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Signal standardization is a key requirement for robust computation. In
this paper, we describe a method of achieving this in computing with
vector solitons. The state-restoring nature of the construction provides
noise immunity and prevents accumulation of errors.
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1. INTRODUCTION

The development of any new computing implementation forces us to
consider what key characteristics govern its successful operation. From
relays and vacuum tubes to quantum systems and DNA, many physical
realizations for computation have been proposed. But what parameters,
for example, account for the ubiquity of the solid-state transistor in
today’s computing devices?

The requirements for computation include cascadability, fanout, and
Boolean completeness. The first, cascadability, requires that the output
of one device can serve as input to another. Since any useful computation
consists of many stages of logic, this condition is essential. The second,
fanout, refers to the ability of a logic gate to drive at least two similar
gates. Finally, Boolean completeness makes it possible to perform
arbitrary computation.

Many physical realizations have been devised which meet these
requirements in an ideal world, in which the system is fully isolated from
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the environment. The physical realization of a computer, however, must
also operate effectively in the presence of noise, which may cause errors.
The success of transistor-based logic depends critically on its noise
immunity, which is achieved with state restoration, meaning that the
signal level is regenerated and standardized at the output of each gate.
Any accumulation of signal alterations per logic level would produce
an error and ultimately destroy the computation. As a result, we must
develop ways to combat such a deterioration process. With logic-level
restoration, a range of values can be accepted which represent a binary
‘1’ or ‘0’ at the input, and the output is restored to a standardized ‘1’ or ‘0’
level. These ranges of input signals over which the correct outputs are
obtained are known as noise margins, which provide tolerance in the
amounts of variability on the inputs and a means through which to
achieve practical cascadability. The ideas presented here on the physical
requirements necessary for a computing device were well understood fifty
years ago, and were discussed, for example, by Lo as early as 1961 [17].

Even with state restoration, can we compute effectively with noise-
prone logic gates? In 1952, von Neumann suggested improving the
reliability of computational schemes by executing each operation mul-
tiple times, and using majority voting on the output [34]. These architec-
tures require redundancy, which is accompanied by an increase in the
resources required, either in space or time, to perform the computation.
A computing scheme such as this, where unreliability is compensated for
by redundancy, is called fault tolerant. This term implies that we can
engineer a system to function in a noisy environment. That is, even
though logic devices are used which are vulnerable to noise-induced
errors, they can still be used for computation.

The recently proposed computing paradigm of quantum computing
has been designed to use logic gates that are susceptible to noise. A fault
tolerant scheme was developed to show that robust computation could be
performed in such a system. It involves encoding input data using error
correcting codes, executing the computation on the encoded data, and
performing error correction on the output [26]. Error correction makes
data, either classical bits or quantum bits, more resilient against the
effects of noise. The data may appear corrupted, but can be recovered
through decoding. Like von Neumann’s approach, this scheme adds
redundancy through the encoding of the error correcting codes, which
increases the number of bits. In this way, even if some of the message is
destroyed by noise, there is enough redundancy to recover the data. For a
review of fault tolerance in quantum computation, see [21].
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1.1 Physical vs. logical state restoration

At this point, we should emphasize the difference between physical
and logical state restoration. In physical state-restoring systems such as
solid-state transistors or vacuum tubes, sufficient noise margins allow for
variability at the input. Such systems are inherently cascadable, and no
redundancy is required. The output is standardized to the proper logic
level, provided that the input lies within the specified margin. In logical
state-restoring systems, redundancy is used to reconstruct the correct
output from error-prone data. Logic level standardization, and thus
cascadability, is achieved, for example, by a scheme describing majority
voting or error correction. The probability that errors occur with logical
state restoration remains small if errors are corrected frequently and the
system contains sufficient redundancy. It should be noted that a physical
state-restoring system in the framework of quantum computation has
been proposed recently [16].

