Complex Systems 1 (1987) 939-965

Performance of VLSI Engines for Lattice
Computations*

Steven D. Kugelmass
Richard Squier
Kenneth Steiglitz
Department of Computer Science, Princeton University,
Princeton, NJ 08544, USA

Abstract. We address the problem of designing and building ef-
ficient custom VLSI-based processors to do computations on large
multi-dimensional lattices. The design tradeoffs for two architectures
which provide practical engines for lattice updates are derived and
analyzed. We find that I/O constitutes the principal bottleneck of
processors designed for lattice computations, and we derive upper
bounds on throughput for lattice updates based on Hong and Kung’s
graph-pebbling argument that models I/O. In particular, we show that
R = O(BSY4), where R is the site update rate, B is the main memory
bandwidth, S is the processor storage, and d is the dimension of the
lattice.

1. Introduction

This paper deals with the problems of designing and building practical, cus-
tom VLSI-based computers for lattice calculations. These computational
problems are characterized by being iterative, defined on a regular lattice of
points, uniform in space and time, local, and relatively simple at each lattice
point. Examples include numerical solution of differential equations, itera-
tive image processing, and cellular automata. The recently studied lattice
gas automata, which are microscopic models for fluid dynamics, are proposed
as a test bed for the work.

The machines envisaged—lattice engines—would typically consist of many
instances of a custom chip and a general-purpose host machine for support.
In many practical situations, the performance of such machines is limited,

*This work was supported in part by NSF Grant ECS-8414674, U.S. Army Research
Office—Durham Contract DAAG29-85-K-0191, and DARPA Contract N00014-82-K-0549.
An earlier version of this paper appears in [7].

(© 1987 Complex Systems Publications, Inc.

940 Steven Kugelmass, Richard Squier, and Kenneth Steiglitz

not by the speed and size of the actual processing elements, but by the com-
munication bandwidth on- and off-chip and by the memory capacity of the
chip.

A familiar example of lattice-based computational tasks is two-dimensional
image processing. Many useful algorithms, such as linear filtering and median
filtering, recompute values the same way everywhere on the image, and so
are perfectly uniform; they are local in that the computation at a given point
depends only on the immediate neighbors of the point in the two-dimensional
image.

Another class of calculations, besides being uniform and local, has the ad-
ditional important characteristic of using only a few bits to store the values
at lattice points, and so is extremely simple. Further, the calculations oper-
ate on local data iteratively, which means that they are not as demanding
of external data as many signal processing problems. These computational
models—uniform, local, simple, and iterative—are called cellular automata.
We will next describe a particular class of cellular automata, one that pro-
vides a good test bed for the general problems arising in the design of dedi-
cated hardware for lattice-based computations.

2. A paradigm for lattice computations: the lattice gas model

Quite recently, there has been much attention given to a particularly promis-
ing kind of cellular automaton, the so-called lattice gases, because they can
model fluid dynamics [14]. These are lattices governed by the following rules:

At each lattice site, each edge of the lattice incident to that site may
have exactly zero or one particle traveling at unit speed away from that
site, and, in some models, possibly a particle at rest at the lattice site.

There is a set of collision rules which determines, at each lattice site
and at each time step, what the next particle configuration will be on
its incident edges.

The collision rules satisfy certain physically plausible laws, especially
particle-number (mass) conservation and momentum conservation.

These lattice gas models have an intrinsic exclusion principle, because no
more than one particle can occupy a given directed lattice edge at any given
time. It is therefore surprising that they can model fluid mechanics. In fact,
in a two-dimensional hexagonally connected lattice, it has been shown that
the Navier-Stokes equation is satisfied in the limit of large lattice size. This
model is called the FHP model, after Frisch, Hasslacher, and Pomeau [3].
The older HPP model [4], which uses an orthogonal lattice, does not lead to
isotropic solutions.

The idea of using hexagonal lattice gas models to predict features of fluid
flow seems to be about two years old, and whether the general approach of
simulating a lattice gas can ever be competitive with more familiar numerical
solution of the Navier-Stokes equation is certainly a premature question.

Performance of VLSI Engines for Lattice Computations 941

Extensions to three-dimensional gases are just now being formulated [1],
and quantitative experimental verification of the two-dimensional results is
fragmentary. The Reynolds Numbers achievable depends on the size of the
lattices used, and very large Reynolds Numbers will require huge lattices and
correspondingly huge computation rates. For a discussion of the scaling of
the lattice computations with Reynolds Number, see [10].

What is clear is that the ultimate practicality of the approach will de-
pend on the technology of special-purpose hardware implementations for the
models involved. Furthermore, the uniformity, locality, and simplicity of the
model mean that this is an ideal test bed for dedicated hardware that is
based on custom chips. We will therefore use the lattice gas problem as a
running example in what follows. We especially want to study the interac-
tion between the design of custom VLSI chips and the design of the overall
system architecture for this class of problems.

We will present and compare two competing architectures for lattice gas
cellular automata (LGCA) computations that are each based on VLSI custom
processors. The analysis will focus on the permissible design space given the
usual chip constraints of area and pin-out and on the achievable performance
within the design space. Following this, we will present some theoretical
upper bounds for the computation rate over a lattice, based on a graph-
pebbling argument.

3. Serial pipelined architectures for lattice processing

We are primarily interested in special-purpose, VLSI-based processor archi-
tectures that have more than one PE (processing element) per custom chip.
It is important to recognize that if the PEs are not kept busy, then it might
be more effective (in terms of overall throughput) to have fewer PEs per
chip but to use them more efficiently. Although there are many architectures
that have the property of using PEs efficiently, we will only describe two,
both based on the idea of serial pipelining (see figure 1). This approach has
the benefit that the bandwidth to the processor system is small even though
the number of active PEs is large. This serial technique has been used for
image processing where the size of the two-dimensional grid is small and
fixed [6,13,17] and has also been used to design a high-performance custom
processor for a one-dimensional cellular automaton [16].

Consider what is required to pipeline a computation. We must guarantee
that the appropriate site values of the correct ages are presented to the
computing elements. In the case of the LGCA, we can express this data
dependency as:

v(a,t+1) = f(N(a),1)

where v(a, 1) is the value at lattice site a at time ¢, N(a) is the neighborhood
of the lattice site a, and f is the function that determines the new value
of a based on its neighborhood. The LGCA requires all the points in the
neighborhood of a to be the same age in order to compute the new value,

942 Steven Kugelmass, Richard Squier, and Kenneth Steiglitz

Figure 1: One-dimensional pipeline.

OOO@)O@OOO
OC)@@@@@OO
O O 00O

Figure 2: Hexagonal neighborhood. The circled site is a; the sites
with Xs constitute its neighborhood.

v(a,t+1). The LGCA has a neighborhood that looks like the example given
in figure 2.

