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Using explicit, bright-soliton solutions for the coupled Manakov system recently described by Radhakrish-
nan, Lakshmanan, and Hietarinta, we show that collisions of these solitons can be completely described by
explicit linear fractional transformations of a complex-valued polarization state. We design sequences of
solitons operating on other sequences of solitons that effect logic operations, including controlledNOT gates.
Both data and logic operators have the self-restoring and reusability features of digital logic circuits. This
suggests a method for implementing computation in a bulk nonlinear medium without interconnecting discrete
components.@S1063-651X~98!15711-2#

PACS number~s!: 42.65.Tg, 42.81.Dp, 89.80.1h

I. INTRODUCTION

Radhakrishnanet al. @1# have recently given an explicit
bright two-soliton solution for the Manakov system that is
more general than any previous, and derived explicit
asymptotic results for collisions in the anomalous dispersion
region. Those results are remarkable because they show large
energy switching between components in an integrable vec-
tor system. Surprisingly, as we show in this paper, the pa-
rameters controlling this switching exhibit nontrivial infor-
mation transformations @2#, contradicting an earlier
conjecture that this was not possible in integrable systems
@3#. Furthermore, these transformations can be used to imple-
ment logic operations in a self-restoring digital domain, sug-
gesting exciting possibilities for all-soliton digital informa-
tion processing in nonlinear optical media without radiative
losses.

In this paper we use the explicit two-soliton solutions in
@1# to show that in the coupled Manakov system:

~i! An appropriately defined polarization state@4# that is a
single complex number can be used to characterize a soliton
in collisions. Thus, two degrees of freedom per soliton suf-
fice to describe state transformations in collisions, instead of
the six degrees of freedom in a complete description of a
Manakov soliton.

~ii ! The transformations of this state caused by collisions
are given by explicit linear fractional transformations of the
extended complex plane. These transformations depend on
the total energies and velocities of the solitons~the complex
k parameters!, which are invariant in collisions, but which
can be used to tailor desired transformations.

In order to make use of the basic state transformations, we
will derive some of their features and limitations. View a
particle in stater1 as an operatorTr1

that transforms the
state of any other particle by colliding with it. Then we
show, among other things, that every such operator has a
simply determined inverse, that the only fixed points of such
an operator arer1 and its inverse, that no such operator

effects a pure rotation of the complex state for all operands,
that by concatenating such operators a pure rotation operator
can be achieved, that certain sequences of such operators
map the unit circle to itself, and so on.

Finally, we discuss the application of these ideas to imple-
menting all-optical digital computation without employing
physically discrete components. Such a computing machine
would be based on the propagation and collision of solitons,
and could use conservative logic operations@5#, since the
collisions we consider preserve the total energy and number
of solitons. Finding a sufficiently powerful set of operators
and reusable particles in this regime would open the way for
integrated computation in homogeneous nonlinear optical
media @6,7#, quite a different scheme from using soliton-
dragging gates@8# as discrete components to build a com-
puter.

II. INFORMATIONAL STATE IN THE MANAKOV
SYSTEM

A. The Manakov system and its solutions

We review the integrable one-dimensional Manakov sys-
tem @9–11# and its analytical solutions from@1#. The system
consists of two coupled nonlinear Schro¨dinger ~NLS! equa-
tions,

iq1t1q1xx12m~ uq1u21uq2u2!q150,
~1!

iq2t1q2xx12m~ uq1u21uq2u2!q250,

whereq15q1(x,t) andq25q2(x,t) are the complex ampli-
tudes of two interacting components,m is a positive param-
eter, andx andt are normalized space and time. Note that our
variablesx and t are interchanged with those of@1#, in order
to represent the propagation variable, the one associated with
the first-order derivative in the Manakov equation, byt. @This
is consistent with Manakov’s original paper@9#, Eq. ~3!.#
The system admits single-soliton solutions consisting of two
components,
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q15
a

2
e2~R/2!1 ih IsechS hR1

R

2 D ,

q25
b

2
e2~R/2!1 ih IsechS hR1

R

2 D , ~2!

where

h5k~x1 ikt !, ~3!

eR5
m~ uau21ub2u!

k1k*
, ~4!

anda, b, andk are arbitrary complex parameters. Subscripts
R and I on h and k indicate real and imaginary parts. Note
that kRÞ0.