An additional, more subtle issue characteristic of logical state-
restoring systems involves the inherent unreliability of the error-
correcting process. Assuming the hardware with which both computation
and error correction are performed is the same, errors will unavoidably
occur in both processes. In this respect, in order for such systems to
operate with suitable fidelity, the system must be designed to account for
both sources of error.

1.2 All-optical soliton computing

As data rates in optical communication systems continue to increase,
the demand for all-optical signal processing and computing devices does
as well. Examples of such devices include the nonlinear optical loop
mirror [11], the temporal soliton dragging gate [27], the spatial soliton
deflection gate [7], and the TOAD, an asymmetric loop mirror [28].
These devices avoid the bottleneck associated with optical-electrical con-
version. For a recent discussion of the requirements necessary for such
all-optical devices, see [8].

In this paper, we describe physical state-restoring computation
using collisions of optical solitons. This work is part of a larger subject
known as collision-based computing, sometimes called dynamical
computation (for a review, see [2]). Such constructions include ideal
collisions of billiard balls [12], Conway’s universal game of Life [6],
and multidimensional excitable lattices [1]. Early work on soliton
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computation involved soliton-like collisions in cellular automata, which
demonstrated the ability to embed computation in automata using
particles [14,20,33].

A schematic for a possible soliton computing device is shown in Fig. 1.
Input solitons enter on the left and exit on the right, representing the
result of an arbitrary computation. The computation occurs through
collisions, and the configuration of input beams determines the operation
performed. This results in a dynamic computer without spatially fixed
gates or wires, which is unlike most present-day conceptions of a
computer that involve integrated circuits, in which information travels
between logical elements that are fixed spatially through fabrication on a
silicon wafer. We can call such a scheme “nonlithographic,” in the sense
that there is no architecture imprinted on the medium.

We concentrate on solitons described by the cubic nonlinear
Schrödinger equation (NLSE), which takes the common dimensionless
form
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where u(x, t) is the soliton envelope. Equation (1), known as the scalar
NLSE, is an integrable system — that is, it can be solved analytically, and
collisions between solitons are elastic. In 1971, Zakharov and Shabat first
solved this equation analytically using the inverse scattering method [35].
The scalar soliton solutions of Eq. (1) describe temporal solitons in fiber
and spatial solitons in various lossless nonlinear media (for a recent
review of spatial solitons and their interactions, see [30]). Because of
the integrability of Eq. (1), solitons emerge from collisions with all
their original energy. Therefore, no spurious radiation emerges from the

FIGURE 1
Possible soliton computing device in which spatial solitons interact in a nonlinear medium.
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collision site, as is characteristic of nonintegrable systems. For this
reason, we will focus on integrable systems in this paper.

In order to study soliton interactions in the context of computation,
we identify soliton parameters that can act as state variables, which
can then be used to carry and transfer information. For scalar solitons,
the only appropriate parameters are the carrier phase and position,
because these are the only variables affected by collision. The changes
in these parameters, however, do not have an effect on the results of
subsequent collisions. From the point of view of universal computation,
this is an unfortunate result, since solitons must be able to transfer state
information in order to be useful in arbitrary computation [14].

Despite this setback, it was soon discovered that a system similar to
the NLSE, the Manakov system [18], possesses very rich collisional
properties [22] and is integrable as well. Manakov solitons are a specific
instance of two-component vector solitons, and it has been shown that
collisions of Manakov solitons are capable of transferring information
via changes in a complex-valued polarization state [13].

This paper is organized as follows. In Section 2 we describe the
mathematical model of the Manakov soliton system. Section 3 discusses
how it is possible to create a bistable configuration of such solitons,
followed by Section 4, in which we describe a FANOUT gate and a
physical state-restoring NAND gate using the bistable soliton collision
cycles of Section 3. In Sections 5 and 6, we conclude with a discussion of
experimental progress and prospects for future work.

