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In this paper we study the transfer of information between colliding solitary waves. By this we mean the
following: The state of a solitary wave is a set of parameters, such as amplitude, width, velocity, or phase, that
can change during collisions. We say information is transferred during a collision of solitary wavesA andB if
the state ofB after the collision depends on the state ofA before the collision. This is not the case in the cubic
nonlinear Schro¨dinger, Korteweg–de Vries, and many other integrable systems. We show by numerical simu-
lation that information can be transferred during collisions in the~nonintegrable! saturable nonlinear Schro¨-
dinger equation. A seemingly complementary feature of collisions in this and similar systems is radiation of
energy. We give results that show that significant information can be transferred with radiation no greater than
a few percent. We also discuss physical realization using recently described spatial solitary light waves in a
saturable glass medium.@S1063-651X~97!05812-1#

PACS number~s!: 42.65.Tg, 42.81.Dp, 89.80.1h

I. INTRODUCTION

A solitary wave can carry information in its envelope am-
plitude, width, and position; its group and phase velocities;
and its carrier phase; and this information can be exchanged
in collisions with other solitary waves. This paper is devoted
to the question of whether such information transfer can oc-
cur in a way that is useful as a basis for computation while
still preserving particle identities. If this is possible, it sug-
gests that general computation can be performed via interact-
ing waves in a uniform medium, such as a nonlinear optical
material.

In the usual conception of optical computing, one builds
discrete gates based on the propagation of light and then
essentially mimics the construction of a conventional com-
puter. We describe here an alternative approach to building
an all-optical computer, using only solitary waves in a ho-
mogeneous nonlinear optical medium. In our approach, pro-
grams and data are encoded as streams of solitary waves,
which are injected into the medium at a boundary and com-
pute via the information transfer effected by solitary-wave
collisions.

A general Turing-equivalent model for such ‘‘gateless’’
computation, theparticle machine, was introduced in@1,2#.
By exploiting the fine-grain parallelism of particle systems,
this model supports fast and efficient execution of many op-
erations, including arithmetic and convolution. Briefly, par-
ticle machines treat solitary waves as particles whose colli-
sions can change particle states, thus performing
computation. Such computation requires that if solitary
wavesA and B collide, then~i! some part of the resulting
state ofA depends on the state ofB and~ii ! ~this is essential!
the state ofB is changed by collisions. In a word, informa-
tion should be transferred from one wave to the other in
‘‘interesting’’ ways.

There is much already known about the phenomenology
of collisions in nonintegrable versions of nonlinear Schro¨-

dinger equations~NLSEs! @3–8#. Generally, solitons in these
systems, including the saturable NLSE~SNLSE!, can change
amplitude and velocity after collisions. We emphasize that
this is not in itself sufficient to meet our criterion of compu-
tationally ‘‘interesting.’’

The properties that are useful for our computational pur-
poses are the opposite of those usually considered useful in
communication optics: At least some of the collision prod-
ucts must effect a nontrivial transformation of information in
the colliding waves. The reason for this is that general com-
putation requires a transformation of information in basic
logic operations. Unfortunately, many commonly studied
systems that support waves do not have this behavior. For
instance, because of linear superposition, colliding plane
waves in a linear medium do not interact, i.e., do not undergo
any state changes, and therefore cannot have information in-
teraction among colliding waves.

An example of a system in which collisions cause a
change of state but nevertheless cannot transform informa-
tion in a nontrivial manner is the cubic nonlinear Schro¨-
dinger equation~3NLSE!. In order to perform a computation,
solitary waves must carry information from one collision to
the next; such information must be coded in parameters that
are not constant. However, in the 3NLSE system, the state
parameters that cause the information transfer are themselves
invariant: The only change of state occurs in the spatial~or
temporal! position and carrier phase, and this change de-
pends only on the amplitudes and velocities of the envelopes
of the incoming solitons. We conjecture in@9,10# that all
solitary-wave collisions in integrable systems have this prop-
erty and we show that particle machines based on such sys-
tems are very limited in computational power. In particular,
these particle machines are not Turing equivalent. We must
therefore look to solitary waves in nonintegrable systems for
computationally useful collisions.

