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Abstract

Network management is critical to provide fast, reliable and secure network services.

Software-defined networking (SDN) is a new network architecture to simplify network

management by integrating network control to a centralized control platform.

Network operators run various applications on the control platform to perform different

management tasks, like routing, monitoring, load balancing and firewall. These applica-

tions have complex interactions with each other, making it difficult to deploy and reason

about their behaviors. The frequent network events, such as traffic shifts, cyber attacks,

and device failures, further exacerbates the problem. Each application needs to reconfigure

the network, in order to react to the events. It is challenging to correctly and efficiently

combine configuration changes from multiple applications, distribute these changes to a

distributed collection of network devices, and coordinate changes across network devices

in different layers.

In this thesis, we present a new control architecture that can efficiently handle network

events for multiple applications and across the network and optical layers. We identify and

study the following three key components of the architecture.

(i) CoVisor: A network hypervisor that can compose multiple applications and can effi-

ciently merge configuration changes from these applications in the face of network events.

To protect the network from malicious and buggy applications, CoVisor also provides

topology virtualization and fine-grained access control to constrain what each application

can see and do.

(ii) Dionysus: A network update scheduler that can quickly and consistently distribute

configuration changes to multiple switches. Dionysus uses a dependency graph to capture

the dependencies between update operations, and dynamically schedules the operations

based on runtime conditions. The approach both eliminates undesirable transient behaviors

like loops, blackholes and congestion, and reduces the update time.
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(iii) Owan: A traffic management system that can jointly control the optical and net-

work layers. Owan optimizes optical circuit setup, routing and rate allocation together,

and dynamically adapts them to workload changes. The joint management significantly

improves data transfers over the wide area network.

We have built software controllers and hardware testbeds, and evaluated them with pro-

totype experiments and large-scale simulations using network topologies and traffic traces

from production networks.
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Chapter 1

Introduction

1.1 Network Management

Computer networks play a critical role in modern society. Today, a lot of Internet services,

such as search engines, social networks, and e-commerce, are hosted in data centers, where

hundreds of thousands of computers are connected by large-scale data center networks.

These data centers are interconnected with each other by wide area networks that span the

entire planet. End users use their personal computers, mobiles phones and tablets to access

these Internet services via Ethernets, WiFi networks, and cellular networks. Managing

these networks to provide fast, reliable and secure network services is a central problem for

computer networking research.

Network management includes many different tasks. Network operators configure net-

work devices, e.g., switches and routers, to realize these tasks. The packet processing in

network devices can be modeled as match-action processing where the network devices

match on certain patterns of packet headers (e.g., destination IP address belongs to an IP

prefix) and perform some actions (e.g., drop packets or forward packets to an output port)

on the matched packets. We refer to the forwarding behavior of a switch as a policy of

the switch. Similarly, we refer to the network-wide forwarding behavior as a policy of the

1



network, which is built from policies of all switches in the network. Policies change over

time, because operators need to reconfigure network devices in face of various network

events, such as traffic shifts, cyber attacks, device failures, host mobility, etc. Here, we use

some concrete examples to illustrate network management tasks.

Routing: Routing is the most basic functionality of a network. The goal of routing is

to deliver packets from one host to another. The header of a packet contains the source

address and the destination address. Switches and routers match on these addresses and

forward packets to their destinations. For example, in Ethernets, packets are forwarded

based on destination MAC address. The following rule in an Ethernet switch indicates that

packets with destination MAC address matching 01:00:00:00:00 are forwarded to port 2 of

the switch.

match: dstMAC=01:00:00:00:00 action: fwd(2)

In IP networks, packets are forwarded based on destination IP address. The following rule

in an IP router indicates that packets with destination IP address matching 1.0.0.0/24 are

forwarded to port 5 of the router. This rule uses prefix matching. An IP address matches

this rule if it has the same most significant 24 bits as 1.0.0.0.

match: dstIP=1.0.0.0/24 action: fwd(5)

Monitoring: Monitoring collects traffic statistics from network devices. Operators use

these traffic statistics to identify network bottlenecks, debug network failures, optimize net-

work routing, detect cyber attacks, etc. Operators need to configure switches and routers

to collect these traffic statistics. For example, an operator may want to count all the web

traffic in the network. To do so, the operator configures switches and routers in the net-

work to count packets with protocol number matching 6 (protocol number 6 indicates TCP

protocol) and TCP port matching 80 (port 80 is typically used by HTTP servers). We need

the following two rules, one matching on source port and the other matching on destination

port.

match: protocol=6, srcPort=80 action: count

2



match: protocol=6, dstPort=80 action: count

Server load balancing: Many Internet services today serve a large number of clients.

In order to efficiently handle the clients, these services run as distributed systems on many

servers. The network provides load balancing to spread traffic from clients among these

servers. Clients simply use an anycast IP address to access a service without specifying

which server to serve each request. The network divides traffic from clients among the

servers, rewrites the destination IP address of each packet from the anycast IP address to a

server IP address, and forwards packets to the corresponding server. For example, suppose

a service with anycast IP address 1.2.3.4 is hosted on two servers, A and B. Server A has IP

address 2.0.0.1, and server B has IP address 2.0.0.2. Suppose server A can be reached via

port 1 of a network device and server B can be reached via port 2 of the device. To spread

packets with destination IP address matching 1.2.3.4 between A and B, the operator can

configure the device to send packets with source IP address matching 0.0.0.0/1 to server A

with the following rule.

match: srcIP=0.0.0.0/1, dstIP=1.2.3.4 action: dstIP=2.0.0.1, fwd(1)

And the operator can send the other half of packets, i.e., packets with source IP address

matching 128.0.0.0/1, to server B, with the following rule.

match: srcIP=128.0.0.0/1, dstIP=1.2.3.4 action: dstIP=2.0.0.2, fwd(2)

Firewall: Security is a big concern on today’s Internet. Firewalls are widely deployed

by operators to protect their networks. Operators configure firewalls to control the incoming

and outgoing traffic of a network. For example, an operator may allow all web traffic (e.g.,

allow packets with TCP port matching 80) with the following two rules.

match: protocol=6, srcPort=80 action: permit

match: protocol=6, dstPort=80 action: permit

The operator can block all SSH traffic (e.g., drop packets with TCP port matching 22)

with the following two rules.

match: protocol=6, srcPort=22, action: drop
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Figure 1.1: Today’s network management.

match: protocol=6, dstPort=22, action: drop

1.2 Problems with Today’s Network Management

Network management can be divided into two planes, i.e., control plane and data plane. The

control plane makes packet forwarding decisions; the data plane forwards packets at high

speed based on the configuration from the control plane. It is challenging to correctly and

effectively implement management tasks on today’s network. Operators spend tremendous

effort and time on configuring network devices. Specifically, today’s network management

has the following problems.

Coupled control plane and data plane: In today’s network, the control plane is cou-

pled with the data plane, as shown in Figure 1.1. The control plane on each device ex-

changes information with each other, decides how the packets should be processed on the

device, and configures the data plane. Since the control plane is distributed on the de-

vices, it does not have a global view of the network and cannot make good network-wide

decisions.
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Closed, proprietary interface: The interface between the control plane and the data

plane is closed and proprietary. Device vendors sell monolithic boxes that contain both the

control plane and the data plane in a single box. Operators cannot only change the control

plane or the data plane without changing the other. The closed interface also impedes

innovations, since operators and third parties cannot easily develop new functionalities

without being restricted by device vendors.

Heterogeneous devices and per-device configurations: There are different devices in

the network performing different tasks. For example, switches forward packets based on

MAC address, routers forward packets based on IP address, firewalls filter packets based on

five tuple (i.e., source and destination IP addresses, source and destination port numbers,

protocol number), and load balancers spread packets based on source and destination IP

addresses. Although the packet processing on these devices can all be modeled as general

match-action style processing, vendors implement different data planes and control planes

for them. Each type of device has its own configuration interface, and the interface varies

from vendor to vendor. Because of this, operators have to do per-device configurations and

have to carefully plan the configurations across different devices to correctly implement

network-wide policies.

These problems make it complicated to implement network management tasks, like

the ones we describe in §1.1. For the routing task, operates have to configure switches

for layer 2 routing and configure routers for layer 3 routing. Switches and routers only

allow operators to use certain protocols, e.g., Spanning Tree Protocol (STP) for layer 2

routing, and Open Shortest Path First protocol (OSPF) for layer 3 routing. Operators cannot

flexibly customize the control plane for new routing protocols. Similarly, operators have to

use specialized devices for the load balancing task and the firewall task. To collect traffic

statistics for the monitoring task, operators have to deal with different interfaces exposed

by the devices. All the configurations are done on a per-device basis. It is a headache for

operators to reason about the interactions between different devices in the network.
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1.3 The Rise of Software-Defined Networking

Software-Defined Networking (SDN) emerged in recent years to fundamentally change

how we design, build and manage networks. It has the following distinct features from

today’s network architecture.

Decoupled control plane and data plane: SDN decouples the control plane from the

data plane, as shown in Figure 1.2. The control plane is a logically centralized controller.

It gathers information from the data plane and provides a global view to the operator. Man-

agement tasks are implemented as applications running on top of the controller. These

applications make packet processing decisions based on the global view and distribute the

decisions to the data plane via the controller.

Open, standard interface: The interface between the control plane and the data plane

is open and standard (e.g., OpenFlow [91]). Device vendors only sell data plane devices

without coupling them with the control plane. The devices can be hardware switches made

with ASICs or FPGAs, or software switches running on servers. Software engineers can

easily develop controllers and applications with different functionalities. Operators are able

to mix and match devices, controllers and applications that can best meet their needs.

General packet processing model and unified configuration: SDN models network

devices as general packet processing devices using match-action tables, regardless of

whether a device acts as a layer 2 switch, a layer 3 router, a load balancer or a firewall.
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Priority Match Action
2 dstip = 1.0.0.0/24 fwd(3)

1 dstip = 1.0.0.0/16 fwd(2)

0 ∗ drop

Table 1.1: Example flow table for a routing policy.