2. THE MANAKOV MODEL

The Manakov system consists of two coupled NLSEs [18]:

i
q

i
q

∂
∂

+

∂
∂

+

1

2

(

(

t
q

x
q q q

t
q

x
q

∂
∂

+ + =

∂
∂

+ +

2
1

2 1
2

2
2

1

2
2

2 1
2

2 0

2

m

m

| | | | )

| | || | )q q2
2

2 0=
(2)

where q1 (x, t) and q2 (x, t) are two interacting optical components, µ is a
positive parameter representing the strength of the nonlinearity, and x
and t are normalized space and time, respectively. The two components
can be thought of as components in two polarizations, or, as in the case of
a photorefractive crystal, two uncorrelated beams [10].
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Manakov first solved Eq. (2) by the method of inverse scattering [18].
The system admits single-soliton, two-component solutions that can be
characterized by a complex number k ≡ kR + ikI, where kR represents
the energy of the soliton and kI the velocity, all in normalized units. The
additional soliton parameter is the complex-valued polarization state
r ≡ q1/q2, defined as the ratio between the q1 and q2 components.

Radhakrishnan et al. [22] derived a general two-soliton solution for
Eq. (2) and analyzed its asymptotic behavior to explain the collision
properties of Manakov solitons. The results showed that collisions are
characterized not only by a phase and position shift (similar to scalar
soliton collisions), but also an intensity redistribution among the two
component fields q1 and q2.

Figure 2 shows the schematic for a general two-soliton collision, with
initial parameters r1, k1 and rL, k2, corresponding to the right-moving
and left-moving solitons, respectively. The values of k1 and k2 remain
constant during collision, but the polarization state changes. Let r1 and
rL denote the respective soliton states before impact, and suppose the
collision transforms r1 into rR, and rL into r2. It turns out that the state
change undergone by each colliding soliton takes on the very simple form
of a linear fractional transformation (also called a bilinear or Möbius
transformation). Explicitly, the state of the emerging left-moving soliton
is given by [13]:
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FIGURE 2
Schematic of a general two-soliton collision. Each soliton is characterized by a complex-
valued polarization state r and complex parameter k.
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The state of the right-moving soliton is obtained similarly, such that
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We assume here, without loss of generality, that k1R, k2R > 0.
These state transformations were first used by Jakubowski et al. [13]

to describe logical operations such as NOT. Later, it was established
in [31] that arbitrary computation was possible through time gating of
Manakov (1+1)-dimensional spatial solitons.

The computational architecture of [31] incorporates several notable
characteristics. First, it is reversible, in that the system of Eq. (2) is based
on physical laws independent of the direction of time. This property
does not limit the system’s computational power, but would require
storage of all outputs for the computation to be run in reverse [5].

The second feature is the nonlithographic nature of the physical real-
ization, and is characteristic of many collision-based computational
paradigms. In [31], information is processed through interactions of
soliton beams in a nonlinear medium. As described earlier in connection
with Fig. 1, this presents an alternative to the conventional, lithographi-
cally defined silicon integrated circuit, in which logic gates are defined in
space.

From a practical standpoint, successful soliton computation in [31]
requires ideal interactions and error-free propagation. In this sense, it is
analogous to the construction of Fredkin and Toffoli, in which ideal,
elastic collisions of billiard balls were used to achieve universal and
reversible computation [12]. In reality, noise will cause variability in
soliton propagation and collision, and fault tolerance based on logical
state restoration would need to be implemented in order to improve
system performance. In a sense, this is an analog rather than a digital
computer.
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The type of soliton computation we highlight in this paper is based
on more recent work, which uses bistable configurations of Manakov
solitons [23,32]. This scheme takes advantage of the dynamical nature of
computation in a nonlithographic medium, with the added benefit of
physical state-restoring logic. We show that such a system demonstrates
inherent state restoration, resulting in signal standardization.