For solitary waves to carry information, they must also
preserve their integrity after a sequence of collisions and lose
negligible energy through radiation. These requirements are
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apparently antagonistic to the information-transform capabil-
ity necessary for computation, but our goal is to find systems
that meet all these requirements. The results shown here sug-
gest that the SNLSE describes such a system.

II. INFORMATION TRANSFER

To be more precise about the definition ofinformation
transfer, suppose that a medium supports a set of solitary
waves. Then a selected set of properties that can change
during a collision define astate S(A) of a waveA, whereas
a set of constant wave properties that are unaffected by col-
lisions define anidentity I(A) of A. Note that we may define
different types of statesS and identitiesI for the same type
of wave. Denote byA8 the solitary waveA after a collision
with wave B. Then a collision ofA with B supports the
transfer of information ifS(A8) depends onS(B) for some
S(A) andS(B); otherwise, the collision transfers only trivial
information@if S(A8) depends on onlyI (B)# or no informa-
tion @if S(A8)5S(A)#.

We illustrate the above definition using the cubic NLSE
and the saturable NLSE systems. The cubic NLS equation
supports solitons whose variable states are phases and whose
constant identities are amplitudes and velocities. Collisions
of such solitons transfer only trivial information since the
phase shifts due to soliton collisions are a function of only
the amplitudes and velocities, i.e., the identities, of the col-
liding solitons. On the other hand, the saturable NLSE sys-
tem gives rise to solitary waves whose variable state includes
phases, amplitudes, and velocities. This system supports col-
lisions that transfer nontrivial information since the state
changes due to collisions are a function of the states of the
colliding waves.

III. COMPUTATIONAL POWER

To examine how information transfer relates to computa-
tional power, we briefly review the notion of Turing equiva-
lence, or computational universality. Informally, a Turing
machine is a computational model in which programs and
data are stored on an infinite tape of discrete cells. A read-
write head processes information by reading cell contents,
writing new cell contents, and moving back and forth along
the tape, all according to a transition function that considers
both the state of the head and the symbol read from under-
neath the head. The machine can enter a special ‘‘halt’’ state,
which signals the end of computation and the presence of the
machine’s final output on the tape.

It is generally accepted~by virtue of Church’s thesis@11#!
that given enough time and space, a Turing machine can
implement any algorithm; that is, in terms of the results that
can be computed, a Turing machine is as powerful as any
computer. A computational system is Turing equivalent, or
computation universal, if it can simulate a Turing machine.
While this property is not absolutely necessary for a system
to perform useful computation, universality nevertheless
serves as a good measure of a system’s computational poten-
tial.

Intuitively, in order for a computation to take place in a
solitary-wave system, colliding waves should interact and
transfer information that is necessary to execute steps of an

algorithm. In @10# we show that only at most cubic-time
computation can be done on a particle machine that models a
system in which collisions transfer at most trivial informa-
tion. This upper bound on such a system’s computation time
proves that this system cannot be Turing equivalent since
universal computation can take an arbitrarily long time.
Moreover, solitary-wave interactions in this system are com-
putationally very limited, and designing algorithms based on
these interactions appears tedious and impractical. It is un-
clear whether or not collisions supporting only trivial infor-
mation transfer can encode any useful computation at all.

Solitary-wave systems in which collisions transfer non-
trivial information are more readily applicable to encoding
computation. We have shown in@10# that such a system can
be Turing equivalent provided the solitary-wave state
changes are sufficiently complex.

IV. THE NLS EQUATION AND ITS SOLUTIONS

To study the information-transfer capabilities of NLSE
solitary waves, we first review the one-dimensional NLS
equation and its solutions. We consider the following form
of the NLS equation@4,12#:

2 i
]u

]t
5a

]2u

]x2 1N~ uuu!u. ~1!

Here x is space,t is time, u is the complex amplitude of
waves described by the equation,a is real, andN(uuu) is a
nonlinear function ofuuu. For the 3NLSE,N(uuu)5kuuu2; for
the SNLSE,N(uuu)5m1kuuu2/(11uuu2), where k and m
are real constants.

