
Characterization and Theoretical Comparison of

Branch-and-Bound Algorithms for

Permutation Problems

WALTER H. KOHLER

University o/Massachusetts, Amherst, Massachusetts

AND

KENNETH STEIGLITZ

Princeton University, Princeton, New Jersey

ABSTRACT. Branch-and-bound implicit enumeration algorithms for permutation problems (discrete
optimization problems where the set of feasible solutions is the permutation group S~) are character-
ized in terms of a sextuple (Bp, S,E,D,L,U), where (1) B~ is the branching rule for permutation
problems, (2) S is the next node selection rule, (3) E is the set of node elimination rules, (4) D is the
node dominance function, (5) L is the node lower-bound cost function, and (6) U is an upper-bound
solution cost. A general algorithm based on this characterization is presented and the dependence of
the computational requirements on the choice of algorithm parameters S, E, D, L, and U is investi-
gated theoretically. The results verify some intuitive notions but disprove others.

KEY "WORDS AND PHRASES: discrete optimization, branch-and-bound implicit enumeration algo-
rithms, permutation problems, sextuple characterization, computational requirements, theoretical
comparison

CR CA'rgOOR[ES: 5.40, 5.49

1. Introduction

Branch-and-bound implicit enumeration algorithms have recently emerged as the
principal general method for finding optimal solutions for discrete optimization problems.
Application of the branch-and-bound technqiue has grown rapidly and a complete list of
references would exceed several hundred. Representative examples of this thrust include:
flow-shop and job-shop sequencing problems [8, 15, 16], traveling salesman problems [7],
general quadratic assignment problems [13], and integer programming problems [5].
Branch-and-bound algorithms, while usually more efficient than complete enumeration,
have computational requirements that frequently grow as an exponential or high degree
polynomial with problem size n. In these cases, their usefulness is limited to small size
problems (relative to the size of most practical problems). The identification and imple-
mentation of computationally efficient algorithms is essential. Although the branch-

Copyright © 1974, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.
This work was supported by the National Science Foundation under grant NSF-GJ-965, and the US
Army Research Office-Durham under contract DAHC04-69-C-0012.
Authors' addresses: W. H. Kohler, Department of Electrical and Computer Engineering, University
of Massachusetts, Amherst, MA 01002; K. Steiglitz, Department of Electrical Engineering, Princeton
University, Princeton, NJ 08540.

Journal of the Association for Computing Machinery. Vol. 21, No. 1, January 1974, pp. 140-156.

Characterization and Theoretical Comparison of Branch-and-Bound Algorithms 141

and-bound method has been surveyed and generalized by numerous authors [1, 2, 10--12,
14], very little has been proved about the relative computational requirements as a func-
tion of the choice of algorithm parameters. One notable exception is the recent work of
Fox and Schrage [4]. They compared theoretically the relative number of nodes exam-
ined by branch-and-bound integer programming algorithms for three different branching
strategies (next node selection rules).

To effectively compare algorithms, it is first necessary to establish some general classifi-
cation scheme. In tl~is paper we propose a classification scheme for branch-and-bound
algorithms based on a sextuple of parameters (B,S,E,D,L,U), where (1) B is the
branching or partitioning rule, (2) S is the next node selection rule, (3) E is the set of
node elimination rules, (4) D is the node dominance function, (5) L is the node lower-
bound cost function, and (6) U is an upper-bound solution cost. The general framework
for integer programming algorithms recently introduced by Geoffrion and Martsen [5]
is suggestive of the above scheme, but is not as explicit. We will demonstrate how the
sextuple (B,S,E,D,L,U) can be used to describe the class of common optimum producing
branch-and-bound algorithms for permutation problems (where the set of feasible solu-
tions is the permutation group S~). (This framework can be easily extended to describe
suboptimal producing branch-and-bound algorithms as well [9]). The class of permutation
problems includes flow-shop sequencing and quadratic assignment problems as special
cases. Within this basic framework, we investigate theoretically the relative number of
generated nodes and active nodes as functions of the choice of sextuple parameters
S, E, D, L, and U. The results of this analysis verify some of our intuitive notions and
disprove others.

2. General Characterization

Although the following definitions may seem too restrictive and the notation quite heavy,
we found it necessary in order to be formally precise and correct.

2.1. PRELIMINARY DEFINITIONS AND NOTATION
(1) A permutation problem of size n is a combinatorial optimization problem defined by

the triple (S , ,X , f) with the following connotation:
(i) The solution space S , & {permutations of n objects} = {~-}.

(ii) The parameter space X , each point x E X represents admissible "data" for the
problem.

(iii) The cost function f : S~ X X ~ R, where f(~, x) is the cost of solution f with
parameter value x.

(2) A globally optimal solution for parameter value x is a solution ~* E S,, such that
f(~*, ~) _< f (. , x) v ~ ~ sn.

(3) G i v e n a s e t M = { i l , / 2 , . - . , i m } ~ N - - a {1, 2 , . . - , n } , M d e n o t e s a p e r m u t a .
tion of the set M.

(i) If M = N, then ~M will be called a complete permutation on N.
(ii) If M ~ N, then ~.M will be called a partial permutation on N.

(iii) If M = ¢ , thene & v +.
(4) Given r, M A (rl, r2, . . . , rm).

(i) I rr M I & size of partial permutation ~ . M = } M I = m .

(ii) ~/ A N - - M.
(iii) If l E 217/, let ~-r u o l & (rl, r2, " - , r,~, 1).
(iv) K = (sl ,s~ , . . SE), let ~-,uo If ~-, is a permutation of the set K ~ M and ~.K ",

~K~ (. . . ((~, o 81) o s2) 84).
(v) { ~.M o} a__ { ~M o V, ~ I V~ is any permutation of 21~rl

A th pl ti of M = e c o m e o n lrr

= the set of all complete permutations beginning with partial permuta-
tion l]'r M.

142 W . H . K O H L E R A N D K . STEIGLITZ

(5) Given a set Y of partial permutations on N,

the completion of Y.

(6) Given zrr ~, M C N.
M , P M K (i) A descendant of ~'r is any partial permutation ~-, = ~rr o ~-~ with K C ~I.

M K (ii) An immediate descendant of zrr M is any descendant ~-f = ~'r o ~t such that K is a
singleton set and K C M, i.e. 7r, P = ~ o l for some 1 E M.