A match-action table contains a list of rules. Each rule has multiple components. The

most important components are priority, match and action. The match component specifies

the header pattern of packets, the action component specifies the processing of packets,

and the priority specifies the order when a packet matches multiple rules. For example,

Table 1.1 shows a match-action table for a routing policy that forwards packets based on

destination IP address. SDN provides a unified interface for the control plane to configure

the data plane to implement different management tasks. To simplify the presentation, we

will call network devices switches in the rest of this thesis.

SDN simplifies the design and deployment of network management tasks. To perform

the tasks we describe in §1.1, operators only need to install management applications on

the controller. The routing application can use custom routing algorithms based on the

global view provided by the control plane and can easily make packet forwarding decisions

based on different header fields. Operators do not have to worry about whether the data

plane only supports layer 2 routing or layer 3 routing. Firewall and load balancing do not

have to use specialized components. They are implemented the same way as routing and

can be deployed on any switches in the network. For the monitoring task, operators can

collect traffic statistics from different points in the network and obtain network-wide traffic

information.

1.4 Challenges of Control Platform Design

SDN is a new architecture for network management. Researchers have shown the benefits

of SDN by designing various management applications for routing, monitoring, load bal-
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ancing, firewall, and energy saving [55, 58, 63, 93, 123, 131, 101, 44, 94, 106, 53]. The

control platform is critical to support these applications and fully realize the benefits of

SDN. This section details some challenges involved in the design of the control platform.

1.4.1 Many Controller Applications

Composing multiple controller applications: Operators deploy many applications on the

control platform to manage the network. Routing, monitoring, load balancing and firewall

are a few example applications as described in §1.1. Each application needs to configure the

data plane with a policy to realize its management objective. The control platform should

provide support for operators to specify the relationship between multiple applications,

and correctly compile policies from multiple applications into a single policy based on this

specification. Without support from the control platform, applications have to handle the

coordination with others by themselves, which not only complicates application logic but

also puts a heavy burden on developers.

Defending against malicious and buggy applications: Since management applica-

tions can be from a third party, operators do not fully trust these applications. These appli-

cations can have malicious behaviors and process packets in a way they are not supposed to.

It is also common for applications to contain bugs that can cause unexpected outcomes dur-

ing runtime. Therefore, the control platform should allow operators to impose fine-grained

access control on what each application can see and do, in order to protect the network

from malicious and buggy applications.

Providing flexibility in choosing programming languages for development: Ex-

isting controllers like ONOS [99], OpenDaylight [100], Ryu [114], Floodlight [37] and

POX [105] constrain developers to use the same language as the controller to develop appli-

cations. Ideally, the control platform should provide the flexibility for developers to choose

their favorite programming languages, without being restricted to a specific programming

language.
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1.4.2 Many Network Events

Networks are full of dynamics. Example network events include traffic shifts, cyber attacks,

device failures, device upgrades, host mobility, and server overloads. It is important for the

control plane to quickly and effectively adapt to these events. Otherwise, these events can

cause significant loss to operators. For example, traffic shifts can create congestion in the

network and degrade user experience, and cyber attacks can turn down Internet services

and cause data leakage. To react to these events, applications compute new policies and

update the data plane to the new policies. Rather than having each application to update

its policy in an ad-hoc way, the control platform should provide a general and efficient

solution. There are mainly the following three problems for handling policy updates.

Composing updates from multiple applications: Each application generates an up-

date for its own policy. Since we have multiple applications deployed in the network, the

control plane needs to compose updates from multiple applications into a single update for

the network. A straightforward solution is to recompute the network policy from the up-

dated policies of applications, and then install the new policy to the network. However, such

a solution incurs high computation overhead since the entire policy has to be recomputed

while most parts of the policy may stay unchanged. Furthermore, simply recomputing a

new policy without concerning the existing policy may cause unnecessary changes to rules

that are already in the switch. We would have to update many existing rules besides adding

new rules and deleting deprecated rules. To solve the problem, we need new algorithms

that can compute the new network policy incrementally based on the existing policy and

make as few changes to the existing policy as possible.

Distributing updates across multiple switches: A policy update often affects multiple

switches in the network. Updates to different switches are dependent on each other, because

reconfiguring the policy of one switch could affect the traffic to other switches. If the

update is not executed carefully, serious problems like routing loops, blackholes, policy

violations, and congestion can happen during the update period. Furthermore, because of
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the disparities on switch hardware and CPU load, update operations on different switches

are highly variable. This can introduce long delays for the control plane to complete an

update for the entire network. The control plane should carefully schedule updates in order

to eliminate undesirable transient problems and minimize update time.

Coordinating updates between multiple layers: Some network operators, like ISPs,

not only control switches in the network layer, but also controls optical devices in the

optical layer. Similar to updates to multiple switches, updates to different layers also have

to be carefully coordinated, in order to eliminate transient problems. For example, if the

operator turns down an optical circuit and establishes a new one in the optical layer without

moving away traffic in the network layer first, then during the optical circuit update, all

traffic that uses this circuit would be dropped. The control plane should carefully coordinate

updates between multiple layers to avoid these problems.

1.4.3 Many Layers

Network management involves both the management of switches in the network layer and

optical devices in the optical layer. Existing control platforms focus on the packet pro-

cessing in the network layer where the devices perform match-action style processing on

the traffic [58, 55, 121]. However, optical devices are widely deployed in wide area net-

works today, and there is a growing interest in integrating optical technologies into data

centers for cost, performance and energy benefits [35, 129, 25, 50, 26]. ISPs have sepa-

rate teams to manage optical devices in the optical layer and switches in the network layer.

Optical devices are not frequently reconfigured together with switches in the network layer

to optimize data transfers. There is a lack of support in the control platform for the joint

management of the optical layer and the network layer.
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Figure 1.3: Overview of a dynamic network control architecture.

1.5 Contributions

In this thesis, we propose a new network control architecture to efficiently handle dynamics

across multiple applications and layers. Figure 1.3 shows an overview of this architecture.

We have identified and studied three key components of this architecture: CoVisor is a

network hypervisor to efficiently compose multiple applications and handle policy updates

from applications; Dionysus is an update scheduler to quickly and consistently distribute

policy updates to multiple switches; Owan is a traffic management system to support joint

control of the optical and network layers. We design an API for operators to configure

each component. Operators use this API to specify how to compose multiple applications,

what consistency property to maintain for network updates, and what objective to achieve

when jointly managing the optical and network layers. We have designed efficient algo-

rithms to optimize system performance, built software controllers and hardware testbeds,

and evaluated them with data from real networks. Now we describe each component in

detail.

CoVisor [62]: A network hypervisor for composition of multiple management ap-

plications. CoVisor is a new kind of network hypervisor that enables the deployment of
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multiple management applications that can be written in different programming languages

and run on different controllers. Existing hypervisors focus on slicing, which divides the

network into disjoint parts for separate control by separate controllers [5, 120]. Differ-

ent from them, CoVisor enables multiple controllers to collaborate on processing the same

shared traffic. CoVisor provides a composition interface for operators to specify the rela-

tionship between applications. Besides composition, CoVisor also virtualizes the physical

topology to expose a custom virtual topology to each application, and allows operators to

impose fine-grained access control on applications. We have designed a new set of effi-

cient algorithms for composing application policies, for compiling policies from virtual

networks into physical networks, and for efficiently processing application policy updates.

We have built a CoVisor prototype, and shown that it is several orders of magnitude faster

than a naive implementation.

Dionysus [65]: A network update scheduler for fast and consistent network up-

dates. Management applications frequently update their policies in face of various net-

work events. Operators have to carefully perform network updates in order to eliminate

undesirable behaviors like loops, blackholes, policy violations and congestion that may

happen during the transient period. Previous methods for consistent network updates are

slow because they are based on static ordering of rule updates, and ignore the variations

in the update times of individual update operations [55, 85, 112, 72]. Dionysus is a net-

work update scheduler that adapts to runtime conditions. Dionysus encodes as a graph

the consistency-related dependencies among updates at individual switches, and it then dy-

namically schedules these updates based on runtime differences in the update speeds of

different switches. We have built a prototype of Dionysus. Testbed experiments and data-

driven simulations show that Dionysus improves the median update speed by 53–88% in

both wide area networks and data center networks as compared to prior methods.

Owan [64]: A traffic management system for joint control of the optical and net-

work layers. Existing network control platforms focus on managing switches in the net-
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work layer [58, 55, 121]. But optical devices are widely deployed in wide area networks,

and they are a promising technology for future data centers because of benefits on per-

formance, cost and power consumption [35, 129, 25, 50, 26]. We design a new control

platform that supports the joint management of switches in the network layer and optical

devices in the optical layer. To show the benefits of joint control, we have designed a new

application built on top of the control platform that optimizes bulk data transfers over the

wide area network. We instantiate our design in a system called Owan that jointly optimizes

optical circuit setup, routing and rate allocation for bulk transfers, and dynamically adapts

them to workload changes. We have built a prototype of Owan with commodity optical

and electrical hardware. Testbed experiments and large-scale simulations on topologies

and traffic from production networks show that Owan completes bulk transfers up to 4.45×

faster on average, and up to 1.36× more transfers meet their deadlines, as compared to

prior methods that only control the network layer.

The rest of the thesis is organized as follows. Chapter 2 describes CoVisor, the network

hypervisor for management application compositions. Chapter 3 describes Dionysus, the

network update scheduler for fast and consistent network updates. Chapter 4 describes

Owan, the traffic management system for joint control of the optical and network layers.

Chapter 5 discusses open issues and future work, and concludes this thesis.
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Chapter 2

CoVisor: Dynamic Application

Composition

This chapter focuses on supporting the composition of multiple management applications

and compiling policies from multiple applications into a single policy. To fully realize

the vision of SDN, operators should be able to assemble a collection of independently-

developed “best of breed” applications written in different programming languages and

operating on different controllers. While network hypervisors are able to host multiple

controllers on the same network, existing hypervisors only support slicing, which divides

the network into disjoint parts for separate control by separate controllers. In this chapter,

we present CoVisor, a new kind of network hypervisor that allows multiple controllers to

cooperate on managing the same shared traffic. Consequently, network administrators can

use CoVisor to compose a collection of applications—a firewall, a load balancer, a gateway,

a router, a traffic monitor—and can apply those applications in combination, or separately,

to the desired traffic. CoVisor also abstracts concrete topologies, providing custom virtual

topologies in their place, and allows operators to specify access controls that regulate the

packets a given application may see, modify, monitor, or reroute. The central technical con-

tribution of CoVisor is a new set of efficient algorithms for composing controller policies,
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for compiling virtual networks into concrete OpenFlow rules, and for efficiently process-

ing controller rule updates. We have built a CoVisor prototype, and shown that it is several

orders of magnitude faster than a naive implementation.