The nonlinearityN(uuu) determines the integrability of
Eq. ~1! and the existence of closed-form solitary-wave solu-
tions. To find solitary waves, either analytically or numeri-
cally, we assume that each such wave consists of an enve-
lope modulating a sinusoidal carrier wave. Following@13#,
we make the ansatz

u~x,t !5F~x2uet !e
iu~x2uct !, ~2!

where F(x2uet) is the envelope,eiu(x2uct) is the carrier,
andue anduc are the envelope and carrier velocities, respec-
tively. We find that the carrier functionu is given by

u~x2uct !5
ue

2a
~x2uct !1f0 , ~3!

wheref0 is an arbitrary constant. The envelope functionF
can be found from

x2uet5E
F~0!

F~x2uet ! dF

AaF222E N~ uFu!dF

, ~4!

wherea5(ue
222ueuc)/(4a).

If the integral in Eq.~4! can be evaluated analytically and
used to solve Eq.~4! for the envelope functionF(x2uet),
then Eq.~2! gives an exact expression for a solitary wave, as
is the case with the 3NLSE. Otherwise, the integral and
F(x2uet) can be computed numerically, using boundary
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conditions chosen to yield solitary waves. We explain how to
do this to obtain the SNLSE solitary waves used in our nu-
merical simulations.

We consider the following form of the SNLSE:

2 i
]u

]t
5

]2u

]x2 1S m1
kuuu2

11uuu2Du. ~5!

Herem andk are real constants. Solitary-wave solutions are
of the form of Eq.~2!, where the carrieru is given by Eq.
~3!. The envelopeF can be found from Eq.~4!, which sim-
plifies to

x2uet5E
F~0!

F~x2uet ! dF

AcF21k ln~11F2!
, ~6!

wherec5a2m2k. We evaluate the above integral numeri-
cally using the boundary conditionsF(0)5A and
F(6`)50, whereA is the maximum amplitude of the en-
velope and is determined byuc and ue . The integration
yields x2uet as a function of the envelopeF(x2uet). We
invert the result of the integration to compute the envelope
F(x2uet) as a function ofx2uet. We multiply this numeri-
cal envelope by the exact carrier@Eq. ~3!# to plot solitary
waves on a discrete one-dimensional grid and use numerical
methods to study the behavior of propagating and colliding
waves.

Note that SNLSE solitary waves are characterized by four
parameters: amplitude (A), envelope velocity (ue), carrier
velocity (uc), and phase (f0). Using Eq. ~6!, it can be
shown that any two ofA, ue , anduc determine the third. We
may choosef0 freely, so that there are three degrees of
freedom in choosing the initial state of a SNLSE solitary
wave.

V. INFORMATION TRANSFER IN COLLISIONS
OF NLSE SOLITARY WAVES

In the integrable 3NLSE system, solitary waves are true
solitons whose collisions can change only their envelope po-
sition and carrier phase; envelope amplitude and velocities
are conserved. In addition, the spatial and phase shifts of
colliding solitons depend only on their constant amplitudes
and velocities. Thus such collisions transmit only trivial in-
formation and are computationally very limited, as we dem-
onstrate in@10#. ~See Fig. 1.!

The nonintegrable SNLSE gives rise to solitary waves
whose collisions support nontrivial information transfer.~See
Fig. 2.! In particular, phases, amplitudes, and velocities can
all change as a function of the parameters of the colliding
waves. We have observed that the most computationally use-
ful collisions occur when the solitary waves have a low rela-
tive speed~approximately 4.0 and below!. The magnitude of
information transfer decreases gradually as the relative speed
of the waves increases. To estimate this magnitude, we mea-
sured the amplitude and velocity changes following colli-
sions of low-velocity waves at various initial phases. In Fig.
3, the normalized amplitude change is plotted as a function
of the relative phase of two colliding solitary waves.

In practice, it is reasonable to expect that the amplitudes

of two colliding solitons cannot be made precisely equal. To
test the robustness of the results in Fig. 3 we ran experiments
with unequal amplitudes~amplitude ratios of 1.1, 1.3, and
2.0! and found the results to be quite similar, except that the
magnitude of the effect was even greater.

