov soli-
ton solution isf9g

C0 ; Fu10

u20
G

=
A0

2
Fcossfdexpsiu1d

sinsfdexpsiu2d GexpFiSkxx +
A0

2

4
z− kx

2zDG
3sechFA0

2
sx − x0 − 2kxzdG , s10d

where we setm=1, corresponding to the case of anomalous
dispersion where Eq.s9d admits bright soliton solutions. This
solution has six arbitrary integration constantssas opposed to
four in scalar soliton theoryd. They have been chosen so that
A0 is the scaled amplitude, defined in such a way that
esuu10u2+ uu20u2ddx=A0, x0 is the initial position,kx is the mo-
mentum per photonsfrequencyd, u1,2 is the phase of each
component, andf represents the ratio between the absolute
amplitudes of the vector components. For a Manakov soliton
composed of two orthogonal polarizations,f is the polariza-
tion angle.

III. QUANTUM PERTURBATION THEORY FOR
MANAKOV SOLITONS

Following the formalism of Haus and Laif4g, we intro-
duce the following perturbation into Eq.s9d:

Ĉ = C0 + DĈ, s11d

whereDĈ;fDû1

Dû2
g, subject to the commutation relation

fDûl8sx8,zd,Dûl
†sx,zdg = dll8dsx − x8d. s12d

This linearization separates the field operatorĈ into its mean
value C0, the solution to the classical Manakov equations,

and a remainderDĈ, which describes the quantum fluctua-

tions and takes over the commutation relation ofĈ, as
shown in Eq.s12d. Classical vector soliton interactions based
on this linearization approximation were investigated re-
cently f34g. Our treatment uses similar perturbation theory
techniques, but with a quantum mechanical perturbation term
that describes vacuum fluctuations. The validity of this ap-
proach in soliton theory has been confirmed; corrections to
the linearization were calculated using the Bethe ansatz so-
lutions, where it was shown that, for high photon numberm̄
and phase shifts up tom̄1/4, the use of the classical solution as

the mean field and the quantum noise as the perturbation is
justified f3,35g. For typical photon numbers of 109, this ap-
proximation is valid for propagation lengths on the order of
1 km in optical fiber.

Substituting Eq.s11d into the coupled QNLSE and linear-
izing in terms ofDû1, Dû2 gives the following coupled set of
equations:

i
]Dû1

]z
+

]2Dû1

]x2 + 2fs2uu10u2 + uu20u2dDû1 + u10
2 Dû1

†

+ u20
* u10Dû2 + u20u10Dû2

†g = 0, s13d

where the accompanying equation forDû2 can be found by

interchanging the subscripts 1 and 2. In general,DĈ can be

expanded asDĈ=DĈsol+DĈcont. In this expansion, the per-

turbation has been separated into two parts: a partDĈsol,
which describes changes in the soliton parameters, and a part

DĈcont due to dispersive waves that radiate from the per-
turbed soliton field, called the continuum. The first term

DĈsol can be expanded to describe the changes in the six
soliton parameters. Since derivatives of the classical funda-
mental Manakov soliton solutionfEq. s10dg with respect to
the soliton parametersA0, x0, kx, u1,2, andf are solutions to
Eq. s13d, the expansion is

DĈsol = o
m

fmsx,zdDm̂szdexpsiFszdd,

mP hA0,x0,kx,u1,u2,fj, s14d

where basis vectorsfmsx,zd;us]C0/]mdux0=kx=0, classical
phase shiftFszd;sA0

2/4dz, and Dm̂szd represents the quan-
tum fluctuations of each soliton parameter. Without loss of
generality, we have selected a reference frame moving with
the soliton in such a way thatx0=kx=0. The vectorsfm obey
a biorthonormal relationship with adjoint vectorsgm, satisfy-
ing

ReSE gm
† fndxD = dmn, m,n P hA0,x0,kx,u1,u2,fj.

s15d

The vectorsfm andgm are given in the Appendix.
As in the case of scalar solitons, the six basis functions

fmsx,zd can be written explicitly as linear combinations of
the six basis functionsfmusx,zduz=0 andz. Given this property,
it was shown that excitations of the continuum are orthogo-
nal to excitations of the soliton parametersf29g. In addition,
the continuum disperses out totally atz→`. For these rea-
sons, we can neglect the continuum in the analysis that fol-
lows. It should be noted that a full set of excitation modes,
including the continuum, has been found for the case of sca-
lar and Manakov solitons in Refs.f36,37g, respectively.

