
Complex Systems 7 (1993) 297-307

Two-Dimensional FHP Lattice Gases Are
Computation Universal

Richard K . Squier
Computer Science Department , Georgetown University,

Washington, DC 20057, USA

Kenneth Steiglitz
Computer Science Department, Princeton University,

Princeton, NJ 08544, USA

Abstract. We show that the FHP lattice gases are computation
universal, implying that general questions about their behavior are
undecidable. The proof embeds a universal one-dimensional cellular
automat on in the two-dimensional FHP latt ice gas. This provides
evidence that general questions about fluid behavior are undecidable.

1. Introduction

Ever since peop le began asking quantitative quest ions about physical sys­
tems, t hey have also been asking whether there are shor tcuts to finding the
answers. When mathematics gives a closed-form solution for the state of the
physical system that is easy to evaluate, the problem of getting the infor­
mation is usually essentially solved. However , for some problems t he best
approach known involves num erical computation t hat requir es astronomical
numbers of operations, and the question naturally ar ises whether quanti ta­
tive information can be found by some clever shortcut technique, or if the
nature of the physical system makes t his impossible [1, 2].

The FHP lat tice gases [3] are ext remely simple cellular au tomata (CAs)
that can be used to solve the Navier-Stokes equations. Their simplicity might
te mpt us to hope that fluid behavior can be predicted withou t direct, step­
by-step simulat ion. In t his paper we show that the FHP lat tice gases are
comp utation universal , which implies that genera l questions abo ut their be­
havior .are undecidable. More precisely, the genera l quest ion of whet her a
given lat tice gas started from given initi al conditions ever reaches a pre­
scribed state is equivalent to the Halt ing Problem for Tur ing mach ines .

Our method of showing that FHP lat ti ce gases are universal will be to
embed a universal one-dimensional CA in a lat tice gas initi alized to a per iodic
quiescent background state and having moving parti cles that code the initi al

298 Richard K. Squier and Kenneth Stejglitz

Combinatorial Logic

CL

Memory Elements

CL

Figure 1: Unfolding a sequent ial logic machine to create an equivalent
combinatorial one .

state of the one-dimensional CA. The periodic background st ate supports the
evolution of the one-dimensional CA by propagat ing an image of the instan­
taneous state of the one-dimensional CA th rough t he periodic background.
The st at e of t he one-dim ensional CA at evolution time step t can be read
off by observing the appropriate locations in the two-dimensional space of
the latti ce gas at a distan ce from t he origin tha t is linearly related to t . The
general principle of this embedding in the plane is simply t hat of convert ing a
sequent ial logic device to a combinatorial one by "unfolding" (see Figure 1).

2. Lattice gas d efinitions

Our simulat ion of a universal one-dimensional CA will use only a subset of
the rules of a lat t ice gas such as FHP-III [3] or LGM-1 [4], and therefore
our result includes any two-dimensional lat t ice gas on the t riangular lat tice
whose ru le set includes the required subset of rules. The following definit ion
characterizes these types of two-dimensional lat tice gases.

D efinition 1. A lat tice gas is FHP-like if its lat tice graph is the two­
dimensional triangular latti ce with nearest-neighbor edges, and the rule set
contains the reversible collision rules shown in Figure 2. (In Figure 2 a circle
represents a rest particle, a square represents a barri er sit e, and an arrow
represents a particle located at the arrow's tail moving with unit velocity in
the direction of the arrow.)

3. Universality

We will embed a genera l one-dimensional CA in an FHP-like lat tice gas .
Because there exist un iversal one-dimensional CAs, the FH P-like lat tice gas
is also universal. Each state variable of the one-dimensional CA is identi fied
by a pair of lines para llel to t he x-axis, the ith state variable s, corresponding
to the ith pair of lines count ing from the origin. One line in each pair codes
the value 0, the other the value 1, by the presence of a rightward-moving

Two-Dimensional FHP Lattice Gases Are Computation Universal 299

.......

