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Optimization of One-Bit  Full  Adders  Embedded in 
Regular  Structures 

KAZUO  IWANO AND KENNETH  STEIGLITZ, FELLOW, IEEE 

Abstract-We  study  the  problem of optimizing  the  transistor  sizes  in 
the  one-bit  nMOS  full  adder  either  isolated or embedded  in  a  regular 
array. A local  optimization  method  that we call  the  critical-path  opti- 
mization method  is  developed.  In  this  method,  two  parameters  at  a  time 
are  changed  along  the  critical  path  until  a  locally  optimal  choice of 
transistor  sizes  is  found.  The  critical-path  Optimization  method  uses 
the  Berkeley VLSI tools  and  the  hierarchical  layout  language AL- 
LENDE  developed  at  Princeton.  First, we optimize  the  isolated  one-bit 
full  adder  implemented  in  three ways: as  a PLA, data  selector,  and 
with  random  logic.  The  details of the  critical-path  optimization  method 
and  power-time  tradeoff  curves  are  illustrated  here.  Second, we opti- 
mize the  one-bit full adder  embedded  in  a  simple  array  multiplier.  The 
entire 3 X 3, 4 X 4, 8 X 8, and 10 X 10 multipliers  are  optimized  and 
their  local  optima  are  compared.  Because  the  optimization of the  entire 
circuit  becomes  less  practical  when.the  circuit  becomes  larger, we de- 
velop  a  method  that  makes  use of circuit  regularity. We prove  that 
some  small  array of one-bit  full  adders,  called  the  canonical conjgu- 
ration,  has  the  same  local  optima  as  the n X n multiplier  for  large n, 
with  the  criterion of minimizing  the  delay  time T. Hence, we can  greatly 
reduce  the  computation  load by optimizing  this  canonical  configuration 
instead of optimizing  the  entire  circuit.  Experimental  results  confirm 
the  effectiveness of this  approach. 

R 
I. INTRODUCTION 

EGULAR  arrays  of  cells  are  used often in custom 
chips  for digital signal processing. Such regular ar- 

rays lead to designs  that  are  easy to lay out efficiently and 
have  high  throughput.  For  example,  bit-parallel  and bit- 
serial multipliers can be constructed from  one- and two- 
dimensional  arrays of one-bit full adders,  as well as a  wide 
variety of pipelined FIR  and  IIR filters (see,  for  example, 
[1]-[5], [9], [12], [16], [25]). This  paper is aimed at  the 
problem of optimizing  such  large  arrays.  The  technology 
used  throughout is 4 1.1 nMOS, but the general approach 
described is  applicable  to  other technologies as well. 

We will develop  what  we call the critical-path  optimi- 
zation  method. This is a heuristic method  for finding a 
locally optimal  choice  of  transistor sizes by using system- 
atic variation of the  parameters  along  the critical path. 
The optimization loop uses the Berkeley tools [15] 
CRYSTAL  (for timing) [19], POWEST  (for estimating 
the  power  consumption),  and  the constraint-based high- 
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level layout language  ALLENDE,  developed  at  Princeton 
[ 1 11, [ 131. We  illustrate  the critical-path optimization 
method  and resulting power-time tradeoff curves by op- 
timizing an isolated one-bit full  adder  implemented in 
three topologies, namely,  the PLA, data selector,  and  with 
random  logic. 

Investigating the optimization of the one-bit full adder 
embedded in an array multiplier,  we will next study how 
to  take  advantage of a  circuit’s regularity to reduce the 
optimization workload. Here  we  develop  the canonical 
conjguration  method, which is shown to be practical for 
optimizing  large  regular  structures. We will analyze  the 
critical paths of the n X n multiplier using  a finite autom- 
aton and extract its canonical conjguration. Then  we will 
prove that the optimization of  this canonical conjguru- 
tion provides, in the  limit of large n,  the  same  local op- 
tima as the n X n multiplier. 

The problem  of  optimizing the  transistor sizes has  been 
studied by several  authors.  ANDY,  developed by Trim- 
berger [ 171, sizes  transistors  in  a  symbolic  description  of 
a  chip to match  the  load  the  transistors are  driving,  then 
performs  power optimization off the  critical  path.  Glasser 
and  Hoyte [6] developed  what they called macromodels 
of VLSI circuits and  optimize  the  transistor  sizes in a  crit- 
ical path.  However,  their  macromodel is sometimes in- 
accurate  and  leads  them  to  errors of as much as 70 percent 
when  compared to the  SPICE [15] circuit simulation. 
Matson [14] improved  their  macromodels to  be more  ac- 
curate  and  computationally faster,  and used  them  for  non- 
linear optimization of transistor sizing.  Other related work 
is reported by Strojwas,  Nassif,  and  Director  [18],  and 
Jouppi  [23],  Our efforts will concentrate  on taking advan- 
tage of circuit regularity to make practical the optimiza- 
tion of large  arrays. 

11. CRITICAL-PATH  OPTIMIZATION METHOD 

The design of VLSI  chips  often involves the  difficult 
task of effecting tradeoffs among  three  important  mea- 
sures, that is,  the delay time T; the  peak or  average  power 
dissipation P,,, or P,,,, and the  area A .  There  are many 
circuit choices  which  can  be  used  for controlling these 
tradeoffs. For  example, we can  control  the  choice of an 
appropriate  topology,  use  precharging,  superbuffers, in- 
sert or  delete  logic  stages  to  control  the  appropriate fanout 
factor,  etc.  However,  we will concentrate  in this paper  on 
the choice of pulldown diffusion widths,  because  the 
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problem of sizing  transistors  is  important but very tedious 
work for  chip designers,  and  lends itself well  to efficient 
solution by automated  methods. 