One-dimensional pipelining also requires a linear ordering of the sites in
the array. That is, we wish to send the values associated with the sites one at
a time into the one-dimensional pipeline and receive the sequence of sites in
the same order possibly some generations later. Therefore, we would like sites
that are close together in the lattice to be close together in the stream. In
this way, the serial PE requires a small local memory because neighborhoods
(sites that are close together in the array) will also be close together in the
stream. Unfortunately, the lattice gas automaton can require a large amount
of local memory per PE because there is no sublinear embedding of an array
into a list [12].

The natural row-major embedding of the array into a list preserves 2-

Performance of VLSI Engines for Lattice Computations 943

neighborhoods! with diameter 2n — 2. This means that a full neighborhood
of a site from an n x n lattice is distributed in the list so that some elements
of the neighborhood are at least 2n — 2 positions apart. This embedding is
undesirable for two reasons. The amount of local memory required by a PE
is a function of the problem instance, forcing us to decide in advance the
size of one dimension of the lattice (one can actually process a prism array,
finite in all but one dimension) because the chip will only work for a single
problem size due to its fixed span. The second deficiency is due to the size
of the span. If n = 1000, then each PE would require about 2000 sites worth
of memory. This puts a severe restriction on the number of PEs that can be
placed on a chip.

Unfortunately, the 2n — 2 embedding is optimal. Rosenberg showed this
bound holds for prism array realizations but it has been unknown whether
it is possible do better for finite array realizations. Rosenberg’s best lower
bound for the finite array case has never been achieved and he suspected that
the row-major scheme was optimal. Sternberg [18] also questioned whether or
not the storage requirement for a serial pipelined machine could be reduced.
Supowit and Young [19] showed that the row-major embedding is optimal
and therefore a serial pipeline must use at least 2n — 2 storage.

Theorem 1. Place the numbers 1,...,n® in a square array a(i, j), and define
the span of the array to be

max{|a(i + 1,7) — a(i, j)|, |a(i, 5 + 1) — a(i,5)|}
Then span > n.

Proof. Put the numbers in the array one at a time in order, starting with
1. When for the first time there is either a number in every row or a number
in every column, stop. Without loss of generality, assume this happens with
a number in every row.

We claim that there cannot be a full row. Suppose the contrary. The
last number entered was placed in an empty row, so there must have been a
full row before we stopped. This would mean there was a number in every
column before there was a number in every row.

Since there is no full row, but a number in every row, there is at least
one vacant place in every row that is adjacent to an occupied spot. Choose
one such vacant place in each row, and call them set F' (with |F| = n). Now,
if we stopped after placing the number ¢, the places in F' will get filled with
numbers greater than {. The largest number that will be put in a location
in F'is > t +n, and will be adjacent to a number <¢. B

The critical system parameters for the one-dimensional pipeline architec-
ture, system area and total system throughput, can be varied over a range of
values. The actual selection of the operating point on the throughput-area
curve depends on several factors: for example, the problem instance size and
total system cost.

!Sites that are two edge traversals apart in the lattice.

044 Steven Kugelmass, Richard Squier, and Kenneth Steiglitz

The appealing aspects of the serial architecture are the simplicity of its
design, its small area in comparison to other architectures, and the small
input/output bandwidth requirement. The computation proceeds on a wave-
front [8] through time and space, each succeeding PE using the data from
the previous PE without the need for further external data.

4. Wide-serial architecture (WSA)

Throughput in a serial architecture can be improved by adding concurrency
at each level of the pipeline. One way to accomplish this is to have each
pipeline stage compute the new value of more than one site each clock period.
For example, if the computation at PE j is at the point where site a, circled,
is to be updated, then PE j contains the data indicated by strike-out in the
following;:

O0DO0O0O0O00CO0O 00
O 0O 0O 66666+
e—6—6B6—6666-
6666 00 0 0 0 O0
QO000O00000O0
O0O00OO0O0O0O0O0O0

We could allow a second PE j’ to compute site @ + 1 at the same time if we
store just one more data point.

O O0OO0OO0OO0OO0OO0O0OO0OO0
O O0O0OO0OO0OO0OO0OO0OO0OO0

The most attractive feature of this scheme is that performance is in-
creased, but at a cost of only the incremental amount of memory needed to
store the extra sites. The on-chip memory per PE is also improved dramati-
cally; it decreases linearly with the number of PEs per chip. However, there
is a price to pay: two new site values are required every clock period so that
two site updates can be performed. The extra PEs require added bandwidth
to and from the chip and this implies that the main memory system must
provide that bandwidth as pins or wires.

Performance of VLSI Engines for Lattice Computations 945

Figure 3: Wide-serial architecture.

As an example, the following figure shows how two PEs on the same chip
can cooperate on a computation. Each square of the shift register holds the
value of one site in the lattice. Every clock period, itwo new site values are
input to the chip, two sites are updated, and their values are output to the
next chip in the pipeline.

5. Sternberg partitioned architecture (SPA)

In reference [18], Sternberg proposes that a large array computation can be
divided among several serial processors, each of which operates as described
earlier. The array is divided into adjacent, non-overlapping columnar slices,
and a fully serial processor is assigned to each slice (see figure 4).

The processors are not exactly the same as those described above; they are
augmented to provide a bidirectional synchronous communication channel
between adjacent partitions so that sites whose neighborhoods do not lie
entirely in the storage of a single PE can be computed correctly and in step
with other site updates. See reference [18] for details.

Dividing the work in this way accomplishes three things. First, it de-
creases the amount of storage that each PE needs in order to delay site
values for correct operation of the pipeline. This comes about because each
PE needs to delay only two lines of its slice, not the whole line width. Sec-
ond, it increases the ratio of processing elements to the total number of sites,
permifting an increase in the maximum throughput by a multiplicative con-
stant equal to the number of slices. Third, it provides a degree of modularity
and extensibility. It is possible to join two smaller machines along an edge
to form a machine that handles a larger problem.

In the case of a VLSI implementation, decreasing the size of the local
storage is extremely important because most of the silicon area in the imple-
mentation of a serial processor is shift register. Since each PE in the SPA
architecture requires fewer shift register storage cells, it is possible to place
several PEs on a chip, whereas if each serial PE were required to store two
lines of the whole lattice, then only one or two PEs could be placed on a

946 Steven Kugelmass, Richard Squier, and Kenneth Steiglitz

Site Lattice

Wsites

Pipeline

-—
b2
vi—

&
-——-;S—.
Fuashs s i gfiiasdSisarad

R

Chip Boundary

e

Figure 4: Sternberg partitioned architecture.

VLSI chip with current technology. The only way around this limitation is
to use another technology to implement the required storage, such as off-chip
commercial memories, in which case we quickly encounter pin limitations.

It is important to recognize that the total amount of storage required
under this organization is two lines of the whole lattice per pipeline stage.
Thus, the total storage requirement under this implementation is not reduced
below that of the fully serial approach presented earlier. We should also not
forget that each column of serial processors requires its own data path to
and from main memory. This data path is a relatively expensive commodity.
In fact, as we will see in the upcoming analysis, the data path is the most
expensive commodity in a VLSI implementation of this architecture.