... .~

Figur e 2: Required collision rules for the lattice gas. Also includ es
t he reverse of the first rule.

part icle at a specific x distan ce along tha t line from th e origin, th e dist ance
corresponding to the CA time step t . For inst ance, s; = 0 is coded by
th e presence of a rightward-moving particle on the O-value line for s, at x
coordinate ct for a part icular constant c. The status of these "state lines"
at a given x value of ct can be thought of as represent ing the "current"
one-dimensional CA at aut omaton t ime ste p t . The current machine sends
the values of its state variables propagating th rough a boolean network that
computes next-st ate values for each act ive cell in the next copy of the one­
dimensional CA. T his is a comp utation wavefront moving to the right , and
the state of the one-dimensional mach ine is coded by the arrangement of
part icles at lat t ice sites on t he wavefront . To the left of the wavefront the
particles have no significance, and to the right of t he wavefront there are no
moving part icles.

Theor em 1. The two-dimensional FHP-like automata are universal.

P roof. We begin by describing the embedding of a one-dimensional CA in
t he xy plane. Later we show the implementation of t his embedding in the
FH P lattice. There exists a universal I4-st ate one-dimensional CA with a
neighbo rhood of r = 1 [5], and implementin g this CA requires 4 bits of state
inform ati on. We show t he embedding of an arbit ra ry 2-bit one-dimensional
CA with t he same neighborhood; the extension to 4 bits will be obvious.

Suppos e A is a one-dimensional CA with two l-bit state variables per
cell. Let the two state var iables of cell i be a; and bi . Let x(t) , for t E Z+
(the non-negative integers), be defined by

a
x(t) = (j t ,

where a and (3 are posit ive integers we will choose later. T he function x(t)
defines t he dist ance from th e origin in t he positive x direction, where the

300

b- -

Richard K. Squier and Kenneth Steiglitz

-- b

cell i + I

cell i

cell i - I

a- - - - a

Figure 3: Three copies of the st ate wires for A and the boolean circuits
for the next- state functio n for ai.

values of the state variables of A can be read at tim e t. Let

T (t) = It/,BJ
define the evolution t ime ste p for A. (Later, t will become the t ime step for
the lat tice gas.) T hus, the values of aT and bTcan be read along the line
parallel to t he y axis at a distance x(T) = c/T from the origin. That is, for
every ,B t ime steps we look 0'. units far ther to the right to see the state of A.

Let the set of points { (x(T), i ± E) l i E Z+} be called "state wires." Each
state wire (x ,y) repr esents a state var iable of A at evolut ion ste p T: (x(T),
i + E) represents af, and (x(T), i - E) represents b[.

Between the set of state wires at x (T) and the state wires at x (T + 1) we
inst all a network of wires, fan-out devices, and logic gates that implement
th e update rules of A. That is, the inpu t wire for a; at x(T +1) is the outp ut
of a boolean circuit that implements the update rule of A from the inpu ts
{a[' by I k = i , i ± I }, and similarly for bi · The delay through th is circuit is
exactly 0'.. Figure 3 shows three one-dimensional CAs laid out with boolean
circuits for a i between them. This completes the embedding of A in the xy
plane, and we next take up the realizat ion of this embedding in the lat tice
gas.

There are two main elements in the realization of these boolean circuits
in th e lattice-gas automaton: t he implementati on of wire fan-out and cross­
ings, and the implement ation of the logic gates and ot her devices. Here we
show what is generally requi red of t he wiring, and later show the specific
implementation of a wiring scheme that satisfies th ese requir ements. After
that , we show how to implement the specific wiring and logic devices.

The general layout of the update circuit for a single state variable ai

between x(T) and x(T + 1) is shown in Figure 4. T he update circuit realizes
the boolean update funct ion f in its disjunct ive normal form (that is, a

T wo-Dimensional PH? Lattice Gases Are Comp utation Universal 301

b -e-- b -e--
Collector

a a -e--

b b -e--

a Literals a -e--
Tree Circuit

b b -e--

a a -e--

b b -e--

a -e-- a -e--

Figure 4: A collector, literals t ree, and AND-OR circuit for a; between
x(T) and x(T + 1).

