Learning to Prove Theorems via Interacting with Proof Assistants

Kaiyu Yang, Jia Deng
Automated Theorem Proving (ATP)

\[n \in \mathbb{N} \quad \Rightarrow \quad 1 + 2 + \cdots + n = \frac{(n + 1)n}{2} \]

Assumptions

Conclusion
Automated Theorem Proving (ATP)

\[n \in \mathbb{N} \implies 1 + 2 + \cdots + n = \frac{(n + 1)n}{2} \]
Automated Theorem Proving (ATP)

\[n \in \mathbb{N} \quad \Rightarrow \quad 1 + 2 + \cdots + n = \frac{(n + 1)n}{2} \]
Automated Theorem Proving (ATP) is Useful for

Computer-aided proofs in math
Automated Theorem Proving (ATP) is Useful for

Computer-aided proofs in math

Software verification
Automated Theorem Proving (ATP) is Useful for

- Computer-aided proofs in math
- Software verification
- Hardware design
Automated Theorem Proving (ATP) is Useful for

- Computer-aided proofs in math
- Software verification
- Hardware design
- Cyber-physical systems
Drawbacks of State-of-the-art ATP

- Prove by resolution

\[1 + 2 + \cdots + n = \frac{(n + 1)n}{2} \]

\[p \lor \neg q \lor \neg r \lor s \]
\[\neg x \lor y \lor z \lor q \]

Theorem

 Conjunctive normal forms (CNFs)
Drawbacks of State-of-the-art ATP

• Prove by resolution

\[1 + 2 + \cdots + n = \frac{(n + 1)n}{2} \]

Theorem

 Conjunctive normal forms (CNFs)
Drawbacks of State-of-the-art ATP

• Prove by resolution

\[1 + 2 + \cdots + n = \frac{(n + 1)n}{2}\]

Theorem

Conjunctive normal forms (CNFs)

\[p \lor \neg q \lor \neg r \lor s\]
\[\neg x \lor y \lor z \lor q\]
\[\neg x \lor y \lor z \lor p \lor \neg r \lor s\]
\[\ldots\]
Drawbacks of State-of-the-art ATP

• The CNF representation
 • Long and incomprehensible even for simple math equations
 • Unsuitable for human-like high-level reasoning

\[1 + 2 + \cdots + n = \frac{(n + 1)n}{2} \]

\begin{align*}
p \lor \neg q \lor \neg r \lor s \\
\neg x \lor y \lor z \lor q \\
\neg x \lor y \lor z \lor p \lor \neg r \lor s \\
\ldots
\end{align*}

Theorem Conjunctive normal forms (CNFs)
Interactive Theorem Proving

Human

Proof assistant
Interactive Theorem Proving

\[n \in \mathbb{N} \]

\[1 + 2 + \cdots + n = \frac{n(n + 1)}{2} \]

Human

Proof assistant
Interactive Theorem Proving

Goal: \(n \in \mathbb{N} \)

Assumptions:

Conclusion:

\[
1 + 2 + \cdots + n = \frac{n(n+1)}{2}
\]

Tactic: induction n.

Human

Proof assistant
Interactive Theorem Proving

\[n \in \mathbb{N} \]

\[1 + 2 + \cdots + n = \frac{n(n+1)}{2} \]

\[1 = \frac{1 \times 2}{2} \]

\[1 + 2 + \cdots + (k - 1) = \frac{(k - 1)k}{2} \]

\[1 + 2 + \cdots + k = \frac{k(k + 1)}{2} \]
Interactive Theorem Proving

\[
1 + 2 + \cdots + n = \frac{n(n+1)}{2}
\]

\[n \in \mathbb{N} \]

\[
1 + 2 + \cdots + (k - 1) = \frac{(k - 1)k}{2}
\]

\[
1 + 2 + \cdots + k = \frac{k(k + 1)}{2}
\]

induction n. + reflexivity

Human

Proof assistant
Interactive Theorem Proving

\[n \in \mathbb{N} \]

\[1 + 2 + \cdots + n = \frac{n(n + 1)}{2} \]

Human

- induction \(n \)
- reflexivity
- subst; reflexivity.