The  constraint-based  high-level  layout  language  AL- 
LENDE [13] enables us to  parameterize a circuit; that is, 
ALLENDE  accepts a circuit  parameter  vector n and  pro- 
duces  the layout C(n).  Since the circuit performance (such 
as  the delay time T,  the  power dissipation P, and  the  area 
A ,  etc.)  is determined by the  circuit,  the vector (P ,  T,  A )  
can be expressed as a function of C. Since the  circuit C 
is  parameterized as C(a), the  vector (P ,  T,  A )  can finally 
be  expressed as a function g ( n ) .  

In general,  therefore, our optimization  can  be  formal- 
ized as  follows: 

min f V ,  T, A )  = f ( s  (X>> 
7r 

subject to  constraints  on P,  T,  and/or A .  Heref( * )  is  the 
cost function  to be optimized,  and n is a circuit parameter 
vector n = ( d l ,  d2, - , d,). Since we optimize the  tran- 
sistor  sizes  of  pulldowns,  we  treat  each  pullup/pulldown 
pair  as a node. Typically,  each  node represents an  in- 
verter, NAND,  or NOR gate. Each  layout  is  characterized 
by the parameter  vector n = ( d l ,  d2,  . , dn) ,  which 
means  that the pulldown diffusion width of node i is diX. 
We also  use the vector K = ( k l ,  k2,  . * , k,) to mean that 
the pullup-to-pulldown ratio of node i is ki [22]. The vec- 
tor K is  fixed for each  circuit. 

The  choice  of  the  cost function f (  - )  and constraints de- 
pends  on the design  issues. For example,  in  one applica- 
tion the clock  period may be fixed at a known value To, 
and  it would therefore  be  senseless to make the cell  faster. 
On  the  other hand, peak power may be a real constraint 
because of heat dissipation  limitations.  At the same  time, 
it  may be important to keep the area small so  as  to fit as 
many cells  on  one  chip  as  possible.  We  might,  therefore, 
try  to minimize  some  measure  of the peak  power  and  area 
(the  product, P,,, T,  for  example), while  enforcing the 
constraint T 5 To. In  other  applications, speed may be 
critical,  and it may be important to minimize T while  ob- 
serving constraints  on P and A ,  and so on. In  general,  we 
would like  to  have  enough  information about the tradeoffs 
among  the  measures P,   T ,  and A to  make intelligent de- 
sign  decisions. As we will see, the P-T tradeoff  is often 
of most interest,  since  the  area  is  often a less  sensitive 
function of design  parameters (at least  for fixed topol- 
ogy). 

111. IMPLEMENTATION OF THE CRITICAL-PATH 
OPTIMIZATION 

We use a heuristic optimization method based on a crit- 
ical path,  and we will call  our optimization method a crit- 
ical-path optimization method. The  general  concept of the 
method is shown  in Fig. 1. A circuit C ( n )  is generated 
based on a circuit parameter n. The  cost functionf(C) of 
the circuit C ( n )  is  computed next. Then a desired varia- 
tion 6(a)  of  the  parameter  vector n is  computed, based 

Fig. 1. Critical-path  optimization. 

Fig. 2. Detailed flowchart of the critical-path optimization method 

on the critical path.  Finally, 6 (n) is added to, 7r and the 
new parameter (n + 6n) replaces n if its cost is better. 
This  is repeated until a local  optimum  is  found.  Fig. 2 
shows a detailed flowchart of our implementation, which 
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uses  the  tools ALLENDE, MEXTRA,  CRYSTAL, 
POWEST. A short  description of each  follows  below. 

I )  ALLENDE: This  procedural  constraint-based  VLSI 
layout  language  produces an integrated  circuit  layout in 
Caltech  Intermediate Form (CIF) corresponding to the 
specified  circuit  parameter 7~ [ 141. 

2) MEXTRA: MEXTRA reads CIF and  extracts  the 
nodes to  create  a  circuit  description  for  further  analysis 
~ 5 1 .  

3) CRYSTAL,: CRYSTAL is  used  for  finding  the  criti- 
cal  path  and  the  delay  time of the  circuit [ 151, [ 191. 

4) POWEST: POWEST is  used  for  finding  the  average 
and  maximum  power  consumption of the  circuit [ 151. 

The  basic  approach  we  take  will  be  to  search  for  local 
improvements  from  random  initial  designs.  The  search 
strategy  will  be  to  consider  all  single or double  changes 
of the  current  parameter  vector a along  the  critical  path. 
The  idea is that  the  critical  path  indicates  which  parame- 
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t en  are rhost important to performance  at  any  given point 
in the  analysis.  The  “k-change” method  is described  be- 
low in  general,  with  simple  and  double  change  corre- 
sponding  to k = 1 and 2. 

Given a current  parameter  vector r a (d l ,   d2 ,  . . . , d,) 
and  the  critical  path  nodes  which are On a critical  path, 
say, CPn = (dil, d,, * - * ,  &), the  “k-change” method 
picks k nodes  from cpn, say, djl, dj2, * + ,  and djk, then 
changes  each of dji, 1 5 1 5 k by one unit and  keeps  the 
others  the  same. For example,  ‘‘2-chatge” produces (y )  
x 22 = 2m (m - 1) sets of parameters.  Then  each  param- 

eter is  analyzed in a fixed order.  When  the  first  cost im- 
provement  is  met,  the  current  parameter is picked  as  the 
parameter  for  the  next  iteration.  That is, the  first  improve- 
ment  found  is  adopted. 