K (iii) An ancestor of ~r~ is any partial permutation 7rq L such that ~-r M = 7rq ~ o ~'t , K ~ 4~.
(iv) (The immediate ancestor of ~-r M is the ancestor ~.qL such that K is the singleton

set, i.e. if z f = (rl, r2, " ", r~), then the immediate ancestor is zq~ = (rl, r2, . . . ,
r m - 1) •

(7) A one-to-one onto mapping (bijection) is established between the set of partial
solutions of a permutation problem and the set of partial permutations of N. Each partial
solution is then denoted by its corresponding partial permutation ~.M The terins partial
solution and partial permutation will be used synonymously.

2.2. SEXTVPLE CHARACTERIZATION: (Bv,S,E,D,L,U). The optimum producing
branch-and-bound algorithms commonly used to solve the permfftation problem (S,,X,f)
[1, 10] can be characterized in terms of the sextuple (Bv,S,E,D,L,U). The sextuple
parameters are defined as follows:

(1) Branching rule B~, defines the branching process for permutation problems. The
object of branching is to partition the set of complete solutions S, into disjoint subsets.
These subsets are represented by nodes. Each node is labeled by a permutation ~.M~ de-
fined on a set Mu for Mu ~ N = { 1,2, • •., n}. The node labeled ~.~v~ represents the set of com-
plete solutions { 7r~ ~ o}. " • M~- Partial solutmn 7ru is an ancestor of each solution in the set l~-y ~ o}.
Branching at node ~b ~ = (bx, b~, " ' - , b~) is the process of partitioning set {~.~b o} into
{~r~ b o} = U ~ {(~'b Mb o l) o}. ~'b ~ is called the branching node. I t follows that { (~.~b o i)
o}~{(~r~ b o j) o} = 4~fori, j ~ ~ r ~ a n d i ~ j . Nodes r~ ~ o l ? l ~ Mb, are the imme-
diate descendants of branching node ~'b M~. These nodes are said to be generated at branch-
ing step ~ b . (To help simplify this cumbersome notation, ~'u will be used as a shorthand
notation for ~r~M~, with the set Mu understood.)

(2) Selection rule S is used to choose the next branching node, ~rb, from the set of cur-
rently active nodes. Node ru is currently active during the execution of algorithm
(Bv,S,E,D,L,U) if and only if it has been generated but not yet eliminated or branched-
from. The immediate descendants of branching node ~r~ are generated in lexicographic
order. Descendant ~rb o l, l ~ _~l~rb, is added to the set of currently active nodes if and only
if it is not eliminated by one of the node elimination rules in E. The algorithm is always
initiated by selecting e -= ~r ~ as the first branching node. (e is also assumed to be the first
node generated.)

Although many other variations are possible, the common selection rules are desig-
nated as follows:

(i) S = LLB (Least Lower-Bound Rules). Select the currently active node ~-~ with
the least lower-bound cost L (r~). In the case of ties, either select the node that was gene-
rated first, LLBgiPo, or last, LLBL~eo.

(ii) S = FIFO (First-In-First-Out Rule). Select the currently active node that was
generated first.

(iii) S = LIFO (Last-In-First-Out Rule). Select the currently active node that was
generated last, but skip those active nodes that are complete solutions unless there are no
active nodes that are incomplete.

The branch-and-bound algorithm is assumed to terminate if the next branching node
is a complete solution. When termination of (B~,S,E,D,L,U) occurs in this manner, it

Characterization and Theoretical Comparison of Branch-and-Bound Algorithms 143

will be proved in Section 3 that at least one of the currently active nodes is an optimal
complete solution.

(3) Dominance function D is a binary relation defined on the set of partial solutions of
(S~, x, f) . Given partial solutions (nodes) ~r~ and ~'z let ~-J¢ and ~ z¢ , rr~ be minimum cost
complete solutions beginning with rru and rr, respectively. That is, ~ E {~'y o} and
^N n ~N • , E {~'~°} withf(~J,x) = min{f(lrw,x) I~'w E {frye}} a df(~-, ,x) = min{f(rew,x)[rrw E
{ ~'z °} }. D is the transitive binary relation defined on the set of partial solutions of (Sn, x,f)

- - A N such that ~'v D ~r, if and only ill(S-S, x) < f(rr, , x). D is a subset of ~ chosen to have the
following properties for all partial solutions ~-~, ~v, and ~r~ :

(i) (Subset property). ~'v D rr, only if M~ ~ M, .
(ii) (Transitivity property.) rru D rr~ and ~-y D ~-, only if 7rw D ~-,.

(iii) (Consistency property). ~'y D r , only if L (Try) < L (r,).
Since D C ~), it follows immediately that rr~ D rr~ only if the minimum cost complete

solution descended from node ~ry has cost less than or equal to the minimum cost complete
solution descended from node 7r,. When this is true, ~ry is said to dominate ~r~. I t is usuMly
assumed that D is defined to contain all pairs % D ~rz with L (v~) < L (~'~) and M~ = N.
In general, D must be chosen such that a test for inclusion in D is computationally feasi-
ble.

(4) Lower-bound function L assigns to each partial solution ~-~ a real number L (~-~)
representing a lower-bound cost for all complete solutions in the set {era o}. L is required
to have the following properties:

(i) I f rr, is a descendant of ~'u, then L (~-,) > L (~-~).
(ii) For each complete solution rv ~ , L (~-~) = f (~-~,x).
(5) Upper-bound cost U is the cost of the currently known best complete solution

~r~ ~¢. rr~ y is updated during execution of the algorithm whenever a complete solution with
cost less than U is generated. If no complete solution is known, U is assumed to be some
cost, U & o:, greater than all possible costs.

(6) Elimination rules E are a set of rules for using dominance function D and upper-
bound cost U to render inactive (eliminate) newly generated and currently active nodes.
Given algorithm (B~,S,E,D,L,U), let ~-~ be the current branching node, ~'b o l an im-
mediate descendant of ~'b, and ~'~ a member of the currently active set at branching step
~-~, ~r~ ~ rb. E represents some subset of the following four rules:

(i) U/DBAS (upper-bound tested for dominance of descendants of branching node
and members of currently active set). If L (~rb o l) > U, then all members of { Orb o l) o}
have costs greater than the upper-bound solution ~-J where U a , = f (r r J , x). In th is case
• "b o 1 is eliminated after being generated and before becoming active. If L (~r~) > U, then
all members of { ~r~ o} have costs greater than the upper-bound solution rr~ ~. rr~ is then re-
moved (eliminated) from the active set.