2.1 Introduction

A foundational principle of Software-Defined Networking (SDN) is to decouple control

logic from vendor-specific hardware. Such a separation allows network operators to deploy

both the software and the hardware most suited to their needs, rather than being forced to

compromise on one or both fronts because of the lack of availability of the perfect box.

To fully realize this vision of freely assembling “best of breed” solutions, operators should

be able to run any combination of controller applications on their networks. If the optimal

monitoring application is written in Python on Ryu [114] and the best routing application

is written in Java on Floodlight [37], the operator should be able to deploy both of them in

the network.

A network hypervisor is a natural solution to this problem of bringing together disparate

controllers. However, existing hypervisors [5, 120] restrict each controller to a distinct

slice of network traffic. While useful in scenarios like multi-tenancy in which each tenant

controls its own traffic, they do not enable multiple applications to collaboratively process

the same traffic. Thus, an SDN hypervisor must be capable of more than just slicing. More

specifically, in this chapter, we show how to bring together the following key hypervisor

features and implement them efficiently in a single, coherent system.

(1) Assembly of multiple controllers. A network operator should be able to assemble mul-

tiple controllers in a flexible and configurable manner. Inspired by network programming

languages like Frenetic [39], we compose data plane policies in three ways: in parallel

(allow multiple controllers to act independently on the same packets at the same time),

sequentially (allow one controller to process certain traffic before another), and by over-
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riding (allow one controller to choose to act or to defer control to another controller).

However, unlike Frenetic and related systems, our hypervisor is independent of the specific

languages, libraries, or controller platforms used to construct client applications. Instead,

the hypervisor intercepts and processes industry-standard OpenFlow messages, assembling

and transforming them to match operator-specified composition policies. Doing so effi-

ciently requires new incremental algorithms for processing rule updates.

(2) Definition of abstract topologies. To protect the physical infrastructure, an operator

should be able to limit what each controller can see of the physical topology. Our hyper-

visor supports this by allowing the operator to provide a custom virtual topology to each

controller, thereby facilitating reuse of (physical) topology-independent code. For exam-

ple, to a firewall controller the operator may abstract the network as a “big virtual switch”;

the firewall does not need to know the underlying topology to determine if a packet should

be forwarded or dropped. In contrast, a routing controller needs the exact topology to per-

form its task effectively. In addition, topology abstraction helps the operator implement

complex functionality in a modular manner. Some switches, such as a gateway between an

Ethernet island and the IP core, may play multiple roles in the network. The hypervisor can

create one virtual switch for each role, assign each to a controller application precisely tai-

lored to its single task, and compile policies written for the virtual network into the physical

network.

(3) Protection against misbehaving controllers. In addition to restricting what a con-

troller can see of the physical topology, an operator may also want to impose fine-grained

control on how a controller can process packets. This access control is important to protect

against buggy or maliciously misbehaving third-party controllers. For example, a firewall

controller should not be allowed to modify packets, and a MAC learner should not be able

to inspect IP or TCP headers. The hypervisor enforces these restrictions by limiting the

functionality of the virtual switches exposed to each controller.
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The primary technical challenge surrounding the creation of such a fully featured hy-

pervisor is efficiency. The hypervisor must host tens of controllers, each of which installs

tens of thousands of rules. Complicating matters further, these controllers are updating

rules constantly, as dictated by their application logic (e.g., traffic engineering, failure re-

covery, and attack detection [58, 55, 106, 93, 131, 53, 4, 15, 31]). The naive hypervisor

design is to recompile the composed policy from scratch for every rule update, and then

install in each switch’s flow table the difference between the existing and updated policies.

This strawman solution is prohibitively expensive in terms of both the time to compile the

new policy and the time to install new rules on switches.

In this chapter we present CoVisor, a hypervisor that exploits efficient new algorithms

to compile and update policies from upstream controllers, each of which has its own view

of the network topology. Figure 2.1 illustrates the CoVisor architecture. CoVisor serves as

a transparent layer between controllers and the physical network. Each of the five appli-

cations shown at the top of Figure 2.1 is an unmodified SDN program running on its own

controller; each controller outputs OpenFlow rules for the virtual topology shown below

it, without any knowledge that this virtual topology does not physically exist. CoVisor in-

tercepts the OpenFlow rules output by all five controllers and compiles them into a single

policy for the physical network via a two-phase process.

First, CoVisor uses a novel algorithm to incrementally compose applications in the

manner specified by the operator. The key insight is that rule priorities form a convenient

algebra to calculate priorities for new rules, obviating the need to recompile from scratch

for every rule update. Second, CoVisor translates the composed policy into rules for the

physical topology. Specifically, we develop a new compilation algorithm for the case of

one physical switch mapped to multiple virtual switches. At both stages, CoVisor employs

efficient data structures to further reduce compilation overhead by exploiting knowledge

of the structure of policies provided by the access-control restrictions. After compiling the

policy, CoVisor sends the necessary rule updates to switches.
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Figure 2.1: CoVisor overview.

At the far left of Figure 2.1, CoVisor takes configuration input from the operator. These

configuration responsibilities are threefold: (1) define how the policies of the controllers

should be assembled; (2) create each controller’s virtual network by specifying the compo-

nents to be included and the physical-virtual mapping; and (3) state access control limita-

tions for each controller.

In summary, we make the following contributions.

• We define the architecture of a new kind of compositional hypervisor, which allows

applications written in different languages and on different controllers to process

packets collaboratively.

• We develop a new algorithm to compile the parallel, sequential, and override opera-

tors introduced in earlier work [39, 48, 133] incrementally (§2.3).

• We develop a new, incremental algorithm to compile policies written for virtual

topologies into rules for physical switches (§2.4).

• We employ customized data structures that leverage access-control restrictions, often

a source of overhead, to further reduce compilation time (§2.5).
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We describe our prototype in §2.6 and evaluation in §2.7. We have a brief discussion in §2.8,

followed by related work in §2.9 and the conclusion in §2.10.

2.2 CoVisor Overview

This section provides an overview of CoVisor. CoVisor’s features fall into two categories:

(i) those that combine applications running on multiple controllers to produce a single flow

table for each physical switch (§2.2.1); and (ii) those that limit an individual controller’s

view of the topology and packet-processing capabilities (§2.2.2).

To implement these features, CoVisor relies on a two-phase compilation process. The

first phase assembles the policies of individual controllers, written for their own virtual net-

works, into a composed policy for the whole virtual network. The second phase compiles

this composed policy for the virtual network into a policy for the physical network that

realizes the intent expressed by the virtual policy. Algorithms for these phases are covered

in §2.3 and §2.4, respectively.

2.2.1 Composition of Multiple Controllers

CoVisor allows network operators to combine the packet-processing specifications of mul-

tiple controllers into a single specification for the physical network. We call these “packet-

processing specifications” output by each controller member policies and the single spec-

ification a composed policy. In practice, the member policies are defined by OpenFlow

commands issued from a controller to CoVisor. We use the terms policy implementation

or just implementation to refer specifically to the list of OpenFlow rules used to express a

policy.

The network operator configures CoVisor to compose controllers with a simple lan-

guage of commands. Let T range over policies defined in the command language. This

language allows operators to specify that some default action (a) should be applied to a set
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of packets, that a particular member policy (x) should be applied, that two separate poli-

cies should be applied in parallel (T1 + T2), that two separate policies should be applied in

sequence (T1 � T2), or that one member policy should be applied, and if it fails to match a

packet, some other policy should act as a default (x�T ). The following paragraphs explain

these policies in greater detail.

Action (a): The most basic composed policy is an atomic packet-processing action a. Such

actions include any function from a packet to a set of packets implementable in Open-

Flow, such as the actions to drop a packet (drop), to forward a packet out a particular port

(fwd(3)), or to send a packet to the controller (to controller(x)).

Parallel operator (+): The parallel composition of two policies T1 + T2 operates by logi-

cally (though not necessarily physically) copying the packet, applying T1 to one copy and

T2 to the other, and taking the union of the results. For example, let M be a monitor-

ing policy and Q be a routing policy. If M counts packets based on source IP prefix and Q

forwards packets based on destination IP prefix,M+Q does both operations on all packets.

Sequential operator (�): The sequential operator enables two controllers to process traf-

fic one after another. For example, let L be a load-balancing policy, and let Q be a routing

policy. More specifically, for packets destined to anycast IP address 3.0.0.0, L rewrites the

destination IP to a server replica’s IP based on source IP prefix, and Q forwards packets

based on destination IP prefix. To obtain the combined behavior ofL andQ—to first rewrite

the destination IP address and then forward the rewritten packet to the correct place—the

network operator uses the policy L� Q.

Override operator (�): Each controller x provides CoVisor with a member policy speci-

fying how x wants the network to process packets. The policy x� T attempts to apply x’s

member policy to any incoming packet t. If x’s policy does not specify how to handle t,

then T is used as a default. For example, suppose one controller x is running an elephant

flow routing application and another controller y is running an infrastructure routing appli-
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Command Parameters
createVSw pSw1 <pSw2, ..., pSwn>
createVPort vSw <pSw pPort>
createVLink vSw1 vPort1 vSw2 vPort2

connectHost vSw vPort host

Table 2.1: API to construct a virtual network. Brackets <> indicate optional arguments.

E = createVSw S // vswitch E
G = createVSw S // vswitch G
I = createVSw S // vswitch I
E1 = createVPort E S 1 // port 1 on E
E2 = createVPort E S 2 // port 2 on E
E3 = createVPort E // port 3 on E
G1 = createVPort G // port 1 on G
L1 = createVLink E 3 G 1 // link E −G
. . . remaining commands omitted for brevity.