TABLE I 
P~RFORMANCE COMPARISON (ONE-BIT FULL ADDER) 

PLA 21.2 7.2  10.1 9.7 2074 980 
21.3 7.5 10.6 9.7 2185 1026 

Data Selector 8.2 3.3 5.2 14.7 628 760 
8.4 3.5 5.6 14.7 699 830 

Random Logic 9.3 1.7 2.4 7.2 161 173 
9.3 1.8 2.6 7.3 179 197 

~~ ~ ~ 

1  1 A C, (or Si) 

This  circuit  selects  inputs ( A ,  or CJ instead of cal- 
culating So and C,. Here Ci is  the input carry  signal, C, 
is  the  output  carry  signal,  and So is the  output  sum  signal. 
A and Si denote  the two  other  inputs.  This  layout  has  the 
followirzg 7 parameters. 

r ( d ~ ,  ds,, dc:,  dl, d2, de,,, dso) 

x = ( 4 , 4 , 4 , 8 , 4 , 8 , 8 ) .  
3) Random Logic: Fig. 3(c)  shows  the  circuit  diagram 

of  the  random  logic  implementation [2 11. This  layout  has 
the folloking 4 parameters:  one  node  for  computing 
C a r r y ,  one  for s u m ,  one for carry, and  one  for sum. 

= (dG> dO? d,,,  dSJ 

K = (8, 12, ‘4, 4). 

The f o h v i n g  logical  equations  describe the circuit: 

Table I1 shows a normalized  performahce  comparison 
of the best locally  optimal point for  each  layout, mini- 
mizing T. The random  logic  seems  to be the best choice 
in all  respects  except A .  The product P,,, T of  the random 
logic  is  about 1/4.4 that of the  data  selector,  while it is 
about 1/5.7 that of the PLA. 

Table 111 is  the  performance  comparison  table between 
the T-locally optimal  circuit  and  the  circuit  designed  using 
the minimum sizes (2X). Our optimizatioh  shows a good 
improvement of the  delay  time  (improvement  from 55 to 
73 percent)  in  any  implementation.  Matson  optimized  the 
S ~ I I U ~  rarrdom logic  circuit and  obtained a delay  time of 
8.0 ns in [14],  while our locally  optimal  circuit  has 7.2 
ns,  providing an independent  check of the  effectiveness 
of  our optimization  method. 

VI. FULL OPTIMIZATION OF n X n MULTIPLIERS 

In  this  section,  we  take  up  the problem of optimizing 
the  one-bit full adder when it is embedded in a regular 
array, using the  array  multiplier  illustrated in Fig. 5(a) for 
4 bits. 

Complete  layouts of the 3 X 3, 4 X 4, 8 x 8, and 10 
X 10 -mllJfipJie~~ were opthized using the crjtjcal-path 

optimization  method.  Fig. 6 shows the possible  tradeoff 
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0 10 20 T (ns) 

Fig.  4.  The  P-Ttradeoff curves of one-bit  full-adder circuits. 

TABLE I1 
NORMALIZED  PERFORMANCE  COMPARISON (ONE-BIT FULL ADDER) 

Type A Pa,, P,,, T APT PT 

PLA 228 424 421 135 1288 566 
Data  Selector 88 194 217 204 390 439 
Random  Logic 100 100 100 100 100 100 

- 

TABLE I11 
PERFORMANCE  IMPROVEMENT RATIO 

Data Random Type  cost PLA Selector  Logic E )I_ 6 
a - b  

min size  (ns) T 21.7 53.2 26.9 a 
T-opt (ns) T 9.7 14.7 7.2 
improvement T -55.2 percent -72.3 percent -73.2 percent 

(c) 

Fig.  5. (a) 4 X 4 multipler. (b) One-bit full-adder  cells. (c) AND cell. 

of power  against delay time  obtained in the  same way as 
Fig. 4. 

Table IV gives the results of  starting  from 11 different 
initial parameter  vectors.  They yield only  four distinct lo- 
cal optima,  corresponding  to  the  parameters 7 r l  = (4, 16, 

and r4 = (12, 16, 8, 8, 8). Note that in Table IV, ** 
indicates that  the  associated T is not a local optimum. 

As we  can  see in Table V,  the  running  time of this op- 
timization method increases quickly with the  size of the 
array, growing  approximately as  the  number of basic  cells 
in the circuit,  or n2 for an n X n multiplier.  This  means 
that optimizing  the  entire  circuit at once is a  very costly 
operation, practical for  a relatively small circuit,  but not 

8,  8, 8), ~2 = (8, 16, 8, 8, 8), ~3 = (12, 12, 8,  8, 8), 

for  large  circuits.  We will see  later  how to take  advantage 
of the circuit regularity to  reduce  the  computational  work- 
load. 

In the  next  section we will define a  class of circuits 
consisting of rectangular  arrays  of one-bit full  adders.  In 
succeeding  sections,  we will analyze  the  critical paths of 
their  circuits,  and  show that they  can  be constructed from 
information  obtained  by optimization of a  small  “repre- 
sentative”  circuit, called a canonicaE configuration. We 
will then  prove  that  this  optimization  also yields the  same 
locally optimal one-bit full  adders  as direct optimization 
of large  circuits.  Finally,  we  give  experimental results 
which  confirm  this fact, and  show  the utility of this ap- 
proach. 
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Fig. 6.  The P-T tradeoff  curves of multipliers. 