(ii) A S/DB (active node set tested for dominance of descendants of branching node).
Each currently active node is tested for dominance of each descendant of the branching
node. If v~ D (~-~ o l) then ~-~ o l is eliminated after being generated and before becoming
active.

(iii) BFS/DB (branched-from node set tested for dominance of descendants of
branching node). Each previous branching node is tested for dominance of the descendants
of the current branching node. If ~-~ is a previous branching node and rr~ D Orb o l), then
rr~ o l is eliminated after being generated and before becoming active.

(iv) DB/AS (descendants of branching node tested for dominance of currently active
node set). Each descendant of the current branching node is tested for dominance of each
currently active node. If (~-~ o l) D ~r~, then ~-~ is removed (eliminated) from the set of
currently active nodes.

If E contains rules A S/DB and DB/A S, then the set of active nodes may depend on the
order in which AS/DB and DB/AS are applied. We will assume that AS/DB is applied
before DB/A S.

144 W. H. KOHLER AND K. STEIGLITZ

2.3. DESCRIPTIVE NOTATION AND CHART REPRESENTATION. T h e following notation
will be used to describe the detailed operation of algorithm BB a= (Bp,S,E,D,L, U) :

BFS (•) A set of previous branching nodes (branched-from nodes) at the beginning of
branching step 7rb.

= set of immediate descendants at branching step ~rb.
a= set of previously generated nodes at the beginning of branching step ~rb.
~- set of currently active nodes at the beginning of branching step ~rb.
a= set of all nodes eliminated during branching step Irb.

cost of upper-bound solution at the beginning of branching step 7rb.

With ~rt denoting the last branching node before termination of algorithm BB, then:

BFST a= set of all branched-from nodes at the time of termination of BB
= B E S (l r t) .

B F S T T = BEST U {Trt}.
GST -~ set of all generated nodes at the time of termination of BB

= G S (~)
= {el U {O.~eB~zrDB(~rb)}.

A ST _a_ set of all currently and previously active nodes at time of termination of BB
= U,b~Brsr+ AS(Irb).

Using the above notation, the elimination rules in E can be expressed as one of two
types: (1) for each ~rz in the set B, eliminate 7r~ if U (Trb) < L (lr,), or (2) for each lr, in the
set B, eliminate 7r~ if there exists some ~ru in the set A such that v~ D ~r~.
With E~ : A.--)--.B denoting a particular rule, the complete set of elimination rules is illus-
trated diagrammatically in Figure 1.

The general optimum producing branch-and-bound algorithm BB =a (B~,,S,E,D,L,U)
is charted in Figure 2 using the D-chart notation [3]. Figure 3 contains a detailed D-chart
of a simple implementation of the elimination rules. While other computationally more
efficient implementations can be used, the simplicity of the given implementation is con-
ceptually useful.

DB (~rb)

GS(n)
A S (n)

u(n)

3. Proof of Correctness

In this section several lemmas are proved to establish that the branch-and-bound al-
gorithm (B~,S,E,D,L,U) generates an optimal solution to the permutation problem
(S,,x,f). The first lemma shows that the set of complete solutions represented by the set
of currently active nodes always contains an optimal solution.

LEMMA 1 (Existence of optimal solution in completion of active set). Given BB =

BFS/OB

FIG. 1. Diagram of complete set of elimination rules

Characterization and Theoretical Comparison of Branch-and-Bound Algorithms 145

N * {1,2 n}
A S - I !
BFS ÷

wb÷e
UPOPT ÷ FALSE
~ * U
• N t~ w u ~- lr u (Branch-from ~b.)

~ (UmPT - FALSE) ̂ (IMb I < INI)

UPOPT " TRUE"'L'~ ! I
(Rule 1) [I , ~

~:u|e 2,i ~ J <-'~'{'b'

I AS ÷ AS -

(STOP) IBFS'BF5 U{ 'b)
I E S - e

I
I Use Elimination }

Rules To Flnd ES. I
I

I AS÷ (AS UOB)-ES I

I
(Update U and select U ÷

next branching w N ÷ ;~
U

node.) w b ÷ (AS,S,1)
M b ÷ {b l , b2 , . . . ,

bml, b - (b I ,
b 2 b m) }

(U - L(,b)) a ((S - LLB) v (IASl - 1)) ~
(Rule 1)

Addtttona| Notation:
1) (A,R,j) ~ jth element of set

A when ordered by
rule R.

2) LEX ~]extcographic order.

(Generate DB(wb).)
I

÷ (Mb,LEX,t)

~d ÷ Xb°Z
M d ÷ M b U {~}
DB ÷ DB U {w d}

FIG. 2.

^ (M d " N)

I
J c°mpute L('d) I

l.........~L~.~.~.d l) < u)

[I

I I
A

Chart representation of branch-and-bound algorithm (Bp,S,E,D,L,U)

(Bp,S,E,D,L, U). Suppose ~'b is the current branching node. Then the set of complete solu-
tions { A S (rb) °} contains an optimal solution.

PROOF. The proof is by induction on the active set at successive branching nodes.
Basis. The hypothesis holds trivially for the first branching node e = ~r *

since {AS(x-a)} = {~-~} and {~-~ o} = S , .
Induction Step. The hypothesis is assumed true for branching node ~rb and all previous

branching nodes. We will show the hypothesis to be true for the next branching node ~-o.
We can write

AS(I-c) = {~'u E AS(X-b) [~-~ ~ ~b and ~-y not eliminated by E}
U{(~-bol) I I E 2~'b and (~'b°l) not eliminated b y E } . (1)

146 W. H. KOHLER AND K. STEIGLITZ

I

I

Fro. 3(a). Implementation of elimination rules, Part A

W e mus t show t h a t {AS(~-¢) o} contains an op t ima l solut ion. Suppose ~ry E ASOrb) b u t
~y ¢E A S (Trc). I t follows f rom (1) t h a t 7r~ was e i ther e l imina ted by E or branched-f rom,
i.e. ~ = ~'b.

I f ry was e l imina ted by E then ~-~ was e l imina ted wi th rule U/DBA S or rulc DB/A S.
If ~'v was e l imina ted with U/DBAS, L (~) > U and no member of {~-~ o} is opt imal . I f
~-y was e l iminated with DB/AS, then (~'b ° l) D ~'~ for some 1 E ~7/b • In this case ~'u would
be replaced in the ac t ive set by (~'b ° l) . I t follows f rom the defini t ion of D t h a t { (~'b ° l) o}
contains an op t imal solut ion if {~-y o} does.

