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We construct instances of the symmetric traveling salesman problem 
with n = 8k cities that have the following property: There is exactly 
one optimal tour with cost n, and there are 2k-1(k- 1)! tours that are 
next-best, have arbitrarily large cost, and cannot be improved by 
changing fewer than 3k edges. Thus, there are many local optima 
with arbitrarily high cost. It appears that local search algorithms are 
ineffective when applied to these problems. Even more catastrophic 
examples are available in the non-symmetric case. 

MANY WORKERS, including Croes [5], Bock [2], Lin [8], Reiter and 
Sherman [11], and Lin and Kernighan [9], have reported the successful 

application of local search algorithms to the traveling salesman problem 
(TSP). Cook [4j and Karp [7], however, introduced a theory of complexity 
that shows that the TSP belongs to the class of NP-complete problems, 
which are seemingly of some inherent difficulty. More recently, Sahni 
and Gonzales [13] showed that the E-approximate relaxation of the TSP 
is also NP-complete; and we [10] have shown that, unless P=NP, local 
search algorithms having polynomial time complexity per iteration can- 
not guarantee to solve the E-approximate TSP. We are forced to conclude 
that the local search heuristics are not always as effective as they seem to 
be on "random" or "typical" test problems. The purpose of this paper 
is to construct instances of the TSP for which local search heuristics are 
ineffective. A review of work on the TSP is given in [1]. 

We use the terminology of Lin [8]. For any integer k>2, a k-change 
of a tour is another tour that differs from the given one in at most k edges. 
The neighborhood structure that assigns to each tour the set of its k-changes 
is called Nk. Local search algorithms using Nk are called k-change search, 
and local optima of these algorithms are referred to as k-opts. Lin used 
pseudo-random starting tours and obtained especially good computational 
results for 3-change search. Later, Lin and Kernighan [9] described what 
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Difficult Traveling Salesman Problems 435 

appears to be the best local search algorithm available today: They pursue 
successful transformations of a given tour to arbitrary depth, thus taking 
advantage of the problem data to define a good neighborhood of a given 
tour. 

In Section 1 we construct instances of the symmetric TSP that are 
difficult for local search algorithms. The constructions are motivated by 
two very intuitive principles: 

1. If an instance has a very large number of local optima with respect 
to some neighborhood structure N, and a unique global optimum that is 
much better, then this is a difficult instance with respect to local search 
using N. 

2. If an instance of the TSP is difficult with respect to k-change search 
for large values of k (e.g., k comparable to n), then this instance is difficult 
for local search algorithms in general. 

In Section 2 we examine the triangle inequality TSP and illustrate one 
aspect of the fact that this restriction of the TSP is considerably easier 
than the general case. In Section 3 we consider the non-symmetric TSP 
and give constructions for this problem that are analogous to the ones of 
Section 1. Finally, in Section 4 we describe the results of computational 
experiments that verify the difficulty of solving these problems with local 
search. 

1. A CLASS OF PERVERSE TSP's 

The following construction is suggested directly by the proof in [10] 
that a restricted hamiltonian path problem is NP-complete. We begin 
with the definition of a structural element called a diamond. 

Definition 1. A diamond is the undirected graph with 8 vertices and 
9 edges shown in Figure 1. It is understood that if a diamond is a subgraph 
of a graph G= (V, E), then only the vertices N, E, S, W (north, east, 
south, west) can be incident to the other edges of G. The fundamental 
property of the diamond is expressed in: 

LEMMA 1. If a diamond D is a subgraph of a graph G with a hamiltonian 
circuit C, then G traverses D in exactly one of the two modes illustrated in 
Figure 2. That is, if a circuit C enters the diamond from the north, it must 
leave from the south; and similarly with respect to the east-west vertices. 

Proof. Assume the Hamilton circuit touches the vertex N in Figure 1. 
Then it must traverse the south-west path to vertex u, for otherwise it 
would never visit u again. It must then continue on to W, where it cannot 
leave the diamond since the remainder of the diamond could not then be 
part of a hamiltonian circuit with the restriction that only S and E can 
be incident with the rest of the graph. Hence the circuit must continue 
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436 Papadimitriou and Steiglitz 

from W to y. It must then visit x, or x would be stranded, then E and 
v and S. The argument for the east-west path is symmetric. 

N 

Figure 1. A diamond. 

We now construct a family of graphs G(k), with associated distance 
matrices, using k copies of the diamond (see Figure 3). 

1. Make k copies of the diamond and call them Di, i= 1, * *, k. Call 

N N 

W ~~~~E 
WE 

S 
S 

(a) (b) 

Figure 2. The two modes of traversing a diamond: (a) North-South mode; 
(b) East-West mode. 

the north vertices of Di, Ni, etc. Connect Ei to W(itl)mod k with an edge, 
i=1, ** , k. This results in a graph with exactly one hamiltonian circuit. 
This circuit traverses each diamond in the east-west mode and we call it 
the east-west circuit. Assign to every edge on the east-west circuit a cost 
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of one. Note that this leaves two edges in each diamond without an as- 
signed cost; assign to them a cost of 0. 