The analysis will demonstrate an underlying principle of VLSI implemen-
tations of architectures for multi-dimensional spatial updates, namely that
I/O pins are the critical resource of a VLSI chip.

6. Analysis and comparison of WSA and SPA

In this section, we analyze and compare the Sternberg partitioned architec-
ture (SPA) with the wide-serial architecture (WSA) that we proposed in
section 4. The analysis derives the optimum throughput and area of process-
ing systems composed of VLSI chips for the two-dimensional FHP lattice gas
problem. We define the design parameters for each system and derive the
design curves and optimum values of those parameters. For the analysis, we

Performance of VLSI Engines for Lattice Computations 947

assume that a memory system capable of providing full bandwidth to the pro-
cessor system is available.? Finally, we compare the systems on the basis of
maximum throughput, total system area, and throughput-to-area ratio. We
also discuss the relative advantages and disadvantages of both architectures
with an emphasis on system complexity and ease of implementation.

6.1 Wide-serial architecture (WSA)

The WSA has system parameters: (assumes 1 pipeline stage per chip, P
processing elements wide)

N =k chips (System Area)

R=F-P- k% (System Throughput)
and chip constraints

2D-P < (Chip Pins)
B(2L+ TP +3)+ P <a (Chip Area)

where
N is the total number of chips constituting the processor,
P is the number of PEs per VLSI chip,
k is the total depth in PEs of the processor pipeline (path length),
F' is the major cycle time of the chip,
D is the number of bits required to represent the state of a lattice site,
L is the number of sites along an edge of the square lattice,
PI is the total number of pins usable for input/output,
3 is the area of a shift register that holds a site value, in A2,
« is the area of a PE, in A%
« is the total usable chip area, in A%,
For convenience, we also define:

B= g = normalized site storage area
I'= 2= normalized processor area

Less formally, this says that the number of chips that we need for the
processor equals the total pipeline depth required, k. The processing rate
that this system achieves is equal to the depth of the pipeline, multiplied
by the number of processors at each depth, multiplied by the rate at which
a processor computes new sites. We are assuming that each VLSI chip will

2This is a very important assumption.

948 Steven Kugelmass, Richard Squier, and Kenneth Steiglitz

contain only a single wide parallel pipeline stage. That is, the chip is not
internally pipelined with wide-serial processors.

We wish to maximize R subject to having a fixed number of chips, N =
Ny, and subject to constraints on the pin count and area of the VLSI custom
chip. Notice that the problem is equivalent to maximizing P subject to the
chip constraints because R = F-P-k = F-P.N, where F and N are fixed
(N is fixed at Np).

The constraints are described in the I — P plane by the following two
inequalities:

II
P < —
— 2D
P(l-—SB*QBL
- 1B+T

If we consider an example where D = 8, Il = 72, B = 576 x 1079, and
I' = 19.4 x 103 (figures derived from our actual layouts) we get the following
graph:

40—

30—

P
(PEs/Chip) 20—

10}
0 g
[] |
0 500 1000
1.
(Sites)

The chip constraints require that the operating point determined by P and
L lie below both curves. The intersection of the two curves is P ~ 4 and
L = 785. Beyond that point, we need to decrease the number of processors
on a chip to make room for more memory—an undesirable situation because
throughput then drops off linearly. Furthermore, we want L to be as big as
possible, so the corner is the logical choice of operating point.

We are also interested in the ultimate maximum performance that the
architecture can deliver using any number of chips. It is easy to see that
the maximum throughput for a fixed clock frequency, F, comes when the
pipeline depth, k, is at a maximum. A maximum value, kmax = L, arises
because at that point the pipeline contains all the values of the sites in the
lattice and there is no new data to introduce into the processor pipeline. The

Performance of VLSI Engines for Lattice Computations 949

maximum values for processor system area and processor system throughput
are therefore:

Niax = L chips
II sites
Rm':‘ZTj-F.LseC

It is also interesting to note that there is an upper bound on L even if we
were to accept arbitrarily slow computation. At a certain point all the chip
area would be used for memory, leaving no room for PEs.

The major limitation of this architecture is that the largest problem in-
stance is fixed by the chip technology, but it has the redeeming features of
simplicity, ease of implementation, and small main memory bandwidth.

6.2 Sternberg partitioned architecture (SPA)

This processor computes updates for a lattice L sites on a side by partitioning
the lattice into non-overlapping slices that are each W sites wide (there are ?‘L",-
such slices). Each of the VLSI chips that compose the processor computes
P, slices and the computation of each slice is pipelined on the chip to a
depth Py (see figure 4). It is then easy to see that the system has area and

throughput:

N = % - -}é‘: chips (System Area)
R=F.k- &3 (System Throughput)

To derive the constraints on the VLSI chip, notice that the communica-
tion path between chips in the direction of the data pipeline requires 2D P,,
pins, and that the “slice-to-slice” path requires 25 Py, where E is the number
of bits required to complete the information contained in a single site’s neigh-
borhood when that neighborhood is split across a slice boundary. However,
the chip must use no more than « area, of which processors each require v,
and memory to hold a site value requires 3. Thus, the whole chip is governed
by the constraints

2DP, +2EP. <11 (Chip Pins)
((2W +9)B 4 7) PP < a (Chip Area)

We again wish to maximize throughput with respect to a fixed number of
chips, N = Np, while at the same time satisfying the VLSI chip constraints of
area and bandwidth. This again turns out to be equivalent to maximizing the
total number of processors on the chip because we can easily verify by direct
substitution that R = F - k- # = P,P;- F- Ny. Since F and Ny are fixed, it
suffices to maximize the product P,P; = P subject to the constraints above.

To evaluate the design space of SPA, it is helpful to view it in the W — P
plane. We do this via a change of variables:

P=P,P,.

950 Steven Kugelmass, Richard Squier, and Kenneth Steiglitz

Rewriting the chip inequalities yields

2DP, + 2E-}{i <1

w

(W +9)B+T)P < 1

where P,, P, and W are variables. This is the logical choice of variables for
this architecture because they are the ones that are constrained by the chip
technology and govern the optimal design of the chip. Once we know good
values for them, a machine which can compute for an arbitrary lattice width
L can be built by increasing the number of slices of width W.

When these curves are projected onto the W — P plane using the values
for D, I, B from the previous example, and setting E to 3 (three bits must
be passed to complete a neighborhood), we have

40 -
30
P
(PEs/Chip) 20
0
1 [|
0 500 1000
W
(Sites/Slice)

The constant curve is a projection of the first constraint where P, is given
the value which permits P to achieve its maximum value. For this example,
this occurs at P, = 2. As before, we need to operate below both curves,
and the corner at P = 13.5 and W = 43 yields the best choice. Beyond this
point, throughput drops off quite rapidly as the silicon real estate is used by

memory.

6.3 Discussion

The above analysis gives us two different viewpoints from which to make a
comparison between these two architectures. Ignoring extensibility, we can
make a comparison between the two designs when they are optimized for
throughput, as they were in the preceding. Taking a more general point of
view, we can make the comparison by using a slight variant of WSA which
allows for extensiblity by sacrificing processing speed.