Now suppose ~y = ~rb • Each immedia te descendan t of ~'b, rb ° l for l E ~7/b, is in AS (Trc)
unless i t is e l imina ted b y a t least one of the following e l imina t ion rules in E :

(i) U/DBAS. L((~'b o l)) > V(~'b).
(ii) AS/DB. ~'aD Orbol), ~r~, E AS(rrb).

(iii) BFS/DB. ~'s D (rb o l), rS E BFS(~'b).
Rule (i) only el iminates those descendants (~'b ° l) t h a t have no op t imal complet ions .
Rules (ii) and (iii) e l iminate descendants (~'b ° l) only if there exists ano ther cur ren t ly
ac t ive node lr~ E AS(~'b) n AS(Try) such t h a t lr~ D (~b ° l) . I t follows f rom the defini t ion
of D t h a t { ~z o} contains an op t imal solut ion if { Orb o l) o} does.

W e can conclude t h a t for all ~-y E AS(~'b) there exists some ~-~ E AS(I-o) such t h a t
• -~ ~D ~-~. Consequent ly , {AS(~-c) o} contains an op t ima l solut ion if {AS(u-b) o} does. []

The next three lemmas demons t r a t e t h a t (Bp,S,E,D,L,U) as implemented in F igure 2
t e rmina tes wi th an op t imal complete solution. Te rmina t ion occurs when the uppe r -bound
solut ion has been proved op t imal (Rule 1), or when the next branching node, ~'b, is a
complete solut ion (Rule 2). When ~'b is a comple te solution, i t will be shown t h a t the set

Characterization and Theoretical Comparison of Branch-and-Bound Algorithms 147

Rule
U/DBAS)

I
(~) , ~. IDBI

I

J u (,d } J I "a" (AS,S,t) I

 u'"l t ,.,÷l t

Rule

I
I I

'w d (OB,FIFO,t)

(~) (J ~ IASI) A (w d i ES) I

I "a+ (AS,S,J) I
t - t + 1 ~) J ~ J ^ (.a ~ ES)

• V J * J " I

FIO. 3(b). Implementation of elimination rules, Part B

of active nodes, AS(~'b), contains an optimal solution, and for the special case when
S = LLB, ~rb is an optimal solution.

LEMMA 2 (Stopping rules for optimal solutions when S = L L B) . Given B B =
(B~,,LLB,E,D,L, U). Let ~b be the next branching node.

(1) I f L (Trb) = U (Trb), then ~-u N is an optimal solution (Rule 1).
(2) I f Mb = N, then ~'b is an optimal solution (Rule 2).
PROOF. (1) rb E AS(Trb) by definition and {AS(~'b) o} contains an optimal solution

(Lcmma 1). Since the L L B selection rule chose ~-b as the active node with the least lower-
bound cost, L (rb) represents a lower bound on the cost of all complete solutions to
(Sn,x,f). I f f (~-J , x) = U (~'b) = L (~'b), then ~-J must be an optimal solution.

(2) Since ~'b is the next branching node under S = LLB, L (~'b) = fOrb, x) is a lower

148 W. H. K O H L E R AND K. STEIGLITZ

Rule

I
t ÷ l J I i .iIDBI

Rule OB/AS)

I
~d ÷ (DB,FIFO,i) [
j ÷ l I

(~)(J ~ IBFSl) ̂ ('d ~ ES)
I

I ' - ' + ' I

_

".' I

i J . s + , I
I

i l]
~i ~IASl

I ir a (AS,S,i)

• (j £ lOB() A ('a ~ ES)

I I " d " (OB,FIFO,J)J
~ , L . ~ , . ~ i) ^ ('d WE ES)

] ES*ESU{,a }'

FzG. 3(c). Implementation of eliminatign rules, Part C

bound on the cost of all solutions in {AS (Xb) o}. Since {AS (Xb) o} contains an optimal so-
lution (Lemma 1), Vb must be one of them. []

LEMMA 3. (Stopping rules for optimal solutions when S = FIFO) . Given B B =
(Bp,FI FO,E,D ,L, U) , let rb be the next branching node.

(1) I l L (n) = U (rb) and I AS(~b) (= 1, then T J is an optimal solution (Rule 1).
(2) I f n is the first branching node such that ~la = N, then AS(~b) consists of complete

solutions and some r ~ E A S (xb) is an optimal solution (Rule 2).
PROOF. (1) Since I AS(xa) I = 1, AS(rb) = lXb}. But {AS(xb) o} contains an op-

t imal solution (Lemma 1). Consequently, L (Xb) is a lower bound on the cost of an opti-
mal solution. Since x N achieves this bound, L (Xb) = U(,rb) = f (x J , X), x ~ must be opti-
mal.

(2) Under FIFO all active nodes of size k are selected ibr branching before any active
nodes of size k W 1. Consequently, if Mb = N = { 1, 2, . . . , n}, there are no active nodes in
A S (n) of size n -- 1 or less. Then all nodes in A S (n) must be complete, AS(~rb) --
{AS (Xb) o}, and A S (Xb) contains an optimal solution (Lemma 1). []

Characterization and Theoretical Comparison of Branch-and-Bound Algorithms 149

LEMMA 4. (Stopping rule for optimal solutions when S = L I F O) . Given B B =
(B~,LIFO,E,D,L, U), let ~-~ be the next branching node.

(1) I f L (~-~) = U (~rb) and I A S (~r~) [= l, then 7rJ is an optimal solution (Rule 1).
(2) I f ~-~ is the first branching node such that Mb = N, then A S (Try) consists of complete

solutions and some ~r f ~ A S (~r~) is ann optimal solution (Rule 2).
PROOf. (1) Same as for Rule (1) of Lemma 3.
(2) Under L I F O all active nodes of size k < n are selected for branching before any

active node of size n. Consequently, if ~'b is such that M~ = N , A S (Trb) must consist of
complete solutions, i.e. nodes of size n. As in Lemma 3, A S (~-~) = { A S (~r~) o} and it fol-
lows from Lemma 1 that A S (~-~) contains an optimal solution. []

For the special case when L is defined such that L (~-~) = f(~-~ o l, x) if I r~ 1 = n -- 1,
a set of modified selection and stopping rules can be used to terminate the branch-and-
bound algorithm with an optimal solution. Lemma 5 describes the minor modifications
that would be necessary to implement these rules. Fewer nodes are usually generated
when using these modifications but the relative comparisons discussed in Section 4 would
remain the same. Attention will consequently be directed at the more general case.