TABLE IV 
LOCAL OPTIMA (** MEANS THAT  THIS IS NOT A LOCAL OPTIMUM) 

Type  Cost TI r 2  H 3  7r4 

3 x 3  T 78.9  78.6  74.1  80.7(**) 
Pm,, 30.1 32.9 32.9 32.9 
pa", 18.4 20.5 20.5 20.5 
A 82.7 84.0 82.4 87.9 

4 x 4  T 118.9  118.1  110.2  120.3(**) 
p,,, 54.6 60.2 60.2 60.2 
pa,, 33.4 37.6 37.6 37.6 
A 152.3 154.7 151.5 162.0 

8 x 8  T 279.6  277.1  377.9(**)  283.5 
P,,, 224.7  251.0  224.6  251.0 
p a w  138.4  158.1  138.3  158.1 
A 636.2  646.6  632.9  678.8 

10 x 10 T 359.2  355.9  487.2(**)  364.1 
P,,, 353.0  395.3  352.9  395.3 
Pave 217.7  249.4  217.6  249.4 
A 1001.7  1018.1  996.5  1069.3 

TABLE V 
OPTIMIZATION  COMPUTING  COST 

m33  m44 m88 mlOlO 
~ 

Number  (basic  cells) 6 12 56 90 
CPU (one  point) 2 min 3 min 14 min 22  min 
Average  number of (iterations) 5.0 5.1 5.0 6.0 
Average  number  (points  searched) 61 84 61 100 

VII. A CLASS OF CIRCUITS 
We discuss a  class  of  circuits consisting of one-bit full 
adders  which  have  four  nodes  as  shown in Fig.  3(c).  They 
are N E ,  Nco, Nz, and Nso, which yield the Cap-ry, carry, 
Z E ,  and sum signals,  respectively.  Note that there are 

inputs Cj and Si to the nodes N z  and N s .  The relations 
among  nodes are shown in Fig. 7. Next we define a class 
of circuits as follows. 

DeJinition: CFA = { C I the circuit C has  the  following 
three properties. 1 

1) The circuit C is  an m X n subarray of the two-di- 
mensional infinite array of identical one-bit full adders 
shown in Fig. 8, for some m and n. 

2) The one-bit full  adder cell used in the array is the 
random logic circuit shown in Fig.  3(c).  Note that the 
input A = a b is created from  two other inputs si and b 
by a NOR circuit.  The one-bit full  adder is characterized 
by the circuit parameter 7r = (d,. b ,  d E ,  d ~ ,  d,, dso). 
Since we use identical one-bit full adders in the entire 
array as mentioned above,  we regard the circuit parameter 
a of  the one-bit full adder  as the circuit parameter  of the 
entire circuit C. 

3) The interconnection scheme  of  the one-bit full ad- 
ders is shown in Fig. 9. 

In Fig. 8 each cell is  a one-bit full adder  with coordi- 
nates (x, y ) .  We measure x to the  left  and y down,  and 
Ax,y designates  a cell located in position (x, y ) .  Each cell 
has two inputs (Si: the sum input and C j :  the carry input) 
and two outputs (So: the  sum output and C,: the carry 
output) as shown  in  Fig. 9. Precisely speaking, Ax,y has 
two  more inputs si and b,  as shown in Fig.  5(b),  but we 
do not include these inputs in our  model  because they will 
not appear in any critical path. In other  words, we assume 
that two inputs si and b are  available to any cell when a 
critical path reaches that cell. As shown in Fig. 9, the 
carry output C, of A,,y is propagated to the carry input of 
A,, while the  sum output So of A , ,  is propagated to 
the sum input Si of A, - + 

Here  we  analyze  an n X n multiplier which has n col- 
umns  and (n - 1) rows  of full adders.  Hence, the n X n 
multiplier corresponds to the rectangle bounded by the 
corner cells Ao,o, A ,  - ,o, A, - - 2 ,  and Ao,n - 2  in Fig. 8. 

VIII. DEFINITION OF CRITICAL  PATHS 
In this section we define a critical path between  two 

cells in a circuit C E C,, and  analyze the behavior of sig- 
nals on  a critical path. 

Suppose that a path CY exits the one-bit full adder cell 
Ax,y  from  either  the carry output C, or the sum output So 
with  high or low  signal.  Hence, in order to identify the 
state of the  path CY at the  exit  of  the cell we can  use 
the representation ( A ,  a )  where A is  either carry or sum, 
and a is either high or low. Let (C,  0) denote the state in 
which  a path exits  from the carry output with  a low signal, 
and let (C,  I), (S, 0), and (S, 1) be defined analogously. 
Then  the  behavior of the path a can be represented by a 
sequence  of  states. For  example, the expression (C, 0) -+ 

(C,  0) -+ (S, 1) .+ (S, 0) represents the path which exits 
Ao,o with the  low carry signal,  exits A , , o  with the low 
carry signal, exits A2,0 with  the  high  sum  signal, and fi- 
nally exits AI ,  I with the low  sum signal as shown in Fig. 
8. We  can thus represent the  behavior of the path by the 
state transition diagram D as shown in Fig.  10(a). Note 
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GZ@L@-+ so 

Ci /'i si ci // si 

Fig. 7 .  The nodes  in  the  one-bit full adder. 
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\ 

Fig. 8. Two-dimensional  array of one-bit full adders. 

\ 

Fig. 9.  The basic  cells  and  the  interface  rule. 

that in this  diagram,  the  states C ,  D, S, and T are used 
instead of (C, 0) ,  (C, l) ,  (D, 0 ) ,  and (D, l), respectively. 

Lemma I :  The  state  transition  diagram D in  Fig. 10(a) 
correctly describes  the  behavior  of  the  signal  along  any 
path in  the array of  Fig. 8. 

Proof: In  Fig. 7, each  time  a  path passes through  a 
node,  the signal on  that path  changes  from  high (low) to 
low (high). For  example,  suppose  we  have  a  path cy which 
exits  from  the carry output C, with  a  high  signal. The path 
cy must pass through  the  nodes N E  and Nc,. Since  a signal 
changes  from  low (high) to high (low) when  a path passes 
through  a  node, the  signal  is  low,  and  the input on the 

S I  .c 

(3) 

Fig. 10. (a)  State  transition  diagram  along  a  critical  path. (b) Minimized 
state  transition  diagram. 

path into  the  node NG is high.  Hence,  the  state ( C ,  1) can 
be  reached either from  the  state (C, 1) or ( S ,  1) .  

