Complex Systems 7 (1993) 297-307

Two-Dimensional FHP Lattice Gases Are
Computation Universal

Richard K. Squier
Computer Science Department, Georgetown University,
Washington, DC 20057, USA

Kenneth Steiglitz
Computer Science Department, Princeton University,
Princeton, NJ 08544, USA

Abstract. We show that the FHP lattice gases are computation
universal, implying that general questions about their behavior are
undecidable. The proof embeds a universal one-dimensional cellular
automaton in the two-dimensional FHP lattice gas. This provides
evidence that general questions about fluid behavior are undecidable.

1. Introduction

Ever since people began asking quantitative questions about physical sys-
tems, they have also been asking whether there are shortcuts to finding the
answers. When mathematics gives a closed-form solution for the state of the
physical system that is easy to evaluate, the problem of getting the infor-
mation is usually essentially solved. However, for some problems the best
approach known involves numerical computation that requires astronomical
numbers of operations, and the question naturally arises whether quantita-
tive information can be found by some clever shortcut technique, or if the
nature of the physical system makes this impossible [1, 2].

The FHP lattice gases [3] are extremely simple cellular automata (CAs)
that can be used to solve the Navier-Stokes equations. Their simplicity might
tempt us to hope that fluid behavior can be predicted without direct, step-
by-step simulation. In this paper we show that the FHP lattice gases are
computation universal, which implies that general questions about their be-
havior .are undecidable. More precisely, the general question of whether a
given lattice gas started from given initial conditions ever reaches a pre-
scribed state is equivalent to the Halting Problem for Turing machines.

Our method of showing that FHP lattice gases are universal will be to
embed a universal one-dimensional CA in a lattice gas initialized to a periodic
quiescent background state and having moving particles that code the initial



298 Richard K. Squier and Kenneth Steiglitz

Combinatorial Logic

=

Memory Elements

Figure 1: Unfolding a sequential logic machine to create an equivalent
combinatorial one.

state of the one-dimensional CA. The periodic background state supports the
evolution of the one-dimensional CA by propagating an image of the instan-
taneous state of the one-dimensional CA through the periodic background.
The state of the one-dimensional CA at evolution time step ¢t can be read
off by observing the appropriate locations in the two-dimensional space of
the lattice gas at a distance from the origin that is linearly related to t. The
general principle of this embedding in the plane is simply that of converting a
sequential logic device to a combinatorial one by “unfolding” (see Figure 1).

2. Lattice gas definitions

Our simulation of a universal one-dimensional CA will use only a subset of
the rules of a lattice gas such as FHP-III [3] or LGM-1 [4], and therefore
our result includes any two-dimensional lattice gas on the triangular lattice
whose rule set includes the required subset of rules. The following definition
characterizes these types of two-dimensional lattice gases.

Definition 1. A lattice gas is FHP-like if its lattice graph is the two-
dimensional triangular lattice with nearest-neighbor edges, and the rule set
contains the reversible collision rules shown in Figure 2. (In Figure 2 a circle
represents a rest particle, a square represents a barrier site, and an arrow
represents a particle located at the arrow’s tail moving with unit velocity in
the direction of the arrow.)

3. Universality

We will embed a general one-dimensional CA in an FHP-like lattice gas.
Because there exist universal one-dimensional CAs, the FHP-like lattice gas
is also universal. Each state variable of the one-dimensional CA is identified
by a pair of lines parallel to the z-axis, the ith state variable s; corresponding
to the ith pair of lines counting from the origin. One line in each pair codes
the value 0, the other the value 1, by the presence of a rightward-moving



Two-Dimensional FHP Lattice Gases Are Computation Universal 299

\,

K R

Figure 2: Required collision rules for the lattice gas. Also includes
the reverse of the first rule.

particle at a specific z distance along that line from the origin, the distance
corresponding to the CA time step ¢. For instance, st = 0 is coded by
the presence of a rightward-moving particle on the 0-value line for s; at z
coordinate ct for a particular constant c. The status of these “state lines”
at a given z value of ¢t can be thought of as representing the “current”
one-dimensional CA at automaton time step . The current machine sends
the values of its state variables propagating through a boolean network that
computes next-state values for each active cell in the next copy of the one-
dimensional CA. This is a computation wavefront moving to the right, and
the state of the one-dimensional machine is coded by the arrangement of
particles at lattice sites on the wavefront. To the left of the wavefront the
particles have no significance, and to the right of the wavefront there are no
moving particles.

Theorem 1. The two-dimensional FHP-like automata are universal.