First, let us compare the designs optimized for throughput without regard
to extensibility. The optimal WSA configuration limits the lattice length

Performance of VLSI Engines for Lattice Computations 951

to L = 785. Both WSA and SPA systems have throughput rates which
grow linearly with the number of chips. However, SPA is three times faster
than WSA. (SPA has twelve processors per chip while WSA has four.) On
the other hand, the SPA system requires four times as much main memory
bandwidth as the WSA system: 262 bits/tick versus 64 bits/tick.

The above argument contains a bias in favor of SPA. System timing is an
important consideration which can make it difficult to clock SPA as fast as
WSA. The WSA architecture has connectivity only in one dimension, whereas
the SPA system requires communication in both the pipeline direction and
the synchronous side-to-side data paths. This added complexity is a more
pronounced drawback for SPA when extensibility is considered, as we will
mention below. The conclusion in both cases favors the WSA system when
it comes to considering an implementation. There is also the matter of the
data access pattern in the memory. The WSA machine accesses the data in
a strict raster scan pattern which is simpler than the row-staggered pattern
that the SPA scheme requires for its operation.

The SPA architecture has one considerable advantage over the WSA
scheme: extensibility. Smaller instances of an SPA machine can be joined
together to form a machine that computes a larger lattice. This is not true
for the WSA case, where computation is limited to lattice sizes which do
not exceed L as given by the chip area constraint, because all the required
data must fit on the chip. This requirement is relaxed in the SPA scheme
because data can be moved between adjacent chips as W is adjusted to the
chip constraints and an arbitrary lattice width L can be supported by com-
posing a suitable number of slices. In this respect, the two schemes seem
incomparable.

Our second point of view on the comparison of these two architectures is
facilitated by considering a slight variation of WSA which allows extension
of the lattice size. The extension can be accomplished by moving a portion
of the shift register off chip. The pin constraints given previously, with the
same constants, allow only one processor per chip in this case. A stage in the
pipeline consists of a processor chip and associated shift registers sufficient
to hold the remainder of the 2L + 10 node values which do not fit onto the
processor chip. We will call this version of WSA WSA-E.

Both SPA and WSA-E systems have throughput rates that grow linearly
with the number of chips in the system for a fixed lattice size L. However,
the constant of proportionality between the two rates grows with increasing
lattice size. The reason is that the number of processors per unit chip area
is independent of lattice size for SPA, whereas it decreases with increasing
lattice size for WSA-E. So, for instance, given the same number of chips and
a lattice size L < 785, the SPA system is twelve times faster than WSA-E
because it has twelve processors per chip as opposed to one per chip.

A better understanding of the contrasts between the two systems can be
obtained by looking at requirements for main memory bandwidth and storage
area per processor. WSA-E has a constant bandwidth requirement of 16 bits
per clock tick and requires (2L + 10)B storage area per processor; SPA has a

952 Steven Kugelmass, Richard Squier, and Kenneth Steiglitz

main memory bandwidth requirement of % bits per tick and requires (1284)B
area per processor. For a fixed processing rate, the penalty for larger lattice
size is either linear growth in the number of chips for the WSA-E system, or
linear growth in the main memory bandwidth in the SPA case. For example,
if L = 1000, then WSA-E requires about twice as much area as SPA, while
requiring about one twentieth as much bandwidth.

6.4 Summary

We have analyzed the critical parameters of two system architectures for
high performance computation on a cellular automaton lattice. We see that
the WSA architecture offers good throughput at a modest system area and
complexity, while the SPA architecture offers higher performance, at the price
of increased complexity and memory bandwidth.

The preceding analysis suggests that the ultimate limit to the perfor-
mance of these architectures, and any alternatives, will stem from chip pin-
bandwidth and storage requirements, not from processing requirements. For
example, a chip in 3y CMOS has been fabricated and tested for the wide-
serial architecture in which about 4 percent of the area is used for processing.
Any more processing on the chip would simply go unused because of storage
and bandwidth constraints. We can expect this fraction to shrink as the lat-
tice gets wider, and as we increase the dimensionality of the problems. This
fact has recently become clear in the literature on systolic arrays, and in [5],
Hong and Kung present a model and a bounding technique for quantifying
this notion. In the next section, we will apply their results to the class of
lattice computations.

7. Pebbling bounds

WSA and SPA are only two of many possible computation schemes for com-
puting the evolution of a lattice gas cellular automaton (LGCA). Once a
scheme has been selected from among the possibilities (for example, single
stream pipeline, wide pipeline, column parallel), the processors and local
memory must be mapped to chips while maintaining pin, area, processing
rate, and I/O bandwidth constraints. These constraints can be thought of
as divided into hierarchical classes by scale: main memory bandwidth, total
processor memory, and overall computation rate at large scale; processing el-
ement area and speed at small scale; and inter-chip communication and pin
constraints somewhere in between. The question arises as to which scheme
makes the best use of the resources given the multi-scale constraints. To
answer this partially, we would like to answer the general question, “What is
the best that can be done, considering only the large scale constraints?” By
“best” we mean “fastest overall computation rate.” We want to ignore the
particular method of progressing through the computation graph for a given
LGCA and concentrate on the limits implied solely by the large scale con-
straints. We will use a pebble game to count the input/output requirements

Performance of VLSI Engines for Lattice Computations 953

of an LGCA computation.

Variants of the pebble game have been used as a tool to get space-time
trade-offs for computational problems. See, for instance, the papers by Pip-
penger [11] and Lengauer and Tarjan [9]. The red-blue pebble game described
by Hong and Kung [5] models the computation and I/O steps in a sequential
computation. They used it to get space-input/output trade-offs for several
problems, and to get upper bounds on speed-up of a computation of these
problems using a sequential machine. The red-blue game they describe was
extended by Savage and Vitter [15] to the parallel-red and block-red-blue
pebble games, which model parallel computation without input/output and
block parallel input/output respectively. We will use a further variant of the
red-blue game which allows parallel computation and parallel input/output
of any size up to the processor’s local memory capacity. We will use Hong
and Kung’s methods for the analysis of the red-blue game to derive from
our variant a trade-off among the minimum main memory bandwidth, the
maximum overall computation rate, and the local processor memory size.

The red-blue pebble game is played on directed acyclic graphs with bounded
in-degree according the following rules:

1. A pebble may be removed from a vertex at any time.

2. A red pebble may be placed on any vertex that has a blue pebble.
3. A blue pebble may be placed on any vertex that has a red pebble.
4.

If all immediate predecessors of a vertex v are red pebbled, v may be

red pebbled.

The “inputs” are those vertices which have no predecessors, and the “out-
puts” are those which have no successors. A vertex that is blue-pebbled
represents the associated value’s presence in main memory. A red-pebbled
vertex represents presence in processor (chip) memory. Rules (2) and (3)
represent 1/0, and rule (4) represents the computation of a new value. The
goal of the game is to blue-pebble the outputs given a starting configuration
in which the inputs are blue-pebbled and the rest of the vertices are free of
pebbles. We will delay the introduction of an extension of this game until
we have established some further groundwork.