IV. FLUCTUATION OPERATORS

The quantum fluctuations of the six parameters can be
obtained by inverting the expansion in Eq.s14d to give
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Dm̂szd = ReHE gm
† sxdexpf− iFszdgDĈsx,zddxJ , s16d

where multiplication by the phase factor exps−iFszdd cancels
the mean phase shift. Using Eq.s16d, the following pairs of
noncommuting operators can be calculated:

fDÂ0,Dû1g = fDÂ0,Dû2g = i ,

fA0Df̂,Dû1g = −
i

2
tansfd,

fA0Df̂,Dû2g =
i

2
cotsfd,

fDx̂0,A0Dk̂xg = i , s17d

where all other pairs of operators commute. The first three
relations are photon number and phase commutators,
whereas the last is the commutation relation for momentum
and position. Since these commutators are conserved during
evolution, we have quantized the soliton excitation success-
fully and there is no need to introduce additional noise
sources. A word of caution is in order. At values off ap-
proaching 0 orp /2, singularities in these commutators ap-
pear. At these values, a majority of photons are in one com-
ponent of the soliton, where the scaled amplitudes of each
component are proportional toA0 cosf andA0 sinf. How-
ever, our linearization assumes a large photon number.
Therefore, these amplitude and phase relations do not hold in
this approximation for all values off. As a result, the theory
developed here is limited to Manakov solitons in which both
components have a substantially high photon numberf35g.
To establish a conservative estimate on the allowable range
of f, we will assume pulses with photon numbers of 109

to propagate 100 m, an order of magnitude greater than
the distance for which quantum effects become experimen-
tally observablef5g. Using these parameters, values of
1° ,f,89° will be valid for the chosen linearization. For
other values off, we demonstrate later in this section that
the soliton fluctuations approach the scalar soliton fluctua-
tions because of a correspondence that arises at these limits.

A. Propagation

In order to calculate the initial variances of the fluctuation
operators, we assume that the soliton is initially in a uniform
zero-point fluctuation background, so thatkDûlDûl

†l
=dll8dsx−x8d, l=1,2, and allother correlations vanish. This
state is chosen because it contains a minimal amount of ini-
tial quantum noise and represents accurately the radiation
from a mode-locked laser. We can therefore compute the
variances of the vacuum-induced fluctuations using Eq.s16d
at z=0

kDÂ0
2l0 =

1

4
E sug1Asxdu2 + ug2Asxdu2ddx = A0,

kDx̂0
2l0 =

1

4
E sug1xsxdu2 + ug2xsxdu2ddx =

p2

3A0
3 ,

kDk̂x
2l0 =

1

4
E sug1ksxdu2 + ug2ksxdu2ddx =

A0

12
,

kDf̂2l0 =
1

4
E sug1fsxdu2 + ug2fsxdu2ddx =

1

4A0
,

kDû1
2l0 =

1

4
E ug1usxdu2dx =

1

3
S1 +

p2

12
D

A0 cos2 f
,

kDû2
2l0 =

1

4
E ug2usxdu2dx =

1

3
S1 +

p2

12
D

A0 sin2 f
. s18d

The uncertainty products of the photon number and phase are

kfDsÂ0 cosf̂dg2l0kDû1
2l0 =

1

12
S1 +

p2

12
DS3 +

1

cos2 f
D ' 0.61,

kfDsÂ0 sin f̂dg2l0kDû2
2l0 =

1

12
S1 +

p2

12
DS3 +

1

sin2 f
D ' 0.61,

s19d

where the photon number uncertainty in each component is

given by DsÂ0 cosf̂d and DsÂ0 sin f̂d, and the uncertainty
product for momentum and position is

A0
2kDk̂x

2l0kDx̂0
2l0 < 0.27. s20d

Like the scalar soliton, the Manakov soliton combines prop-
erties characteristic of both waves and particles and pos-
sesses pairs of operators describing both properties. The un-
certainty products in Eq.s19d show the photon number and
phase relationship characteristic of a wave, and Eq.s20d de-
scribes the position and momentum uncertainty product char-
acteristic of a particle. The lower bound on the first two
expressions corresponds exactly to the uncertainty product
for scalar solitonsf4g. These inequalities reach the lower
bound at the excluded values off=0 andp /2, representing
a correspondence between the Manakov and scalar cases,
which should arise at these extremal values.