To study the effects of collisions on soliton states in this
system, we consider the analytical two-soliton solution given
in @1#. By taking limits of this solution ast→6` andx→
6`, we find asymptotic formulas for the widely separated
solitons before and after a collision. In Sec. II B we deter-
mine the effects of collisions on solitons by comparing these
formulas with Eq.~2!.

B. State in the Manakov system

The three complex numbersa, b, andk ~with six degrees
of freedom! in Eq. ~2! characterize bright solitons in the
Manakov system. Sincek is unchanged by collisions, two
degrees of freedom can be removed immediately from an
informational state characterization. We note that Manakov
@9# removed an additional degree of freedom by normalizing
the polarization vector determined bya and b by the total
magnitude (a21b2)1/2. However, we show that the single
complex-valued polarization stater5a/b, with only two
degrees of freedom@4#, suffices to characterize two-soliton
collisions when the constantsk of both solitons are given.

We use the tuple (r,k) to refer to a soliton with variable
stater and constant parameterk:

~i! r5q1(x,t)/q2(x,t)5a/b: a complex number, con-
stant between collisions.

~ii ! k5kR1 ikI : a complex number, withkRÞ0.

Throughout this paper we use the complex plane extended to
include the point at infinity.

Consider a two-soliton collision, and letk1 andk2 repre-
sent the constant soliton parameters. Letr1 and rL denote
the respective soliton states before impact. Suppose the col-
lision transformsr1 into rR , andrL into r2 ~see Fig. 1!. In
the rest of this paper we always associatek1 andr1 with the
right-moving particle, andk2 and rL with the left-moving
particle. To specify these state transformations, we write

Tr1
~rL!5r2 , ~5!

TrL
~r1!5rR . ~6!

The soliton velocities are determined byk1I andk2I , and are
therefore constant. With our conventions,k2I,0,k1I . Ac-

tually, all that follows also holds if both solitons are traveling
in the same direction, provided they collide. That is, we need
only assume thatk2I,k1I .

To determine the state changes undergone by the colliding
solitons, we take the limitsx→6` and t→6` in the two-
soliton expression from@1#. These limits depend on the signs
of k1R and k2R ; there are four cases, each of which yields
asymptotic formulas for both components of each soliton
before and after the collision. We then find each soliton’s
state by computing the quotient of the soliton’s two compo-
nents. Whenk1R.0 andk2R.0, we obtain

r25
@~12g!/r1* 1r1#rL1gr1 /r1*

grL1~12g!r111/r1*
, ~7!

where

g~k1 ,k2!5
k11k1*

k21k1*
. ~8!

By a symmetry argument, we obtain

rR5
@~12h* !/rL* 1rL#r11h* rL /rL*

h* r11~12h* !rL11/rL*
, ~9!

where

h~k1 ,k2!5
k21k2*

k11k2*
. ~10!

Note that the state changes given by Eqs.~7! and~9! @and
by Eqs.~5! and~6!# depend on the constantsk1 andk2 . We
often omit these from expressions, as in Eqs.~5! and ~6!.
However, when we need to specify the values ofk1 andk2
explicitly, we write

Tr1 ,k1
~rL ,k2!5r2 . ~11!

For the remaining three cases of signs ofk1R andk2R , we
used similar methods to find six additional state-change ex-
pressions:

~a! Case 2:k1R,0, k2R.0,

r25
@~g21!r121/r1* #rL1gr1 /r1*

grL1~g21!/r1* 2r1
, ~12!

FIG. 1. A general two-soliton collision in the Manakov system.
The complex numbersr1 , rL , r2 , and rR indicate the variable
soliton states;k1 andk2 indicate the constant soliton parameters.
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rR5
@~h21!rL21/rL* #r11hrL /rL*

hr11~h21!/rL* 2rL
. ~13!

~b! Case 3:k1R.0, k2R,0

r25
@~g* 21!r121/r1* #rL1g* r1 /r1*

g* rL1~g* 21!/r1* 2r1
, ~14!

rR5
@~h* 21!rL21/rL* #r11h* rL /rL*

h* rL1~h* 21!/rL* 2rL
. ~15!