The computation graph for an LGCA is derived in the usual manner for
a data dependency graph. An LGCA, G = G(v), is defined by a lattice
graph G = (V, E) contained in some d-dimensional finite volume, a value
v(z, t) associated with each node z in the lattice, and a function giving
v(z, t +1) = f(N(z),t) where N(z) is the “neighborhood” of = in G; that

N(z){z|{z,z} is an edge in G} U {z}.

The values of nodes at time ¢ + 1 depend on the values of its neighboring
nodes at time t. For an LGCA that models real fluids, the lattice G must
be isotropic with respect to conservation of momentum and energy. This

954 Steven Kugelmass, Richard Squier, and Kenneth Steiglitz

means G must be regular. We will make use of this regularity in the proof
for the bound on the computation rate, although we will not require the
satisfaction of the isotropy condition. We form the computation graph of the
LGCA by identifying the vertices in each layer of the computation graph with
the vertices in the lattice G. Each layer of the computation graph consists
of a copy of G’s vertex set with arcs to the next layer expressing the data
dependency between the values associated with the vertices of the lattice at
time ¢ and those at time ¢ 4 1. That is, if V = {1,2,3,..., L} is the set of
vertices in G, then the computation graph for G is C = (X, A) where

X={(z,t)|lzeV, and 0 <t < T}

and there is an arc from (u,t—1) to (v,%) inCifand only if u is in N(v). Cisa
layered graph of T -+ 1 layers, each layer representing the LGCA at evolution
time ¢t = 0,1,2,...,T (see figures 5 and 6). We are usually interested in
seeing an image of the LGCA at periodic time steps in its evolution, say
every k time steps, and we let T' go to infinity. However, it is easy to see
from the proofs that follow that forcing 7' = & will not alter the results. We
will apply a variant of the red-blue pebble game to the computation graph
G

Let us introduce some terms we will need and review the results of Hong
and Kung. Results proved in [5] will be so indicated. A computation of an
LGCA is said to be a complete computation if it begins with only the input
values v(z, 0) known and at the end of the computation the values v(z,T)
have been computed for all z in the lattice G of the LGCA. Thus, a pebbling
P of the computation graph represents a complete computation of the LGCA.
Given any complete computation of LGCA G (a pebbling P of the associated
computation graph Cg, we assume the following, where memory and I/O are
measured in units of storage required to store a single site value v(z,t) of the
LGCA.

S = the number of red pebbles, i.e., the amount of processor memory.
(We assume an inexhaustible supply of blue pebbles.)

¢ = the number of I/ moves required by P.

? = the minimum number of I/O moves required to pebble C, over all
pebblings using S or fewer red pebbles.

Definition: P'is an S-1/0O-division of P, if
Pl=fPll.st 2k}

where P; is a consecutive subsequence of P such that P; contains exactly g;
[/O moves, and

P=PoP,o- 0P,

where

Performance of VLSI Engines for Lattice Computations 955

&

Figure 5: A one-dimensional lattice of a cellular automaton § =
(G,v). Vertices 1 and r are boundary vertices of G. The neighborhood
of vertex 2 is N(2) = {1,2,3}.

g; = S for all i except that 0 < ¢, < S.

We say the size of P’ is h.

Clearly, a lower bound on the I/O required by a complete computation
of G is determined by h = min{h} over all pebblings of Cg using 5 or fewer
red pebbles. That is, @ > S - (fz —1).

Hong and Kung have developed some methods for deriving a lower bound
for . The concepts depend explicitly on the definition of an S-1/0-division
which depends implicitly on the fact that the pebbling is linearly ordered.
This is trivially true for the red-blue game because it is a strictly sequential
game: a single rule from rules (1) through (4) is applied, and the resulting
configuration determines the applicable rules for the next move. An immedi-
ate extension of the red-blue game simply considers a block of such moves as
occurring in a single “time step”. This allows a certain form of parallelism
and is the extension used by Savage and Vitter [15] in the block-red-blue
game. The actual play of the game is not altered; rather, the counting of
moves is redefined. It is easy to find a simple example of a graph for which
the number of input/output steps can be reduced by allowing the red peb-
bling moves to occur in truly parallel fashion. That is, any number of pebbles
may be moved simultaneously, provided the configuration before the move
satisfies the conditions of any rule employed in the move. With this in mind,
we define the parallel-red-blue pebble game and show that it models any
computation which can be performed by a computer with arbitrary parallel
capabilities (CRCW PRAM).® The results of the analysis of this game will
be applied to a machine model which has the same features as a CRCW
PRAM, but has a limited communication bandwidth.

Consider a computation which proceeds by doing many steps in parallel
in real time, and let us consider the necessary features of a pebble game that
models it. The end result is a pebble game that can be described by a linearly
ordered set of pebble moves, which will allow us to define an S-I/O-division
for this game. In the following, we will use the following terminology: placing
a red pebble on a node that contains no pebbles is a calculation. The node

3Such a machine model consists of an arbitrary number of processors communicating
via a shared memory. This model is often referred to as a CRCW PRAM: Concurrent-Read
Concurrent-Write Parallel Random Access Machine [2].

956 Steven Kugelmass, Richard Squier, and Kenneth Steiglitz

Figure 6: A computation graph Cg(T') where 0 <t < T'. The t** row
corresponds to G(t).

pebbled is called the dependent node, and the nodes with arcs ending at the
dependent node are said to support the calculation by virtue of the fact that
if they did not contain red pebbles, the calculation would not be possible.

We first decompose the computation into pieces which occur simultane-
ously. Let these pieces be designated C;, and we say the complete compu-
tation C' consists of their concatenation: € = Cy0Cy0---0Cy. Now let
us consider the pebble moves within C;. Consider a datum that is fetched
from main memory by C;. It is reasonable to assume that this datum could
not simultaneously be used in a calculation of some dependent datum. We
then require that a pebble move that places a red pebble on a node which
only contains a blue pebble precedes any pebble move that uses the node as
a supporting node for a calculation. We satisfy this ordering requirement by
ordering all the pebble moves of this type (which model main memory reads
occurring in C;) after any other moves in C;.

Consider the calculation of a datum during C;. We assume the result
datum must be written to a register in the processor memory. Therefore,
we do not consider it possible in our model of computation to allow a main
memory write of a datum to occur simultaneously with a calculation of the
same datum. We can enforce this requirement in the pebble game by ordering

Performance of VLSI Engines for Lattice Computations 957

all main memory writes in C; before all calculations in C;. That is, a node
must contain a red pebble before a blue pebble may be placed on it, and that
red pebble must have been placed in a previous C;.

At this point, we can say that the pebble game must proceed parallel
move by parallel move in order and that within each parallel move C; the
ordering is: place blue pebbles (write to main memory phase), move red
pebbles to unpebbled nodes (calculation phase), place red pebbles on nodes
containing blue pebbles (read-from-main-memory phase). It now remains for
us to find an ordering within these phases of C;.

