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ABSTRACT 
This paper describes the results of designing, training, 

and testing a neural network for the voiced/unvoiced speech 
classification problem. A feed-forward multilayer back- 
propagation network was used with 6 input, 10 intemal, and 
2 output nodes - for a binary decision. The six feames 
are common and easily computed. Training was done with 
72 frames from two speakers; testing was done with 479 
frames from four speakers; a total of 2 errors (0.4%) 
occurred. Thus a small neural network performs well on the 
V / W  problem. 

1, Review of Previous Research 
Voiced/Unvoiced (VRnr) classifiers can been 

grouped into two general categories [SL77]: 1) classifiers 
which determine the VRnr content of a segment of speech 
as a byproduct of an attempt to determine the primary pitch 
of the segment, and 2) classifiers which determine the 
V / W  content of a segment of speech by examining one or 
more speech signal features which are known to be corre- 
lated with the V/W distinction. This paper describes a 
neural network to do V/UV classification using the latter 
approach. Our motivation was to produce an accurate 
V / W  classifier for high-quality analysis-synthesis using 
linear predictive coding. 

Multi-feature techniques have some drawbacks, and 
it is important to be aware of the practical limitations 
imposed by these methods. One problem with the tech- 
niques presented below is their lack of immunity to non- 
stationary noise effects [AR76, CBSO]. This problem is 
largely due to the fact that these methods do not incorporate 
some form of continuous adaptation to the environment 
being sampled-they involve training a V/UV classifier in a 
fixed noise environment, to operate in that same environ- 
ment. For a discussion of V / W  classification techniques 
designed to operate in the presence of varying noise condi- 
tions, see [CB80, KH87, BG87, KS791. In addition, the 
tradeoff between time and accuracy is important in many 
applications. In particular, it may not be practical to use a 
large number of features in real-time applications, espe- 
cially if the features used are computationally complex. 
The ongoing development of digital signal processing 
hardware should cause a continuous reconsideration of such 
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tradeoffs. In the analysis below, the techniques considered 
are applicable when high accuracy is desired, computation 
time is not a severe constraint, and noise effects can be 
determined in advance. 

Two issues are involved in building a V/W classifier 
of this general class. First, it is necessary to determine a set 
of speech features adequate to the V/UV decision task, and 
second, it is necessary to find an explicit rule for making the 
V / W  decision based upon the values of the features. 
Although these two aspects cannot be completely isolated 
from one another, it is useful to view them as separate parts 
of the problem. (Sometimes, as in [SBSO], the set of 
features used is tailored to the classification method.) 
Separation allows a more systematic approach to each part. 

Among the features that have been used or proposed 
for V N V  classification are: 

1) rms or log(rms) energy of the signal [AR76, SL79al 
2) rms energy of the preemphasized signal [SL79a, 

SL771 
3) normalized autocorrelation coefficient at unit sample 

delay [AR76, SL79aJ 
4) normalized autocorrelation coefficient at unit sample 

delay, of the preemphasized signal [SL79a, SL771 
5) LPC normalized minimum error [AR76] 
6) LPC normalized minimum error, of the preem- 

phasized signal [SL79a, SL771 
7) first LPC predictor coefficient [AR76] 
8) first LPC predictor coefficient, for the preemphasized 

signal [SL79a, SL771 
9) number of zero crossings in the signal [AR76, SL79a) 
10) ratio of high frequency (above 4kHz) signal energy to 

low frequency (below 2kHz) signal energy [SL79a, 
SL771 

11) bispecmm of the signal [WSSS] 
12) low frequency energy W 7 8 ,  a 8 6 1  
13) an LPC distance measure W771 
14) an energy distance measure W771 
15) bit alteration rate of linear delta-modulated signal 

W801  
16) peak amplitude of the signal [SL79a, SL771 
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ratio of preemphasized signal energy to normal signal 
energy [CT86] 
causal pitch prediction gain [CT861 
non-causal pitch prediction gain [CT86] 

Many of these features are highly correlated with one 
another (see [SL77, AR761). [SL79b] described additional 
speech features useful for the V/UV/Mixed problem. 