LEMMA 5. (Stopping rules for special lower-bound function). Given B B =
(B~,S ,E,D,L,U) . Suppose L(~-~) = f(Tr~ o l, x) for all nodes ~-~ with I ~'p l = n -- 1. (In
this case 2~/~ = {l} .) Then ~-~ can be interpreted as the unique complete solution %, o 1. Let ~'b
be the first branching node such that [~-~ [= n - 1. For this case the selection rules and second
stopping rule (Rule 2) for an optimal solution can be defined as foUows:

(1) S = L L B ' = L L B : ~r~ o l is an optimal solution.
(2) S = FIFO ~ = FIFO: There exists some 7r, ~ AS(~b) such that I 7r~ I = n - 1 and

~r~ o k, k ~ 21I~ , is an optimal solution.
(3) S = LIFO~: (Under L IFO ' active nodes that represent partial solutions of size n -- 1

are selected for branching only i f there are no active nodes of size less than n -- 1 currently
active.) There exists some ~-, ~ AS(q-b) such that [~r~ l = n - 1 and ~r~ o lc, k ~ 211-, , is an
optimal solution.

PRoof. Similar to proofs of Lemmas 2, 3, and 4. []

4. Theoretical Comparison of Computational Requirements

In this section the relative computational requirements of BB~ = (Bp,S,E~,Di,L~,U~),
for i = 1, 2, will be studied as functions of the parameters E~, D~, L~, and U~ for fixed B
and S. The comparisons presented here are valid for any measure of computation that is
a monotone nondecreasing function of I G S T I, I B F S T + I,]BFS(~rb) I, and I AS(~rb) [,
VTrb C B F S T - ~ . This generalized case is important when E contains elimination rules
that search sets B F S (~-b) and A S (~-b) to check for dominance. However, to simplify the
exposition the total number of nodes generated, [GST~ [, will beusedasa relative measure
of required execution time, and the maximum size of the active node set,
max,~eBvsr~+ [AS~(~'y)[, will be used as a relative measure of the required storage.
When comparing parameters the following definitions will be used:

(i) D2 ~ D1 if for every pair of partial solutions ~-y and ~-~, ~'u D~ ~r~ only if ~'y D1 ~-~.
(it) L2 _< L~ if for every partial solution ~-y, L2 (Try) < L~ (~'v).

I t follows directly that [GST~ I -< [GST2 [if BFST1 ~ B F S T 2 . I t will usually be easier
to prove BFST~ ~ BFST2 and let I GST1 I -< I GST2 [follow as a consequence.

The first theorem in this section shows that the required storage and execution time
cannot be increased by adding node elimination rule U / D B A S to E.

THEOREM 1. (The set of branched-from nodes and the maximum number of active
nodes cannot increase when nodes are eliminated on the basis of their lower-bound cost
exceeding an upper-bound cost). Given BB1 = (Bp,S ,Ei ,D,L,U) and BB= = (B~,,S,-
E2,D,L,U). I f E~ = E2 U { U / D B A S } then

(1) BFST~ C B F S T 2 , and
(2) max,~eBFST~+ [AS~(~ry) I ~ max,~eB~sr~+ { AS2(~-y) I.
PRoof. Rule U / D B A S eliminates those nodes ~ E DB(~'b) UAS(~ 'b) , n ~ B F S T ,

1 5 0 W. H. KOHLER AND K. STEIGLITZ

with L (~r~) > U(~'b) ~ f(r*, x). The important fact i s that when ~ry D r~ and U/DBAS
eliminates ~-y, then U/DBA S will also eliminate ~-~. This follows from the requirement
on D that ~-~ D ~r~ only if L (~) ~_ L (~'z). Another property of the lower-bound function
is that L(~-~) > L(~r~) when ~'d is a descendant of ~-~. Consequetly, U/DBAS elimin-
ates all nodes previously eliminated by descendants of ~-~ using dominance function D.
That is, when ~r,D lrw, then L (~-~) > L(~-~) > L (~-~) > U(~b) _> f(~*, x) and U/DBAS
eliminates ~-w •

We can conclude that when ~-y is eliminated under BB~, then r~ is also eliminated under
BB1 if it is generated. Furthermore, U/DBA S cannot increase the size of the currently
active set because U/DBAS eliminates nodes before they become active. (1) and (2)
follow directly. []

While the above theorem justifies our intuitive feeling about using elimination rule
U/DBA S, a set of counterexamples can be constructed to contradict our intuition about
the universal value of a stronger dominance function. In particular, we conclude that the
computational requirements of (Bp,S,E,D,L,U) are not necessarily a monotone nonin-
creasing function of the dominance function D. We give here a counterexample for the
case when S = LLB. Similar counterexamples can be constructed for S = FIFO and
LIFO.

Nota t ion :

L(wy) ~ I ~ 11
23@
17 i - l l

1 ~ / , ~ 132 l ' ~ a

20 v

®
14 ~ 21 213 21 2134

20

15

23

25

27

3|

27

28

3O

34

34

FIG. 4. Complete search tree for C o u n t e r e x a m p l e LLB-1

Characterization and Theoretical Comparison of Branch-and-Bound A lqorithms 151

COUNTEREXAMPLE LLB-1. (When using the L L B selection rule, the total number of
nodes generated and the maximum number of active nodes are not necessarily monotone
functions of the dominance function). Given BB1 -- (B, ,LLB,E,Di,L,U) and BB2 =
B~,LLB,E,D2,L, U). I f D, ~ DI it does not necessarily follow that

(1) I GSTl l < [GST2 [, or

PaooF. The problem example is defined by the complete search tree of Figure 4. The
lower-bound cost associated with node ~-y, L (~-~), is written to the upper left of the cor-
responding node in the tree. For ease of notation ~-, ~ (a,, a2, . . . ,a,~) will be denoted
by a,a¢ . • • a,~, and membership in the dominance function D~, ~'v Di ~', , will be de-
noted by the pair (Try, ,r~). In particular, let BB1 = (Bp,LLB,1DB/AS} ,D, ,L ,~) and
BB2 = (B~,LLB,{DB/AS},D2,L, ~) where D2 = {(24, 4), (23, 3)} U { (,tu, ~) { L (v~) <_
L(~-,) and M~ = N} and D, = D, U {(12, 2)}. U~ = ~ is used to indicate that no solu-
tion is known at the start of algorithm BB~, and U~ (e) is set equal to some number guar-
anteed to be greater than f(T, x), V t r E S . .