Consider the pebble moves in the two I/O phases. In real time, we assume
they all happen simultaneously. Suppose we order them arbitrarily within
each phase. Take first the write phase. Placing blue pebbles on nodes con-
taining red pebbles in any order is permissible since there are no dependence
constraints beyond the presence of the red pebbles. The nodes available for
writing have red pebbles before the beginning of C;.

The read phase is essentially the same, except that nodes containing blue
pebbles receive red pebbles. We must be careful not to violate the timing
constraints on any red pebbles used for this purpose. A register that is
used to store the result of a calculation performed during C; cannot also
receive a datum from main memory during C;. Actually, the red pebbles
placed on dependent nodes in the calculation phase could theoretically be
picked up and moved to a blue-pebbled node to effect a read during the
read phase. However, the result is that the dependent node that had its
red pebble removed did not really get calculated during C;, and we are not
violating the timing constraints on the real-time computation if we adopt
this interpretation of such an event.

The next potential conflict comes from the overlapping of read and write
operations. Suppose a register is used as a source to write to main memory.
During the write phase, a blue pebble is placed on a node containing a red
pebble. The red pebble represents the use of a register as a source for a
write operation. However, the read phase may remove the red pebble and
place it on some node containing a blue pebble, indicating the same register
is both a source and a receiver of data simultaneously. We accept this as
within our model of computation because hardware with this capability is
easily realized. The only remaining sources for red pebbles are red pebbles
that were placed prior to C; and do not therefore represent any conflict with
real computation. As the various sources for red pebbles do not have any
mutual dependencies, and likewise, the placement of the red pebbles are not
inter-dependent; we are free to order the movement of pebbles in the read
phase arbitrarily.

We have established that the I/O phases may be linearly ordered. At
this point, it appears that nothing has changed vis-a-vis the red-blue game.
The real contribution of the parallel game comes in the calculation phase.
Consider a calculation in which the result is written into one of the registers
used as input. The input may be fanned out to many calculations, and all
proceed in parallel. The red-blue game would block this type of activity

958 Steven Kugelmass, Richard Squier, and Kenneth Steiglitz

since lifting the red pebble from a supporting node and sliding it to one of
the dependent nodes leaves the remaining dependent nodes without a full
complement of supporting nodes. We define the calculation phase as the
movement of red pebbles onto dependent nodes. We will add a new pebble
(pink) to the game to avoid the blockage mentioned above. The pink pebble
(place-holder pebble) allows fan-out of the input by holding the contents of
the calculation until the end of the calculation phase. The new pebble is not
strictly required, but using it simplifies the definition of the new game.

The above discussion gives us a pebble game that can model an arbitrary
parallel computation under the assumed model of computation. The game
is sequential in the I/O phases, and taking the calculation phase as a single
move, the 5§-1/O-division is well defined for this game.

Definition: The rules of the parallel-red-blue pebble game:
The game is identical to the red-blue pebble game with the addition of a new
pebble (pink) and the following additional rules:

5. The game consists of cyclic repetition of three phases:
write phase, calculate phase, read phase.
The write phase consists of only rule (3) moves.
The read phase consists of only rule (2) moves.
The calculate phase comprises the following moves
(a) pink pebble placed by rule (4).
(b) a red pebble replaces a pink pebble.
(¢) no pink pebbles remain at the end of the phase.

With this definition of the parallel-red-blue game, we can proceed along the
lines of [5] without altering their arguments. Their next step introduces
the idea of partitioning the computation graph to get a lower bound on the
number of sub-pebblings in an S-I/O-division.

Definition: A K-partition V is a partition of the vertices of a directed acyclic
graph G = (V, A) such that

1. For every V; in V there is a dominator set D; C V, and a minimum set
M; C Vi, both of size at most K such that every path from the inputs
to any element of V; contains an element of D;, and every v in V; which
has no children in V; is in M.

2. There are no cyclic dependencies among the V;. (V; depends on V; if
there is an arc from an element of V; to some element of V;.)

We say ¢ = |V| is the size of the partition.

For every S-1/O-division of a pebbling P there is a 2S-partition deter-
mined in the following way: in P, consider every vertex that has never had a
red pebble placed on it by any moves in P;, 1 < k, and is red pebbled during
Py.. This set of vertices is V. Property (2) is clearly satisfied by the set all

Performance of VLSI Engines for Lattice Computations 959

such V;.’s, V. The dominator, Dy, is then the set of all vertices which had red
pebbles on them at the end of Pj_;, together with those vertices with blue
pebbles on them at the end of P;_; which get red pebbles during Py. The
size of Dy is at most 25 (there are S red pebbles and at most S I/O moves).
The minimum set, M}, consists of those vertices which were the “last” to be
red pebbled during Py (i.e., have no children which were red pebbled during
P..). At the end of P, any such vertex is either i) still red pebbled, or ii)
now blue pebbled. Therefore, M} can be at most of size 25.
The above argument gives us the following theorem and lemma.

Theorem 2. [5] Let GG be any directed acyclic graph and P be any red-blue
pebbling of G with an S-I/0-division of size h using at most S red pebbles.
Then, there is a 25-partition of G of size g = h.

In particular, there is a partition such that ¢ = k. From the comment
made above concerning the minimum I/O requirements, and letting § =
min{g} over all 25-partitions of G, we have

Lemma 1. [5] For any directed acyclic graph,
Q>S5-(g—1).

The types of graphs represented by LGCA computation graphs have the
nice feature that they are regular and “lined.” Lines are simple paths from
inputs to outputs. A vertex is said to lie on a line if the line contains the
vertex. A line is covered by a set of vertices if the set contains a vertex that
lies on the line. A lined graph is a graph in which a set of vertex disjoint
lines can be chosen so that every input is on some line in the set. A complete
set of lines is such a set of lines. For an LGCA computation graph, a path
((z,0),(z,1),(z,2),...,(z,T)) is a line ., for any node = in the lattice G.
Suppose we have chosen a complete set of lines £ for some lined graph G. If
we can bound from above the maximum number of vertices that lie on lines
in £ and are contained in a single subset of any 25-partition of G, and we
can count the total number of vertices in G that are on lines, we will be able
to lower bound §. In applying this reasoning to LGCA computation graphs,
we will choose the complete set of lines

L=A{l]z eV}
In the case of these graphs, every vertex lies on some line in L.
Definition: The line-time 7(k) for a lined graph G is the maximum number
of vertices that lie on a single line in any subset of any k-partition of . That

is, if we let I be the set of all k-partitions of & and £ be a complete set of
lines in G, then

7(k) = max max max{|l; N Vif}.

960 Steven Kugelmass, Richard Squier, and Kenneth Steiglitz

By observing that a dominator set of size 2.5 or less can dominate at most 25
different lines, it is easy to conclude that the maximum number of vertices
in a single subset of a 25-partition that lie on lines is bounded from above
by 25 - 7(25); that is,

|V*| <28 - 7(2S) in any 2S-partition of G,

where V;* is the smallest subset of V; containing every vertex in V; that lies
on some line.
Consequently, we have

Lemma 2. 5] § > for a computation graph C = (X, A).