Although a variety of methods have been used to per- 
form V/W analysis based on a set of speech features, the 
discussion here will focus on pattem recognition techniques 
that have been successfully applied to the problem. These 
techniques have yielded classifiers that are among the most 
accurate available [AR76, SL77, SB801. Other decision 
methods have been less general, and therefore applicable to 
only the specilic speech features used (as in [CT86] or 
W781). or have been unable to achieve accuracy as high 
as pattem recognition techniques have achieved (as in 
BV801). Pattem recognition techniques have a distinct 
advantage in that they are sufficiently general to be adapted 
to any set of available speech features. 

2. Neural Network Classifiers 

The feed-forward multilayer back-propagation net- 
work is particularly well suited to the V/W classification 
problem. We use the logistic activation function 

1 
Oj(X) = - (wj x + WOj) l + e  

where o,(x) is unit j ’ s  activation value when presented the 
input vector x, wj is a column vector containing unit j ’ s  
input weights, and w o j  is unit j ’ s  scalar bias weight (see 
W 8 6 1  for more details). 

To train the network, we use the following back- 
propagation formula to modify a unit’s weights: 

A w j i  = ~ S j o i ,  

in which Awji  is the change to be made to the weight of unit 
rs input from unit i, 9 is the learning rate, S j  is an error sig- 
nal available at unit j ,  and o i  is the activation value of unit i 
after the input training vector has been presented to the net- 
work as input and the network has settled. The way of 
computing the error signal Si for each unit depends on the 
type of unit involved. If unit j is an output unit, the error 
signal is computed as 

s j  = (ti - Oj)Oj(l  - Oj) ,  

where ri is the target vector element corresponding to out- 
]ut unit j. If unit j is a hidden unit, the error signal is com- 
luted as 

s j  = oj(1- Oj)ZS&W&j.  
k 

3ere k indexes all units which have unit j as an input. 6, is 
he error signal available at unit k, and wkj is the weight of 
init k’s input from unit j .  We use a feed-forward network, 
io all the units indexed by k are in layers succeeding the 

layer of unit j ,  and error signals propagate back from the 
output layer. 

3. Feature Selection, Network Structure and Training 
Six speech features were used with ten hidden units, 

and two output units. Each input unit output was connected 
to an input of every hidden unit and to an input of every 
output unit. Each hidden unit output was connected to an 
input of every output unit. Connection weights were ini- 
tially set to small real pseudo-random numbers. The 
number of hidden units used in the network was near the 
high end of what seemed reasonable for the problem; a rela- 
tively large number of hidden units was used to safeguard 
against training difficulties. 

The output units were meant to be binary indicators 
of voicing, the first output indicating unvoiced excitation, 
and the second output indicating voiced excitation. With 
this convention, an output vector of (1,O) would indicate a 
purely unvoiced frame, and a vector of (0,l) would indicate 
a purely voiced frame. Thresholds of 0.1 and 0.9 were used 
to make binary decisions. 

Speakers were recorded on standard grade audio 
cassette tape, using a low fidelity portable tape recorder. 
Speech was digitized to 16 bits per sample, at a sampling 
rate of 28000 Hz. Features were computed for input frames 
of 256 samples, corresponding to a frame duration of 9.1 
milliseconds, and a kame rate of 109 frames per second. 
The six input features used were 
1 )  the rms energy of the signal: 

2) the rms energy of the preemphasized signal: 

3) the signal‘s normalized autocorrelation coefficient at unit 
sample delay: 

N 

sisi  -I 

i=l irO 

4) the preemphasized signal‘s normalized autocorrelation 
coefficient at unit sample delay: 

N 
ZPiPi-1  

5) the ratio of signal energy above 4000Hz to signal energy 
below 2000Hz: 

e+(4000> 
f 5 = e _ o  

6) the product of signal energy above 4000Hz and signal 
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energy below 2OOOHz: 

f 6 = (m) 
Here si was the i“ sample of the analysis frame; SO was the 
last sample of the previous frame, and s1 through sZ5 were 
samples taken from the input. Similarly, pi was the ?“ sam- 
ple of the preemphasized analysis frame, which was 
obtained by using a preemphasis filter on the original sig- 
nal: 

pi = si - .96~i4 

In computing f5 and f6r e+(4000) was the frame’s signal 
energy at frequencies above 4O00Hzi and e42000) was the 
frame’s signal energy at frequencies below 2000Hz. These 
signal energies were computed using a 256-point FFT with 
a Hamming window. Except for the autocorrelation 
coefficients, the input features were scaled so that their peak 
values over the duration of a sentence were equal to the 
fixed value 1. 