~c! Case 4:k1R,0, k2R,0

r25
@~12g* !/r1* 1r1#rL1g* r1 /r1*

g* rL1~12g* !r111/r1*
, ~16!

rR5
@~12h!/rL* 1rL#r11hrL /rL*

hr11~12h!rL11/rL*
. ~17!

It is a matter of algebra to verify that these can be ob-
tained from Eqs.~7! and~9! by using the following relations:

Tr1 ,k1R1 ik1I
~rL ,k2R1 ik2I !

→T21/r
1* ,2k1R1 ik1I

~rL ,k2R1 ik2I !, ~18!

TrL ,k2R1 ik2I
~r1 ,k1R1 ik1I !

→T21/r
L* ,k2R2 ik2I

~r1 ,2k1R2 ik1I !. ~19!

Relation~18! states that when the sign ofk1R is changed in
Eq. ~7!, we must also replacer1 with 21/r1* in the same
equation in order to obtain the correct formula for the state
change. The particle21/r1* has a special significance—it
acts as inverse operator tor1 ~see Sec. III!. The same rela-
tion can also be used to obtain the proper state-change for-
mula when the sign ofk2R is changed in Eq.~9!. Relation
~19! can be used to obtain the state-change expressions when
the sign ofk2R is changed in Eq.~7!, or when the sign ofk1R
is changed in Eq.~9!. Taken together, relations~18! and~19!
imply

Tr1 ,k1R1 ik1I
~rL ,k2R1 ik2I !

→Tr1 ,2k1R2 ik1I
~rL ,2k2R2 ik2I !; ~20!

that is, when the signs of bothk1R andk2R are switched in
either Eq.~7! or Eq.~9!, we must also conjugatek1 andk2 in
the equations in order to obtain the correct state-change ex-

pressions. Also, note thatg,hÞ0, sincek1R ,k2RÞ0, and that
g andh cannot be pure real numbers. It can also be verified
that all four cases collapse to the first if we simply useuk1Ru
anduk2Ru in Eqs.~7!–~10!, although that does not seem to be
obvious at the start.

In each of the four cases mentioned above, the soliton
states after collision are completely determined by the soli-
ton states before collision, which shows that our definition of
state is complete. Thek parameter of a soliton remains con-
stant, but is in general different for different solitons.

A special class of state transformations

The class of transformations given byT0,k and T`,k ,
wherek5k1 ~right-moving! or k2 ~left-moving!, will be use-
ful later. They specify state changes caused by collisions
with solitons whose entire energy is contained in only one
component, and are functions ofk1 and k2 . Table I shows
the state-change factors due to these transformations. It is not
hard to verify from this table that

T0,kR1 ikI
→T`,2kR1 ikI

, ~21!

which is a special case of the state-change relations de-
scribed earlier.

III. PROPERTIES OF THE COLLISION STATE
TRANSFORMATION

For concreteness we will restrict attention in this section
to the casek1R , k2R.0, and the transformation, Eq.~7!, of
the left-moving particle in staterL to the left-moving particle
in stater2 . All the results hold for other signs ofk1R andk2R
and the other collisions with appropriate changes in the par-
ticle names and the parameter that plays the role ofg. When
the signs ofk1R and k2R are an issue we will mention that
explicitly.

A state transformation can be viewed either as a mapping
Tr1

(rL) from the complexrL plane to the complexr2 plane,
or in general as a mapping from the complex plane to itself,
depending on the context. The state transformation is in fact
a linear fractional transformation~LFT! ~or bilinear or Mö-
bius! of the form

r25
arL1b

crL1d
, ~22!

where the coefficients are functions of the right-moving par-
ticle in stater1 ,

TABLE I. State-change factors forT0 andT` transformations. The columns forT0,k1
andT`,k1

list the
factors by whichr1 is multiplied to getrR , and the columns forT0,k2

andT`,k2
list the factors by whichrL

is multiplied to getr2 .