The idea is to next add many edges of 0 cost connecting the north and 
south vertices, but at the same time prevent any circuits that traverse 
diamonds in the north-south mode. This is accomplished by "isolating" 
a vertex, say N1, by connecting it to other Ni and Si only with edges of 
high cost. 

2. Connect the get of 2k-I vertices NS= {N2, ... , Nk, S1, ., Sk} 

with (2k-1) -k+l edges of cost 0, forming a complete subgraph from 
the vertices of NS omitting the edges (Ni, Si), i= 2, , k. Connect the 
remaining vertex N1 to every vENS with an edge of cost M, an arbitrarily 
large positive integer. 

Si S2 S3 

Figure 3. The East-West circuit of G(3), shown by solid edges. 

3. To every pair of vertices of G(k) not assigned an edge in 1 or 2 above, 
assign an edge with cost 2M. 

The essential property of the TSP defined by G(k) is 

LEMMA 2. The instance of the TSP induced by the graph G(k) has exactly 
one optimal tour of cost n=8k, given by the east-west circuit. The next best 
tours have cost M+5k, there are 21-1'(k-1)! of them, and they differ from 
the optimal tour in exactly 3k edges. 

Proof. First consider the graph G' obtained from G(k) by removing all 
edges of cost M or greater. There is but one hamiltonian circuit in 
G'-the east-west circuit. This follows because if any diamond is trav- 
ersed in the north-south mode, they must all be, as specified in Lemma 
1; and there is no edge in G' touching D1 at N1. Since Ill is arbitrarily 
large, the east-west circuit is uniquely optimal for G(k), having no edges 
of cost greater than one. 

Consider now the circuits with exactly one edge of cost M, and none of 
cost 2M. These must traverse all Di in the north-south mode and hence 
have cost M+5k. Each diamond in such circuits can be traversed in 1 of 
2 orientations, and there are (k- 1)! orders in which they can be traversed. 
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438 Papadimitriou and Steiglitz 

Thus there are altogether 2k-1(k-1)! distinct circuits of cost M+5k. 
Furthermore, these circuits must be next-best to optimal, since they have 
only one edge of cost M or greater and M can be chosen arbitrarily larger 
than any function of k. 

Finally, observe that the optimal tour and any next-best tour have 
exactly 5k edges in common-the edges of Di with cost one. They differ 
therefore in 3k edges, and the next-best tours are (3k-i)- opt; that is, 
they cannot be improved by changing fewer than 3k edges. 

We have attempted to draw G(4) in a transparent way, by first redrawing 
the diamond to bring vertices N and S to one side (Figure 4) and then 
arranging the diamonds in a circle (Figure 5). 

Our construction of instances G(k) satisfies the intuitive guidelines 
mentioned in the previous section. There is still some question, however, 

W E 

N S 
Figure 4. A redrawing of the diamond. 

of just how well (or badly) local search behaves when confronted with 
such problems. Typically, a local search algorithm begins with a pseudo- 
random tour and pursues improvements found by searching in the neigh- 
borhood N. Each local optimum therefore has what might be termed a 
"region of attraction," from which it will be reached by the local search 
in question. It is conceivable that the single global optimum tour in G(k) 
has a disproportionately large region of attraction-but this seems un- 
likely because it has all its edges of cost one, whereas the many next-best 
local optima have many edges (3k-1, to be precise) of cost 0. 

2. THE TRIANGLE INEQUALITY TSP 

When we restrict the problems under consideration to TSP's whose 
distance matrices satisfy the triangle inequality, there is an algorithm 
due to Christofides [3] that takes only polynomial time and at the same 
time guarantees solutions within 50 % of optimal. It appears then that the 
triangle inequality TSP is considerably easier than the general case, and 
hence it becomes interesting to see whether the construction described 
above can be modified to work in this more restricted environment. We 
now present a simple argument to show that it cannot. 
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We define the gap of an instance of the TSP to be g = (c8 - co)/co, where 
co> 0 is the cost of the optimal tour, and c, is the cost of the second-best tour. 
An essential feature of the instance of the TSP induced by the graph 
G(k) of the previous section is that it has an arbitrarily large gap. Never- 

wI El 

E~~ 

)( WW 

E 
W3 

a COST 
_ ~~~~~~~~~~~~~~I 

M 
NOT SHOWN 2M 

Figure 5. A drawing of G(4). The east-west tour is shown by solid edges. 

theless, the following theorem implies that for the triangle inequality 
TSP such a gap is unattainable. 

THEOREM 1. Let C be an instance of the triangle inequality TSP on n cities. 
Then the gap of C cannot be greater than 2/n. 

Proof. Let To be the optimal tour, and let b be the shortest edge in To. 
Then there is another tour T1 using edges d, b, e in place of a, b, c (see 
Figure 6), where by the triangle inequality d1?a+b and e?<b+c. (Here 
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we let tours and edges stand for the respective costs.) Therefore, T,- To 
=d+e-a-c<2b. Since b is the shortest edge of To, we have To0nb. 
Finally, if T77 is the second-best tour, we have a gap equal to 

g = (T7 - To)/To < (T1 -To )/To < 2b/nb = 2/n. 