The particular features used were selected for a 
number of reasons. Most compelling was the fact that f l  
through f 5 were used previously in successful classifiers 
[SS77]. f6 is an indicator of mixed excitation [SL79b], and 
was included in the hope that the network could be taught to 
recognize mixed cases. Also, in comparison to other 
feature sets considered, this set of features was relatively 
straightforward to compute, requiring no computation more 
difficult than an FET. 

To build a training set, input frames were manually 
classified by examining graphs of their waveforms, as sug- 
gested in [AR761 and [SL77]. 

Seventy-two frames of training data were used in the 
training set. These frames were divided into two groups of 
36 frames, one group from a male speaker, and one group 
from a female speaker. Each group contained 18 voiced 
frames and 18 unvoiced frames. The training frames were 
chosen so as to form as diverse a set as was practical. Each 
speaker’s training data was taken from a single enunciation 
of the sentence “Chapter sixteen described a weird ficti- 
tious hut in which a pathetic knight pathetically polished a 
magical yellow gong,” used in ISL771. 

The training set was built up piece by piece. That is, 
a small group of frames was added to the set, and the net- 
work was allowed to train before more frames were added, 
then another group of frames were added, and the network 
was trained more, etc. This allowed some observation of 
the training behavior of the network. All of the frames for 
the male speaker were put into the training set before any of 
the frames from the female speaker were added. The first 
group of frames was completely misclassified. After a few 
thousand training presentations, with a learning rate of 
q = 0.35, the frames in the first group of training frames 
were all correctly classified to within about five percent of 
the target values (either 0 or 1). Subsequently, each time 
new training frames were added, most of the new frames 
were correctly classified without additional training. About 
1,000 training set presentations were done after each addi- 

I I I 

VoicedFrames: 101 76 61 
UnvoicedFrames: 68 48 38 
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tion of new frames to the training set. If the new frames 
were largely classified correctly, then this number was 
reduced to about 500. On some occasions when the new 
frames were poorly classified, the number of iterations was 
raised to 2,000. When the first group of frames from the 
female speaker was added, there were a number of 
classification errors. After this first group from the female 
speaker was used in training, the network again exhibited 
an ability to correctly classify most new frames at the time 
when they were added to the training set. When all the 
frames had been put into the training set, the network was 
correctly responding to all of the frames, with an error of no 
more than 0.05 or 0.06 on either network output for any 
given frame. That is, output units whose target value was 
1.0 had output values of at least 0.94, and output units 
whose target value was 0.0 had output values of no more 
than 0.06. Once all of the frames were included, the net- 
work was allowed to train for an additional 25,000 itera- 
tions, in order to push the outputs even closer to the targets. 
Output errors were reduced to no more than 0.013 for any 
given output unit. The mean output error was 0.00068. 

4. Testing the Classifier 
A performance test was made of the classifier 

obtained. Test data was taken from four speakers, using the 
same sentence as was used in training. The frames used for 
testing were manually classified, in the same manner as the 
frames used for training. Two of the speakers, AB and LM, 
were the ones used to train the network. Two others, JE 
and VB, were speakers who were not included in the train- 
ing exercise. AB and JE were male, VB and LM were 
female. The results of the test are summarized in table 1, 

Total Frames: 
Errors: 

169 124 99 87 
0 2 0 0  

5. Conclosions and Future Work 
A small multilayer neural network appears to work 

well for the V/W problem. A network with 6 input, 10 
hidden, and 2 output nodes did not encounter difficulties, 
such as slow learning or local minima of the error function, 
that could have prevented successful training. The network 
trained on two speakers correctly classified 186 additional 
frames from those same test speakers, plus all but two 
frames out of 293 additional frames from two other speak- 
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ers. The observed error rate is at least as good as other 
reported classifiers based on pattem recognition, and the 
network is simple to implement and easy to train. 

In future work we will study the relative power of 
additional internal nodes, sensitivity to choice of feature set, 
and extensions to the V/LTV/Mixed problem. 
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