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EVALUATING POLYNOMIALS AT FIXED SETS OF POINTS*

A. V. AHOf, K. STEIGLITZ$ AND J. D. ULLMANt

Abstract. We investigate the evaluation of an (n-1)st degree polynomial at a sequence of n
points. It is shown that such an evaluation reduces directly to a simple convolution if and only if the
sequence of points is of the form b, ba, ba2, ., ba for complex numbers a and b (the so-called
"chirp transform"). By more complex reductions we develop an O(n log n) evaluation algorithm for
sequences of points of the form

b + c + d, ba2 + ca + d, ba4 + ca2 + d,

for complex numbers a, b, c and d. Finally we show that the evaluation of an (n-1)st-degree
polynomial and all its derivatives at a single point requires at most O(n log n) steps.

Key words, polynomial evaluation, derivative, fast Fourier transform, chirp transform, straight-
line code, computational complexity, Taylor series

1. Introduction. We consider the following problem. Given an infinite
sequence of points ao, al, a2,"-, how long, as a function of n, does it take to
evaluate an arbitrary dense univariate polynomial of degree n- 1 at the first n of
these points?

Our model of computation is the straight-line code model. For each n, we
assume that the computation is performed by a sequence of assignment state-
ments of the form A -B 0 C, where A, B and (7 are variable names, constants, or
the names of coefficients of the polynomial (input variables), and 0 is one of the
operators +, -, or /. In addition, n variables are designated as output
variables, and after execution of the sequence of assignment statements, these
variables are to hold the values of the polynomial at the n points. Such a sequence
of assignment statements will be called an algorithm, and the complexity of an
algorithm is the number of assignment statements therein.

A straight-line algorithm that evaluates any (n- 1)st-degree polynomial at n
points is said to be an evaluation algorithm. The inputs to the algorithm are the
coefficients of the polynomial. A sequence of points ao, al, a2, is said to be of
complexity at most T(n), if for all positive n there is a straight-line algorithm with
at most T(n) statements that evaluates any (n 1)st-degree polynomial at the first
n points of the sequence.

It is known that an arbitrary sequence of points is of complexity at most
O(n log n)([1] modified by the treatment in [2], [3], [4]). Certain sequences of
points, however, are of complexity at most O(n log n). The best known such
sequence of points is the "chirp transform" [5], [6], a generalization of the "fast
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Fourier transform" (FFT) [7]. In the chirp transform, the sequence of points z,
z 1, z2, is used, where z is any complex number. A polynomial Y,"__- b,x’ can be
evaluated at the points z, z 1, ., z n-1 in O(n log n) time as follows. To compute

n--1

(1) cj Y b,z ij for0_-<j_-<n-1,
i=0

we rewrite (1) as"

n-1

(2) c b, z-(j-’)2/2 z ’/ z/ for 0_-< j _-< n 1.
i=0

Equation (2) is a convolution which can be evaluated in O(n log n) steps with the
FFT.

Our goal is to increase the set of sequences which are known to have
O(n log n) evaluation algorithms. While an interesting problem in its own right,
digital signal processing provides the practical motivation for considering the
evaluation of high-degree dense polynomials at more general sequences of points
than that of the chirp transform. See [8] and [9], for example.

The approach we use is to consider classes of sequences. The T(n) class of
sequences is the set of all sequences which have an O(T(n)) evaluation algorithm.
Thus for each complex number z, the sequence z, zl, is in the n log n class,
and every sequence is in the n log n class. We shall ultimately consider closure
properties of classes, but first we shall consider to what extent the chirp transfor-
mation generalizes directly.

It should be noted that our definition of "class" smears the boundary between
sequences of distinct degrees of difficulty. For example, it is by no means clear that
there is speedup by constant factors in the straight-line code model, as there is for
Turing machines [ 10]. It is likely that there are sequences that can be evaluated in
time (l+e)T(n) but not in time T(n) for any reasonable T(n) and e >0.
Nevertheless, the definition is a useful one to make, and we shall use it to
advantage subsequently.

2. Uniqueness of the chirp transform. We have seen that the chirp transform
,=o bd3(i)7(] i), where the b,’s are the.reduces to a convolution of the form a(j) ,-1

coefficients of the polynomial to be evaluated, and a,/3 and y are independent of
the bi’s. It is interesting to consider what other transformations, if any, can be
reduced to a convolution of this form. The following theorem shows that except
for a constant factor, the chirp transform is the most we can obtain by this
technique.

THEOREM 1. For n >= 3, suppose that the evaluation of an arbitrary (n 1)-st-
=o bx at the points ao, al," ", a,-1 can be expressed as adegree polynomial ,-1

convolution of the form
n--1 n--1

(3t , b,a a(j) b,/3(ilT( i) for 0 <-_,i <= n 1
=0 =0

for some functions a, and 3/independent of the b’s. Then a zl(z_) for some
complex numbers zl and z2.
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Proof. Since the b,’s are arbitrary, the left and right sides of (3) must agree
term by term. Thus

(4) a= a(j)8(i)y(j- i)

for all and between 0 and n- 1.
Suppose temporarily that aj 0 for any j. Taking logarithms of (4), we obtain

(5) log aj log a (j) + log/3 (i) + log /(j i) for 0 <- i, j _<- n 1.