Figure 2.2: Administrator configuration to create (a subset of) the physical-virtual mapping
shown in Figure 2.1.

cation. If we want x to override y for elephant flow packets, y to route all regular traffic,

and any packet not covered by either policy to be dropped, we use the policy x�(y�drop).

2.2.2 Constraints on Individual Controllers

In addition to composing member policies, CoVisor allows the operator to virtualize the

underlying topology and restrict the packet-processing capabilities available to each con-

troller. This helps operators hide infrastructure information from third-party controllers,

reuse topology-independent algorithms, and provide security against malicious or buggy

control software.

Constraints on Topology Visibility

Rather than exposing the full details of the physical topology to each controller, CoVisor

provides each with its own virtual topology. Table 2.1 shows the API to construct a custom

virtual network. createVSw creates a virtual switch. It can be used to create two kinds

of physical-virtual mappings as follows. (1) many-to-one (many physical switches map
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to one virtual switch): call the function once with a list of physical switch identifiers; (2)

one-to-many (a single physical switch maps to many virtual switches): call the function

multiple times with the same physical switch identifier. createVPort creates a virtual

port. To map it to a physical port, the operator includes the corresponding physical switch

and port number. createVLink creates a virtual link by connecting two virtual ports.

connectHost connects a host to a virtual port.

Example. Consider the example physical-virtual topology mapping shown in Fig-

ure 2.1. The physical topology represents an enterprise network consisting of an Ethernet

island (shown in blue in Figure 2.1) connected by a gateway router (multicolored and la-

beled S) to the IP core (red). We abstract gateway switch S to three virtual switches: E, G,

and I . Figure 2.2 shows how the operator uses CoVisor’s API to create the virtual mapping.

These four commands allow the operator to create one level of virtual topology on top

of a physical network. To create multiple levels of topology abstraction, the operator can

run one CoVisor instance on top of another. Supporting this behavior in a single instance

of CoVisor is part of our future work.

Constraints on Packet Handling

CoVisor imposes fine-grained access control on how a controller can process packets by

virtualizing switch functionality. The operator sets custom capabilities on each controller’s

virtual switches, thereby choosing which functionalities of the physical network to expose

on a controller-by-controller basis.

Pattern: The operator specifies which header fields a controller can match and how each

field can be matched (i.e., exact-match, prefix-match, or arbitrary wildcard-match). CoV-

isor currently supports the 12 fields in the OpenFlow 1.0 specification, with prefix-match

an option only for source and destination IP addresses.

Action: The operator specifies the actions a controller can perform on matched packets.

CoVisor currently supports the actions in the OpenFlow 1.0 specification, including for-
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ward, drop (indicated by an empty action list), and modify (the operator determines which

fields can be modified). The operator also controls whether a controller can query packets

and counters from switches and send packets to switches.

Example. In the example in Figure 2.1, the operator can restrict the MAC learner to

match only on source and destination MAC and inport and the firewall to match only on

the five tuple. Also, the operator can disallow both applications from modifying packets.

2.2.3 Handling Failures

Controllers, switches, and CoVisor itself can fail during operation. We describe how CoV-

isor responds to them.

Controller failure: The operator configures CoVisor with a default policy for each con-

troller to execute in the event of controller failure. The default policy is application-

dependent. For example, a logical default for a firewall controller is drop (erase all in-

stalled rules and install a rule that drops all packets), because a firewall should fail safe. In

contrast, the default policy for a monitoring controller can be id (identical, i.e., leave all

rules in the switch), as monitoring rules are not critical to the operation of a network, and

the counters can be reused if the monitoring controller recovers.

Switch failure: If a switch fails, all its rules are removed and CoVisor notifies the rele-

vant controllers. Moreover, in the case of many-to-one virtualization, CoVisor allows the

virtual switch to remain functional by rerouting traffic around the failed physical switch (if

possible in the physical network).

Hypervisor failure: We currently do not deal with hypervisor failure. Replication tech-

niques in distributed systems may be applied to CoVisor, but a full exploration is beyond

the scope of this work.
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Monitoring MR(
1; srcip = 1.0.0.0/24; count

)(
0; ∗; drop

)
Routing QR(
1; dstip = 2.0.0.1; fwd(1)

)(
1; dstip = 2.0.0.2; fwd(2)

)(
0; ∗; drop

)
Load balancing LR(
3; srcip = 0.0.0.0/2, dstip = 3.0.0.0; dstip = 2.0.0.1

)(
1; dstip = 3.0.0.0; dstip = 2.0.0.2

)(
0; ∗; drop

)
Elephant flow routing ER(
1; srcip = 1.0.0.0, dstip = 2.0.0.1; fwd(3)

)
Parallel composition: comp+(MR, QR)(
5; srcip = 1.0.0.0/24, dstip = 2.0.0.1; count, fwd(1)

)(
4; srcip = 1.0.0.0/24, dstip = 2.0.0.2; count, fwd(2)

)(
3; srcip = 1.0.0.0/24; count

)(
2; dstip = 2.0.0.1; fwd(1)

)(
1; dstip = 2.0.0.2; fwd(2)

)(
0; ∗; drop

)
Sequential composition: comp�(LR, QR)(
2; srcip = 0.0.0.0/2, dstip = 3.0.0.0; dstip = 2.0.0.1, fwd(1)

)(
1; dstip = 3.0.0.0; dstip = 2.0.0.2, fwd(2)

)(
0; ∗; drop

)
Override composition: comp�(ER, QR)(
3; srcip = 1.0.0.0, dstip = 2.0.0.1; fwd(3)

)(
2; dstip = 2.0.0.1; fwd(1)

)(
1; dstip = 2.0.0.2; fwd(2)

)(
0; ∗; drop

)
Figure 2.3: Example of policy compilation.
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2.3 Incremental Policy Compilation

Network management is a dynamic process. Applications update their policies in response

to various network events, like a change in the traffic matrix, switch and link failures, and

detection of attacks [58, 55, 106, 93, 131, 53, 4, 15, 31]. Therefore, CoVisor receives

streams of member policy updates from controllers and has to recompile and update the

composed policy frequently. In this section, we first review policy compilation and intro-

duce a strawman solution, and then we describe an efficient solution based on a convenient

algebra on rule priorities.

2.3.1 Background on Policy Compilation

The first stage of policy compilation entails combining member policies into a single com-

posed policy. Controllers implement member policies by sending OpenFlow rules to Co-

Visor. A rule r is a triple r = (p;m; a) where p is a priority, m is a match pattern, and a

is an action list. Given a rule r = (p;m; a), we use the notation r.priority to refer to p,

r.match to refer to m, and r.action to refer to a. We denote the set of packets matching

r.match as r.mSet. Now we describe how to compile each composition operator outlined

in §2.2.1. We assume all policy implementations include only OpenFlow 1.0 rules and that

each switch has a single flow table.

Parallel operator (+): To compile T1+T2, we first compile T1 and T2 into implementations

R1 and R2. (In practice, each controller communicates its member policy to CoVisor in an

already compiled form. We explicitly include this step because it represents the base case

of the recursive process.) Then, we compute comp+(R1, R2) by iterating over (r1i, r2j) ∈

R1×R2 where r1i and r2j are taken from R1 and R2, respectively, by priority in decreasing

order. We produce a rule r in the composed implementation if the intersection of r1i.mSet

and r2j.mSet is not empty. r.match is the intersection of r1i.match and r2j.match, and

r.actions is the union of r1i.actions and r2j.actions. We defer priority assignment to later
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discussion in this subsection. Consider the example of comp+(MR, QR) in Figure 2.3. Let

MR = m1, . . . ,mn and QR = q1, . . . , qk. We begin by considering m1 and q1. Since

m1.mSet∩q1.mSet 6= ∅, we produce a first rule r1 in comp+(MR, QR) with match pattern

{srcip = 1.0.0.0/24, dstip = 2.0.0.1} and action list {count, fwd(1)}. Composing all

(mi, qj) pairs gives the composed policy implementation comp+(MR, QR) of the policy

composition M +Q.

Sequential operator (�): To compile T1 � T2, we again begin by generating imple-

mentations R1 and R2. Then, we compute comp�(R1, R2). As with comp+(R1, R2), we

iterate over (r1i, r2j) ∈ R1 × R2 where r1i and r2j are taken from R1 and R2, respectively,

by priority in decreasing order. However, now we produce a rule r in the composed policy

if the intersection of r2j.mSet and the set of packets produced by applying r1i.action to

all packets in r1i.mSet is not empty. Consider the example of comp�(LR, QR) in Fig-

ure 2.3. Again, we begin iterating over (li, qj) ∈ LR × QR pairs by considering l1 and

q1. Applying l1.action to all packets in l1.mSet gives the set of packets matching pat-

tern {srcip = 0.0.0.0/2, dstip = 2.0.0.1}. The intersection of this set and q1.mSet is not

empty. Hence, we generate the first rule in the composed policy implementation with match

pattern {srcip = 0.0.0.0/2, dstip = 3.0.0.0} and action list {dstip = 2.0.0.1, fwd(1)}.

Repeating this process for all (li, qj) pairs yields comp�(LR, QR), the implementation of

L� Q.

Override operator (�): To compile T1 � T2, we again begin by generating implemen-

tations R1 and R2. Then, we compute comp�(R1, R2) by stacking R1 on top of R2 with

higher priority. For example in Figure 2.3, to compile comp�(ER, QR), we put ER’s rules

above QR’s rules. Thus, packets with source IP 1.0.0.0 and destination IP 2.0.0.1 will be

forwarded to port 3, and other packets with destination IP 2.0.0.1 will be forwarded to port

1.

Priority assignment and policy update problem: Recall that a rule r is a triple

(r.priority; r.match; r.action). Thus far, we have explained how to generate a list of
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Routing QR(
1; dstip = 2.0.0.1; fwd(1)

)(
1; dstip = 2.0.0.2; fwd(2)

)(
1; dstip=2.0.0.3; fwd(3)

)(
0; ∗; drop

)
Parallel composition: comp+(MR, QR)(
7; srcip=1.0.0.0/24,dstip=2.0.0.1; fwd(1),count

)(
6; srcip=1.0.0.0/24,dstip=2.0.0.2; fwd(2),count

)(
5; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count

)(
4; srcip=1.0.0.0/24; count

)(
3; dstip=2.0.0.1; fwd(1)

)(
2; dstip=2.0.0.2; fwd(2)

)(
1; dstip=2.0.0.3; fwd(3)

)(
0; ∗; drop

)
Figure 2.4: Example of updating policy composition. Strawman solution.