It might appear that in the perfectly symmetric case, when
the relative phase is zero, there should be no amplitude
change. That is, a nonzero value of the amplitude change at
zero relative phase shift would imply that energy is trans-
ferred from one wave to another, thereby spontaneously
breaking the symmetry. To explain this apparent problem,
we first note that what is plotted is a change in amplitude, not
energy. A nonzero value of the amplitude change at zero
relative phase~which is indeed a symmetric situation! then
means that the amplitudes of both solitons change. There are
three ways that this can happen:~i! Radiation can decrease
the energy of both solitons,~ii ! the amplitudes can change,
but a change in width can compensate to preserve energy,
and ~iii ! the collision products can breathe, which in fact
makes the amplitude poorly defined.

VI. RADIATION AND REUSABILITY

In general, computation encoded in a NLSE system must
reuse solitons after they have been involved in multiple col-
lisions. To behave like the particles of a particle machine,
these solitary waves should be stable; more specifically, col-
lisions should preserve the identities of solitary waves and
generate negligible radiation.

FIG. 1. Trivial information transfer in collisions of 3NLSE soli-
tons. The initial relative phases of the solitons in the left and right
graphs are 0.25p and 20.45p, respectively; velocities are60.2.
Phase and spatial shifts, though not apparent from these graphs, are
a function of only the constant amplitudes and velocities.

FIG. 2. Nontrivial information transfer in collisions of SNLSE
solitary waves. The initial relative phases of the waves in the left
and right graphs are 0.25p and20.45p, respectively; velocities are
60.2.
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Numerical results reveal that information transfer and ra-
diation often go hand in hand. Soliton collisions in the
3NLSE system are perfectly elastic and generate no radia-
tion, but such collisions support only trivial information
transfer, as we have seen. In the SNLSE system, large
amounts of radiation tend to accompany large magnitudes of
information transfer. However, much like other known non-
integrable NLSE systems@4#, the SNLSE system supports
collisions that transfer information and yet generate only
small amounts of radiation. More specifically, our numerical
studies have revealed the following.

~i! When at least one of the solitary waves is moving at a
high speed~approximately 4.0 and above!, their collision
generates negligible radiation and supports no measurable
information transfer. ~This phenomenon in generalized
NLSE systems was mentioned by Snyder and Sheppard@5#.!

~ii ! When the relative phasef05p, the collision is the
same as in the above case, regardless of the value of the
relative speedv0.

~iii ! When both waves have low speeds~below 4.0) and
0<f0,p, the collision is accompanied by larger amounts
of radiation and information transfer. However, asf0 tends
towardsp, both radiation and the magnitude of information
transfer decrease. Forf0.p/2, very little or no measurable
radiation is generated.

The solitary waves that emerge from collisions in the
SNLSE system may or may not be of the form given by Eq.
~2!, depending on the initial wave parameters. As observed

early in a variety of nonintegrable systems@4,3#, and pre-
dicted theoretically for a wide range of non-Kerr materials
by Snyder and Sheppard@5#, certain regimes of operation
can lead to breathers and more dramatically to the fusion of
colliding waves and the birth of new waves. We show ex-
amples of fusion in the saturable NLSE in Fig. 4.

Breathers, fusion, and the birth of new particles may be
useful for computation in our context, but are more difficult
to study and characterize than collisions that conserve the
shape and number of particles, especially because they often
seem to be accompanied by more radiation. In fact, our defi-
nition of information transfer is not applicable to these situ-
ations. However, the idea of information transfer may be
generalizable to all interactions in a wide class of noninte-
grable systems.

When wave velocities are very low (,1.0) and relative
phases are approximately in the range 0.0–0.3, collisions
produce breathers, or waves whose amplitude pulsates regu-
larly, that cannot arise from Eq.~2!. However, we observed
that other collisions result in waves that can be specified by
Eq. ~2!.

To test the hypothesis that collision products are of the
same form as the original waves, we measured the ampli-
tudes, envelope velocities, and phases at the peaks of waves
after collisions; we then used these parameters to plot
‘‘fresh’’ waves and to compare their characteristics with
those of the postcollision waves. In particular, we compared
the carrier velocities of the fresh and postcollision waves and
observed what happens in collisions between two fresh
waves and between two postcollision waves. The results do
suggest that the postcollision waves have the form of Eq.~2!.