3. A BISTABLE CONFIGURATION OF SOLITONS

A collision cycle of three soliton beams is shown schematically in
Fig. 3, with input states A, B, and C. The intermediate states are denoted
by a, b, and c, with outputs Aout, Bout, and Cout. Note that we refer, equiva-
lently, to the beams as well as their polarization states, as A, B, C, etc.
Each collision, interpreted as a line crossing in the schematic of Fig. 3, is
governed by the state transformation of Eqs. (3) and (4). Supposing we
start with beam C initially off, so that A = a, the cycle can be described as
follows: Beam a first hits B, transforming it to state b. If beam C is then
turned on, it will hit b, change to c, and subsequently collide with A,
closing the cycle. Beam a is then changed, changing b, etc., and the cycle
of state changes propagates clockwise. Given fixed input beams, such a
cycle was shown numerically to converge to exactly one or two foci [32].
Cases with two foci demonstrate bistability in the steady-state values of
the polarization state.

One example of bistability is shown in Fig. 4. This plot was generated
by fixing the input beams and choosing random points a uniformly
distributed over a given range of the complex plane. The cycle described
above was then carried out until convergence in the complex numbers a,
b, and c was obtained to within 10−12 in norm. The foci, labeled f0 and f1,

FIGURE 3
Schematic of a three soliton collision cycle.
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are the two steady-state values of a, and correspond to the value of that
beam in binary state 0 and 1, respectively. The basins of attraction
illustrate those initial values (of state a) that converge to each basin. The
boundary between the basins of attraction is a kind of 2-D threshold,
analogous to the switching in ordinary transistor-based logic. Beams A,
B, C, and the values k1 and k2 remain constant, while a, b, c, Aout, Bout, and
Cout can each have two stable steady-state values, depending on the
binary state of the cycle. If A, B, or C is changed, the basins and foci will
change, and we can lose bistability altogether, resulting in only one
steady-state focus. In fact, we will use this last observation of
monostability to control a bistable cycle.

3.1 Controlling a bistable cycle

In order to use these bistable collision cycles for data storage and logic,
we need to develop a method by which we can individually address these
devices. In other words, given a bistable configuration of Manakov
solitons with certain constant inputs (e.g., Fig. 4), we must be able to
switch between binary states of the cycle reliably.

FIGURE 4
Example of bistable soliton collision cycle. The states of the input beams are A = 0.7 − 0.3i,
B = −1.1 − 0.5i, C = 0.2 + 0.8i, and k = 4 ± i.
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We accomplish this by temporarily disrupting the bistability of the
cycle. For example, colliding a control beam, or beams, with A (as shown
by the dashed lines in Fig. 5) changes the input state A to D. Through
careful design of the control beams, we can ensure that A changes in
such a way that the cycle (cycle (3) in Fig. 5), which demonstrated
bistability without the control beams, becomes monostable, yielding only
one possible steady-state value for the intermediate and output solitons
of cycle (3). Subsequently, when the control beams are turned off, A
equals D1 and cycle (3) recovers its bistable configuration, but now the
initial state of the cycle is known. This initial condition will lie in one of
the two basins of attraction, causing the cycle to settle to the focus corre-
sponding to that basin. In this fashion, we control the output state of a
bistable soliton collision cycle, where the value of the monostable focus is
controlled by changing the state of the control beam.

4. NAND AND FANOUT GATES

The schematic of a NAND gate is shown in Fig. 5. It consists of three
cycles: cycles (1) and (2) are the inputs to cycle (3), which represents the

1 We assume here that there is sufficient separation between collisions to ensure that this equality
is true.

FIGURE 5
Schematic of NAND gate using bistable collision cycles.
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actual gate. All three cycles have identical bistable configurations, with
input solitons A = −0.2 + 0.2i, B = 0.9 + 1.5i, C = −0.5 − 1.5i and k = 4 ± i.
The output of any cycle is Bout, and an input is described by a collision
with A. Using the method described in Section 3.1, cycles (1) and (2) can
be set in either binary state 0 or 1. When the inputs from cycles (1) and (2)
are active, cycle (3) will become monostable and, depending on the values
of the inputs, there are four possible monostable foci for cycle (3).
Turning off the inputs will place cycle (3) in the state corresponding to the
NAND operation. By using identical bistable collision cycles,we ensure
that the output is standardized and can serve as input for the next level of
logic.