(match; action) pairs, or pseudo-rules. Our list of pseudo-rules is prioritized in the sense

that each pseudo-rule’s position indicates its relative priority, but we have not addressed

how to assign a particular priority value to each pseudo-rule. Priority assignment is

important for minimizing the overhead of policy update. Ideally, a single rule addition in

one member policy implementation should not require recomputing the entire composed

policy from scratch, nor should it require clearing the physical switch’s flow table and

installing thousands of flowmods. (A flowmod is an OpenFlow message to update a rule

in a switch.) In concrete terms, the update problem involves minimizing the following two

overheads:

• Computation overhead: The number of rule pairs over which the composition func-

tion comp iterates to recompile the composed policy.

• Rule update overhead: The number of flowmods needed to update a switch to the

new policy.

Strawman solution: The strawman solution is to assign priorities to rules in the composed

implementation from bottom to top starting from 0 by increment of 1. Then, it installs the
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Monitoring MR(
1; srcip = 1.0.0.0/24; count

)(
0; ∗; drop

)
Routing QR(
1; dstip = 2.0.0.1; fwd(1)

)(
1; dstip = 2.0.0.2; fwd(2)

)(
1; dstip=2.0.0.3; fwd(3)

)(
0; ∗; drop

)
Load balancing LR(
3; srcip = 0.0.0.0/2, dstip = 3.0.0.0; dstip = 2.0.0.1

)(
2; srcip=0.0.0.0/1,dstip=3.0.0.0; dstip=2.0.0.3

)(
1; dstip = 3.0.0.0; dstip = 2.0.0.2

)(
0; ∗; drop

)
Elephant flow routing ER(
1; srcip = 1.0.0.0, dstip = 2.0.0.1; fwd(3)

)
Parallel composition: comp+(MR, QR)(
2; srcip = 1.0.0.0/24, dstip = 2.0.0.1; fwd(1), count

)(
2; srcip = 1.0.0.0/24, dstip = 2.0.0.2; fwd(2), count

)(
2; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count

)(
1; srcip = 1.0.0.0/24; count

)(
1; dstip = 2.0.0.1; fwd(1)

)(
1; dstip = 2.0.0.2; fwd(2)

)(
1; dstip=2.0.0.3; fwd(3)

)(
0; ∗; drop

)
Sequential composition: comp�(LR, QR)(
25; srcip = 0.0.0.0/2, dstip = 3.0.0.0; dstip = 2.0.0.1, fwd(1)

)(
17; srcip=0.0.0.0/1,dstip=3.0.0.0; dstip=2.0.0.3,fwd(3)

)(
9; dstip = 3.0.0.0; dstip = 2.0.0.2, fwd(2)

)(
0; ∗; drop

)
Override composition: comp�(ER, QR)(
9; srcip = 1.0.0.0, dstip = 2.0.0.1; fwd(3)

)(
1; dstip = 2.0.0.1; fwd(1)

)(
1; dstip = 2.0.0.2; fwd(2)

)(
1; dstip=2.0.0.3; fwd(3)

)(
0; ∗; drop

)
Figure 2.5: Example of incremental update.
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difference between the old implementation and the new one. For example, the priorities of

rules in Figure 2.3 are assigned in this way. This approach incurs high computation and

rule update overhead, because it requires recompiling the whole policy to determine each

rule’s new relative position and updates rules that only change priorities. For example,

when a new rule is inserted to QR (in bold in Figure 2.4), although only the third and the

seventh rules in comp+(MR, QR) are new, five rules change their priorities. We have to

update these five existing rules as well as add two new rules. Rules in bold in Figure 2.4

count toward this rule update overhead.

2.3.2 Incremental Update

Ideally, the priority of rule r in the composed implementation is a function solely of the

rules in the member implementations from which it is generated. In this way, any updates

of other rules in member implementations will not affect r. We observe that rule priorities

form a convenient algebra which allows us to achieve this goal.

Add for parallel composition: LetR be the composed implementation of comp+(R1, R2).

If rule rk ∈ R is composed from r1i ∈ R1 and r2j ∈ R2, then rk.priority is the sum of

r1i.priority and r2j.priority:

rk.priority = r1i.priority + r2j.priority. (2.1)

We show the example of comp+(MR, QR) in Figure 2.5. The first rule in comp+(MR, QR)

is composed fromm1 and q1. Hence, its priority ism1.priority+q1.priority = 2. Suppose

a new rule (in bold in Figure 2.5) is inserted to QR. We only need to iterate over rule pairs

(mi, q3) for all mi ∈ MR, rather than iterate over all the rule pairs. This generates two

new rules (in bold in Figure 2.5). All existing rules do not change. Formally, we can prove
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that as long as the member policies are not ambiguous1, the composed policy is also not

ambiguous and is correct, as stated in the following lemma.

Lemma 1. Let pi be the highest priority rule in P that matches a packet t and qj be the

highest priority rule in Q that matches t. Let rk be composed from pi and qj in R = P +Q

with priority calculated by Equation 2.1. Then rk is the highest priority rule in R that

matches t.

Proof. We prove this by contradiction. Suppose there is a rule rk′ ∈ R that matches t and

has a higher priority than rk, i.e.,

rk′ .priority > rk.priority.

Let rk′ be computed by pi′ ∈ P and qj′ ∈ Q. Since rk′ matches t, so pi′ matches t and qj′

matches t. We have the following two equations for their priorities.

rk.priority = pi.priority + qj.priority,

rk′ .priority = pi′ .priority + qj′ .priority.

Therefore, we have

pi′ .priority + qj′ .priority > pi.priority + qj.priority

With this inequality, we can derive that either

pi′ .priority > pi.priority or qj′ .priority > qj.priority.

1A policy is called ambiguous if there are two rules that can match the same packet and have the same
priority.
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But this contradicts the fact that pi is the highest priority rule in P that matches t and qj is

the highest priority rule in Q that matches t.

Concatenate for sequential composition: Let R be the composed implementation of

comp�(R1, R2). If rk ∈ R is composed from r1i ∈ R1 and r2j ∈ R2, then rk.priority is

the concatenation of r1i.priority and r2j.priority:

rk.priority = r1i.priority ◦ r2j.priority. (2.2)

Symbol ◦ in Equation 2.2 represents the concatenation of two priorities, where each priority

is represented as a fixed-width bit string. Concatenation enforces a lexicographic ordering

on the pair of priorities. Specifically, let a1 = b1 ◦ c1 and a2 = b2 ◦ c2. Then a1 > a2

if and only if
(
b1 > b2 or (b1 = b2 and c1 > c2)

)
, and a1 = a2 if and only if (b1 = b2

and c1 = c2). In practice, concatenation is computed as follows. Let r2j be in the range

[0,MAXR2) where MAXR2−1 is the highest priority that R2 may use2. Then rk.priority

is computed by

rk.priority = r1i.priority ×MAXR2 + r2j.priority. (2.3)

We show the example of comp�(LR, QR) in Figure 2.5. Let MAXQR
= 8. The first

rule in comp�(LR, QR) is composed from l1 and q1. Thus, its priority is l1.priority ×

8 + q1.priority = 25. Suppose a new rule is inserted to LR

(
in bold in Figure 2.5

)
. We

only need to iterate over rule pairs (l3, qj) for all qj ∈ QR. This generates a new rule with

priority 17
(
in bold in Figure 2.5

)
. All existing rules do not change. Similarly, we can

prove that as long as the member policies are not ambiguous, the composed policy is also

not ambiguous and is correct, as stated in the following lemma.

2CoVisor limits the priority space of each member policy, because the bits for priority in hardware are
limited in practice.
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Lemma 2. Let pi be the highest priority rule in P that matches a packet t and qj be the

highest priority rule in Q that matches the packet set after applying pi to t. Let rk be

composed from pi and qj in R = P � Q with priority calculated by Equation 2.2. Then rk

is the highest priority rule in R that matches t.

Proof. We prove this by contradiction. Suppose there is a rule rk′ ∈ R that matches t and

has a higher priority than rk, i.e.,

rk′ .priority > rk.priority

Let rk′ be constructed from pi′ ∈ P and qj′ ∈ Q. Since rk′ matches t, we know that pi′

matches t and qj′ matches the packet set after applying pi′ to t. We have the following two

equations for their priorities.

rk.priority = pi.priority ◦ qj.priority,

rk′ .priority = pi′ .priority ◦ qj′ .priority.

Therefore, we have

pi′ .priority ◦ qj′ .priority > pi.priority ◦ qj.priority

With this inequality, we can derive that either

pi′ .priority > pi.proirity

or

pi′ .priority = pi.priority && qj′ .priority > qj.priority.
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In the former case, it contradicts the fact that pi is the highest priority rule in P that matches

t. In the latter case, pi′ .priority = pi.proirity implicates pi′ = pi because policies are

unambiguous. Then qj′ becomes the highest priority rule in Q that matches the packet set

after applying pi to t. This contradicts the fact that qj be the highest priority rule in Q that

matches the packet set after applying pi to t.

Stack for override composition: LetR be the composed implementation of comp�(R1, R2),

and let R2’s priority space be [0,MAXR2). To assign priorities in R, we increase the pri-

orities of R1’s rules by MAXR2 and keep the priorities of R2’s rules unchanged. This

process essentially stacks R1’s priority space on top of R2’s priority space. Specifically,

let rk ∈ R. By definition of comp�, rk is in either R1 or R2. Let rk.mPriority be rk’s

priority in the member implementation from which it comes. We assign priority to rk as

follows.

rk.priority =


rk.mPriority +MAXR2 if rk ∈ R1

rk.mPriority, if rk ∈ R2

(2.4)

We show the example of ER � QR in Figure 2.5. Let MAXQR
= 8. The first rule in

comp�(ER, QR) is generated from e1, so it is assigned priority e1.priority + 8 = 9. The

second rule in comp�(ER, QR) is generated from q1, so it is assigned priority q1.priority =

1. When a new rule q3 that matches dstip = 1.0.0.3 is inserted to QR, we simply add a new

rule with priority 1 (in bold in Figure 2.5) to comp�(ER, QR) without affecting existing

rules. The proof of the correctness for override composition is straightforward.