In the  same  way  we  can  determine  other  state  transi- 
tions.  Note  that  a  path  to the sum output So results from 
either NG -+ NSI; -+ Ns, or Ns,  -+ Nso. 0 

From  the  above  discussion,  we  can define a finite au- 
tomaton M that represents the state transitions along  a 
path. 

DeJinition: The finite automaton M is defined as fol- 
lows: 

M = ( Q ,  x, 6, 40, 0 ,  
where Q is  the set of states, C is the  alphabet, 6 is the 
state transition  function, qo is the initial state,  and F is the 
set of final states. 

Q = (40, C,  D ,  S ,  TI 

= (c, 4 so, SI, to,  41, 
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and 

F =  Q ,  

where  the states C, D ,  S, and T represent the states (C, 
0), (C, l ) ,  (S, 0), and (S, l), respectively. The  symbol 
c ( d )  indicates the transition from the node N E  with a low 
(high) input to the  node Nc, with  a  high (low) output, 
while  the  symbol so(to) indicates the transition from the 
node NG with  a  high (low) input to the node Nso with  a 
low (high) output. And the symbol s1 ( t l )  indicates the 
transition from  the  node Ns; with a  low (high) input to the 
node Nso with a low (high) output.  The transition function 
6 is shown in Fig. 10(a) where qo and transitions from qo 
such as 6(qo, c) = C, 6(qo, d )  = D, 6(qo, so) = S: and 
6(qo, to) = Tare not shown. 

Since we use the fixed one-bit full  adder  shown in Fig. 
7, there is a fixed delay  time associated with each state 
transition when the circuit parameter P is fixed. Hence, 
we can define a delay-time function w as follows. 

Dejinition: Given  a circuit parameter P and  a finite au- 
tomaton M = ( Q ,  C, 6, qo, F ) ,  defined above,  the delay- 
time&nction w, is defined as follows: w,: Q X Q -+ R 
such that w, (q l ,  q2) is the delay  time for calculating the 
corresponding  output signal and propagating this signal 
when  the transition (ql ,  q2) is in 6. When  the transition 
( q l ,  q2) is not defined in 6, w,(ql, q2) is not defined. We 
use w instead of w, when  a circuit parameter 7r is fixed  in 
the discussion. Since  from  the definition of the  symbols, 
any transition with the same  symbol  has the same delay 
time,  we  also use  the  symbol to mean its delay time.  Note 
that so > s1 and to > t l ,  since  the transition from the node 
Nz to the node Nso is  a part of the transition from the node 
N c ,  to the  node Nso through Nz. 

Let L ( M )  be  the  language  accepted by the finite autom- 
aton M .  The  language L ( M )  corresponds to the set of all 
possible paths in our  two-dimensional  array.  Let L,,, = 

I CY I f ,  = n )  where I a l a  indicates the  number of times the 
symbol “a” in  the string a. Thus, L,, corresponds to the 
set of paths from Ao,o to A,  - , - I , m  - or in other  words, 
Lmn is the set of paths that have m carry stages and n sum 
stages. 

We  use  the notation C,,,,,, for representing the set of 
circuits C E CFA whose critical paths are in L,,ln. We define 
the delay-time function w on  a string in L ( M )  as follows. 
Let CY E L ( M )  and a = ala2  * - a, where ai E {c ,  d ,  so, 
sl, to, t l )  for  1 5 i I n. Then w(a) = C y = ,  w(ai). 

We  can now define a critical path in our  terms. 
Dejinition: We call a E L,, G L ( M )  a critical path 

when  CY) 2 w ( 0 )  for  all /3 E L,,. Define CPN as the 
set of all critical paths of all subcircuits in CFA and CPN,, 
= CPN n Lmn. We say that two paths are equivalent when 
their delay times are  equal.  When w(0c) < w ( 6 )  (w(a)  > 
w ( P ) ,   CY) = ~(0)) for  two paths a and 0, we denote 
that by a < (a > /?, CY = ,v /3, respectively). 

Our  problem of finding a critical path in the m X n 
multiplier then corresponds to the problem of finding a 

{ C Y E L ( M ) I  1 4 ,  + l Q l d  = m, I &  + IaI,, + l a l r o  + 

critical path  from Ao,o to another cell Am-  l , n - 2 ,  as shown 
in Section VII. 

Lemma 2: Every  critical  path of the n X n multiplier 
has (2n - 3) carry calculation stages and (n - 1) sum 
calculation stages. 

Prouf: Every  time  a  sum signal appears in a  path, the 
y coordinate  increases by 1 ,  while  the x coordinate de- 
creases by l .  Every  time a carry signal appears in a  path, 
the x coordinate increases by 1, while the y coordinate 
remains  the  same. Hence,  a path from  the  cell Ao,o with 
a, sum stages and a, carry stages reaches the cell 
AUc - ( i s , a s .  In the n X n multiplier, a critical path starting 
from  the cell Ao,o finally comes out of the cell A,- - 2  

with the sum signal.  Hence, n - 1 = a, - a, and n - 2 
= a,. Thus, a, = n - 1 + a, = 2n - 3 .  Hence, we 
proved that every critical path a of  the n X n multiplier 
has (2n - 3) carry calculation stages,  and (n - 2) sum 
calculation stages, plus another  sum calculation in the cell 
A n - 1 . n - 2 .  0 

IX. ANALYSIS OF CRITICAL PATHS 
In Section VIII, we saw that the behavior  of the signals 

on  the  path  can  be  described by the  weighted state tran- 
sition diagram M .  In this  section, we investigate the 
problem of finding the critical paths effectively, given  the 
weighted state transition diagram. 

Since  the longest path between  two  nodes  can  be  com- 
puted given the delay time  of all paths between  two nodes, 
we have  the  following  theorem. 