Taking finite differences of (5) with respect to + 1 and j gives

/3(i+ 1) 3,(j-i- 1)
(6) log a, log

t/3"i----+ log
i)

for 0 =< < n 1 and 0 =< j =< n 1, and

(7) log a--L- =log a(j)+log 3’(j-i)
aj_, a(j-1) 3,(j-i- 1)

for 0 =< =< n 1 and 0 < j =< n 1. Summing (6) and (7), we obtain

(8) log ai + log ai log a(j)+log/3(i + 1_______)
a-i a(j-1) /3(i)

for 0 <= < n 1 and 0 < j _<- n 1. Taking (8) at 1 and subtracting from it (8) at
0, we obtain

(9) log ai log/3(0)/3(2) for 0 < j < n 1
aj_l /3(1)

(Note that n - 3 is necessary for this step to make sense.) It follows from (9) that

a /3(0)/3(2)
ai_l /3(1)2

fr 0<J <n-1

and therefore

(0)/3 (2)]a ao /3(1):
for 0=<j=<n-l.

Let zl ao and z_ =/3(0)/3(2)//3(1) to prove the theorem.
The detail which remains is what happens when. ai 0 for some j, say jo.

Referring back to (3), we see that the left side evaluated at ajo is just bo. Thus, in
place of equation (4) with j jo, we have

(10) a(jo)fl(i)3,(jo- i) 0 for 1 =< --< n 1,

(11) c(jo)/3(0)’y(jo) 1.

From (11) we see a (jo) 0. Thus by (10) we have/3 (i) 3’(jo i) 0 for 1 _-< -< n 1.
The theorem is easily seen to hold if a 0 for all j. Thus assume the contrary.

If /3(i)=0 for any i, then the right side of (3) is independent of b,. This is
impossible, since we assumed not all a’s are zero. We may conclude that
3’(jo- i) 0 for 1 -< =< n 1. It is sufficient to consider two cases.
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Case 1. ao=0 and ajo+l0. Then, since y(jo-1)=0, it follows that
/((jo+ 1)-2)=0. Thus, for j =jo+ 1, the right side of (3) is independent of b2.
Since n _-> 3 is assumed, we have a contradiction.

Case 2. ao 0 and ao-1 0. Then the right side of (3) is independent of bo for
j jo-1, again yielding a contradiction, i-I

Note that Theorem 1 is trivially true for n 1, but there is a counterexample
with ao 0 for the case n 2.

3. Closure properties of sequence classes. We see from Theorem 1 that the
chirp transform is essentially all that we can obtain by a simple convolution. More
extensive algebraic manipulations, however, do yield larger classes of sequences
for the n log n class. Before looking at these more complex operations, we derive
several "closure properties" that hold for the various sequence classes.

LEMMA 1. If sequence ao, al, a2,’’’ is in class T(n)>-n, and c is any
complex number, then sequence cao, ca1, ca2,.." is also in class T(n).

Proof. Let A. be an algorithm that takes as input the coefficients
Y,i=o b,aj for 0 <n- 1 as outputs. Then webo, bl, bn-1 and produces dj ,-1 __< j

n--1may construct algorithm B. to compute e Y,=o b,(ca) for 0 <_- j -< n 1. B. works
as follows:

1. In n 2 steps, compute f c’ for 2 _-< -< n 1. Let fo 1 and fl c.
2. In n 1 steps, compute g b for 0 -_< _-< n 1.
3. Apply algorithm Ao to coefficients go, gl," ", g,-1.

4. The outputs of A. are the desired outputs for
It should be clear that B. works, and that the length of the straight-line algorithm
B. is 2n 3 plus the length of A.. Thus, since T(n) >- n, we know that the length of
B. does not exceed 3 T(n).

LEMMA 2. If ao, al, a2, is in the T(n) >- n log n class, and k is any positive
integer, then ao, a, az, is also in the T(n) class.

Proo] The proof is again straightforward. Given the coefficients
bo, bl," ", b,-1, we construct a new sequence of coefficients of length kn by
inserting k- 1 O’s after each of the b’s. Then we break this sequence into k
subsequences of length n. We let the subsequences represent k polynomials
po, pl,’" ", p-l. We now have

n--1 k-1

(12)
=0 r=O

for 0__<j__<n- 1.
We use the assumed O(T(n)) algorithm k times to evaluate the pr’s at

ao, al, ", a,_l. The terms aT’ for 0 _-< j _-< n 1 and 0 _-< r _-< k 1 can be evaluated
in O(kn + n log n) steps, and the right side of (12) can be evaluated in O(kn) steps

r,, and pr(a)’s. Thus the entire algorithm requires O(kT(n))given the a
+ O(kn + n log n) steps. Since k is a constant and T(n) >- n log n, this function is
of the order of T(n). [-1