Sign of k1R Sign of k2R T0,k1
T0,k2

T`,k1
T`,k2

1 1 12g 12h* 1/(12g) 1/(12h* )
2 1 1/(12g) 1/(12h) 12g 12h
1 2 1/(12g* ) 1/(12h* ) 12g* 12h*
2 2 12g* 12h 1/(12g* ) 1/(12h)

6754 PRE 58JAKUBOWSKI, STEIGLITZ, AND SQUIER



a5~12g!/r1* 1r1 ,

b5gr1 /r1* ,

c5g,

d5~12g!r111/r1* .

The choice ofa, b, c, and d is not unique, since we can
multiply numerator and denominator by an arbitrary nonzero
number, but we will use these throughout this paper. The
limiting versions of Eq. ~22! then give T`(r)
5@1/(12g)#r andT0(r)5(12g)r.

When there is no danger of confusion we will refer to
particles and their states interchangeably; so, for example,
we can speak of ‘‘transforming the particlerL . ’’ By Eq. ~6!,
the collision above also results in the transformationTrL

(r1)

of r1 caused by collision withrL , and each result we give
about the properties of the transformations of left-moving
particles has its symmetrical counterpart about transforma-
tions of right-moving particles.

It is usually assumed that an LFT must have a nonzero
determinantad2bc, which ensures that it is nonconstant.
This is always true for our class of LFT’s and a straightfor-
ward calculation shows:

Property 1 (determinant).The LFT Eq.~22! has determi-
nant

~12g!~r111/r1* !2, ~23!

which cannot vanish sincegÞ1.
Property 2 (inverse).Every operatorTr1

has a unique

inverseTs , wheres521/r1* andg is the same forr1 and
its inverse.

Proof. Replacingr1 by 21/r1* in the expressions above
for a, b, c, andd above results in2d, b, c, and2a, which
are the coefficients in the inverse of Eq.~22!. Uniqueness
follows because the set of all LFT’s forms a group.j

We refer to a particler followed by its inverse21/r* as
an inverse pair. It follows from the next result that collision
with an inverse pair leaves any sequence of particles un-
changed. This property will be especially useful in designing
logic operators since data encoded as inverse particle pairs
leaves operators unchanged, and the logic operators can
therefore be used for subsequent logic operations on new
data.

Property 3 (preservation of inverse pairs).If an inverse
pair collides with any particle, the two resulting particles
also form an inverse pair.

Proof. Replacing]/]t by 2]/]t in the original Manakov
system@Eq. ~1!# shows that if the system is run backwards in
time, the same collision rules apply if solutions are replaced
by their conjugates. Thus if an inverse pair leaves a particle
s invariant, the conjugates of the collision products of the
inverse pair do also, and hence the collision products must
themselves be an inverse pair.j

Property 4 (fixed points).Every operatorTr1
has exactly

two distinct fixed points,r1 and 21/r1* . It follows that a
particle is transparent to itself and the particle corresponding
to its inverse operator, and to no other particles.

Proof. The fixed-point conditionTr1
(rL)5rL using Eq.

~22! leads to a quadratic equation, sincec5gÞ0. There are
therefore at most two fixed points. The stated fixed points are
always distinct and it is easy to verify that they satisfy Eq.
~22! by direct substitution. j

The following property is expected from the fact that the
two components of the Manakov system are incoherently
coupled.

Property 5 (rotational invariance of collisions).If r1 and
rL are both rotated byu, thenr2 andrR are also.

Proof. Easily verified in the transformation Eqs.~7! et
seq. j

Property 6 (absence of pure rotations or scalars).There
is no ~single-collision! operator of the form

Tr1
~rL!5eiurL ~24!

for any angleu, or

Tr1
~rL!5KrL ~25!

for any realK. In particular, there is no single-collision iden-
tity operator.

Proof. First consider the possibility of pure rotations. The
caseu50 corresponds to the identity operator, for which
every point is a fixed point, contradicting property 4. When
uÞ0, the fixed points of a pure rotation are 0 and`, so any
pure rotation must be aT0 or T` . Since everyT` is the
inverse of aT0 , it suffices to consider the case of aT0 ,
which has the operatorT0(rL)5(12g)rL . We can write

12g5
k2R2k1R2 i

k2R1k1R2 i
, ~26!

where we normalize by setting

D5k2I2k1I521.