Tlzeorem I :  Given  a fixed parameter T and the delay- 
time function w,: Q X Q + R, we can effectively con- 
struct the set CPN. 

We next describe  a  more practical way  of constructing 
a critical path in L,,,,. We  use R(al ,  a2, - * * , ak) to rep- 
resent the pair (i, ai) where ai = max(al, a2, * * * , ak); 
that is, R tells us which  argument is maximum. 

Theorem 2: Given a circuit parameter R, knowledge of 

R(c, d ) ,  R(so, to), R ( ~ o  + 80 + ‘0 + ‘I>, 

and 
R(s0 + ‘07 2 s 1 7  2t,) 

is both  necessary  and sufficient to construct a critical path 
in L,,? for m 2 0 and n 2. 0. 

We  need the following  lemmas to prove  theorem 2. The 
first lemma  shows that we can simplify our finite autorn- 
aton. 

Lemma 3: Let L be the set of strings accepted by the 
finite automaton M = ( Q ,  C, 6, qo, F )  defined in Section 
VI11 and  shown in Fig.  10(a).  Let L1 be the set of strings 
accepted by the finite automaton M1 = (Q , ,  E,,  al, qo, Fl) 
shown in Fig.  10(b), where Ql = {qo, A ,  B ) .   F ,  = { A ,  
B } ,  and J1 is shown in Fig.  10(b).  Then L ( M )  = L(Ml). 

Proof: Use  the state minimization  algorithm in 

From now on, we will concentrate our attention on the 
reduced state automaton M1. Next  we will characterize 
the strings accepted by M I .  

~ 4 1 .  tl 
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Lemma 4: Let E be  the  regular  expression of the  strings 
accepted by M1. Then 

E = aoaf(tobTsO)* a?(€ + to) 

where ai = si + c, bi = ti + d for i = 0,  1 ,  and E is the 
empty  input. 

Proof: Let rA (rB) be  the  regular  expressions of strings 
starting  from  and  ending  at  state A @ ) .  Then r, = 
af(tobfso)*af and rE = bT (soafto)*bf. Let EA(EB) be the 
regular  expressions of strings  accepted  at  state A (B) .  Then 
EA = aorA + bo rBsO and E B  = borB + aorA to. Therefore, 
E = EA + EB is  the  desired  regular  expression. 0 

Definition: For  two  regular  expressions E, and E2, we 
define El - E2 iff for any el  E: El (e2 E E2), there  exists 
e2 E &(el E El) such  that el  =, e2, that is, T(el) = T(e2) .  
We  also  use el  - e2 when el =, e2. 

Lemma 5: E - (soto + cto + dso + so + c + 
Proof: Note  that  for a, b E E, (a + b)* - a*b*, ab - ba. Hence, uf = (sl + c)* - sfc*, bf = (tl + d)* - tTd*, (tobfso)* - (soto)*bT, and (soafto)* - 

(soto)*af. From  lemma 4, we  can  obtain  desired  result. 
0 

Let y3 = max(so + to, so + sl, to + t l )  and y4 = max(so 

d)sfc*(so + to)*tTd*. 

+ to, 2 s l ,   2 t 1 ) .  Then  define z l ,  z2,  23 ,  and 24 as  follows: 

z1 = max (c, d ) ,  22 = max (so, to ) ,  

soto if y3 = so + to 

23 = (s0s1 if y3 = so + sl, 
totl if y3 = to + tl 
soto if y4 = so + to 

24 = [X: if y4 = 2s' 

t ;  if y4 = 2, .  

Lemma 6: Let a be  a  critical  path in Lm,n. Then 

Proof: Let p be  a  path  in Lm,n. From  lemma 5, 6 - 
cnldxzy where x1 + x2 = m and y E (so + to + s1 + 
tl)". Clearly, I, zfy = max(c, d)"y.  Hence, we only 
have  to  think  about  a  critical  path in Lo, ,. Let p be  a  path 
in Lo, n .  From  lemma 5, /3 - (so to + so + 

We take  the  following  two  cases: 1 )  n = 2k + 1 ,  and 

1 )  n = 2k + 1 :  p - 7 s f ' t 7 ( ~ o t o ) ~ ~  where y E (soto + 
a) If y = soto, then  either x1 or x2 is  odd.  Without 

loss of generality,  we  assume  that x1 = 2kl + 1 and x2 = 

to)s;ltTL(soto)-. 

2) n = 2k. 

so + to). 

2k2. Since s1 <, so, s1 5, 24, t l  I, z4, soto I, 24, and 
so I , z2, we have 

2 2 

p Sotoslsl 2kl t l  2 b  (sotO)n3 C w  z4sozf'z$?:3 5, z2z4. 
k 

b) If y = so or to, then P - 7s;' t'f'(soto)- and x1 = 
x2 (mod 2 ) .  Note  that y s , z 2 .  I fx l  = 2kl + 1 andx2 = 
2k2 + 1, then 

p - Y(slt1)sl t l  5, Z2(sOtO)z4 24 2 4  5, 2224.  
2kl  2k2 kl k2 x3 k 

If x1 = 2kl and x2 = 2k2, then 

0 - 7 s  1 1 (soto)x3 5~ 2224 .  
2k1 2k2 k 

Hence, 0 s z&. 
2) n = 2k: 0 - ysf1 t~2(so t0)n3 where y E (soto + sosl 

+ totl + sotl + slto). Since n = 2 + x1 + x2 + 2x3 is 
even,  we  know x1 E x2 (mod 2 ) .  Since sotl I , soto and 
slto I, soto, we  have /3 sw ~ ~ s ~ ' t ~ ( s ~ t O ) ~ ~ .  In  the  same 
way as  in  b)  above, s f ' t ; 2 ( s 0 t O ) X 3  5, 2 4  . Thus, 0 5, 
23 zf- ' 0 

Definition: A string /3 E C* is  said  to  be constructible 
when  there  exists  a  path a E L(Ml)  such  that (11 - P .  