LEMMA 3. If ao, a, is in the T(n)>-_ n log n class and c is any complex
number, then ao + c, al + c, is also in the T(n) class.
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Y’.,=o b,(aj + c) for 0 -< j -< n 1. This can be donePro@ We wish to compute ,-1

in the following manner:

(13)
Z b,(a+c)’= Z b, ac’-r= Z b, ac ’-r

i=0 i=0 r=O r r---O i=r

If we define f(x) bxx! for 0 -< x _-< n- 1 and

-X/(-x)! for -(n- 1)-<x_-<O,
g(x)

0 for 1 _-< x -< n 1,

then we can allow the inner summation of (13) to range from 0 to n 1 and write
(13) as:

rn--1n--1

)i
n--1 aj

(14) Y. b,(a+c Y. [(i)g(r-i).
=0 r=O =0

It is easy to see how to compute the necessary values of f(x) and g(x) in O(n)
steps. Then the inner summation of (14) can be evaluated for 0 -< r-< n-1 in
O(n log n) steps, since it is a convolution. In O(n) more steps, we can compute
for 0 <- r -< n 1. Thus we can compute dr (1/r!) i"=- f(i)g(r i) for 0 _-< r =< n 1
in O(n log n) steps.

Thus the problem of evaluating ,"=- b,x’ at points ao + c, al + c, has been
reduced in O(n log n) steps to the problem of evaluating i"---2 dix at points
ao, al," ". The latter evaluation can be done in T(n) steps. Since T(n)>-n log n,
the desired evaluation takes O(T(n)) steps.

We may now combine the three lemmas to obtain additional closure proper-
ties of sequence classes.

THEOREM 2. If ao, a1,’’’ is in class T(n)>--n log n, b and c are complex
numbers, and k is any positive integer, then bao+ C, ba+ c, is in class T(n).

Proof. By Lemma 2, sequence ao, a,. is in class T(n). By Lemma 1, so is
sequence ba, ba,..., and by Lemma 3 we have the theorem.

THEOREM 3. /f sequence ao, al, is in class T(n)>-_ n log n, and b, c and d
are complex numbers, then bag 4- cao + d, ba + ca1 + d, is in class T(n).

Proof. By completing the square, we can find complex numbers e and [ such
that for all x,

b(x + e) +/= bx + cx + d.

By Lemma 3, ao + e, al + e,. is in clfiss T(n). Using Theorem 2 with k 2, we
see that b(ao+e)Z+f, b(al+e)Z+f, is in class T(n). This sequence is the
desired one.

We have the following corollary to the theorems above and the chirp
transform theorem.

THEOREM 4. The following sequences are in class n log n for complex num-
bers a, b, c and d, and positive integer k:

(15) b + c, ba ’ + c, ba 2k + c,.



538 A. V. AHO, K. STEIGLITZ AND J. D. ULLMAN

and

(16) b+c+d, ba2+ca+d, ba4+ca2+d,. ..
Note that (15) is a special case of (16) with a, b and d set to a k, 0 and b,
respectively.

4. Evaluation of a polynomial and all its derivatives. There has been recent
interest in the question of how fast one can evaluate a polynomial and all its
derivatives at a single point. Shaw and Traub [1 1] show that one can reduce the
number of multiplications to O(n), although the algorithm given required O(n)
total operations. Kung [3] and Borodin and Munro [13] independently observed
that evaluation of a polynomial and its derivatives reduces to evaluation and
interpolation of polynomials, and thus could be done in O(n log n) steps. Kung
[12] gives another O(n log n) algorithm without using evaluation and interpola-
tion. In this section we show that problem can be done in O(n log n) steps. This
result hinges upon the following definition and lemma.

The Taylor series of a polynomial Y.,"__-o bix’ at point a is that polynomial
n--1Y.i=o cx such that for all x,

n--1 n--1

c,(x-a)’= Y. b,x’.
i=0 i=0

LEMMA 4. The problems o[evaluating a polynomial and all its derivatives at a
point and of finding the Taylor series of a polynomial at a point require within 2n
operations of each other for polynomials o]: degree n 1.

Proof. Let ,"__- b,x’--Y.,"=- c,(x-a)’ for all x. Then

b’x’ k!ck.k

Thus the kth derivative at point a and the kth coefficient of the Taylor expansion
can be recovered from one another by multiplying or dividing by k! 71

THEOREM 5. An (n- 1)-st-degree polynomial and all its derivatives can be
evaluated at point c in O(n log n) steps.

Proof. In Lemma 3 we showed how to compute from c and the b,’s in
O(n log n) steps those numbers dj, 0 -< ] _-< n 1, such that for all x,

n--1 n--1

(17) Z b,(x+c)’= Z d,x .
=0 r=0

If (17) holds, then it is surely true that for any x,
n--1 n--1

Z b,x’= Z d,(x-c)’.
=o =0

The theorem then follows from Lemma 4.
Theorem 5 has been independently shown by Vari 14].
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