The bistable configuration of all three cycles, along with the values of
the monostable foci which correspond to the four inputs, are shown in
Fig. 6. Only when the inputs are both in state 1 will the cycle be put into
state 0. A variability on the inputs will change the position of the
monostable foci slightly. We can see from Fig. 6 that this change will not
affect the position of the output state, unless the change is greater than a
specified amount. Quantifying the noise margins of this system remains a
topic for future work.

FIGURE 6
Map of beam a in the complex plane showing NAND gate operation. The two foci, a0 and
a1, are shown with their corresponding basins of attraction. The + signs are monostable foci
which indicate inputs where the cycle reaches state 1, the • is the monostable focus acquired
with a (1, 1) input.
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Figure 7 shows the schematic of a FANOUT gate, where solitons y
and z are chosen in such a way that a copy of soliton in is created at the
output, as indicated by outp. Explicitly, we define the transformations
from Eqs. (3) and (4) as r2 ≡ L(r1, rL) and rR ≡ R(r1, rL), respectively. The
value of outp is then R(y, L(in, z)). The original input soliton is recovered
using the inverse property of Manakov collisions, as described in [13].
When viewed as an operator, each polarization state r has an inverse
defined as −1/r*. As such, an arbitrary soliton r1 which collides with
another soliton r2, followed by a collision with its inverse −1 2/ *r , restores
the original state r1. Thus the original input soliton in is restored by a
collision with the inverse of z, −1/z*.

As a useful example, we design a FANOUT gate for the case of input
soliton in = Bout, where Bout is taken from the output of a NAND gate. The
bistable configuration of the NAND gate provides for two possible
outputs, Bout0 and Bout1, corresponding to binary states 0 and 1, respec-
tively. The FANOUT design stipulates that Bout0 map to Bout0 and Bout1

map to Bout1, which can be expressed by the following two simultaneous
complex equations in two complex unknowns:

R(y, L(Bout0, z)) = Bout0,
R(y, L(Bout1, z)) = Bout1.

(5)

Solving Eqs. (5) numerically yields y = 0.6240 − 0.4043i and z = −1.1286 +
0.7313i. This example thus demonstrates that the output from a NAND
gate can be used to drive two similar NAND gates.

FIGURE 7
 Schematic of FANOUT gate, where each • indicates a collision.
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5. DISCUSSION

5.1 Experimental progress

There exist several candidates for the physical realization of Manakov
solitons, including photorefractive crystals [3,4,9,10,25], semiconductor
waveguides [15], quadratic media [29], and optical fiber [19].

In [4], Anastassiou et al. demonstrated energy exchanging collisions of
two Manakov-like solitons. This experiment was performed using a
photorefractive crystal, which, in contrast to the Kerr nonlinearity of the
Manakov system, has a saturable nonlinearity. However, these systems
are similar in the limit of very low intensities [24]. Later, in [3], this
work was extended to the case of two collisions, where it was shown
that information could be passed from one soliton to another using an
intermediate collision.

5.2 Reversibility

How is it that the mathematical model of soliton propagation and
collision (the Manakov system) is completely reversible, and yet basic
logical elements, such as a NAND gate, are not? For example, suppose
we operate the NAND gate in Fig. 6 with inputs (0, 1). The NAND gate
output will converge to a1, which represents binary state 1. However, we
could also have arrived at a1 from the points (1, 0) or (0, 0). The reason we
cannot reverse this computation is that the evolution of the state history
is erased because of the assumed ambient noise. If we were able to
keep the state a1 to infinite precision, then in fact the system would be
reversible.

6. CONCLUSION

In this paper, we have shown that arbitrary computation is possible
using collisions of Manakov solitons in a nonlithographic, nonlinear
optical medium. A FANOUT and a NAND gate were described to
demonstrate fanout, cascadability, and Boolean completeness, necessary
requirements for universal computation. Furthermore, we demonstrated
physical state restoration. Signals are standardized to binary logic levels,
and, as in solid-state transistor logic, the system can operate reliably in
the presence of noise.
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