.
25-7(25)
This leads to Hong and Kung’s second result:
Theorem 3. [5]Q = T(zs))

For LGCA computations, we can express this bound in terms of main
memory bandwidth B and processing rate R. Let the total time to per-
form the com{\putatmn described by the computation graph be p. We then
define R = & (for LGCA computations |X| = |X*|). Certainly, the total
input/output traffic must be handled by the communication channel to main
memory, so Bp > @, and the preceding bound becomes

R
B=Q(——=¢
sy
or equivalently,
R = O(B7(25)).
Using this result, we will show that for d-dimensional LGCA computations
R = O(BS%).
Specifically, we will show that
7(28) < 2(d125)4
for their computation graphs.
In proving this, we will make the following simplifying assumptions, which
are in any event worst-case.

1. The graph G of a d-dimensional LGCA is an orthogonal grid defined on
the integer lattice points contained in the d-cell in R? consisting of the
points {x]|0 < z; < r(i = 1,2,...,d)} where r is a non-negative integer.
There are edges between a vertex and its nearest neighbors. We will
refer to G as a lattice. Although G as defined above is inadequate for
isotropic lattice gases [3], we are assuming the minimum connectivity

for G in the sense that any lattice that satisfies isotropy requires at
least the same degree of connectivity.

Performance of VLSI Engines for Lattice Computations 961

2. The boundaries of LGCAs can be handled in a variety of ways. They
can be null (zero valued), independently random, dependently random
or deterministic with truncated neighborhoods, or toroidally connected
with full connectivity. In the first two cases above, the boundaries
do not appear in C at all. We will assume boundary vertices appear
in C with dependencies defined by the lattice. The boundaries can
be thought of as deterministic or randomized, but dependent on their
neighbors as defined in (1).

3. If the size of the vertex set of the lattice G is 4, then we assume that
the processor memory size S is less than r%. In fact, if § = r, only 25
of main memory 1/O is required to pebble C, and the bounds mentioned
are irrelevant.

4. In the following, we will use the notation C; when referring to a com-
putation graph Cg for a d-dimensional LGCA G, with lattice G.

Let us derive some properties of the computation graph Cg.

Definition: A (u,v)-path is a path from vertex u to vertex v. The length of
path p, I(p), is the number of edges in p. The distance d(u,v) between two
vertices v and v is the minimum of I(p) over all (u,v)-paths p.

Lemma 3. In Cy, every (u,v)-path p has length d(u,v).

Proof. Since every arc in Cy goes from some layer ¢ to a layer ¢ + 1, paths
of different lengths starting from the same vertex end in different layers. B

Lemma 4. In Cy every vertex w which has a distance from some specified

vertex u of d(u,w) = }|d(u,v)] lies on some (u,v)-path, provided u and v

both lie on the same line in L.

Proof. Let d(u,v) = 2k + 6 where & > 0 and ¢ is either zero or one. Let
u = (z,t) and v = (z,t + 2k + §). If k& = 0, the result is trivial, so suppose
that k > 0. There is some (u,w)-path py = (u = ug, uy, ..., ux = w). Let
u; = (x;,t +1). Since there is an arc (ui,%it1), #; is in the neighborhood
N(zi41), and vice versa. Consequently, there is a path ps = (w = vy, Vg1,
..., vg = (z,t+2k)), where v; = (z;,t+k+(k—1)). Thus, the path p = p,0p,
is a path from u to (2, t + 2k) on the (u,v)-path along l,. Concatenating
the path ((z,¢ + 2k), (z,t + 2k + 1), (z,t + 2k + 2),...,(z,t 4+ 2k + §)) onto
the end of p gives us a (u,v)-path containing w. B

Lemma 5. In Cg4, every line I covered by a path of length at most j from
some specified vertex u, is covered by a path of length exactly j such that
the last vertex on the path lies on I..

Proof. Let p be a path from u of length j or less covering line .. Let z be
a vertex on path p such that z lies on I;. Let p; be that portion of p from u
to z. By assumption I(p;) = k < j. Concatenating onto p; the path starting
from z and continuing along [, for j — k steps gives us the required path. B

962 Steven Kugelmass, Richard Squier, and Kenneth Steiglitz

Lemma 6. In Cy the number of lines covered by all paths of length j or less
from a specified vertex u is equal to the number of vertices reachable from u
in exactly j steps.

Proof. By the definition of L, every vertex in a single layer lies on a unique
line. By the argument of lemma 3, the end point of every path of length j
lies in the same layer. So, for every vertex reachable in exactly j steps, there
is a line covered by a path of length j. The lemma then follows from the
previous lemma. W

Lemma 7. If in Cy vertex v = (z,t + j) is reachable from vertex u = (z,t)
in j steps, then in G vertex z is reachable from z in at most j steps. The
converse holds ift <T — j.

Proof. Consider a (u,v)-path p = (u = ug,uy,us,...,u; = v) in Cq, where
u; = (z;,t+1). Since z; € N(z;y1), either there is an edge {z;,z;41} in G, or
z; = ;4. Deleting the self loops from the path ¢ = (z = 24,21, 22,...,2; =
z) gives us an (z, z)-path in G of length at most j. B

Conversely, consider a path ¢ = (zo = z,21,22,...,2; = 2) in G where
0 <i < j. By hypothesis, t < T — 7, and consequently, the path

p=((z =z0,1), (21,2 + 1),...,(zi = z,t + 1), (2,0 + 2+ 1),...,(z,1 4+ 7))

is a (u,v)-path in C,.

Definition: The line-spread from a vertex u in graph G is

the number of lines covered

00, if no vertex z exists such that d(u,z) = j
tG('u, 7=
by paths of length j or less, otherwise.

Definition: The line-spread of a graph G = (V, E) is
To(j) = mip{to(u, 7))
If the graph G is Cy, we write Ty(7).

Lemma 8. Ty(j) > -7;,

Proof. By lemmas 5, 6, and 7 we have shown that the number of lines
covered by paths from some vertex u = (z,t) of length at most j in Cy is
equal to the number of vertices reachable from z in at most j steps in G,
provided at least one path of length j exists in Cy. By the definition of G,
that is, an integer grid in the non-negative orthant, the minimum number of
vertices reachable in j or fewer steps in G occurs when the origin is chosen
as the specified vertex. The latter quantity is then given by

Performance of VLSI Engines for Lattice Computations 963

oo : i +d j
Tu(j) = 3 Tua(i) = 2% =El>'/dm="—'
i=0 7 3 ¢ d!
where ¢ is the region in R? defined by the set {x|z; + 234+ 424 < j,(z; >
0)}, and @ is the set of integer lattice points in ¢.
We are now in a position to prove the main result:

Theorem 4. In Cy, 7(25) < 2(d125)4.