From Eq.s16d, the fluctuation operatorsDm̂szd at any po-
sition z are

DÂ0szd = DÂ0s0d,

Dx̂0szd = Dx̂0s0d + 2Dk̂xs0dz,

Dk̂xszd = Dk̂xs0d,

Df̂szd = Df̂s0d,

Dû1szd = Dû1s0d +
A0

2
DÂ0s0dz,
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Dû2szd = Dû2s0d +
A0

2
DÂ0s0dz. s21d

Consistent with scalar soliton theory, Eqs.s21d show that
phase and position become correlated with amplitude and
momentum, respectively. As a result, the soliton experiences
phase diffusion and wave packet spreading, while the ampli-
tudes of each component and the momentum propagate un-
changed. The term responsible for wave packet spreading,
Dx̂0szd, can be attributed to the group velocity dispersion of

the Kerr medium, while the phase diffusion terms,Dû1szd
and Dû2szd, result from the combined effects of self- and
cross-phase modulation. It should be noted that these
propagation-induced fluctuations do not present a fundamen-
tal limit to the performance of a particular application. In
fact, it was shown that both of these propagation-dependent
effects can be canceled with the insertion of a near-resonant
two-level systemf38,39g.

From Eqs.s18d and s21d, the variances of the six soliton
parameters at some arbitrary pointz are

kDÂ0
2szdl = A0,

kDx̂0
2szdl =

p2

3A0
3 +

A0

3
z2,

kDk̂x
2szdl =

A0

12
,

kDf̂2szdl =
1

4A0
,

kDû1
2szdl =

1

3
S1 +

p2

12
D 1

A0 cos2sfd
+

A0
3

4
z2,

kDû2
2szdl =

1

3
S1 +

p2

12
D 1

A0 sin2sfd
+

A0
3

4
z2. s22d

These six equations describe fully the evolution of vacuum
noise for the six parameters of a Manakov soliton in the
absence of collision. The initial frequency fluctuations cause
a quadratic increase in the variance of position fluctuations
as a function of propagation distance due to the group veloc-
ity dispersion of the medium. In addition, the variance of
phase fluctuations of each component increases quadratically
with propagation as a result of zero-point amplitude fluctua-
tions, which couple to the Kerr nonlinearity. Amplitude fluc-
tuations obey Poisson statistics, and the variance of polariza-
tion angle fluctuations, an identifying characteristic of vector
solitons, is independent of the distance propagated.

B. Collision

It has been shown previously that vacuum noise causes
sufficient wave packet spreading to give rise to large error
rates in cascaded logic gates based on scalar soliton colli-
sions f40g. Calculating the vacuum-induced fluctuations of

Manakov solitons can be applied similarly, in order to inves-
tigate whether quantum noise will present similar obstacles
toward the realization of switching, logic, and computation
based on Manakov solitonsf11–14g. In addition, this theory
can be applied in the planning of new experiments to test
quantum effects in this coupled system.

A collision between scalar solitons induces a phase shift
and a timesor, equivalently, positiond shift f41g. Manakov
soliton collisions demonstrate these same effects, with an
additional collision process that involves an intensity redis-
tribution between the two component fieldsu10 andu20 f10g.
This last property has been applied recently to show
collision-based logic and universal computationf11–14g.

A quantum description of scalar soliton collisions has
been treated by several authors, primarily in the context of
quantum nondemolition measurementsf30,40,42,43g. In or-
der to study the quantum fluctuations in a collision of two
Manakov solitons, we assume that both solitons are initially
well separated in space, in such a way that they can be
treated as the sum of two independent fundamental solitons.
The perturbation of each soliton can then be decomposed
into a linear combination of its six fluctuation operators. Af-
ter collision, however, the solitons become quantum-
mechanically entangled. Therefore, the twelvessix for each
solitond post-collision operators will depend nontrivially on
the precollision operators. As in our previous analysis, we
neglect the noise contributions that arise as a result of inter-
actions between the continuous spectrum and each soliton
field.

