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Abstract. In this paper we show how to embed practical computa-
tion in one-dimensional cellular automata using a model of compu-
tation based on collisions of moving particles. The cellular automata
have small neighborhoods, and state spaces that are binary occupancy
vectors. They can be fabricated in VLSI, and perhaps also in bulk
media that support appropriate particle propagation and collisions.
The model uses injected particles to represent both data and proces-
sors. Consequently, realizations are highly programmable and do not
have application-specific topology, in contrast to systolic arrays. We
describe several practical calculations that can be carried out in a
highly parallel way in a single cellular automaton, including addition,
subtraction, multiplication, arbitrarily nested combinations of these
operations, and finite-impulse-response digital filtering of a signal ar-
riving in a continuous stream. These are all accomplished in time
linear in the number of input bits, and with fixed-point arithmetic of
arbitrary precision, independent of the hardware.

1. Introduction

Our goal in this paper is to achieve practical computation in a uniform,
simple, locally connected, highly parallel architecture—in a way that is also
programmable, and thereby accommodates the differing requirements of a
variety of applications. Systolic arrays [22], of course, satisfy the locally con-
nected and parallel requirements, but the topology and processor function-
ality are difficult to modify once the machine is built. In this paper we show
how to embed practical computation in one-dimensional cellular automata
(CAs) using a model of computation that is based on collisions of moving
particles [33]. The resulting (fixed) hardware combines the parallelism of
systolic arrays with a high degree of programmability.
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Fredkin, Toffoli, and Margolus [19-21] have explored the idea of the in-
elastic billiard-ball model for computation, which is computation-universal.
There is also a large literature in lattice-gas automata (see [18], for exam-
ple), which use particle motion and collisions in CAs to simulate fluids. We
have shown [17] that a general class of lattice-gas automata is computation-
universal.

Several recent papers have dealt with particle-like persistent structures
in binary CAs and their relationship to persistent structures like solitons in
nonlinear differential equations [3, 8-14]. It is fair to say that no one has yet
succeeded in using these “naturally occurring” particles to do useful com-
putation. For instance, the line of work in [14] has succeeded in supporting
only the simplest, almost trivial computation—binary ripple-carry addition,
where the data is presented to the CAs with the addend bits interleaved. The
reason for the difficulty is that the behavior of the particles is very difficult
to control and their properties only vaguely understood.

This paper describes what we think is a promising method of using a par-
ticle model and illustrates its application to several different computations.
Our basic method will be to introduce the model of computation using par-
ticles, and then realize this model as a CA. Once the particles and their
interactions have been set in the realization, the computation is still highly
programmable: the program is determined by the sequence of particles in-
jected. In our examples, we build in enough particles and interactions so
that many different computations are possible in the same machine.

CAs for the particle model can be realized in conventional VLSI, or—
and this is much more speculative—in a bulk physical medium that supports
moving persistent structures with the appropriate characteristics [1, 2, 4
7). Without distinguishing between these two situations, we call the CAs
or medium a substrate. We call the substrate, the collection of particles it
supports, and their interactions a Particle Machine (PM).

The machines in this paper are one-dimensional, and these PMs are
most clearly applicable to computations that can be mapped well to one-
dimensional systolic arrays. The computations given as examples in this
paper deal with basic binary arithmetic and applications that use arithmetic
in regular ways, like digital filtering. Our current ongoing work is aimed
toward adding more parallel applications, especially signal processing, other
numerical computation, and combinatorial applications like string match-
ing.

Although our main goal is parallelism, it is not hard to show that there
are CAs of our type that are computation-universal, by the usual stratagem
of embedding an arbitrary Turing machine in the medium and simulating it.
We omit details here.

One important advantage of parallel computing using a PM is the homo-
geneity of the implementation. Once a particular set of particles and their
interactions are decided on, only the substrate supporting them needs to be
implemented. Since the cells of the supporting substrate are all identical, a
great economy of scale becomes possible in the implementation. In a sense,



Programmable Parallel Arithmetic in CAs Using a Particle Model 313

we have moved the particulars of application-specific computer design to the
realm of software.

The results in this paper show that PM-based computations inherit the
efficiency of systolic arrays, but take place in a less specialized machine.
Our examples include arbitrarily nested multiplication/addition and finite-
impulse response (FIR) filtering, all using the same cellular automaton re-
alization, in time linear in the number of input bits, and with arbitrary
precision fixed-point operands.