With the algebra on rule priorities above, CoVisor processes the three kinds of rule

updates as follows. Let R be the composed policy implementation of R1 and R2.

Rule addition: When a new rule r∗1 is added to R1 (or r∗2 to R2), CoVisor composes this

rule with each rule in R2 (or R1). It assigns priorities to new rules according to Equa-

tions 2.1, 2.2, and 2.4 and installs them to switches. All existing rules are untouched.
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Algorithm 1 Symbolic path generation
1: function GENPATHS(pkt)
2: pkt.children← {evaluate policy on pkt}
3: for all child in pkt.children do
4: if not child.reachedEgress() then
5: GENPATHS(child)

Rule deletion: When an old rule r∗1 is deleted from R1 (or r∗2 from R2), CoVisor finds all

rules in R that are composed from this rule and deletes them from switches. All other rules

are untouched.

Rule modification: Modifying a rule is equivalent to deleting an old rule and then inserting

a new rule.

2.4 Compiling Topology Transformations

The first phase of compilation (§2.3) generates a composed policy for the virtual network.

The second phase, which we describe in this section, compiles a policy for the virtual

topology into one for the physical network. It comprises two sub-cases as described in

§2.2.2: many-to-one and one-to-many. One-to-one is a degenerate case of these two. While

previous work has explored compilation of the many-to-one case [70, 71], there does not

exist any compilation algorithm for the one-to-many case. Pyretic [92] offers the one-to-

many feature but implements it by sending the first packet of each flow to the controller and

then installing micro-flow rules, a strategy which incurs prohibitive overhead. We present

the first compilation algorithm for the one-to-many case.

Our algorithm is a novel combination of symbolic analysis [73] and incremental se-

quential composition. Intuitively, we inject a symbolic packet into the virtual network,

follow all possible paths to egress ports, and sequentially compose the rules along each

path. In this way, we derive rules for the physical switch to process traffic as intended

by the controller’s policy for the virtual network. To handle rule updates incrementally,

we keep all the symbolic paths computed during this analysis and minimally modify them
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Figure 2.6: One-to-many virtualization.

when the virtual policy changes. We divide our description into three parts: symbolic path

generation (§2.4.1), sequential composition on symbolic paths (§2.4.2), and incremental

update (§2.4.3).

2.4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a single symbolic packet with wild-

cards in all fields (except inport). At every hop, we evaluate the policy on the packet, which

generates zero, one, or more symbolic packets. We follow the generated symbolic packets

until they all reach egress ports. Together, these symbolic paths form a tree rooted at the

ingress port.

Algorithm 1 shows pseudocode for the path generation algorithm. In Line 2, we create

all child packets that can result from evaluating the policy on pkt—one child packet for

each rule r that pkt matches. As we construct the tree, we update child’s header, which
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denotes the subset of traffic represented by the symbolic packet, according to the informa-

tion encoded in the rule responsible for generating child from pkt. By doing so, we

avoid creating branches for paths that no packet could possibly follow.

We use the example in Figure 2.6 to illustrate the process. Figure 2.6(a) shows a

physical-virtual topology mapping in which a physical switch S is virtualized to three vir-

tual switches, A, B and C. The mapping between physical and virtual ports is color- and

line type-coded. Figure 2.6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ∗, denoting wildcards in all fields, into port 1

of A. When we apply A’s policy to this packet, we generate two child symbolic packets,

p1 and p2. p1 has destination IP 2.0.0.0/16, matches the first rule in A’s policy, AR1, and

leaves the network at port 2 of A; p2 has destination IP 1.0.0.0/8, matches A’s second rule,

AR2, and reaches port 1 of B. We then evaluate B’s policy on p2, again generating two

symbolic packets, p21 and p22. p21 matches BR1 and leaves the network at port 2 of B; p22

matches BR2, enters C at port 1, matches CR1, and finally leaves the network at port 2 of

C. In total, we get the following three symbolic paths: (1) p1 : AR1; (2) p21 : AR2 → BR1;

and (3) p22 : AR2 → BR2 → CR1.

2.4.2 Sequential Composition

For each symbolic path, we sequentially compose all the rules along its edges to generate

a single rule. Then, we derive a final rule for the physical switch by adding a match on the

inport value of the symbolic packet at the root of the tree. Returning to our example in

Figure 2.6, the first symbolic path contains only AR1. By adding port 1 to its match, we get

the first rule for physical switch S.

SR1 =
(
4; inport = 1, dstip = 2.0.0.0/16; fwd(2)

)
.
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Adding inport = 1 is necessary because traffic that enters port 3 of C (port 5 of S)

with destination IP 2.0.0.0/16 will be forwarded to port 2 of C (port 4 of S). Sim-

ilarly, for the second and third symbolic paths, we evaluate comp�(AR2, BR1) and

comp�
(
comp�(AR2, BR2), CR1

)
, respectively. We assume the priority space for each

switch is [0, 8). After adding ingress port, we obtain two more rules.

SR2 =
(
14;inport = 1, dstip = 1.0.0.0/24; fwd(3)

)
SR3 =

(
76;inport = 1, dstip = 1.0.0.0/8; dstip = 2.0.0.0, fwd(4)

)
Priority assignment: Because symbolic paths may have different lengths, for the devirtu-

alization phase of compilation we need to augment the priority assignment algorithm for

sequential composition presented in §2.3.2. For example, from sequential composition we

get priorities 4, 14, and 76 for rules SR1, SR2, and SR3, respectively. But, with these priori-

ties, traffic entering port 1 at S with source IP 1.0.0.0/24 would match SR3 rather than SR2,

even though SR2 should have a higher priority than SR3. This mismatch happens because

SR2 is calculated from a path with only two hops (its priority is 1 ◦ 6 = 14) and SR3 is

calculated from one with three hops (1 ◦ 1 ◦ 4 = 76). To address the mismatch, we set a

hop length l∗. If a path is fewer than l∗ hops, we pad 0s to the concatenation of the rule

priorities. In practice, we use the number of switches in the virtual topology as l∗, as a

path will have more than that number of hops only if the virtual policy contains a loop.

This modified algorithm correctly orders SR2 and SR3, assigning them respective priorities

of 1 ◦ 6 ◦ 0 = 112 and 4 ◦ 0 ◦ 0 = 256. Figure 2.7 shows the rules for S with priorities

calculated in this manner. We repeat the above procedure for all ingress ports of the virtual

topology to get the final policy for S.
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Flow table of S(
256; inport = 1, dstip = 2.0.0.0/16; fwd(2)

)(
112; inport = 1, dstip = 1.0.0.0/24; fwd(3)

)(
76; inport = 1, dstip = 1.0.0.0/8; dstip = 2.0.0.0, fwd(4)

)
Figure 2.7: Flow table of switch S in Figure 2.6.

2.4.3 Incremental Update

By storing all the symbolic paths we generate when compiling a policy and partially mod-

ifying them upon a rule insertion or deletion, we can incrementally update a policy. This

strategy obviates the need to compile the whole policy from scratch upon every rule update.

In particular, when virtual switch V receives a rule update, we reevaluate V ’s policy on all

symbolic packets that enter V . As a result, we may generate new symbolic packets, which

we then follow until they reach egress ports. V ’s policy update may also modify the headers

of or eliminate existing symbolic packets. Accordingly, we update the paths of modified

symbolic packets and remove the paths of deleted packets. Then, we add and remove rules

from the physical switch as described in §2.4.2. Our priority assignment algorithm ensures

that these rule additions and deletions do not affect existing rules generated from symbolic

paths that have not changed.

2.5 Exploiting Policy Structures

CoVisor imposes fine-grained access control on how each controller can match and modify

packets. These restrictions both enhance security and provide hints that allow CoVisor

to further optimize the compilation process. First, by knowing which fields individual

policies match on and modify, we can build custom data structures to index rules, instead of

resorting to general R-tree-based data structures for multi-dimensional classifiers as in [49,

122, 127]. Second, by correlating the matched or modified fields of two policies being

composed, we can simplify their indexing data structures by only considering the fields

they both care about.
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(b) Example syntax tree.

Figure 2.8: Example of exploiting policy structures.

We first describe the optimization problem, and then we show how to use the above

two insights to solve it. For ease of explanation, we first assume that member policies are

connected by the parallel operator. Later, we’ll describe how to handle the sequential and

override operators. Now suppose we have a parallel composition T1 + T2 with implemen-

tation comp+(R1, R2), and a new rule, r∗1, is inserted into R1. With our incremental update

algorithm (§2.3.2), we need to iterate over all (r∗1, r2j) pairs where r2j ∈ R2. The iteration

processes |R2| pairs in total, where |R2| denotes the number of rules in R2. However, if we

know the structure of R2, we can index its rules in a way that allows us to skip the rules

that don’t intersect with r∗1, thereby further reducing computation overhead.

Index policies based on structure hints: Our goal is to reduce the number of rule pairs

to iterate in compilation. A policy’s structure indicates which fields should be indexed and

how. For example, if R2 is permitted only to do exact-match on destination MAC, then we

can store its rules in a hash map keyed on destination MAC. If r∗1 also does exact-match

on destination MAC, we simply use the destination MAC as key to search for rules in R2’s

hash map. No rules in R2 besides those stored under this key can intersect with r∗1, because

they differ on destination MAC. If r∗1 wildcards destination MAC, we return all rules in R2,

as they all intersect with r∗1.

The preceding example is a simple case in which R2 matches on one field. In general,

a policy may match on multiple fields. We use single-field indexes (hash table for exact-
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match, trie for prefix-match, list for arbitrary wildcard-match) as building blocks to build

a multi-layer index for multiple fields. Specifically, we first choose one field f1 the policy

can match and index the policy on this field. We store all rules with the same value in f1 in

the same bucket of the index. This forms the first layer of the index. Then we choose the

second field f2 and index rules in each f1 bucket on f2. We repeat this process for all the

fields on which the policy can match. We choose the order of fields according to simple

heuristics like preferring exact-match fields to prefix-match fields. In practice, a policy

normally matches on a small number of fields, which means the number of layers is small.