Lemma 7: For any  integers m 1 0 and k 2 1 ,  the 
strings z y z 2 z $  and z;lz3zf-' are  constructible,  and  there- 
fore,  the  upper  bounds in lemma 6 are  attained. 

Proof: We  will  prove this for n = 2k + 1.  The proof 
for n even  is  similar.  Without  loss of generality,  we  as- 
sume  that z2 = so. Now  we consider  the  constructibility 
of ~ ~ 2 3 ; .  We  will find a  string ao, ,, E Lo, such  that ao, , - 
z2z f .  We  have  the following  three  cases  for z4. 

I )  24 = soto: Let ao, = so(toso) E Lo, ,. Then ao, , E 
L(MJ and aO,n - 2224. 

2) 24 = s l :  Let = sos E Lo,,. Then ao,n E L(Ml)  
and ao,n - p .  

3) 24 = t l :  Since so + to I 2t1 < to + t l ,  we  have 
so < tl < to. However, we assumed  that z2 = max (so, 
to) = so. Thus,  this  case  does not happen. 

From l), 2), and  3) we see  that  the  string z2z$ is  con- 
structible. 

Now we  prove  that z ~ z 2 z $  is  constructible.  Let y1 = 
sOcm if z1 = c,  or  let y1 = dmsO if z1 = d. Let ao,, = soy2. 
Let a = yly2. Here  we know that a E Lm, and a - 
2fz2zt.  Thus, we  proved  that zfz2z$ is  constructible. 0 

The  following  example  shows how to  construct  a  crit- 
ical  path p in L10,5 from  knowledge of R functions,  given 
a fixed parameter P = (12, 16,  12, 8, 8). By computation 
we obtain  a  critical  path a = cctoso in L2, 2, w, = 10.3 
ns, wEo = 18.7  ns, and wso = 15.2 ns. Since w(cctoso) 2 
w(ddsoto), we have  max(c, d )  = c. Since cctoso 2, cctotl, 
we have so + to 2 to + tl > 2t1. Since  max(so, to) = to, 
we know so + to 2 2s0 > 2s' and to I so > sl. Thus, 
max(so + to, 2 s l ,   2 t l )  = so + to and  max(so + to, so + 
sl, to + t l )  = so + to. Then  from  lemma 7, we  can  con- 
struct  a  critical  path = c '' (to so)' to E Llo, and  calculate 
the  delay  time w( p )  = 189.5  ns.  In  fact,  actual  com- 
putation  shows  that  a  critical  path of L10,5 is y = 
c7(t0s0)c2(t0s0)ct0 and  its  delay  time w ( y )  is 189.3 ns. 
Note  that  the  critical  paths y and p are  equivalent in the 
sense  that w ( p )  = w ( y )  = 1Oc + 3t0 + 2s0. 

k - 1  

k 

k 

2 2k 

k 
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Lemma 8: Given a critical path a in L,, 3 ,  we know the 
values of the R functions  in  theorem 2. 

Proof: Let 01 be a critical  path in L 1 ,  3. 01 - /3y where 
/3 E (c + d )  and y E (so + s1 + to + Clearly, /3 = 
max(c, d )  = z l .  Since sosl to < sotoso and sototl < 
tosoto, we  have y - (sos: + sotoso + tosoto + tot:). Sup- 
pose y - sos:. Then we can find the  values of the R func- 
tions  in  theorem 2 as follows.  Since soslsl  2,  sotoso, 
we have so + to I 2sl < s1 + so. Thus, to < s1 < so. 
Hence,  max(so, to) = so, max(so + to, so + s l ,  to + t l )  
= so + s1 and  max(so + to, 2sl ,   2t1) = 2sl.  We can  also 
compute the R functions  in the  other cases  as above. 0 

Proof of Theorem 2: Suppose we know  the  values of 
the R functions in theorem 2. From  lemma 7, there is a 
path /3 in Lm, , such that 

Now  we prove  theorem 2. 

z;lz2z$ if n = 2k + 1 

@ - {Z?Z3Z$-1 if n = 2k. 

From  lemma 6, the delay  time of the path @ is  worse  than 
any path in Lnl,n. This  means that the path /3 itself is a 
critical  path.  Conversely,  we  can find the desired R func- 
tions from a critical  path  in L1 , from  lemma 8. I7 

From  theorem 2 and lemma 8, we have  found a new 
way to  implement our critical-path  optimization  method, 
as  shown in Fig. 11. By analyzing the small configuration 
(the  circuit  in C F A ,  3), we can  avoid  analyzing the entire 
circuit.  This  means that our optimization workload will 
be reduced significantly when the  circuit  is  large. 

X. A CANONICAL  CONFIGURATION FOR THE n X n 
MULTIPLIER 

Although we  found an effective way  of computing a 
critical path of L,, and  its delay time,  we still have a ma- 

0 LOCALOPTIMUM 

Fig. 1 1 .  New implementation of the critical-path optimization  method. 

Let T,(n) denote the delay time of the  critical path of 
the n X n multiplier  given a circuit  parameter n. We use 
T(n)  instead  of T,(n) when 7~ is fixed in  the discussion. 
We  can now give an  explicit  formula T, (n) for the n X n 
multiplier. 