This paper has three parts. First we describe the model for parallel
computation based on the collisions and interactions of particles. Second, we
show how this model can be realized by CAs. Finally, we describe linear-time
implementations for the following computations:

e binary addition and subtraction;
e binary multiplication;

e arbitrarily nested arithmetic expressions that use the operations of ad-
dition, subtraction, and multiplication of fixed-point numbers; and

e digital filtering of a semi-infinite stream of fixed-point numbers with a
FIR filter (with arbitrary fixed-point coefficients).

2. The particle model

We begin with an informal description of the model. Put simply, we want to
think of computation as being performed when particles moving in a medium
collide and interact in ways determined only by the particles’ identities. As
we will see below, this kind of interaction is easy to incorporate into the
framework of a CA.

Figure 1 shows the general scheme envisioned for a PM. We think of par-
ticles as being injected at different speeds at the left end, colliding along the
(arbitrarily long) array where they propagate, and finally producing results.
We will not be concerned here with retrieving those results, and for our pur-
poses the computation is complete when the answers appear somewhere in
the array. Of course the distance of answers from the input port is no worse
than linear in the number of time steps that the computation takes.

In a real implementation, we can either provide taps along the array or
wait for results to come out the other end, however far away that may be. A
third alternative is to send in a slowly moving “mirror” particle defined so
as to reflect the answer particles back to the input. We can make sure that
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> =—0<—0 [ <0

to infinity ———=

Figure 1: The general model envisioned for a particle machine.
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reflection from the mirror produces particles that pass unharmed through
any particles earlier in the array.

We next show how such PMs can be embedded in CAs in a natural way.
Note that sometimes it is convenient to shift the speed of every particle
to change the frame of reference. For example, in the following we will
sometimes assume that some particles are moving left, and others right,
whereas in an actual implementation all particles might be moving right
at different speeds. The collisions and their results are what matter. This
shift in the frame of reference is trivial in the abstract picture we have just
given, and will be easy to compensate for in a CA implementation by shifting
the output window of the CA.

3. Cellular automaton implementation

Informally, a CA is an array of cells, each in a state that evolves with time.
The state of cell 7 at time ¢ 4+ 1 is determined by the states of cells in a
neighborhood of cell 1 at time ¢, the neighborhood being defined as those cells
at a distance r (the radius) or less of cell 4. Thus, the neighborhood of a CA
with radius r contains k = 2r 4+ 1 cells and includes cell 4 itself. When the
state space of a cell, S, is binary-valued—that is, when & = {0, 1}—we call
the CA a binary CA.

We will avoid the difficulties of using “naturally occurring” particles by
expanding the state space of the CA in a way that reflects our picture of a
PM. Think of each cell of the CA as containing at any particular time any
combination of a given set of m particles. Thus, we can think of the state
as an occupancy vector, and the state space is therefore now S = {0,1}".
Implementing such a CA presents no particular problems. We specify the
next-state transitions by a table that shows, for each combination of particles
that can enter the window, what the next state is for the cell in question.
Thus, for a CA with a neighborhood of size k that supports n distinct parti-
cles, there are in theory 2™ states of the neighborhood, and hence 2™ rows
of the transition table. Each row contains the next state, a binary n-vector
that encodes the particles that are now present at the site in question. Only
a small fraction of this space is usually needed for implementation, since we
are only interested in row entries that correspond to states that can actually
occur. This is an important point when we consider the practical implemen-
tation of such CAs, either in software or hardware.

Figure 2 shows a simple example of two particles traveling in opposite
directions that collide and interact. In this case the right-moving particle
annihilates the left-moving particle, and is itself transformed into a right-
moving particle of a different type. It is easy to verify that the transition of
each cell from the states represented by the particles present can be ensured
by an appropriate state-transition table for a neighborhood of radius 1.

Next, we describe some numerical operations that can be performed effi-
ciently in PMs. We start with two simple ways to perform binary addition,
and then build up to more complicated examples. Our descriptions will be
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Figure 2: An example of a collision between a left- and right-moving
particle. The left-moving particle is annihilated, and the right-moving
particle is transformed into a different kind of right-moving particle.
The neighborhood radius in this example is 1, as indicated in Row 4.

more or less informal, but the more complicated ones have been verified by
computer simulation. Furthermore, they can all be implemented in a single
PM with about 14 particles and a transition table representing about 150
rules. The examples all use a neighborhood of radius 1.