Proof.* Suppose that 7(25) > 2(d'25)4. Let j = (d!2S)%. Then there
exist vertices u and v in some subset V; of some 2S-partition V of C; such
that d(u,v) = 2j, and u and v both lie on the same line in £. Since the
subsets of the partition V are not cyclically dependent, every vertex z on any
(u,v)-path is in V;. By lemma 4, every vertex in the set Z = {z|d(u,z) = j}
is on a (u,v)-path, and therefore Z C V;. Then Z covers at least Ty(j)
lines. The dominator for V; must cover these lines. Since the lines in £ are
disjoint |D;| > Ty(j), and employing lemma 8 we have |D;| > ";! = 2S. This
contradicts the assumption that V; is an element of a 2S-partition, and we
are done. B

8. Conclusions

We have described two architectures for lattice-update engines based on VLSI
custom chips and derived their design curves and best operating points. The
wide-serial architecture (WSA) has extremely simple support logic and data
flow, while Sternberg’s partitioned architecture (SPA) is perhaps more eas-
ily extensible to lattices of arbitrary sizes and provides higher throughput
per custom chip, albeit at the expense of support logic and main memory
bandwidth. Each has its preferred operating regime in different parts of the
throughput vs. lattice-size plane. A prototype lattice-gas engine, using the
WSA architecture, and based on a custom 3 CMOS chip, is now being con-
structed. Each chip provides 20 million site-updates per second running at 10
MHz. It is unlikely, however, that the workstation host will be able to supply
the 40 megabyte per second bandwidth required for this level of performance.
We expect to realize approximately 1 million site-updates/sec/chip from the
prototype implementation.

We have also presented a graph-pebbling argument that gives upper
bounds for the computation rate for lattice updates. The asymptotic up-
per bounds show clearly that memory bandwidth, and not processor speed
or size, is the factor that limits performance. One goal for further research
is the tightening of these pebbling-game arguments so that they give esti-
mates of absolute, as well as asymptotic, performance. We will apply these
estimates to get quantitative comparisons between competing architectures

#This proof follows the proof of theorem 5.1 in [5].

964 Steven Kugelmass, Richard Squier, and Kenneth Steiglitz

for lattice gas computations such as the Connection Machine, the CRAY-
XMP, and special purpose machines. A further goal would be to discover
an optimal pebbling for any problem in this class, and thereby discover an
architecture which is optimal with regard to input/output complexity.

This work supports the growing recognition that communication bottle-
necks—at all scales of the architectural hierarchy—are the critical limiting
factors in the performance of highly pipelined, massively parallel machines.
In our conservative VLSI design, not nearly at the limits of present inte-
gration technology, the processors themselves comprise only a small fraction
of the total silicon area. As feature sizes shrink and problems are tackled
with larger lattices in higher dimensions, this effect will become even more
dramatic. This suggests that a search for more effective interconnection tech-
nologies, perhaps using optics, should have high priority.

References

[1] D. d’'Humiéres, P. Lallemand, and U. Frisch, “Lattice Gas Models for 3D
Hydrodynamics,” Burephysics Letters, 4:2 (1986).

[2] S. Fortune and J. Wyllie, “Parallelism in Random Access Machines,” Proc.
10th Annual ACM Symp. on the Theory of Computing, San Diego, CA,
1978.

[3] U. Frisch, B. Hasslacher, and Y. Pomeau, “A Lattice Gas Automaton for the
Navier-Stokes Equation,” Los Alamos National Lahoratory preprint LA-UR-
85-3503 (1985).

[4] J. Hardy, Y. Pomeau, and O. de Pazzis, “Time evelution of a two-
dimensional model system. I. Invariant states and time correlation func-
tions,” J. Math. Phys., 14:12 (1973) 1746-1750.

[5] Jia-Wei Hong and H. T. Kung, “I/O Complexity: The Red-Blue Pebble
Game,” Proceedings of ACM Sym. Theory of Computing, (1981) 326-333.

[6] Josef Kittler and Michael J. B. Duff, eds. Image Processing System Archi-
tectures, (Research Studies Press, Ltd., John Wiley and Sons, 1985).

[7] Steven D. Kugelmass, Richard Squier, and Kenneth Steiglitz, “Performance
of VLSI Engines for Lattice Computations,” Proc. 1987 Int. Conf. on Parallel
Processing, St. Charles, IL, August 17-21, (Pennsylvania State University
Press, University Park, PA, 1987) 684-691.

[8] S. Y. Kung, 8. C. Lo, S. N. Jean, and J. N. Hwang, “Wavefront Ar-
ray Processors—Concept to Implementation,” Computer, 20:7 (IEEE, New
York, 1987).

[9] T. Lengauer and R. E. Tarjan, “Upper and Lower Bounds on Time-Space
Tradeoffs,” ACM Symposium on the Theory of Computing, Atlanta, GA
(1979) 262-277.

Performance of VLSI Engines for Lattice Computations 965

(10]

[11]

[12]

(23]

(14]

(15]

[16]

(17]

18]

(19]

Steven A. Orszag and Victor Yakhot, “Reynolds Number Scaling of Cellular
Automaton Hydrodynamics,” Physical Review Letters, 56:16 (1986) 1691
1693.

N. Pippenger, “Pebbling,” Proc. 5th IBM Symposium on Mathematical
Foundations of Computer Science, Academic and Scientific Programs, IBM
Japan, May 1980.

Arnold L. Rosenberg, “Preserving Proximity in Arrays,” SIAM J. Comput-
ing, 4:4 (1975) 443-460.

Peter A. Ruetz and Robert W. Broderson, “Architectures and Design Tech-
niques for Real-Time Image-Processing IC’s,” IEEE Journal of Solid-State
Circuits, SC-22:2 (1987).

James B. Salem and Stephén Wolfram, “Thermodynamics and Hydrody-
namics with Cellular Automata,” in Theory and Applications of Cellular
Automata, ed. S. Wolfram, (World Scientific Publishing Co., Hong Kong,
1986) 362-366.

John E. Savage and Jeffrey Scott Vitter, “Parallelism in Space-Time Trade-
offs,” in VLSI: Algorithms and Architectures, ed. F. Luccio, (Elsevier Science
Publishers B.V., North Holland, 1985) 49-58.

K. Steiglitz and R. R. Morita, “A Multi-Processor Cellular Automaton
Chip,” Proc. 1985 IEEE Int. Conf. on Acoustics, Speee, and Signal Pro-
cessing, Tampa, I'L, 1985.

Stanley R. Sternberg, “Computer Architectures Specialized for Mathemat-
ical Morphology,” in Algorithmically Specialized Parallel Computers, ed.
Howard Jay Siegel, (Academic Press, 1985) 169-176.

Stanley R. Sternberg, “Pipeline Architectures for Image Processing,” in Mul-
ticomputers and Image Processing, Algorithms and Programs, ed. Leonard
Uhr, (Academic Press, 1982) 291-305.

Kenneth Supowit and Neal Young, personal communication (1986).