This normalization is allowed because the difference inkI ’s
represents the difference in envelope velocities, and so must
be nonzero if there is to be a collision. The magnitude of 1
2g in Eq. ~26! cannot be 1 unless eitherk1R50 or k2R
50, which is not allowed. For the possibility of a scalar
multiplication, we can again restrict attention toT0’s and Eq.
~26!, by the same reasoning as above. The right-hand side of
that equation cannot be real unlessk1R50. j

The composition of any number of LFT’s can be written
as an LFTw5L(z), and if it has exactly two distinct fixed
pointsz1 andz2 , it can be written in the implicit form

w2z1

w2z2
5K

z2z1

z2z2
. ~27!

In the single-collision case this becomes:
Property 7 (implicit form).The single-collision transfor-

mationTr1
(rL) can be written in the implicit form

r22r1

r211/r1*
5K

rL2r1

rL11/r1*
, ~28!
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whereK5(12g) is called the ‘‘invariant’’ of the LFT. By
symmetry, the inverse transformation is the same exceptK is
replaced by 1/K.

The next result is standard@12#.
Property 8 (invariant circles).The fixed points of a LFT

with two distinct fixed points determine two orthogonal
families of circles in thew plane: ~1! C1 , which are the
circles that pass through the fixed points; and~2! C2 , which
are the circles determined by the condition that the distances
to the fixed points have a constant ratio, thecircles of Apol-
lonius. These are images, respectively, of points through the
origin and concentric circles about the origin in thew plane.
The circlesC1 are mapped onto themselves as a set, and
similarly for the circlesC2 . For each circle inC1 to be
mapped onto itself, we require that invariantK512g be
real, which is not possible for a single collision.~The map-
ping in this case is calledhyperbolic.! For each circle inC2 to
be mapped onto itself, we require thatuKu51, which is also
not possible in the single collision case.~The mapping in this
case is calledelliptic.!

One consequence of this last result is that if we can design
a sequence of particles with a real or modulus-1 invariantK,
and arrange for the unit circle to be inC1 or C2 , then the net
effect of collisions with these particles will be to map the
unit circle to itself. That is, the modulus-1 property of par-
ticles will be preserved on collision with these ‘‘operator’’
sequences, and we will effectively have a state variable with
one degree of freedom in the ‘‘processed’’ particles.

Property 9 (invariant of multiple collision).Consider a
composite collision with a set of particles, each of which is
either a givenr or its inverse, and each having a possibly
different invariantK j . The fixed points are the same as those
of r ~r and21/r* ! and the invariant isP(K j

61), where we
useK j

11 for the r’s andK j
21 for the inverses.

Proof. The fact that the fixed points are those ofr is an
immediate consequence of property 4. We need to consider
only the two cases of collision with two copies ofr, and with
r and its inverse; the general result then follows by induction
on the number of collisions. The invariant for a transforma-
tion with fixed pointsr and21/r* can be written@13#

K5
a2cr

a1c/r*
, ~29!

using the coefficientsa andc in Eq. ~22!. The result for these
two cases follows by straightforward algebra.j

The impossibility of finding any single particle that can
act as a pure rotation operator~that is, that effects a pure
rotation on the state of any other particle! suggests looking
for multiple collisions that do have that effect. We do so in
the next section, where we exhibit pure rotation operators
realized by composite particles composed ofT0’s andT`’s.
This is achieved by carefully designing the particles’k pa-
rameters.

IV. PARTICLE DESIGN

We conclude with some examples that illustrate the de-
sign of sequences of particles that effect certain transforma-
tions that have potential application to embedded logic. Fu-
ture work will explore the limits of this approach, and

especially the question of the extent to which arithmetic and
possibly general computation can be encoded in this system.

A. An i operator

A simple nontrivial operator is pure rotation byp/2, or
multiplication by i. This changes linearly polarized solitons
to circularly polarized solitons, and vice versa. A numerical
search yielded the useful transformations~see Table I!

TrL
~r1!5T0,12 i~r,11 i !512h* ~11 i ,12 i !

5
1

&
e2~p/4!ir, ~30!