Collector Lite rals Tree AND-OR Tree

Figure 5: A collector, literals tree , and AND-OR circuit for some
update function f.

logical OR of "minterms ," each minterm being a logical AND of literals.)
This circuit consists of three parts. First , wires from all state var iables
appearing in th e express ion for! are sent to a "collector." Next , a "literals
tree" fans out the wires for the state variables in the collector to produce
the literals for each minte rm appearing in the express ion for f. Finally,
an AND-OR circuit for! uses these literals as input and sends its output
to a;+l

Figure 5 shows a schematic example of an updat e circuit for a; +l =

! (a;+j ,b;+j), j = 0, -1 , + 1, using the logic and wiring devices we const ruct
in the lattice gas . Genera lly the devices we have available are the following:
two-input AND gates, NOT gates, horizontal wires, slope ± 1/V3 wires , two­
wire crossovers , and one-to-two fan-out devices. Each of th ese devices spa ns
th e same uni t distance along the x axis, and each has the same signal delay.
Since {NOT, AND} forms a complete logic family, we have sufficient logic
resources t o produce all literals and any AND-OR tree. All th at remains
is to show a sufficient wiring scheme for connect ing these elements in the
two-dimensional space of the lat tice gas .

302 Richard K. Squier and Kenneth St eiglit z

3.1 Low-level im plem ent a t ion of primitive devices

In our scheme a logical "wire" representing a single bit consists of two parallel
paths in the lattice along which par ticles may travel. One path is considered
the boolean "true" path, and the other is considered the "false" path . A par­
ticle will appear on one or the other of these path s at t ime T at x position
x(T) , and the logic value of the wire is determined by which path the particle
is on at that x position. Because of the conservation prop erti es of the FHP
lat t ice gases, our primi tive gates and devices produce moving par ticles that
are not part of the "valid" computational wavefront . These "garbage" par­
ticles could destroy th e coding of the one-dimensional CA state bits, if they
arr ived at x(T) simultaneously with or before th e computational wavefront .
We ensure t hat this interference does not occur by assuming th at every lat­
tice site not on a path contains a barri er (essent ially we are insulating our
wires). This ensures that garbage particles stay on the wire paths, and be­
cause they are initially deflected to the left in any wavefront interact ion they
are guaranteed to be at least one t ime step behind the wavefront . We now
describe the primitive elements for const ructing the basic wiring described
above (fan-out , wires, and crossovers) , and for const ructing t he complete
logic family {NOT , and AND}.

3.1.1 Turns

The main device necessary for implementation of all our logic and wiring
devices is th e "turn ." This device deflects a moving part icle from its inci­
dent path by 60 degrees and was int roduced in [6]. In this device a moving
par ticle collides with a rest particle, result ing in two part icles leaving the
collision site-s-one at + 60 and the other at -60 degrees from the direct ion
of the incident particle. For clarity, the ext ra part icle (a gar bage particle) is
"t rapped" in the vicinity of the turn by a pair of barri er sites. This trapping
is not essent ial to the construction , but makes th e idea clearer. Figure 6
shows a turn device and the symbol used for it in subsequent figures.

3 .1.2 Primitive devices

A horizontal path can be implemented as an unobstructed horizontal pat h
in the latti ce. The timing of particles arr iving at the cell locat ions must
be coordinated , however, so the horizont al path is formed from a delay line
whose extent in the x directi on and signal delay is the same as all other
devices we will introduce. Figure 7 shows such a delay line. For t he rest of
th e devices we will dispense with the detailed descript ions and show only the
schemat ic representation.

The remainder of t he required elementary devices are shown schematically
in Figure 8. They are the fan-out , th e crossover, t he half-AND, and t he half­
XOR devices. After int roducing these elementary devices we will use them
to build AND and NOT gates.

T wo-Dimensional FHP Lattice Gases Are Compu tation Universal 303

D

D
Before Colli sion Colli sion

Q
Symbol

?
D ····

After COlli SiO~

Figure 6: A "turn" device at three consecut ive t ime steps. The small
circle represents a rest particle and the small squares represent barrier
sites.