The steps of BB~ will be described in terms of ordered sets (AS~(,b), LLB, j) ,
(DBi (~'b), L E X , k), and (ES~ (~'b), FIFO, l,), where (A,R,j) is defined as the j th element
of set A when ordered by Rule R. The steps of BB1 are as follows:

BBI

(DB,(,rb), (ES,(*'b), FIFO, l) fb (A~l(fb), LLB, j) LEX, k)

e (e) (I, 2, 3, 4)
1 (1, 2, 4, 3) (12, 13, 14)
12 (12, 4, 3, 13, 14) (123, 124)
4 (4, 3, 123, 13, 14, 124) (41, 42, 43)
3 (3, 123, 13, 14, 41, 42, 43, 124) (31, 32, 34)
31 (31, 32, 34, 123, 13, 14, 41, 42, 43, 124) (312, 314)
32 (32, 34, 123, 13, 14, 41,42, 43, 124, 312, (321, 324)

314)
34 (34, 123, 13, 14, 41, 42,43, 124, 312,314, (341,342)

321,324)
123 (123, 13, 14, 41, 42, 43, 124, 312, 314, 321, (1234)

324, 341,342)
1234 (1234)
Rule 2 ~ , * = 1234

4,
(2)
4,
4,
4,
4,
4,

4,

(13, 14, 41, 42, 43, 124, 312,
314, 321,324, 341,342)

The statistics for BBi are I GST,[= 23 and max,~eBrsrl+ I ASi(~'~) [= [AS,(123) [=
13.

The steps for BB2 are as follows:

BB,

~b (AS,(~b), LLB, j) (DB,(~rb), (ES,(*'b), FIFO, l)
LEX, k)

e (e) (1, 2, 3, 4) 4,
1 (1, 2, 4, 3) (12, 13, 14) 4,
12 (12, 2, 4, 3, 13, 14) (123, 124) 4,
2 (2, 4, 3, 123, 13, 14, 124) (21, 23, 24) (3, 4)
24 (24, 23,123, 13, 14, 21, 124) (241,243) 4,
23 (23, 123, 13, 14, 21,241,243, 124) (231,234) 4,
123 (123, 13, 14, 21,231, 234, 241,243, 124) (1234) (13, 14, 21,231, 234, 241,

243, 124)
1234 (1234)
Rule 2 ~ ~-* = 1234

In the case of BB2, I GST2 I = 18 and max,~eBrzr2+ [AS2(~) I = I AS2(123) I -- 9. D

152 W, H. K O H L E R AND K. STEIGLITZ

The next theorem will show that the computational requirements of (Bp, S,E,D,L, U)
when S = FIFO or LIFO are monotone functions of both the lower-bound function L
and the initial upper-bound cost U(e). Corollary 1 establishes that the relationship is
valid for any measure of computation that is a monotone nondecreasing function of
I GST h [BEST+ t, 1BFS(~-b) I, and [AS(~rb) I, V~'b E BFSTg-.

THEOREM 2 (When using the FIFO or LIFO selection rule, the set of branched-from
nodes and the maximum number of active nodes are monotone functions of the lower-
bound function and the initial upper-bound cost). Given BE1 = (B~,S1,E,D,Li,U1)
and BE2 = (B~,S2,E,D,L~,U2). I f S1 = $2 = FIFO or LIFO, L1 > L2, and Ul(e) _<
Us (e), then

(1) BEST1 C_ BFST2, and
(2) max,~e,~sr~+ I ASR(v~) I g max,~eB~sr2+ I AS2(Tr~) I.
PROOF. 1 First assume U/DBAS $ E and let ~r, be the branching node at the time of

termination of BB~. We will prove by induction that
(i) BFS~(rb) = BfS2(rb), V~rb e BFS,(r ,) U Iv,} = BFSTI+.

(ii) A S i (n) = AS2(~-b), ~ '~ E BESTOW.
(iii) U~(n) _< U2(n) , V,rb E BESTs+.
Basis. (i)- (iii) are true for the first branching node lrb = e.
ITwluction step. Let vk denote the kth potential branching node when the complete

permutation search tree is enumerated using rule S = S1 = $2. If node 7rk or one of its
ancestors has already been eliminated, then ~'k is not active and the next node, ~'k+l, is
enumerated. If vk is active, then branching and updating proceeds as in the usual branch-
and-bound algorithm. This scheme coincides with the usual branch-and-bound algorithm
at all branched-from nodes Vb E BESTs, i = 1, 2. We will prove (i)-(iii) by induction
on successive candidate nodes ~k until termination of BB~. Assume

(i) BFS, (~rk) = BFS~ (,rk)
(ii) ASl(~rk) = AS~(rk), and

(iii) Ul(~k) < U2(~k).
The inductive step can then be verified in each of the following cases:

(a) ~r~ ~ BFST~ VI BEST2,
(b) ~r~ ~ BFST~ ~ BESTs,
(c) ~r~ ~ BFST~ ~ BEST2, and
(d) r~ ~ BFST~ ~ BESTs.
Next assume U/DBA S ~ E and again let r , denote the branching node at the time of

termination of BBi . I t can then be shown by induction, in a manner analogous to the
above, that

(i) BFS~(vb) C BFS2(vb), V~rb ~ BFSiOr,) U {~} = BFSTi+ ,
(ii) I f r~ 5 BFS2 (n) - BESs (rb), n ~ BEST ,+ , then L~ (~) > U~ (n) ,

(iii) AS,(~-b) ~ AS2Orb), V~rb ~ BFST~+,
(iv) If ~'~ ~ AS2(~rb) - ASl(~rb), rb ~ BFST1+, then L~(~r~) > U~(Trb), and
(v) U~(~rb) _< U2(rb), V~rb ~ BFST~+. []

COROLLARY 1. (Generalization of Theorem 2). Given BBi = (B~,S~,E,D,L1,U~)
and BEE = (B~,S2,E,D,L2,U~). If S~ = S~ = FIFO or LIFO, Li ~_ L~, and U~(e) _<
U~(e), then

(1) BESTs+ ~ BESTs+,
and for all Vb ~ BFST1+,

(2) BFS~Orb) _C BFS~(n),
(3) if ~'u ~ BFS~(~rb) - BESs(n) , then L~(~'~) > Ux(~rb),
(4) ASi(~) = AS~(~),
(5) if ~r~ ~ AS~(~rb) - AS~(~-b), then LlOru) > U l (n) , and
(6) Ul(n) _< U~(~b).
PRooF. (1)-(6) were proved in Theorem 2. []

This proof is lengthy, and only an outline is given here. For details, see [9].