Consider a policy that does exact-match on proto (protocol number) and prefix-match

on srcip. We first index the policy based on proto. All rules with the same value in proto

go to the same bucket, as shown in Figure 2.8(a). Note that the hash map contains a bucket

keyed on ∗ for rules that do not match on proto. Then, we index all the rules that contain

the same proto value on srcip. Because our example policy does prefix match on srcip,

the second level of our multi-layer index comprises a trie for each bucket in the hash map.

Figure 2.8(a) shows this second level for rules with proto = 1; bucket A contains all the

rules with proto = 1 and srcip = 128.0.0.0/1.

Correlate policy structures to reduce indexing fields: When composing policies, we can

leverage the information we know about both to reduce the work we do to index each.

Suppose R1 matches on dstip and R2 matches on the five tuple (srcip, dstip, srcport,

dstport, proto). Instead of storing R2 in a five-layer index, we need only index the dstip.

Because dstip is the only field on which any rule r∗1 added toR1 can match, r∗1 will intersect

with a rule in R2 as long as they intersect on dstip. Formally, let Ri.f ields be the set of

fields on which Ri matches and Ri.index be the set of fields Ri indexes. Given Ri and Rj

in a composition, we have

Ri.index = Rj.index = Ri.f ields ∩Rj.f ields. (2.5)

40



Back to our example, we haveR1.index = R2.index = R1.f ields∩R2.f ields = {dstip}.

A policy Ri itself may be composed from other policies Rj and Rk. Unlike in the

previous example, we do not a priori know Ri.f ields and instead rely on the observation

that a rule in a composed policy can match on a field f if and only if at least one of its

component member policies can match on f . Hence, we get

Ri.f ields = Rj.f ields ∪Rk.f ields. (2.6)

Let’s look at an example (R1 +R2)+R3, which we show as a syntax tree in Figure 2.8(b).

Initially, we know the match fields only for the leaf nodes. Then we calculate the match

fields for node +1 with R1.f ields ∪ R2.f ields = {srcip, dstip, srcprt, dstprt, proto}.

Then, we use Equation (2.5) to index +1 and R3 with +1.f ields ∩ R3.f ields =

{srcip, proto}.

Sequential and override composition: Suppose we have sequential composition T1 � T2

with implementation comp�(R1, R2). Then R1.f ields not only contains the fields R1

matches but also the fields it modifies in its action set. This is because, for r1 ∈ R1 and

r2 ∈ R2, the pair (r1, r2) generates a rule for the composed policy if the intersection of

r2.mSet and the set of packets resulting from applying r1.action to r1.mSet is not empty.

Similarly, when we index R1, the key for any rule r1i is the value resulting from applying

r1.action to r1.match. We do not need to index policies for override composition, since

we directly stack their rules.

2.6 Implementation

We implemented a prototype of CoVisor with 4000+ lines of Java code added to and mod-

ifying OpenVirteX [5]. We replaced the core logic of OpenVirteX, which isolates multiple

controllers, with our composition and incremental update logic (§2.3). To OpenVirteX’s

built-in many-to-one virtualization, we added support for the one-to-many abstraction and
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our proactive compilation algorithm (§2.4). We further optimized compilation by exploit-

ing the structure of policies as described in §2.5. We used HashMap in the Java standard

library [59] to index rules with exact-match fields and RadixTree in the Concurrent-

trees library [30] to index rules with prefix-match fields. Given a key (e.g., 1.0.0.0/16),

RadixTree in the Concurrent-trees library only returns values for keys starting with this

key (e.g., 1.0.0.0/24 and 1.0.0.0/30). We modified it to also give values for keys included

by this key (e.g., 1.0.0.0/8). CoVisor currently supports the OpenFlow flowmod message;

other commands, such as barrier messages and querying counters, will be supported in later

versions.

2.7 Evaluation

2.7.1 Methodology

Experiment Setup: We evaluate CoVisor under three scenarios, the first two of which

evaluate composition efficiency and the third of which evaluates devirtualization efficiency.

In each scenario, we stress CoVisor with a wide range of policy sizes. Since compiling

policies to individual physical switches is independent in these scenarios, we show the

results for a single physical switch. We run CoVisor on Mininet [51] and use Floodlight

controllers [37]. The server is equipped with an Intel XEON W5580 processor with 8 cores

and 6GB RAM. We describe each scenario in more detail below.

• L2 Monitor + L2 Router: L2 Monitor counts packets for source MAC and destina-

tion MAC pairs; L2 Router forwards packets based on destination MAC. The MAC

addresses are randomly generated.

• L3-L4 Firewall� L3 Router: L3-L4 Firewall filters packets based on the five tuple;

L3 Router forwards packets according to destination IP prefix. The firewall policy is
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generated from ClassBench [125], a tool for benchmarking firewalls. The L3 router

policy is generated with IP prefixes extracted from the firewall policy.

• Gateway virtualization: This is the topology virtualization discussed in §2.2.2. A

switch that connects an Ethernet island to the IP core is abstracted to three virtual

switches, which operate as a MAC learner, gateway, and IP router.

Metrics: We use the following metrics to measure efficiency. The thick bars in Figures 2.9

and 2.11 indicate the median, and the error bars show the 10th and 90th percentiles.

• Compilation time: The time to compile the policy composition or topology devirtu-

alization.

• Rule update overhead: The number of flowmods to update the switch to the new

flow table.

• Total update time: The sum of compilation time, rule update time, and additional

system overhead like OpenFlow message (un)marshalling. Since hardware switches

and software switches takes very different time in rule updates, we show both of

them. As the software switches in Mininet do not mimic the rule update latency of

hardware switches and do not give accurate timing on the actual rule installation in

software switches, we use the rule update latency in [65] for hardware switches and

that in [113] for software switches when calculating rule update times.

Comparison: We compare the following approaches.

• Strawman: Recompile the new policy from scratch for every policy update.

• Incremental: Incrementally compile the new policy using our algebra of rule prior-

ities for policy composition (§2.3) and keeping symbolic path information for topol-

ogy devirtualization (§2.4).
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Figure 2.9: Per-rule update overhead of L2 Monitor + L2 Router as a function of L2
Router size (log-log scale).

• IncreOpt: Further optimize Incremental by exploiting the structures of policies

(§2.5).

2.7.2 Composition Efficiency

Figure 2.9 shows the result of L2 Monitor + L2 Router. In this experiment, we initialize the

L2 Monitor policy with 1000 rules, and then add 10 rules to measure the overhead for each.

We repeat this process 10 times. We vary the size N of L2 Router policy from 1000 to

32,000 to show how overhead increases with larger policies. Figure 2.9(a) shows the com-

pilation time. As expected, the compilation time of Strawman and Incremental increases

with the policy size, because larger policies force our algorithm to consider more rule pairs.
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Figure 2.10: Per-rule update overhead of L3-L4 Firewall � L3 Router (x-axis log scale).

Since Strawman recompiles the whole policy, it is by far the slowest. On the other hand,

IncreOpt has almost constant compilation time, because it indexes L2 Router’s rules in a

hash table keyed on destination MAC. When a rule is inserted to L2 Monitor’s policy, the

algorithm simply uses the rule’s destination MAC to look up rules in the hash table.

Figure 2.9(b) shows the rule update overhead in terms of number of rules (same for

hardware and software switches). Because of its naive priority assignment scheme, Straw-

man unnecessarily changes priorities of many existing rules and thus generates more flow-

mods than Incremental and IncreOpt. Incremental and IncreOpt generate the same policy,

and therefore they have the same rule update overhead. We also observe that the rule up-

date overhead does not increase with the size of L2 Router’s policy. This is because the
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size of L2 Monitor’s policy is fixed, and each monitor rule only intersects with one rule in

L2 Router, since they both do exact-match on destination MAC.

Finally, Figures 2.9(c) and 2.9(d) show the total time. Notably, Incremental and Incre-

Opt are significantly faster than Strawman, and the gap between Incremental and Incre-

Opt is larger when using software switches. This is because software switches update rules

faster than hardware switches, and therefore the compilation time accounts for a larger

fraction of the total time for software switches.

Figure 2.10 shows the result of L3-L4 Firewall� L3 Router. As before, we initialize L3-

L4 Firewall’s policy with 1000 rules and add 10 rules. Since the trend is similar to Figure 2.9

when we vary the size N of L3 Router, we instead show the CDF when L3 Router policy

has 8,000 rules. Figure 2.10(a) shows the compilation time. Again, Strawman is several

orders of magnitude slower than Incremental and IncreOpt. However, unlike in our pre-

vious experiment, we see a stepwise behavior of Incremental, and the difference between

Incremental and IncreOpt also disappears after 80th percentile. This is an artifact of the

content of L3-L4 Firewall from ClassBench. The firewall policy comprises approximately

80% rules matching on very specific destination IP prefix (/31, /32) and around 20% rules

matching very general destination IP prefix (/1, /0). A firewall rule with a very specific des-

tination IP prefix only composes with a few router rules, in which case IncreOpt processes

fewer rule pairs in compilation than Incremental. On the other hand, a firewall rule with a

very general destination IP prefix like /1 or /0 composes with half or all rules in the router

policy, in which case Incremental and IncreOpt process a similar number of rule pairs and

have similar compilation time. This reasoning also explains the shape of Incremental and

IncreOpt in Figures 2.10(b), 2.10(c) and 2.10(d). Finally, note that the overhead of insert-

ing a new rule to L3-L4 Firewall by Incremental and IncreOpt is bounded by the number

of rules in L3 Router, while that by Strawman is bounded by the product of the number of

rules in L3-L4 Firewall and L3 Router.
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Figure 2.11: The switch connecting an Ethernet island to the IP core is virtualized to
switches that operate as MAC learner, gateway, and IP router. Figures show the over-
head of adding a host to the Ethernet island as a function of IP router policy size (log-log
scale).