~
. ..

. .
. .. .

Figure 7: The delay line for a single path. The x extent is 6 latti ce
units, and the t ime delay is 8 lattice-gas evolution t ime steps. On the
right the delay line is shown schematically.

3.1.3 The AND and NOT gates

The two primitive logic gates introduced in Figur e 8, the half-AND and the
half-XOR, give only par tial results but can be combined to give a t rue AND
function. Suppose the inpu t paths to t hese devices are lab eled "A = true"
and "B = true ." The half-AND gate gives as output a single particle moving
right if its two inputs are asserted, and not hing otherwise; consequently its
output would be lab eled "AB = true," which is only one-half an AND gate
since th ere is no "AB = false" out put . A half-XOR having the same inputs
would have an output lab eled "A EB B = true ." Again , there is no false
output . Figur e 9 shows schematically th e const ruc t ion of the full AND gate
with true/false inputs and outputs.

The last device we need is a NOT gate. This is implemented simply by
switching the "t rue" path with th e "false" path . (This is easily accomplished
by shift ing the t rue path to the false path using, for inst anc e, the slope-line
device.) The switch of the false path to the t rue path can be done at the
same point in space since there will be only one par ticle on th e wire .

304

.~ .···· .

.~·

Richard K. Squier and Kenneth Steiglitz

Slope line

Vertical shift.+<2 .···· . . -·· . .. -" .··

·AC· .··· . . .

Fan-out

Crossover

o = rest particle

·38············ .

With rest particle: half-XOR

Without rest particle: half-AND

Figure 8: The primitive devices. Most are self-explanatory. The fan­
out device shows an opt ional dashed path for one of the exit paths.
This may be used if the fan-out is one-sided.

A = true

A = false

B = tru e

B = false

Figure 9: Schematic for the full A D gate.

half-AND

AB = tr ue

AB = false

-. half-XOR

3.2 Final layout

Figure 10 shows the meth od for fan ning out a single bit . All bit wires not
current ly being fann ed out are implement ed as horizont al wires . The bit
being fanned out is fanned out to t he horizont al lines that lead directly to
the destinati ons at the right end of the collect or in Figure 4. T hus all wire
crossings are two-wire crossings.

Using this genera l method for fanning out wires, we complete the layout
of the collector/ lite ra ls tree/AND-OR tree in such a way that we guarantee
the connect ivity and correctn ess of t he ent ire layout as follows. The ent ire set
of lines for every path of a single state variable is laid out on th e t riangular

Two-Dim ensional FHP Lattice Gases Are Computation Universal 305

a

b

a

Collector

bit a,

cell i - I

Collector

bit b,

cell i- I

Collector

bita,

cell i

Figure 10: Fanning out a single bit .

lattice using lattice points as endpoints for every line segment . These lines
are const rained to follow the connection and angular requirements of the
primitive devices detailed above . This layout consists of (1) t he collector lines
for the neighborhood of the state variable, (2) th e lit erals t ree generat ing
every possible minterm from t hese lines, and (3) the AND-OR tree using
these minterms (the unused minterms are blocked by barri er sites) . The
ent ire st ruc t ure, minus the collector , spans some vert ical dist ance. The state
wires are spaced vert ically to keep st ructures for adjacent state wires from
int erfering wit h each oth er.

Next , we replace wire crossings, fan-out , and logic devices with th e primi­
tive devices. For convenience, we can restructure the devices to have common
extents in basic lattice uni t distances, say dx in the x direction and dy in th e y
direction. Placing the devices could result in two problems. First , dist ances
along some lines might not be integer multiples of these basic device length s,
and second, devices may overlap. If the first problem occurs, we scale th e
ent ire st ructure by dx in the x dir ection and dy in the y directio n so th at
every line can be covered by an integer number of devices. Next, if we st ill
cannot place devices without overlap, we again rescale a second time, th ereby
guar ant eeing t hat no devices overlap. This completes th e layout and embed­
ding in the lat tice. The resulting layout is uniform and infinitely repeat ed
vertically, formin g a periodic st ructure .