Characterization and Theoretical Comparison of Branch-and-Bound Algorithms 153

Theorem 3 and Counterexample LLB-2 will now show that when S = LLB, the com-
putational requirements are monotone functions of the initial upper-bound cost U(e)
but not necessarily the lower-bound function L. This counter-intuitive observation is
related to the fact that modifying the lower-bound function may also change the branch-
ing order. Corollary 2 indicates the general version of Theorem 3 and Lemma 6 will be
used in the proof.

LEMMA 6. Given (Bp,LLB,E,D,L,U). Let r* be an optimal complete solution. I f ru is
any partial solution such that L (~'u) > f (r*, x), then

(1) Ira ~ BFST, and
(2) ~ ~ ~ if ~-~ E BEST.
PRooF. Part (1) is proved by contradiction. Assume ~-y E BEST. Then it follows

from branching rule LLB that L (~) _~ f (~*, x), which is a contradiction.
Part (2) is also proved by contradiction. Assume ~ D ~r~ for some r~ E BEST. I t

follows from the consistency requirement on D that L(~r~) < L(r~). Prom part (1),
r, E BEST only if L(~rz) < f(~'*, x). Consequently, L(~u) ~ L(~,) ~ f(~*, x). Again
this contradicts the assumption that L (~) > f(~r*, x). []

THEOREM 3. (When using the LLB selection rule, the set of branched-from nodes and
the maximum number of active nodes are monotone functions of the initial upper-bound
cost U (e)). Given BB~ = (Bp,LLB,E,D,L,U,) and BB2 = (B~,LLB,E,D,L, U2). I f
Ul(e) ~ U2 (e), then

(1) BEST1 ~ BFST2, and
(2) max,,e,Fz~,+] ASl(~ry)] < max.~e,Fzr~+ [AS2(~-~) I.
PaOOF. Since L1 = L2 = L, D~ = D2 = D, and E~ = E2 = E, the order of branching

under S = LLBL~O or LLBp~Fo is independent of the upper-bound cost U~ (rb). The
upper bound is used in two ways, neither of which modifies the order of branching: (a)
it is used with the first stopping rule (Rule 1) to terminate BB~ if L(~'b) = U~(rb) at
branching node n , and (b) it is used with elimination rule U/DBAS to eliminate all
nodes ~-q E D B (n) U A S (~) such that Li(~'q) > Ui(~'b). But we know from Lemma 6
that ~rq is never branched-from under S = LLB if L~(Trq) > f(v*, x). Consequently, the
upper-bound cost cannot modify the order of branching.

Now assume U/DBA S ~ E and let r~ be the branching node at the time of termina-
tion of BB~. Using the same argument as in Theorem 2 with L = L~ = L2, we can prove
by induction on successive branching nodes that

(i) BFSi(~-b) = BFS2(~b), Vrb ~ BFS i (~) U {~} = BFST~+,
(it) AS~(rb) = AS2(Tro), V~'b ~ BEST ,+ , and

(iii) U~ (~-~) < U~ (~rb), V ~ ~ BEST1+.
Next assume U/DBAS ~ E and let ~ be the branching node at the time of termina-

tion of BB~. Again using an argument similar to the one in Theorem 2 with L = L, = L~,
we can prove by induction on successive branching nodes that

(i) BFS , (~) = BFS2(~-b), V~'b ~ BFST~+,
(it) A S i (n) _~ AS2(n) , YTr~ ~ B F S T ~ - ,

(iii) i f ~ ~ AS2(~-~) -AS~(r~) , then L(~r~) > U~(~rb), and
(iv) U~(~rb) _~ U~(r~), V~rb ~ BESTs+.
In both cases BFS~(~-~) {J Ire} = BFST i+ ~ BFS2(~-~).(J {~r~} ~ BFST~-~, and (1)

and (2) follow directly. []
COROLLARY 2. (Generalization of Theorem 3). Given BB~ = (B~,LLB,E,D,L,U~)

and BB: = (B~,LLB,E,D,L,U~). I f U~ (e) _~ U2(e), then
(1) BFSTi+ ~ BFST2+,

and for all rb ~ BFSTt+,
(2) BFS~ (~b) = BFS~ (~'b),
(3) AS~(~b) ~ AS~(~b),
(4) if~r~ ~ AS2(~b) - AS~(Trb), then L (~) > U~(~), and
(5) U~ (~-~) < u~ (~-~).
PROOF. (1)-(5) follow from the proof of Theorem 3. []

154 w . H . KOHLER AND K. STEIGLITZ

1

2 ®

L2

1 2

2

4

FiG. 5. Partial search trees for Counterexample LLB-2

2 ®

COUNTEREXAS.IPLE LLB-2 (When using the L L B selection rule, the set of branched-
f rom nodes and the m a x i m u m number of ac t ive nodes are no t necessari ly monotone
funct ions of the lower-bound funct ion) . Given BB1 = (Bp ,LLB,E,D,L1 ,U) and BB~ =
(Bp ,LLB,E ,D,L~,U) . I f L1 _> L2 it does not necessarily follow that

(1) I GST , I -< I GST~ I, or
(2) max,~e,Fzr,+ [AS~(~y) I , < max~eBgzr2+ { AS2(ry) I.
PROOF. Let BB1 = (Bp,LLBL~o,ch,¢,L1,U) and BB2 = (B,,LLBL~Fo,Ch,¢,L2,U).

Lower-bound funct ions L1 and L2 used for this example are defined b y the pa r t i a l search
trees of F igure 5.