The classical position shift of soliton 1 after a collision
with soliton 2 is given byf44g:

dxs1d =
A0

s1d + A0
s2d

A0
s1dA0

s2d lnS uks1d − ks2du2

uks1d + ks2dpu2F1 −
A0

s1dA0
s2d

uks1d + ks2dpu2
ua1

s1da1
s2dp

+ a2
s1da2

s2dpu2GD , s23d

where ks jd;fA0
s jd /2g+ ikx

s jd, a1
s jd;cosfs jdexpsiu1

s jdd,
a2

s jd;sinfs jdexpsiu2
s jdd, j =1,2 is the soliton number, and

kx
s1d.kx

s2d.
The position fluctuation in soliton 1 because of the colli-

sion can be calculated by

Ddx̂s1d = o
m

]dxs1d

]m
Dm̂s0d,

mP hA0
s jd,kx

s jd,u1
s jd,u2

s jd,fs jdj. s24d

The overall fluctuation of the position operator of soliton 1
can therefore be generalized from Eq.s21d to include one
collision

Dx̂0
s1dszd = Dx̂0

s1ds0d + 2Dk̂x
s1ds0dz+ Ddx̂s1d. s25d

The variance of soliton position after one collision can like-
wise be calculated
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kDx̂0
s1d2szdl =

p2

3A0
s1d3 +

A0
s1d

3
z2 +

A0
s1d

3

]dxs1d

]kx
s1d z+ kDdx̂s1d2l.

s26d

The last two terms in Eq.s26d arise due to collision, in which
the first results from a cross-correlation between the fluctua-

tions in velocity,Dk̂x
s1ds0d, and the collision-induced position

shift.
The classical postcollision polarization and carrier phase

of soliton 1, ai
s1d+, after a collision with soliton 2 are de-

scribed byf44g

ai
s1d+ =

ai
s1d −

A0
s2d

ks1d + ks2dpsa1
s1da1

s2dp + a2
s1da2

s2dpdai
s2d

F1 −
A0

s1dA0
s2d

uks1d + ks2dpu2
ua1

s1da1
s2dp + a2

s1da2
s2dpu2G1/2,

s27d

where i =1,2 is the soliton component. The variances

kDf̂2szdl, kDû1
2szdl, andkDû2

2szdl can be determined from Eq.
s27d to include collisions in the same manner askDx̂0

s1d2szdl.
By straightforward manipulation of Eq.s27d, an expression
can be obtained for the collisional phase and polarization
angle shiftsdui

s1d and dfs1d. The total variance of soliton
phase and polarization angle after one collision is then given
by

kDûi
s1d2szdl = kDûi

s1d2s0dl +
A0

s1d3

4
z2 + A0

s1d2]dui
s1d

]A0
s1d z

+ 2
]dui

s1d

]ui
s1d kDûi

s1d2s0dl + kDdûi
s1d2l, s28ad

kDf̂s1d2szdl =
1

4A0
+

1

2A0

]dfs1d

]fs1d + kDdf̂s1d2l, s28bd

where Ddûi
s1d and Ddf̂s1d are defined in the same way as

Ddx̂s1d in Eq. s24d. It is remarkable that the variance of po-
larization angle is independent of propagation distance.

Due to the quadratic dependencies ofkDx̂0
2szdl and

kDûi
2szdl on the scaled propagation distancez, phase diffu-

sion and wave packet spreading can become limiting factors
in communications or computation systems using Manakov
solitons, even without considering collisions. As an example,

kDx̂0
2szdl, kDf̂2szdl, and kDû1

2szdl are calculated for a two-
soliton collision using Eqs.s26d ands28d and plotted in Figs.
1–3, respectively, as both a function of the propagation
distancez and the relative velocity between the colliding
solitons. The parameters of soliton 1, 2 for these and all
subsequent calculations are:A0=1,1; kx=0,−dkx; f
=3p /10,p /6; u1=0,0; u2=p /3 ,2p /5, unless otherwise
noted. The velocity dependence of these effects are investi-
gated by varying the relative velocitydkx;kx

s1d−kx
s2d. We will

concentrate only on one phase operator, noting that the be-

havior of bothkDû1
2szdl andkDû2

2szdl is qualitatively identical
for the studied cases.