4. Adding binary numbers

Figure 3 shows one way to add binary numbers. Each of the two addends are
represented by a sequence of particles, each particle representing a single bit.
Thus there are four particles used to represent data: left- and right-moving
0s and 1s. We will arrange them with least-significant bit leading, so that
when they collide, the bits meet in order of increasing significance. This
makes it easy to encode the carry bit in the state of the processor particle.
At the cell where the data particles meet we place an instance of a fifth
kind of particle, a stationary “processor” particle, which we call p. This
processor particle is actually one of two particles, say py and p;, meant to
represent the fact that the current carry bit is either 0 or 1. The processor

processor .
left addend particle right addend
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Figure 3: Implementation of binary addition by having the two ad-
dends collide head-on at a single processor particle. There are four
different data particles here, left- and right-moving 0s and 1s, repre-
sented by unfilled and filled circles. The processor particle is repre-
sented by the diamond, and may actually have several states.
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particle starts out as pg, to represent a 0 carry. The collision table is defined
so that the following things happen at a processor particle when there is a
right-moving data particle in the cell immediately adjacent to it on the left,
and a left-moving data particle in the cell immediately adjacent to it on the
right:

1. the two data particles are annihilated;
2. a new, left-moving “answer” particle is ejected;

3. the identity of the processor particle is set to py or p; in the obvious
way, to reflect the value of the carry bit.

Notice that we can use the same left-moving particles to represent the answer
bits, as long as we make sure they pass through any right-moving particles
they encounter.

We can think of the two versions of the processor particle as two dis-
tinct particles, although they are really two “states” of the same particle—in
some sense analogous to the ground and excited states of atoms. Thus, we
can alternatively think of the different processor particles collectively as a
“processor atom,” and the py and p; particles as different states of the same
atom. Either way, the processor atom occupies two slots of the occupancy
vector that stores the state. We call the particular state of a particle its
excitation state or its particle identity. We use similar terminology for the
data atom, which has four states that represent binary value and direction.

It is not hard to see that this is not the only way to add, and we now
describe another, to illustrate some of the tricks we have found useful in
designing PMs to do particular tasks. One addition method may be better
than another in a given application, because of the placement of the addends
or the desired placement of the sum. The second addition method assumes
that the addends are stored on top of one another, in data atoms that are
defined to be stationary. That is, the data atoms of one addend are distinct
from those of the other, so they can coexist in the same cell and have speed
zero (see Figure 4). We can think of this situation as storing the two numbers
in parallel registers.

We now shoot a processor atom at the two addends, from the least-
significant-bit direction. The processor atom simply leaves the sum bit be-
hind, and takes the carry bit with itself in the form of its excitation state.

processor
left addend particle
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Figure 4: A second method for adding binary numbers, using a proces-
sor atom that sweeps across two stationary addends stored in parallel
and takes the carry bit with it in the form of its excitation state.
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Figure 5: Two data streams colliding with a processor stream to per-

form multiplication by bit-level convolution.

This method reflects the hardware of a ripple-carry adder, and was used in
[14].

Negation, and hence subtraction, is quite easy to incorporate into the CA.
Just add a particle that complements data bits as it passes through them,
and then add one. (We assume two’s-complement arithmetic.)

5. Multiplying binary numbers

The preceding description should make it clear that new kinds of particles
can always be added to a given CA implementation of a PM, and that the
properties we have used can be easily incorporated in the next-state table.

Figure 5 shows how a bit-level systolic multiplier [15, 16, 23, 24, 25, 30]
can be implemented by a PM. As in the adders, both data and processors
are represented by particles. The two sequences of bits representing the
multiplicands travel toward each other and collide at a stationary row of
processor particles. At each three-way collision involving two data bits and
one processor, the processor particle encodes the product bit in its excitation
state and adds it to the product bit previously stored by its state. Each right-
moving data particle may be accompanied by a carry bit particle. When the
data bits have passed each other, the bits of the product remain encoded in
the states of the processor particles, lowest-order bit on the left. Figure 6
shows the output of a simulation program written to verify correct operation
of the algorithm.

6. Nested arithmetic

It is easy enough to “clean up” the operands after addition or multiplication
by sending in particles that annihilate the original data bits. This may
require sending in slow annihilation particles first, so one operand overtakes
and hits them after the multiplication. Therefore, we can arrange addition
and multiplication so the results are in the same form as the inputs. This
makes it possible to implement arbitrarily nested combinations of addition
and multiplication with the same degree of parallelism as single addition and
multiplication.