TrL
~r1!5T`,52 i~r,11 i !5

1

12h* ~11 i ,52 i !
5&e~3p/4!ir,

~31!

which, when composed, result in the transformation

U~r,11 i !5 ir. ~32!

~Here we think of the data as right-moving and the operator
as left-moving.! Note that theh* ’s in Eqs.~30! and~31! are
different, corresponding as they do to differentk’s. We refer
to U as ani operator. Its effect is achieved by first colliding
a soliton (r,11 i ) with (0,12 i ), and then colliding the result
with (`,52 i ), which yields (ir,11 i ).

B. NOT processors

Composing twoi operators results in the21 operator,
which with appropriate encoding of information can be used
as a logicalNOT processor. Figure 2 shows aNOT processor
with reusable data and operator solitons. The two right-
moving particles represent data and are an inverse pair, and
thus leave the operator unchanged; the left-moving sequence
comprises the four components of the21 operator. This fig-
ure was obtained by direct numerical simulation of the

FIG. 2. Numerical simulation of a phase-switchingNOT proces-
sor implemented in the Manakov system. These graphs display the
color-coded phase ofr for solitons that encode data and operators
for two cases. In the initial conditions~top of graphs!, the two
right-moving ~data! solitons are an inverse pair that can represent
TRUE in the left graph, and FALSE in the right graph. In each
graph, these solitons collide with the four left-moving~operator!
solitons, resulting in a soliton pair representing a FALSE and
TRUE, respectively. The operator solitons emerge unchanged.
These graphs were obtained by numerical simulation of Eq.~1! with
m51.
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Manakov system, with an initial state that contains the ap-
propriate data and processor solitons.

We may treat thisNOT processor as a controlledNOT ~or
XOR! by observing that the operator solitons can be selected
so that both the data and operator solitons are unaffected by
collisions with one another. ThisNOT processor switches the
phase of the~right-moving61! data particles, using the en-
ergy partition of the~left-moving 0 and̀ ! operator particles.
A kind of dual NOT gate exists, with the same compositeK
521, which switches the energy of data particles using only
the phase of the operator particles.~See Fig. 3.! In particular,
if we use the samek’s as in the phase-switchingNOT gate,
code data as 0 and̀, and use a sequence of four61 operator
particles, the effect is to switch 0 tò and` to 0; that is, to
switch all the energy from one component of the data par-
ticles to the other. This can be checked easily by settingK
521 andr151 in the implicit form, Eq.~28!, using prop-
erty 9 for this composite collision.

C. Particles that map the unit circle to itself

By property 8 any composite~multiparticle! operator with
an invariantK that is real will map the unit circle to itself if

the operator particles are all the same and themselves have a
state on the unit circle. Let the operator particles have state
r5eiu. Then by Eq.~28! the transformation fromz to w is

w2eiu

w1eiu 5K
z2eiu

z1eiu , ~33!

and, therefore, ifz5eif andw5eic,

c5u12 arctanS K tan
f2u

2 D . ~34!

Thus, if we restrict all ‘‘data’’ particles to the unit circle,
collision ~‘‘operator’’! particles of this type will preserve that
property.

For an example, consider the composition of eight identi-
cal operator particles withk2512 i , colliding with a particle
having k1511 i . The resulting invariant is, using 12h*
5221/2e2p i /4 from Eq. ~30!, K5(221/2e2p i /4)851/16. We
can also mix copies of an operator particle and its inverse
and use property 9 to get a wider variety of invariant values.

V. DISCUSSION

The line of inquiry followed in this paper suggests that it
may be possible to perform useful computation in bulk me-
dia by using colliding solitons alone, and leads to many open
questions, which we are now studying. First it would be
useful to obtain a complete mathematical characterization of
the state LFT’s obtainable by composing either a finite
number—or an infinite number—of the special ones induced
by collisions in the Manakov system. Second, we should like
to know whether the complex-valued polarization state used
here for the Manakov system is also useful in other vector
soliton systems, especially those that are near-integrable and
support spatial solitons@2,14–32#. Finally, we need to study
the computational power of this and related systems from the
point of view of implementing logic of some generality; in
particular, which, if any, such systems, in 111 or 211 di-
mensions, integrable or nonintegrable, are Turing equivalent
and therefore universal.
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