Each of these plots demonstrates the relative effect colli-
sions induce on the vacuum fluctuations of Manakov soli-
tons. We show these calculations forz.20, which provides
at least 5 collision lengths as given byzdkx/2, in order to
insure the validity of the asymptotic collision formulas given
in Eqs. s23d and s27d. In Fig. 1, it is clear that the term
quadratic inz dominates the overall position noise. The two
collision terms of Eq.s26d each introduce positive contribu-
tions to the fluctuations, as evidenced by the curves with and
without collision. It is not surprising that, as the relative
velocity between the two solitons is decreased, the fluctua-
tions increase because of an increase in the interaction
length.

The variance of polarization angle fluctuations is shown
in Fig. 2. SincekDf̂s1d2l is independent of propagation dis-
tance, we show the fluctuation effects as a function of rela-
tive velocitydkx. As expected, a decrease in relative velocity
results in a subsequent increase in the variance. Furthermore,
the variance approaches the no-collision valuekDf̂2l0, as
given in Eq.s22d, in the limit of low interaction strength.

FIG. 1. Variance of position fluctuationskDx̂0
s1d2szdl with and

without collision as a function of the scaled propagation distancez
for varying relative velocitydkx.

FIG. 2. Variance of polarization angle fluctuationskDf̂s1d2l dur-
ing collision as a function of the relative velocitydkx. Each curve,
corresponding to varying photon numbers, approaches the no-
collision limit kDf̂2l0 given in Eq.s18d.
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In Fig. 3, we find, surprisingly, that the soliton collision
slightly reduces the variance of the phase fluctuations. In
addition, longer interaction lengths, due to a smaller relative
velocity, will decrease the variance further, as shown in the
inset of Fig. 3. From the third term on the right-hand side of
Eq. s28ad, we observe that this variance depends on the slope
of the classical phase shift during collision with respect to
the amplitude of the pulse. This slope is always negative, as
can be seen more simply from the classical expression for the
collision phase shift for a scalar solitonsEq. s27bd of f41gd.
The effect of increasing one soliton amplitude with respect to
another causes it to receive less phase shift from the smaller
soliton, and vice versa, resulting in an overall reduction of
the phase variance.

From Figs. 1–3 it is apparent that the collision-induced
fluctuations can seriously affect and perhaps limit the perfor-
mance of systems that use Manakov solitons. Existing strat-
egies for Manakov soliton computing and logic depend criti-
cally on the complex-valued polarization stater;u10/u20
=cotf expfisu1−u2dg, defined as the ratio between theu10

andu20 componentsf11–14g. Fluctuations inr are calculated
through a perturbative approach in which

Dr̂szd =
]r

]f
Df̂ +

]r

]u1
Dû1szd +

]r

]u2
Dû2szd. s29d

Since]r /]u1=−s]r /]u2d, it is found that fluctuations of the
polarization state are independent of propagation distance.
This result suggests that, in the range of validity for the
linearized perturbation methodf3,35g, collision-based soliton
computing may be limited only by the relative collision ve-
locity and number of collisions, and not by the total propa-
gation distance. The variance of polarization state fluctua-
tions is plotted versus relative velocity in Fig. 4. With
increasing relative velocity, the variance approaches the no-
collision variance, given by

kDr̂2l0 =
csc4 f

A0
F1

3
S1 +

p2

12
D +

1

4
G . s30d

Moreover, the fluctuations increase as the strength of the
interaction increases. The extent to which these effects will
hinder the performance of any particular system remains a
topic for future work.

V. SOLITON DETECTION AND SQUEEZING

The generation of squeezed states of light has attracted
much interest in quantum information and computation, in
addition to enabling measurements below the shot noise
level. Squeezing of scalar solitons is a well-known effect,
experimentally observed for both pairs of conjugate opera-
tors f5,6g. Natural questions to ask are how the squeezing of
Manakov solitons can be accomplished and how it compares
with the scalar case.