A lgor i thm BB~ executes the following s teps :

BB~

(ASl(lrb), LLBLivO, 3") (DBi(~'b), LEX, k) (ESl(~rb), • "b FIFO, l)

e (e) (1, 2, 3, 4) 4,
1 (1, 2, 3, 4) (12, 13, 14)
14 (14, 13, 12, 2, 3, 4) (142, 143) 4,
13 (13, 12, 143, 142, 2, 3, 4) (132, 134) 4,
12 (12, 134, 132, 143, 142, 2, 3, 4) (123, 124) 4,
123 (123, 124, 134, 132, 143, 142, 2, 3, 4) (1234) 4,
1234 (1234, 124, 134, 132, 143, 142, 2, 3, 4)
Rule 1 ~ ~r* = 1234

Characterization and Theoretical Comparison of Branch-and-Bound Algorithms 155

are}(;ST,] = 15and max,~BF~r,+lAS~(~r~) I = 9. The computational requirements of BB~ '
Algorithm BB2 executes the following steps:

BB~

(E&(,~b),
~rb (AS~(~'b), LLB L,vo, j) (DB2(x'b), LEX, k) FIFO, l)

e (e) (1, 2, 3, 4)
1 (1, 2, 3, 4) (12, 13, 14)
12 (12, 14, 13, 2, 3, 4) (123, 124) ,~
123 (123, 14, 13, 124, 2, 3, 4) (1234)
1234 (1234, 14, 13, 124, 2, 3, 4)
Rule 1 ~ ~* = 1234

The computational requirements of BB2 and lGST2] = 11 and max,~eBFsrz+]AS2(rv) I
= 7 . []

5. Conclusions

We have proposed the sextuple characterization scheme (B,S,E,D,L,U) for branch-and-
bound algorithms and demonstrated how it can be used to describe the common optimum
producing algorithms for permutation problems. This framework provided a sufficient
basis for a theoretical investigation of the relative computational requirements of various
algorithms for a general class of problems. Figure 6 summarizes these results. Theorem 1
shows that you cannot lose by eliminating those currently active and newly generated
nodes that exceed an upper-bound solution cost. Theorems 2 and 3 show that you cannot
lose by using a better solution as the initial upper bound. Computational experience with
a wide variety of flow-shop problems in fact demonstrates that total computation can be
significantly reduced by using a good heuristic method to obtain an initial upper-bound
solution, and then using an upper-bound dominance function like U / D B A S to eliminate
suboptimal solutions from further consideration [9]. The fact that the number of gener-
ated and active nodes are not necessarily monotone noninereasing functions of t h e
dominance and lower-bound functions does not mean that stronger dominance and
lower-bound functions are worthless. I t just says that the number of generated and active
nodes may sometimes increase. In practice one usually finds a decrease, but the total
computation time may actually increase if the time required to compute the stronger D
and L exceeds the savings.

Our analysis can be extended and related to other approaches by choosing new special
cases of the sextuple parameters. For example, when B & By, S ~ FIFO, E & { A S / D B ,
D B / A S}, D and L can be defined [91 so that (B,S,E,D,L, U) describes the dynamic pro-
gramming approach to one-machine sequencing problems [6].

BBi = (Bv,S,Ei,Di,Li,Ui)

E l = D t ~ D2 L1 > L~ U l (e) < U2(e) Requirements E2 tJ { U / D B A S } - - - - -

(1) BFSTi ~ BFST2 ,

(2) [GST1 I _< [GST2 [, and

(3) max~uEB~,,sn + I ASl(~'u) [
_< max~.ucBvsn+ I AS, (fv) i

True False (counter- S =LLB True
(Theorem 1) examples LLB-1, ~False (counter- (Theorems

FIFO-l, example LLB-2) 2 and 3)
LIFO-l)

S = FIFO
or LIFO

True
(Theorem 2)

FIG. 6. Relat ive computational requirements as functions of E, D, L, and U for fixed B~ and ,.~

156 W . H . KOHLER AND K. STEIGLITZ

REFERENCES

1. AGIN, N. Optimum seeking with branch and bound. Manag. Sci. 13, 4 (Dec. 1966), B 176-
B 185.

2. BALAS, E. A note on the branch-and-bound principle. Opcr. Res. 16, 2 (March-April 1968),
442--444; Errata, Oper. Res. 16, 4 (1968), 886.

3. BRUNO, J., AND STEIGLITZ, K. The expression of algorithms by charts. J. ACM 19, 3 (July 1972),
517-525.

4. Fox, B. L., AND SCHRAGE, L. E. The value of various strategies in branch-and-bound. Un-
published rep., June 1972.

5. GEOFFRION, A. M., AND MARSTEN, R . E . Integer programming algorithms: A framework and
state of the art survey. Manag. Sci. 18, 9 (May 1972), 465--491.

6. HELD, M., ANn KARP, R. A dynamic programming approach to sequencing problems. J. S IAM
I0, 1 (March 1962), 196-210.

7. HELD, M., AND KARP, R. The traveling-salesman problem and minimum spanning trees: Part
II. Mathematical Programming I, 1 (Oct. 1971), 6-25.

8. IGNALL, E., AND SCHRAGE, L. Application of branch and bound technique to some flow-shop
scheduling problems. Oper. Res. 18, 3 (May-June 1965), 400-412.

9. KOHLER, W . H . Exact and approximate algorithms for permutation problems. Ph.D. Diss.,
Princeton U., Princeton, N.J., 1972.

10. LAWLER, E. L., AND WOOD, D. E. Branch-and-bound methods: A survey. Oper. Res. 1$, 4
(July-Aug. 1966), 699-719.

11. MITTEN, L .G. Branch-and-bound methods: General formulation and properties. Oper. Res. 18,
1 (Jan.-Feb. 1970), 24-34.

12. NOLLEMEIEn, H. Ein branch-and-bound-verfahren-generator. Computing 8 (1971), 99-106.
13. PIERCE, J. F,, AND CROWSTON, W.B . Tree-search algorithms for quadratic assignment prob-

lems. Naval Res. Logislics Quart. 18, 1 (March 1971), 1-36.
14. RoY, B. Procedure d'exploration par sdparation et dvaluation. Rev. Francaise d'Informalique

et de Recherche Opdrationelle, 6 (1969), 61-90.
15. SCHRAGE, L. Solving resource-constrained network problems by implicit enumeration--non~

preemptive case. Oper. Res. 18, 2 (March-April 1970), 263-278.
16. SCHRAGE, L. Solving resource-constrained network problems by implicit enumeration--pre-

emptive case. Oper. Res. 20, 3 (May-June 1972), 668---677.

RECEIVED SEPTEMBER 1972; REVISED FEBRUARY 1973

Journs| of the Aaeociation for Computing Machinery, Vol. 21, No. I, January 1974