Proof. We begin by describing the embedding of a one-dimensional CA in
the zy plane. Later we show the implementation of this embedding in the
FHP lattice. There exists a universal 14-state one-dimensional CA with a
neighborhood of r = 1 [5], and implementing this CA requires 4 bits of state
information. We show the embedding of an arbitrary 2-bit one-dimensional
CA with the same neighborhood; the extension to 4 bits will be obvious.

Suppose A is a one-dimensional CA with two 1-bit state variables per
cell. Let the two state variables of cell ¢ be a; and b;. Let z(t), for ¢t € Z*
(the non-negative integers), be defined by

2(t) = %t,

where a and 3 are positive integers we will choose later. The function z(t)
defines the distance from the origin in the positive = direction, where the



300 Richard K. Squier and Kenneth Steiglitz

b b

“ Ccelli+ 1
b A b ......

“ oG plet cell i

b circuilt circuit b .....

“ ' celli—1
b — b

Figure 3: Three copies of the state wires for A and the boolean circuits
for the next-state function for a;.

values of the state variables of A can be read at time t. Let
T(t) = [¢/B]

define the evolution time step for A. (Later, ¢ will become the time step for
the lattice gas.) Thus, the values of al and b can be read along the line
parallel to the y axis at a distance z(T") = oT from the origin. That is, for
every 3 time steps we look « units farther to the right to see the state of A.

Let the set of points {(z(T"),i+€) | ¢ € Z*} be called “state wires.” Each
state wire (z,y) represents a state variable of A at evolution step T (z(7'),
i -+ €) represents a’ , and (z(T), — €) represents b .

Between the set of state wires at z(7') and the state wires at «(T'+ 1) we
install a network of wires, fan-out devices, and logic gates that implement
the update rules of A. That is, the input wire for a; at (7' +1) is the output
of a boolean circuit that implements the update rule of A from the inputs
{al,b] | k =1i,i+ 1}, and similarly for b;. The delay through this circuit is
exactly a. Figure 3 shows three one-dimensional CAs laid out with boolean
circuits for a; between them. This completes the embedding of A in the zy
plane, and we next take up the realization of this embedding in the lattice
gas.

There are two main elements in the realization of these boolean circuits
in the lattice-gas automaton: the implementation of wire fan-out and cross-
ings, and the implementation of the logic gates and other devices. Here we
show what is generally required of the wiring, and later show the specific
implementation of a wiring scheme that satisfies these requirements. After
that, we show how to implement the specific wiring and logic devices.

The general layout of the update circuit for a single state variable a;
between z(7") and z(T + 1) is shown in Figure 4. The update circuit realizes
the boolean update function f in its disjunctive normal form (that is, a



Two-Dimensional FHP Lattice Gases Are Computation Universal 301

b b ——
Collector
a i a —6—
b b —6—
a Literals AND-OR a ——
Tree Circuit
b B B
a a —6—
b b ——
a —o— & ——

Figure 4: A collector, literals tree, and AND-OR circuit for a; between
z(T) and z(T' + 1).

“ Collector “ Literals Tree " AND-OR Tree

Figure 5: A collector, literals tree, and AND-OR circuit for some
update function f.

logical OR of “minterms,” each minterm being a logical AND of literals.)
This circuit consists of three parts. First, wires from all state variables
appearing in the expression for f are sent to a “collector.” Next, a “literals
tree” fans out the wires for the state variables in the collector to produce
the literals for each minterm appearing in the expression for f. Finally,
an AND-OR circuit for f uses these literals as input and sends its output
to al L.

Figure 5 shows a schematic example of an update circuit for a! ™
flal;,bE;), 7 = 0,—1,+1, using the logic and wiring devices we construct
in the lattice gas. Generally the devices we have available are the following:
two-input AND gates, NOT gates, horizontal wires, slope #1/+/3 wires, two-
wire crossovers, and one-to-two fan-out devices. Each of these devices spans
the same unit distance along the z axis, and each has the same signal delay.
Since {NOT, AND} forms a complete logic family, we have sufficient logic
resources to produce all literals and any AND-OR tree. All that remains
is to show a sufficient wiring scheme for connecting these elements in the
two-dimensional space of the lattice gas.