We cannot hope, therefore, to generate an infinite family of instances of 
the triangle inequality TSP with an arbitrarily large gap-in fact, with 
any constant gap. This is another bit of evidence pointing to the fact that 
the triangle inequality TSP is significantly easier than the general sym- 
metric case. In Section 4 we present experimental evidence of yet another 
aspect of this fact. 

3. THE NON-SYMMETRIC CASE 

When the distance matrix is not restricted to be symmetric, we call 
the problem the non-symmetric TSP. Using the directed version of the 

b 

Figure 6. An optimal tour in a triangle inequality TSP. 

diamond shown in Figure 7, an even more pathological example can be 
constructed in this general case as follows: 

1. As before, make k copies of the directed diamond, calling them Di, 
their vertices Ni, etc. Add the edges (Ei, W(i+l)modk). Put the cost of all 
these edges to 0. The east-west circuit thus has cost 0. 

2. Put in the edges (Nj, Si) for all i=1, ** , i k; and for j=2, , k. 
These edges are also assigned a cost of 0. 

3. Put in the edges (No, Si), i-= 1 2, . I k; and assign to these edges 
a cost of M. 

4. An instance of the non-symmetric TSP is generated by setting the 
cost of all edges not mentioned above to 2M. From the property of the 
directed diamond analogous to that of Lemma 1, we get an even more 
bizarre result than in the symmetric case. 
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LEMMA 3. The instance of the non-symmetric TSP described above with 
n = 6k cities has an optimal tour with cost 0 and (k-1)! next-best tours 
that are edge-disjoint from the global optimum and have (arbitrarily large) 
cost M. 

w~~~~~ 

E 

Figure 7. A directed diamond. 

Proof. Analogous to that of Lemma 2. 

4. COMPUTATIONAL EXPERIENCE 

In the first set of results we applied the 3-opt algorithm proposed by 
Bock [2] and Lin [8] to the instances G(k) of the TSP for the very moderate 

TABLE I 
RESULTS OF LOCAL SEARCH 

3-opt Lin [8] Lin Kernighan Triangle in- 
3-opt Lin [8][9] equality, Lin- 

Kernighan [9] 

k(n=8k cities) 3 5 3 5 3 5 
Global optimum 0 0 0 0 24 3 
Next-to-global optima 0 0 49 40 27 21 
Other local optima 39 21 7 3 15 34 
Total of trials 39 21 56 43 66 58 

values of k shown in Table 1. As indicated in the table, this algorithm 
failed to discover even the next-to-global optima of these instances. 

For the next set of results we programmed the local search algorithm 
described by Lin and Kernighan [9] with the following modifications: 
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1. The growth of the index i (see step 4 of [9]) was bounded by 6k, which 
is /3 of the total number n of cities. (This is by no means a severe restric- 
tion since a bound of n is implicit in the implementation of [9J.) 

2. The third part of the backtracking routine of step 6b in [9] was 
omitted in our implementation. 

3. We omitted several other implementation details whose purpose is 
solely the reduction of computation time (and would not affect the quality 
of local optima). 

Our implementation of the Lin-Keriiighan algorithm was tested on a 
standard "tough" problem, the 8 by 8 knight's tour TSP [9]. The heuristic 
discovered the optimal solution in all 12 trials, thus equaling the impressive 
performance of the Lin-Kernighan implementation on this problem. 

Next this algorithm was applied to the G(k) instances of the TSP for 
the values of k shown. As indicated in the table, the algorithm failed to 
hit the global optimum even once, and very often ended up with the next- 
to-global optima. Since the Lin-Kernighan algorithm is perhaps the best 
local search algorithm known to date, the results of this experiment give 
us every reason to believe that the instances of the TSP constructed in 
Section 1 are indeed not susceptible to local search techniques. 

A third set of experiments revealed to us another facet of the fact that 
the triangle inequality TSP is much easier than the general TSP. We con- 
structed an instance of the 8k-city TSP by setting the costs of the edges of 
G(k) that were cheaper than M to 1 and finding the costs of all other 
edges by Floyd's [6] minimum distance algorithm. Naturally, since the 
resulting distance matrix satisfies the triangle inequality, by Theorem 1 
we cannot expect any impressive gap from this instance. However, the 
existence and uniqueness of a global optimum remain unaffected. Hence 
it is interesting to determine whether application of local search algorithms 
to this instance will still result in suboptimal (though not as bad) solutions. 
We observed (see Table I) that our implementation of the Lin-Kernighan 
algorithm discovered the global optimum with non-vanishing frequency. 
This fact seems to indicate that, besides the uniformity property shown 
in Theorem 1 and the combinational properties exploited in the algorithms 
of Christofides [3] and Rosenkrantz et al. [12], the triangle inequality TSP 
possesses some positive properties related to local search that are missing 
from the general TSP. Discovering and exploiting such properties-pos- 
sibly by designing a local search algorithm that works especially (and 
provably) well for the triangle inequality case-would be very interesting. 
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