We estimated radiation for the collisions of Fig. 3 by
finding the fixed-size section of the numerical-solution grid
with the lowest root-mean-squared~rms! norm of the grid
points.~We use circular boundary conditions in our numeri-
cal simulations, so that any radiation generated by collisions
remains in the system.! Ideally, this rms norm should be very
close to zero for solitary waves. Numerical error caused by
the discrete nature of time and space in the grid contributes
some noise, which we measured for the analytically solvable
case of the 3NLSE by comparing numerical results with ex-
act solutions. Based on these investigations, it appears that
our simple measure of radiation gives a good general idea of
the usefulness of various collisions for computation. In Fig.

FIG. 3. Information transfer for collisions of two SNLSE soli-
tary waves. Here information transfer is defined as the fractional
change in the amplitude of one solitary wave; that is, the transfer is
equal toDA1 /A1, whereA1 is the initial amplitude of the right-
moving wave andDA1 is the amplitude change due to collisions.
The solid, dashed, and dotted curves show information transfer for
collisions of two waves with amplitudes 1.0 and velocities60.5,
61.5, and610.0, respectively. The relative phase is in multiples of
p. Note that in the low-velocity case~solid line! near zero relative
phase there is significant radiation and breathing in the collision
products, making the amplitude poorly defined. What is shown is
the result of measuring the amplitude peak at a fixed time.

FIG. 4. Fusion of two solitons after collision. In the case shown,
the two solitons approach each other with velocities60.2 and their
amplitudes are both 1.0.
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5, radiation is plotted as a function of the relative phase of
two colliding waves.

The SNLSE solitary waves that appear to hold promise
for encoding computation have relative speeds from about
0.2 to 4.0 and relative phases whose absolute values range
from about 0.2p to 0.8p. Frauenkronet al. report @7# nu-
merical studies of a quintic perturbation of the cubic NLSE
and show that radiation in that system isO(e2), while energy
exchange is first order, a general indication that the phenom-
ena involved in information transfer can dominate radiation
in nonintegrable variations of the NLSE.

VII. PHYSICAL REALIZATION

In this section we mention some physical systems that we
might expect to be described by the saturable Schro¨dinger
equation. We are continuing research in this direction, with
the hope that computationally useful information-transferring
collisions will be observed experimentally.

The integrable 3NLSE describes soliton propagation in
so-calledKerr materials: materials in which the operative
nonlinearity is due to the Kerr effect. In such materials

x (2)50 and the dominant nonlinearity in the dependence of
refractive index on electric field intensity is due tox (3)Þ0.
This is the case for centrosymmetric and isotropic materials
@14# and includes optical fibers in which soliton transmission
has been demonstrated over long distances@15,16#.

The nonintegrable SNLSE is applicable to simulating
various physical phenomena, including the nonlinear effects
of laser beam propagation in various media@4#. The SNLSE
also describes the recently discovered (111)-dimensional
photorefractive optical spatial solitons in steady state@12,17#
and the optical spatial solitons in atomic media in the prox-
imity of an electronic resonance@18#.

Both the 3NLSE and the SNLSE describe temporal soli-
tons; with the transformationt→z, both equations also de-
scribe spatial solitons, withx andz being the transverse and
longitudinal directions@19,20#. In practice, spatial solitons
appear better suited for computation because temporal soli-
tons require long distances to propagate. In addition, spatial
solitons also exist in 211 dimensions@17,18#, offering an
additional degree of freedom and suggesting the possibility
of implementing two-dimensional universal systems such as
the billiard-ball model of computation@21#.

VIII. CONCLUSIONS

The analytically solvable 3NLSE supports only soliton
interactions that transfer only trivial information and is thus
unlikely to support a useful computational system such as the
particle machine@1,2#. The nonintegrable SNLSE supports
solitary-wave collisions that transfer nontrivial information
and generate acceptable radiation and offers promise for en-
coding general computation through the particle-machine
model.

The next step in this line of work will likely involve
searching for configurations of collisions that can be used for
simple computations, such as ripple-carry addition. Such an
algorithm was implemented using the solitons of a filter au-
tomaton @22# and we believe that spatial SNLSE solitary
waves support sufficiently general interactions to implement
this algorithm in systems of 111 dimensions. Spatial
solitary-wave systems of 211 dimensions also offer possi-
bilities for encoding computation.
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