1 = \(\frac{1 \times 2}{2} \)

1 + 2 + \cdots + (k - 1) = \frac{(k - 1)k}{2}

1 + 2 + \cdots + k = \frac{k(k + 1)}{2}

\(\frac{(k - 1)k}{2} + k = \frac{k(k + 1)}{2} \)

Proof assistant
Interactive Theorem Proving

\[
\begin{align*}
n \in \mathbb{N} \\
1 + 2 + \cdots + n &= \frac{n(n + 1)}{2}
\end{align*}
\]

\[
\begin{align*}
1 + 2 + \cdots + (k - 1) &= \frac{(k - 1)k}{2} \\
1 + 2 + \cdots + k &= \frac{k(k + 1)}{2}
\end{align*}
\]

\[
\frac{(k - 1)k}{2} + k = \frac{k(k + 1)}{2}
\]

Human
- induction n.
- + reflexivity
- + subst; reflexivity.

Proof assistant

Labor-intensive, requires extensive training
Interactive Theorem Proving

\[n \in \mathbb{N} \]

\[1 + 2 + \cdots + n = \frac{n(n+1)}{2} \]

Human

induction n.
+ reflexivity
+ subst; reflexivity.

Agent

\[1 = \frac{1 \times 2}{2} \]

\[1 + 2 + \cdots + (k-1) = \frac{(k-1)k}{2} \]

\[1 + 2 + \cdots + k = \frac{k(k+1)}{2} \]

\[\frac{(k-1)k}{2} + k = \frac{k(k+1)}{2} \]

Proof assistant
CoqGym: Dataset and Learning Environment

- Tool for interacting with the Coq proof assistant [Barras et al. 1997]
- 71K human-written proofs, 123 Coq projects
- Diverse domains
 - math, software, hardware, etc.
CoqGym: Dataset and Learning Environment

- Tool for interacting with the Coq proof assistant [Barras et al. 1997]
- 71K human-written proofs, 123 Coq projects
- Diverse domains
 - math, software, hardware, etc.
- Structured data
 - Proof trees
 - Abstract syntax trees

\[
\begin{align*}
1 + 2 + \cdots + n &= \frac{n(n + 1)}{2} \\
1 = \frac{1 \times 2}{2} \\
1 + 2 + \cdots + (k - 1) &= \frac{(k - 1)k}{2} \\
1 + 2 + \cdots + k &= \frac{k(k + 1)}{2} \\
\frac{(k - 1)k}{2} + k &= \frac{k(k + 1)}{2}
\end{align*}
\]
ASTactic: Tactic Generation with Deep Learning

\[n, k \in \mathbb{N} \]
\[n = 2k \]
\[n \geq k \]

Proof goal

\[\text{induction } n. \]

Tactic
ASTactic: Tactic Generation with Deep Learning

Abstract syntax trees (ASTs)

Proof goal

\[n, k \in \mathbb{N} \]
\[n = 2k \]
\[n \geq k \]
ASTactic: Tactic Generation with Deep Learning

Proof goal

Abstract syntax trees (ASTs)

$n, k \in \mathbb{N}$

$n = 2k$

$n \geq k$

TreeLSTM encoder

[Tai et al. 2015]

Feature vectors
ASTactic: Tactic Generation with Deep Learning

Abstract syntax trees (ASTs)

$n, k \in \mathbb{N}$

$n = 2k$

$n \geq k$

Proof goal

Feature vectors

Tactic AST

TreeLSTM encoder

[Tai et al. 2015]

ASTactic can augment state-of-the-art ATP systems [Czajka and Kaliszyk, 2018] to prove more theorems
Related Work

• CoqHammer [Czajka and Kaliszyk, 2018]
• SEPIA [Gransden et al. 2015]
• TacticToe [Gauthier et al. 2018]
• FastSMT [Balunovic et al. 2018]
• GamePad [Huang et al. 2019]
• HOList [Bansal et al. 2019] (concurrent work at ICML19)

Main differences:
• Our dataset is larger covers more diverse domains.
• Our model is more flexible, generating tactics in the form of ASTs.
Learning to Prove Theorems via Interacting with Proof Assistants

Kaiyu Yang, Jia Deng

Poster today @ Pacific Ballroom #247

Code: https://github.com/princeton-vl/CoqGym