4. Discussion

It is int eresting to note a few features of the above construct ion. First ,
it depends on non-conservation of energy since fan-out is accomplished by
accelerati ng a rest particle to unit velocity using a single particle t raveling
with unit velocity both before and after t he collision. Second , it depends on
non-conservation of momentum since th e "turn" device uses collisions with
a barri er of infinit e mass. We have been unable to find an energy-conserving
embedding of universal computation in th e lattice gas similar to the billiard­
ball machine of Margolus [7]. It remains an open question whether one exists.

306 Richard K. Squier and Kenneth Steiglit z

What conclusions can we draw from th e result of this pap er about using
the lat tice gas to answer question s about fluid behavior? We cannot conclude
th at t he initial condit ions that result from embedding fluid-flow problems in
th e lat tice gas result in unsolvable problems. However , it seems unlikely
that all the decision pro blems abo ut all the configur at ions that result from
embedding fluid prob lems into the lattice gas are decidable. Thus, we should
view t he main result as providing evidence t ha t predict ing the future state of
a fluid, at least one whose behavior is determined by t he partial differential
equat ions corresponding to the lat tice gas , is undecidable. That is, general
questio ns of the sort, Does a fluid with a given initial st ate ever exhibit some
specific behavior? apparently cannot be answered by computation.

T he same conclusion can be drawn from a complete ly different argument .
Build a un iversal Turing machine using fluidic valves to imp lement the gates
[8]. Then this "fluidic" compute r can simulate any Turing machine, and
therefore there are general quest ions abo ut this computer 's behavior t hat are
und ecidable. Since the fluidic computer 's st ate is ent irely determined by th e
fluid and its initial and boundary condit ions , we reach the same conclusion
as above.

We have just mentioned two dist inct argum ents , neith er conclusive, that
lead us to believe that , put informally, t here are many quest ions about fluid
behavior that are imp ossible to answer computat ionally. The argument based
on lattice gases leaves open quest ions about the generality of the subset of
initial condit ions corresponding to fluid embeddings. It also assumes that
lat t ice gases describ e the behavior of fluids. The argument based on a fluidic
computer assumes that such a machine can be built and its state measured.

5 . Acknowledgments

We thank Neal Young for valuable discussions. This work was supported by
NSF Gr ant MIP-9201484. Richard Squier was also supported by an Office
of Naval Techno logy Postdoctoral Fellowship while at the Naval Resear ch
Laboratory, Wash ington, DC.

References

[1] S. Wolfram, "Undecidability and Intractability in Theoret ical Physics," Phys­
ical Review Letters, 54 (1985) 735.

[2] R. P. Feynman, "Simulation of Physics with Computers," International Journal
of Theoretical Physics , 21 (6/ 7) (1982) 467-488.

[3] U. Frisch, D. d'Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P.
Rivet, "Latt ice Gas Hydrodynamics in Two and Three Dimensions," Complex
Systems, 1 (1987) 649- 707.

[4] S. D. Kugelmass and K. Steiglitz, "A Scalable Architecture for Lattice-Gas
Simulations," Journal of Computation al Phys ics, 84 (1989) 311-325.

T wo-Dimensional FHP Lat tice Gases Are Computation Universal 307

[5] J . Albert and K. Culik II, "A Simple Universal Cellular Autom ation and its
One-Way and Totalist ic Version," Complex Systems, 1 (1987) 1- 16.

[6] R. K. Squier and K. Steiglitz, "Test ing Parallel Simulators for Two­
Dimensional Lat t ice-Gas Automata," Complex Systems, 5 (1991) 63- 68.

[7] N. Margolus, "Physics-like Models of Comput at ions," Physica D, 10 (1984)
81- 95.

[8] E. C. Fitch and F. B. Surj aatm adja, Introduction to Fluid Logic (Washington:
Hemisphere, 1978).