Theorem 3: Given a circuit parameter n, then T,  (n) can 
be represented  as  follows: 

T,(n) = hl + XZ, (1) 

where k = jn/2J - 1 ,  

x1 = 4 max(c, d )  + max(to + so, 2sl,  2t1) 

max(c, d )  + max(to, so) if n = 2k 

3 max(c, d )  + max(to + so, so + sI, to + t l )  if n = 2k + 1. 
x2 = [ 

Proof: Let z l ,  z2 ,  23,  and z4 be  as defined in Section 
jor question left. That is, does  there  exist  an effective way IX.  From lemma 2, a critical path a of the n X n multi- 
to find a locally optimal  parameter for the  large n X n plier  is  in L2n-3,n- 1. And  from  lemma 6, we know that 
multiplier? In this section we prove  that the answer  to the 
question  is yes and, furthermore,  we will show a stronger 

zy-3z2za if n - 1 = 2k + 1 n = 2k + 2 

a [ z ~ - ~ z ~ z ~ - ~  if n - 1 = 2k result by introducing the idea  of the canonical conjigu- n = 2 k +  1' 
ration. 

conjiguration of the n x n multiplier iff the optimization O1 [ Z ; k - 1 z 3 Z a - 1  if n = 2k + 1 
of CC  yields  the  same  parameters  as the optimization of  thus, 
the n X n multiplier; for all sufficiently large n. 

or 

Definition: A circuit CC E C F A  is called the canonical z ; k - 3 z 2 z t - 1  if n = 2k 

We now consider the following  problem. if n = 2k 
ProbZem I: ' Is there a canonical configuration CC of the 

n X n multiplier? If a CC  exists, what is it? How  can it 
be  found?  Note that k = Ln/2j - 1. 

a - [k:z4)k-1 (z:z3) if n = 2k + 1. 
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Corollary 1: Given  a circuit parameter T ,  then T,(n) is 

Proofi This  is  clear  from (1) .  
In  fact, from Table  IV in Section V, we can obtain em- 

pirically the formula T,, = 40(n - 1 )  when p1 = (4 ,  16, 

Corollary 2: The  circuit C1 E C F A , 4 , ,  shown in Fig. 12 
is  a  canonical configuration of the n X n multiplier. The 
critical  path  of C1 has four carry stages and  two  sum 
stages. 

Proof: From  theorem 3,  we  have T(n)  = cy4, Ln/2 J 
+ 0, where cy4, is  the  delay  time of four carry stages and 
0 is  the constant delay  time. Hence, an  optimal  parameter 
of L4, , is, asymptotically for  large n, also  an  optimal pa- 
rameter L,, . 0 

From  lemma 2 in Section VII, there are (2n - 3) carry 
stages  and (n - 1) sum stages in  any critical path of the 
n X n multiplier.  Thus,  we  might  expect that the circuit 
Co E CFA, ,, 1, whose critical path has two carry stages and 
one  sum  stage, is  a  canonical configuration of the n X n 
multiplier.  However,  as we saw in this  section,  the circuit 
C1 E c F A , 4 ,  is a  canonical configuration, but the circuit 
Co E CFA,2, I is not a canonical configuration. The reason 
is that optimization of the circuit Co cannot  determine 
max(so + to ,   2s l ,   2 tJ .  

asymptotically proportional to n. 

8,  8). 

XI. THE OPTIMIZATION OF A SUBCIRCUIT 

In this section,  we  optimize  the  two circuits Co and C1 
discussed  in  the  previous  section, verifying that  the cir- 
cuit C,  works well as a canonical configuration, but the 
circuit Co does  not.  The  circuit CI is indicated by a solid 
line in Fig. 12, while  the circuit Co is indicated by  a dot-. 
ted line.  The critical path from cell Ao, ,  to cell A*, ,  is 
analyzed for C1 in Fig. 12, while  the critical path from 
cell Ao, ,  to cell A l ,  is analyzed  for Co. 

Table  VI  shows  which  parameters  are locally optimal 
for m33,  m44, m88, m1010, Co, and CI. The symbol X 
indicates a local optimum.  The  same  set of 1 1  random 
initial parameters  were  used  for  each  circuit, and only 
these 5 distinct local optima  were obtained. 

The most  important result is  that  every local optimum 
of m88 and mlOlO is also a local optimum  of C1. This is 
not true  for C,, nor is it true  for  the  smaller circuits m33 
and m44. Thus, we can say that the circuit CI is indeed 
appropriate as a representative subcircuit of the n X n 
multiplier. In  this  way, corollary 2 in Section IX  is con- 
firmed very well by  numerical  experiments. 

XII. CONCLUSIONS 

We  have  described  a  general  approach  for sizing the 
transistors in  a  cell  that  is  embedded in a  regular  array, 
using local search  along  the  critical  path.  The  simplest, 
most  regular array multiplier  structure  was used as  an ex- 
ample,  with  delay  time (not throughput) as  a  criterion. No 
attempt  was  made to incorporate intermediate clocking, 
precharging , or superbuffers. 

I299 

Fig. 12. The  circuits C, and C,. 

TABLE  VI 
LOCALLY OPTIMAL  PARAMETERS FOR EACH CIRCUIT 

= I  =2 =3 =4 g5 

C, X X 

c, X X X 
mlOlO X X X 
m88 X X X 
m44 X X X 
m33 X X X 

We quickly encountered  the  problem  that  the  running 
time  of the optimization increases rapidly when  we in- 
crease  the  size  of the multiplier. We  therefore tried to 
make  our optimization method  more practical by making 
use  of the circuit’s regularity and  developed  what  we call 
the canonical conjiguration method. In this method we 
locally optimize  the small circuit C1 instead of  the  entire 
circuit.  We  showed  how  to  extract this canonical config- 
uration C1 for  the n X n multiplier,  and  gave  experimental 
results that  illustrate the savings offered by this  method. 

The following  problems are  the  subject  of  future inves- 
tigation. Do canonical configurations exist  in  more  gen- 
eral  regular  arrays? If the  canonical configuration exists 
for  some regular array, how can we extract it? 
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