The soliton operators can be extracted using a balanced
homodyne detection scheme that performs a projection onto
the desired operatorf4g. The experimental setup is shown in
Fig. 5. The orthogonal polarization components of two

pulses, an inputDĈsx,zd and a local oscillatorsLOd
fLsx,zd;f fL1

fL2
g, are separated in a polarization beam splitter

sPBSd. The PBS for the LO is not shown in Fig. 5. Each of
the two components mix in a 50-50 beam splitter and are
detected by photodetectors. The difference of the output cur-
rents is summed and integrated to complete the measure-

ment, and the outputM̂szd is f4g

M̂szd = ReSE fL
†sx,zdDĈsx,zddxD , s31d

subject to the normalization condition

E ufLsx,zdu2dx = 1. s32d

Comparison of Eqs.s31d ands16d shows that by appropriate
shaping of the LO pulse, any of the six soliton operators can

FIG. 3. Variance of phase fluctuationskDû1
s1d2szdl with and with-

out collision as a function of the scaled propagation distancez for
varying relative velocitydkx. Detail of the behavior is shown in the
inset.

FIG. 4. Variance of polarization state fluctuationskDr̂s1d2l dur-
ing collision as a function of the relative velocitydkx. Each curve,
corresponding to varying photon numbers, approaches the no-
collision limit kDr̂2l0 given in Eq.s30d.
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be detected. Furthermore, since these six operators evolve in
their own subspace, this measurement scheme suppresses
any contributions of the continuum. Thus, by setting the LO
pulse proportional togmsxdexpfiFszdg, we can measure the
fluctuation operatorsDm̂szd. Moreover, it was observed that
because of the linearity of this detection process, any linear
combinations of the operators can be measured as well, pro-
vided a LO that is a linear combination of the adjoint func-
tions is usedf29g.

The soliton operators become correlated with propaga-
tion, as can be seen in Eqs.s21d, which show the coupling
that exists between photon number and phase, and between
position and momentum. Using a LO that is a linear combi-
nation of particular soliton operators can allow a reduction in
the amount of detected noise, and thus make the observation
of squeezing possible. To demonstrate optimal squeezing of
phase and photon number in a Manakov soliton, we choose
the LO to be

fLsx,zd = fcAgA0
sxd + cu1

gu1
sxd + cu2

gu2
sxdgexpfiFszdg,

s33d

which will detect, from Eq.s31d, the operator

M̂szd = cADÂ0szd + cu1
Dû1szd + cu2

Dû2szd. s34d

According to Eq.s32d, the coefficientscA, cu1
, andcu2

must
obey the condition

cA
2kDÂ0

2l0 + cu1

2 kDû1
2l0 + cu2

2 kDû2
2l0 = 1. s35d

We consider only the LO of Eq.s33d, which gives rise to
optimal squeezing, because this measurement will lead to the
maximum reduction in the noise floor that exists in optical
detection.

The squeezing ratio is defined as

Rszd ;
kM̂2szdl

kM̂2s0dl
. s36d

According to this definition, squeezing is observed when
measurement of the quantum noise at the output is less than
the input. The inputsvacuumd state and output state are mea-

sured in an identical fashion. The minimum value ofRszd,
subject to the constraint in Eq.s35d, is found using the
method of Lagrange multipliers, resulting in

Roptszd = 1 + 2F0
2szd − 2F0szdf1 + F0

2szdg1/2, s37d

where

F0szd =
1

A0
FszdFkDÂ0

2l0S 1

kDû1
2l0

+
1

kDû2
2l0
DG1/2

. s38d

Using Eqs.s18d, we find that

F0szd =
Fszd

F1

3
S1 +

p2

12
DG1/2, s39d

which corresponds exactly to the optimum achieved previ-
ously in scalar soliton squeezingf4,45g. This result suggests
that, regardless of the amplitudes of each component of the
Manakov solitonsor, equivalently, the value offd, the opti-
mum amount of achievable squeezing when using the LO
given in Eq.s33d is identical to the scalar soliton theory. The
squeezing ratioRoptszd is plotted as a function of the classical
phase shiftFszd in Fig. 6. Although there is no advantage in
the optimal squeezing of Manakov solitons, this calculation
is aimed at systems using vector solitons, the performance of
which could be improved through proper measurement.

In order to study the squeezing effects for an arbitrary LO,
a numerical approach would need to be taken, where one
could investigate, for example, the squeezing in each polar-
ization component. This lies outside the scope of the current
paper and remains a topic for future work. The use of a
nonideal LO adds another level of complexity to the problem
because it requires incorporation of the continuum.