Figure 7 illustrates the general idea. The product A x B is added to the
product C x D. The sequences of particles representing the operations must
be spaced with some care, so that the collisions producing the product finish
before the addition begins.
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Figure 6: CA implementation of PM systolic multiplication, shown
with most-significant bit on the right. Row ¢ represents the CA states
at time ¢; that is, time goes from top to bottom. The symbol “R”
represents a right-moving 1, “L” a left-moving 1, and so forth. The
computation is 3 X 3 = 9. The data particles keep going after they
interact with the processor particles, and would probably be cleaned
up in a practical situation.
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Figure 7: Illustration of nested computation. Shown is the particle
stream injected as input to a particle machine. Collisions among the
group on the left will produce the product A x B, with the result-
ing product moving right, and symmetrically for the group on the
right. Then the particles representing the two products will collide at
a stationary particle that represents an adder-processor, and the two
products will be added, as in Figure 3. The outlined “+” and “X” rep-
resent the particle groups that produce addition and multiplication,
respectively.

7. Digital filtering

A multiplier-accumulator is implemented in a PM by storing each product
“in parallel” with the previously accumulated sum, as in the second addition
method, which was illustrated in Figure 4. The new product and the old
sum are then added by sending through a ripple-carry activation particle,
which travels along with and immediately follows each coefficient (see Fig-
ure 8). This makes possible the PM implementation of a fixed-point FIR
filter by having a left-moving input signal stream hit a right-moving coef-
ficient stream. The multiplications are bit-level systolic, and the filtering
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Figure 8: Particle machine implementation of an FIR filter. The
coefficients h; collide with the input data words z; at multiplier-
accumulator particle groups indicated by “x”. Each such group con-
sists of a stationary multiplier group that stores its product and the
accumulated sum. The ripple-carry adder particles, indicated by “+7,
accompany each coefficient h; and activate the addition of the prod-
uct to the accumulated sum after each product is formed. Finally,
on the extreme left is a right-moving “propeller” particle that travels
through the results and propels them leftward, where they leave the
machine.

convolution is word-level systolic, so the entire calculation mirrors a two-
level systolic array multiplier [15, 16, 23, 24, 25, 30]. The details are tedious,
but simple examples of such a filter have been simulated and the idea verified.

8. Feedback

So far we have interpreted the PM substrate as strictly one-dimensional, with
particles passing “through” one another if they do not interact. However, we
can easily change our point of view and interpret the substrate as having
limited extent in a second dimension, and think of particles as traveling on
different tracks. We can group the components of the CA state vector and
interpret each group as holding particles that share a common track. All
tracks operate in parallel, and we can design special particles that cause
other particles on different tracks to interact. The entire CA itself can then
be thought of as a fixed-width bus, one wire per track.

To illustrate the utility of thinking this way, consider the problem of
implementing a digital filter with a feedback loop. Suppose we have an input
stream moving to the left. We can send the output stream of a computation
back to the right along a parallel track and have it interact with the input
stream at the processor particles doing the filter arithmetic. This feedback
track requires two bits, one for a “0” and one for a “1” moving to the right. In
order to copy the output stream to the feedback track we need an additional
particle, which can be thought of as traveling on a third track. This “copying”
particle can be grouped with the other processor particles and requires one
additional bit in the CA state vector. Altogether we need three additional
bits in the state vector to implement feedback processing.

In this multi-track scheme, each extra track enlarges the state space, but
adds programming flexibility to the model. Ultimately, it is the size of the
collision table in any particular implementation that determines the number
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of tracks that are practical. We anticipate that only a few extra tracks will
make PMs more flexible and easier to program.

9. Conclusions

We think the PM framework described here is interesting from both a prac-
tical and a theoretical point of view. For one thing, it invites us to think
about computation in a new way, one that has some of the features of sys-
tolic arrays, but at the same time is more flexible and not tied closely to
a particular hardware configuration. Once a substrate and its particles are
defined, specifying streams of particles to inject for particular computations
is a programming task, not a hardware design task, although it is strongly
constrained by the one-dimensional geometry and the interaction rules we
have created. The work on mapping algorithms to systolic arrays [31, 32]
may help us find a good language and build an effective compiler.

From a practical point of view, the approach presented here could lead
to new kinds of hardware for highly parallel computation, using VLSI imple-
mentations of CAs. Such CAs would be driven by conventional computers
to generate the streams of input particles. The CAs themselves would be

-designed to support wide classes of computations.

There are many interesting open research questions concerning the de-
sign of particle sets and interactions for PMs. Of course we are especially
interested in finding PMs with small or easily implemented collision tables,
which are as computationally rich and efficient as possible.

Our current ongoing work [34, 35] is also aimed at developing more appli-
cations, including iterative numerical computations and combinatorial prob-
lems such as string matching [26-29].
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