302 Richard K. Squier and Kenneth Steiglitz

3.1 Low-level implementation of primitive devices

In our scheme a logical “wire” representing a single bit consists of two parallel
paths in the lattice along which particles may travel. One path is considered
the boolean “true” path, and the other is considered the “false” path. A par-
ticle will appear on one or the other of these paths at time 7" at = position
z(T'), and the logic value of the wire is determined by which path the particle
is on at that = position. Because of the conservation properties of the FHP
lattice gases, our primitive gates and devices produce moving particles that
are not part of the “valid” computational wavefront. These “garbage” par-
ticles could destroy the coding of the one-dimensional CA state bits, if they
arrived at (T simultaneously with or before the computational wavefront.
We ensure that this interference does not occur by assuming that every lat-
tice site not on a path contains a barrier (essentially we are insulating our
wires). This ensures that garbage particles stay on the wire paths, and be-
cause they are initially deflected to the left in any wavefront interaction they
are guaranteed to be at least one time step behind the wavefront. We now
describe the primitive elements for constructing the basic wiring described
above (fan-out, wires, and crossovers), and for constructing the complete
logic family {NOT, and AND}.

3.1.1 Turns

The main device necessary for implementation of all our logic and wiring
devices is the “turn.” This device deflects a moving particle from its inci-
dent path by 60 degrees and was introduced in [6]. In this device a moving
particle collides with a rest particle, resulting in two particles leaving the
collision site—one at +60 and the other at —60 degrees from the direction
of the incident particle. For clarity, the extra particle (a garbage particle) is
“trapped” in the vicinity of the turn by a pair of barrier sites. This trapping
is not essential to the construction, but makes the idea clearer. Figure 6
shows a turn device and the symbol used for it in subsequent figures.

3.1.2 Primitive devices

A horizontal path can be implemented as an unobstructed horizontal path
in the lattice. The timing of particles arriving at the cell locations must
be coordinated, however, so the horizontal path is formed from a delay line
whose extent in the z direction and signal delay is the same as all other
devices we will introduce. Figure 7 shows such a delay line. For the rest of
the devices we will dispense with the detailed descriptions and show only the
schematic representation.

The remainder of the required elementary devices are shown schematically
in Figure 8. They are the fan-out, the crossover, the half-AND, and the half-
XOR devices. After introducing these elementary devices we will use them
to build AND and NOT gates.



Two-Dimensional FHP Lattice Gases Are Computation Universal 303

——secad @ .................................... .
Before Collision Collision After Collision

Symbol

Figure 6: A “turn” device at three consecutive time steps. The small
circle represents a rest particle and the small squares represent barrier
sites.

Figure 7: The delay line for a single path. The z extent is 6 lattice
units, and the time delay is 8 lattice-gas evolution time steps. On the
right the delay line is shown schematically.

3.1.3 The AND and NOT gates

The two primitive logic gates introduced in Figure 8, the half~AND and the
half-XOR, give only partial results but can be combined to give a true AND
function. Suppose the input paths to these devices are labeled “A = true”
and “B = true.” The half-AND gate gives as output a single particle moving
right if its two inputs are asserted, and nothing otherwise; consequently its
output would be labeled “AB = true,” which is only one-half an AND gate
since there is no “AB = false” output. A half-XOR having the same inputs
would have an output labeled “A & B = true.” Again, there is no false
output. Figure 9 shows schematically the construction of the full AND gate
with true/false inputs and outputs.

The last device we need is a NOT gate. This is implemented simply by
switching the “true” path with the “false” path. (This is easily accomplished
by shifting the true path to the false path using, for instance, the slope-line
device.) The switch of the false path to the true path can be done at the
same point in space since there will be only one particle on the wire.



304 Richard K. Squier and Kenneth Steiglitz

Slope line

Vertical shift

Fan-out O =rest particle

Crossover

With rest particle: half-XOR

Without rest particle: half-AND

Figure 8: The primitive devices. Most are self-explanatory. The fan-
out device shows an optional dashed path for one of the exit paths.
This may be used if the fan-out is one-sided.

@ AB = true

A =true
A = false
B =true
B = false AB = false
“n
" half-XOR

. half-AND

Figure 9: Schematic for the full AND gate.

3.2 Final layout

Figure 10 shows the method for fanning out a single bit. All bit wires not
currently being fanned out are implemented as horizontal wires. The bit
being fanned out is fanned out to the horizontal lines that lead directly to
the destinations at the right end of the collector in Figure 4. Thus all wire
crossings are two-wire crossings.

Using this general method for fanning out wires, we complete the layout
of the collector/literals tree/AND-OR tree in such a way that we guarantee
the connectivity and correctness of the entire layout as follows. The entire set
of lines for every path of a single state variable is laid out on the triangular



Two-Dimensional FHP Lattice Gases Are Computation Universal 305

. Collector
a i bita,

celli—1

. Collector
b i bith,
Cocelli-1

. Collector
a i bita,

cell i

Figure 10: Fanning out a single bit.

lattice using lattice points as endpoints for every line segment. These lines
are constrained to follow the connection and angular requirements of the
primitive devices detailed above. This layout consists of (1) the collector lines
for the neighborhood of the state variable, (2) the literals tree generating
every possible minterm from these lines, and (3) the AND-OR tree using
these minterms (the unused minterms are blocked by barrier sites). The
entire structure, minus the collector, spans some vertical distance. The state
wires are spaced vertically to keep structures for adjacent state wires from
interfering with each other.