VI. CONCLUSION

In this paper, we have developed an analytical quantum
theory of Manakov solitons based on a linearization approxi-
mation that separates the soliton into classical and quantum
mechanical parts. Using perturbation theory, effects due to
the quantum field were investigated in which analytical ex-

FIG. 5. Schematic of balanced homodyne de-
tection scheme for measurement of soliton opera-
tors: PBS, polarization beam splitter; D, photode-
tector; BS, beam splitter.
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pressions were derived, describing the evolution of the six
physical soliton parameters with and without the effects of
collision. Vacuum-induced fluctuations were also described
using this theory. Manakov solitons were shown, like scalar
solitons, to undergo phase diffusion and wave packet spread-
ing due to the Kerr nonlinearity and dispersion of the me-
dium, respectively. However, different effects describing the
evolution of the polarization angle and polarization state ap-
pear in Manakov solitons, and both of these parameters were
found to be independent of propagation distance. By varying
the relative velocity of the two solitons, collision effects
were studied for the position, polarization angle, and polar-
ization state fluctuations. It was found that the variances of
these fluctuations increase with decreasing relative velocity,
as expected. Calculations of the Manakov soliton phase fluc-
tuations showed the effect that the collision-induced phase
variance can actually fall below the level of fluctuations in
the absence of collision. We have also shown that, like the
fundamental scalar soliton, the fundamental Manakov soliton
undergoes a squeezing effect. Surprisingly, the optimal
squeezing was proven identical to scalar soliton theory.

These results suggest avenues for future work on applica-
tions of Manakov solitons. Since fluctuations of the polariza-
tion angle and polarization state are independent of propaga-
tion distance, applications exploiting these quantities will not
suffer the same limitations as applications based on, for ex-

ample, pulse position, which is subject to increasing jitter as
a function of the distance propagated. This theory can both
provide an upper-bound limit on the performance of commu-
nication or computation systems using Manakov solitons and
serve as a guide to designing new experiments to test the
fundamental quantum properties of such nonlinear waves.
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APPENDIX

The vectorsfmsx,zd, defined in Eq.s14d, are

fA0
sx,zd = Fcossfdexpsiu1d

sinsfdexpsiu2d GF1

2
+ i

A0
2

4
z

−
A0

4
x tanhSA0

2
xDGsechSA0

2
xD ,

fx0
sx,zd = Fcossfdexpsiu1d

sinsfdexpsiu2d GA0
2

4
tanhSA0

2
xDsechSA0

2
xD ,

fkx
sx,zd = Fcossfdexpsiu1d

sinsfdexpsiu2d GFix

+ A0z tanhSA0

2
xDGA0

2
sechSA0

2
xD ,

ffsx,zd = F− sinsfdexpsiu1d
cossfdexpsiu2d GA0

2
sechSA0

2
xD ,

fu1
sx,zd = Fcossfdexpsiu1d

0
Gi

A0

2
sechSA0

2
xD ,

fu2
sx,zd = F 0

sinsfdexpsiu2d Gi
A0

2
sechSA0

2
xD . sA1d

The vectorsgmsxd, defined in Eq.s15d, are

gA0
sxd ; Fg1A

g2A
G = Fcossfdexpsiu1d

sinsfdexpsiu2d GA0 sechSA0

2
xD ,

gx0
sxd ; Fg1x

g2x
G = Fcossfdexpsiu1d

sinsfdexpsiu2d Gx sechSA0

2
xD ,

gkx
sxd ; Fg1k

g2k
G = Fcossfdexpsiu1d

sinsfdexpsiu2d Gi
A0

2
tanhSA0

2
xDsechSA0

2
xD ,

FIG. 6. Optimal squeezing ratioRoptszd vs classical phase shift
Fszd using the measurement scheme of Fig. 5.
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gfsxd ; Fg1f

g2f
G = F− sinsfdexpsiu1d

cossfdexpsiu2d G1

2
sechSA0

2
xD ,

gu1
sxd ; Fg1u

0
G = 3 1

cossfd
expsiu1d

0
4F1 −

A0

2
x tanhSA0

2
xDGi sechSA0

2
xD ,

gu2
sxd ; F 0

g2u
G = 3 0

1

sinsfd
expsiu2d 4F1 −

A0

2
x tanhSA0

2
xDGi sechSA0

2
xD . sA2d
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