Next, we replace wire crossings, fan-out, and logic devices with the primi-
tive devices. For convenience, we can restructure the devices to have common
extents in basic lattice unit distances, say d, in the z direction and d, in the y
direction. Placing the devices could result in two problems. First, distances
along some lines might not be integer multiples of these basic device lengths,
and second, devices may overlap. If the first problem occurs, we scale the
entire structure by d, in the z direction and d, in the y direction so that
every line can be covered by an integer number of devices. Next, if we still
cannot place devices without overlap, we again rescale a second time, thereby
guaranteeing that no devices overlap. This completes the layout and embed-
ding in the lattice. The resulting layout is uniform and infinitely repeated
vertically, forming a periodic structure.

4. Discussion

It is interesting to note a few features of the above construction. First,
it depends on non-conservation of energy since fan-out is accomplished by
accelerating a rest particle to unit velocity using a single particle traveling
with unit velocity both before and after the collision. Second, it depends on
non-conservation of momentum since the “turn” device uses collisions with
a barrier of infinite mass. We have been unable to find an energy-conserving
embedding of universal computation in the lattice gas similar to the billiard-
ball machine of Margolus [7]. It remains an open question whether one exists.



306 Richard K. Squier and Kenneth Steiglitz

What conclusions can we draw from the result of this paper about using
the lattice gas to answer questions about fluid behavior? We cannot conclude
that the initial conditions that result from embedding fluid-flow problems in
the lattice gas result in unsolvable problems. However, it seems unlikely
that all the decision problems about all the configurations that result from
embedding fluid problems into the lattice gas are decidable. Thus, we should
view the main result as providing evidence that predicting the future state of
a fluid, at least one whose behavior is determined by the partial differential
equations corresponding to the lattice gas, is undecidable. That is, general
questions of the sort, Does a fluid with a given initial state ever exhibit some
specific behavior? apparently cannot be answered by computation.

The same conclusion can be drawn from a completely different argument.
Build a universal Turing machine using fluidic valves to implement the gates
[8]. Then this “fluidic” computer can simulate any Turing machine, and
therefore there are general questions about this computer’s behavior that are
undecidable. Since the fluidic computer’s state is entirely determined by the
fluid and its initial and boundary conditions, we reach the same conclusion
as above.

We have just mentioned two distinct arguments, neither conclusive, that
lead us to believe that, put informally, there are many questions about fluid
behavior that are impossible to answer computationally. The argument based
on lattice gases leaves open questions about the generality of the subset of
initial conditions corresponding to fluid embeddings. It also assumes that
lattice gases describe the behavior of fluids. The argument based on a fluidic
computer assumes that such a machine can be built and its state measured.

5. Acknowledgments

We thank Neal Young for valuable discussions. This work was supported by
NSF Grant MIP-9201484. Richard Squier was also supported by an Office
of Naval Technology Postdoctoral Fellowship while at the Naval Research
Laboratory, Washington, DC.

References

(1] S. Wolfram, “Undecidability and Intractability in Theoretical Physics,” Phys-
ical Review Letters, 54 (1985) 735.

(2] R.P.Feynman, “Simulation of Physics with Computers,” International Journal
of Theoretical Physics, 21(6/7) (1982) 467-488.

[3] U. Frisch, D. d’Humiéres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P.
Rivet, “Lattice Gas Hydrodynamics in Two and Three Dimensions,” Complex
Systems, 1 (1987) 649-707.

[4] S. D. Kugelmass and K. Steiglitz, “A Scalable Architecture for Lattice-Gas
Simulations,” Journal of Computational Physics, 84 (1989) 311-325.



Two-Dimensional FHP Lattice Gases Are Computation Universal 307

[5] J. Albert and K. Culik II, “A Simple Universal Cellular Automation and its
One-Way and Totalistic Version,” Complex Systems, 1 (1987) 1-16.

[6] R. K. Squier and K. Steiglitz, “Testing Parallel Simulators for Two-
Dimensional Lattice-Gas Automata,” Complex Systems, 5 (1991) 63-68.

[7] N. Margolus, “Physics-like Models of Computations,” Physica D, 10 (1984)
81-95.

[8] E. C. Fitch and F. B. Surjaatmadja, Introduction to Fluid Logic (Washington:
Hemisphere, 1978).