2.7.3 Devirtualization Efficiency

We use the gateway scenario to evaluate the efficiency of the devirtualization phase of

compilation. In this experiment, we have 100 hosts in the Ethernet island. The MAC

learner installs forwarding rules for connections between host pairs. To the Ethernet island,

switch G simply appears as another host; hosts use G’s MAC as destination MAC when

they want to reach hosts across the IP core. We initialize the MAC learner policy with 1000

rules in switch E. Then, we add a new host to the Ethernet island. When the new host

tries to talk to another host across the IP core, the MAC learner adds two rules to establish

a bidirectional connection between the host and switch G. To compile this update, we
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compose the two new rules with the existing rules in switches G and I . The gateway policy

at G is simply a MAC-rewriting repeater and ARP server. The IP router forwards packets

based on destination IP prefix. We vary the size of the IP router policy at I from 1000 to

32,000 to evaluate how the overhead increases with larger policies.

Figure 2.11 shows the overhead. Strawman exhibits a long compilation time, as it

has to recompile the policy from scratch. Strawman also generates more flowmods than

necessary, because its priority assignment scheme may change the priorities of existing

rules. In contrast, Incremental and IncreOpt incur significantly less overhead, because

they keep all the symbolic paths and only need to change a few upon receiving the new

rules. Finally, we notice that Incremental and IncreOpt do not show much difference in this

experiment and the absolute values of total update time are high. This is because the MAC

learner policy in switch E and the IP router policy in switch I match on different fields.

Thus, when we do sequential composition on virtual paths, Incremental and IncreOpt iterate

over a similar number of rule pairs and the result policy is almost a cross-product of the two

policies at E and I . The cross-product is inevitable when compiling to a single flow table

as the two policies match on different fields. Finally, we note that the multi-table support in

OpenFlow 1.3 and newer hardware platforms like P4 [67] can make devirtualization more

efficient. If multiple tables in a switch can be configured to in a pipeline to mirror the virtual

network topology, then updating virtual switch tables can be directly mapped to updating

physical tables. This can dramatically reduce compilation and rule update overhead. A

complete exploration of this direction is part of our future work.

2.8 Proposed OpenFlow Extensions

The current language for communicating between CoVisor and its controllers is OpenFlow.

We made this choice because OpenFlow is the current lingua franca of software-defined

networks. Nevertheless, it is well-known that OpenFlow is not the ultimate SDN control
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protocol; both researchers and practitioners have been exploring extensions and revisions

to the protocol for years. However, our use of OpenFlow in CoVisor has highlighted addi-

tional limitations that researchers might consider when revising the OpenFlow standard or

when designing future protocols.

In particular, a single OpenFlow rule can only express positive properties of packets

in a compact manner. For example, a single rule can forward a packet with type SSH out

port 3, but it cannot forward a packet that does not have type SSH out port 3. This lack of

expressiveness can be problematic if one would like to construct a hypervisor that allows

controller A to choose to handle some traffic, while other traffic falls through to controller

B. Such a situation is expressed naturally as A� B in our system. However, if A chooses

(during the course of operation) to control forwarding for packets that do not have type

SSH, it can only do so by providing rules for all types of packets other than SSH packets.

If OpenFlow supplied a don’t care action (analogous to Pyretic’s pass-through action [92]),

controllers could generate just two rules to deal with such situations: a high-priority rule

for SSH traffic with a don’t care action and a lower priority rule that forwards all other

traffic as desired. Of course, it would be possible for us to “hack” the OpenFlow protocol

so controllers can transmit such information coded somehow, but hacking protocols in this

fashion is brittle and leads to long-term software engineering nightmares.

2.9 Related Work

Slicing: Existing network hypervisors mostly focus on slicing; they target multi-tenancy

scenarios in which each tenant operates on a disjoint subset, or slice, of the traffic [5, 120,

75, 34]. In contrast, CoVisor allows multiple controllers to collaborate on processing the

same traffic.

Topology abstraction: Many projects studied the many-to-one case [92, 70, 71, 22].

Pyretic [92] explored the one-to-many case, but its implementation reactively installs
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micro-flow rules. CoVisor provides the first proactive compilation algorithm by leverag-

ing symbolic analysis to build symbolic paths [73] and applying incremental sequential

composition to generate the rules.

Composition: The parallel and sequential operators are proposed in the Frenetic

project [39, 92], and the override operator is described in [48, 133, 20]. An incre-

mental compilation algorithm for Frenetic policies is introduced in [133]. CoVisor is

novel in using these composition operators to compose policies written on a variety of

controller platforms, rather than just Frenetic. Furthermore, CoVisor takes advantage of

the OpenFlow rules’ explicit priorities; it uses a convenient algebra to calculate priorities

for composed rules, thereby eliminating the need to build dependency graphs for rules and

maintain scattered priority distributions [133]. Moreover, [133] only optimizes priority

assignment for Frenetic policies; it is not a hypervisor to compose controllers, and does

not have algorithms to compile topology virtualizations and optimizations by exploiting

policy structures. Finally, it is an open problem to design a good interface for Frenetic to

aid incremental update.

Switch table type patterns: Table Type Patterns [3] and P4 [17] provide a syntax for

describing flow table capabilities (e.g., fields that can be matched and modified). CoVisor

uses this kind of information to build a customized data structure to optimize compilation.

CoVisor’s optimization technique differs from existing ways to index and accelerate multi-

dimensional classifiers that don’t know policy structures a priori [49, 122, 127, 119].

2.10 Conclusion

We present CoVisor, a compositional hypervisor that allows administrators to combine

multiple controllers to collaboratively process a network’s traffic. CoVisor uses a combina-

tion of novel algorithms and data structures to efficiently compile policies in an incremental
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manner. Evaluations on our prototype show that it is several orders of magnitude faster than

a naive implementation.
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Chapter 3

Dionysus: Dynamic Update Scheduling

This chapter presents Dionysus, a system for fast, consistent network updates in software-

defined networks. Dionysus encodes as a graph the consistency-related dependencies

among updates at individual switches, and it then dynamically schedules these updates

based on runtime differences in the update speeds of different switches. This dynamic

scheduling is the key to its speed; prior update methods are slow because they pre-

determine a schedule, which does not adapt to runtime conditions. Testbed experiments

and data-driven simulations show that Dionysus improves the median update speed by

53–88% in both wide area and data center networks compared to prior methods.

3.1 Introduction

Many researchers have shown the value of centrally controlling networks. This approach

can prevent oscillations due to distributed route computation [19]; ensure that network

paths are policy compliant [46, 21]; reduce energy consumption [53]; and increase through-

put [4, 15, 31, 58, 55]. Independent of their goal, such systems operate by frequently up-

dating the data plane state of the network, either periodically or based on triggers such as

failures. This state consists of a set of rules that determine how switches forward packets.
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A common challenge faced in all centrally-controlled networks is consistently and

quickly updating the data plane. Consistency implies that certain properties should not be

violated during network updates, for instance, packets should not loop (loop freedom) and

traffic arriving at a link should not exceed its capacity (congestion freedom). Consistency

requirements impose dependencies on the order in which rules can be updated at switches.

For instance, for congestion freedom, a rule update that brings a new flow to a link must

occur after an update that removes an existing flow if the link cannot support both flows

simultaneously. Not obeying update ordering requirements can lead to inconsistencies such

as loops, blackholes, and congestion.

Current methods for consistent network updates are slow because they are based on

static ordering of rule updates [55, 85, 112, 72]. They pre-compute an order in which

rules must be updated, and this order does not adapt to runtime differences in the time it

takes for individual switches to apply updates. These differences inevitably arise because

of disparities in switches’ hardware and CPU load and the variabilities in the time it takes

the centralized controller to make remote procedure calls (RPC) to switches. In B4, a

centrally-controlled wide area network, the ratio of the 99th percentile to the median delay

to change a rule at a switch was found to be over five (5 versus 1 second) [58]. Further,

some switches can “straggle,” taking substantially more time than average (e.g., 10-100x)

to apply an update. Current methods can stall in the face of straggling switches.

The speed of network updates is important because it determines the agility of the

control loop. If the network is being updated in response to a failure, slower updates imply

a longer period during which congestion or packet loss occurs. Further, many systems

update the network based on current workload, both in the wide area [58, 55] and the data

center [4, 15, 31], and their effectiveness is tied to how quickly they adapt to changing

workloads. For example, recent works [58, 55] argue for frequent traffic engineering (e.g.,

every 5 minutes) to achieve high network utilization; slower network updates would lower

network utilization.
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We develop a new approach for consistent network updates. It is based on the observa-

tions that i) there exist multiple valid rule orderings that lead to consistent updates; and ii)

dynamically selecting an ordering based on update speeds of switches can lead to fast net-

work updates. Our approach is general and can be applied to many consistency properties,

including all the ones that have been explored by prior work [55, 85, 112, 72, 89].

We face two main challenges in practically realizing our approach. The first is devising

a compact way to represent multiple valid orderings of rule updates; there can be exponen-

tially many such orderings. We address this challenge using a dependency graph in which

nodes correspond to rule updates and network resources, such as link bandwidth and switch

rule memory capacity, and (directed) edges denote dependencies among rule updates and

network resources. Scheduling updates in any order, while respecting dependencies, guar-

antees consistent updates.

The second challenge is scheduling updates based on dynamic behavior of switches.

This problem is NP-complete in the general case, and making matters worse, the depen-

dency graph can also have cycles. To schedule efficiently, we develop greedy heuristics

based on preferring critical paths and strongly connected components in the dependency

graph [80].

We instantiate our approach in a system called Dionysus and evaluate it using exper-

iments on a modest-sized testbed and large-scale simulations. Our simulations are based

on topology and traffic data from two real networks, one wide-area network and one data

center network. We show that Dionysus improves the median network update speed by

53–88%. We also show that its faster updates lower congestion and packet loss by over

40%.
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Figure 3.1: Rule update times on a commodity switch. (a) Inserting single-priority rules.
(b) Inserting random-priority rules. (c) Modifying rules in a switch with 600 single-priority
rules. (d) Modifying 100 rules in a switch with concurrent control plane load.

3.2 Motivation

Our work is motivated by the observations that the time to update switch rules varies widely

and that not accounting for this variation leads to slow network updates. We illustrate these

observations using measurements from commodity switches and simple examples.

3.2.1 Variability in Update Time

Several factors lead to variable end-to-end rule update times, including switch hardware

capabilities, control load on the switch, the nature of the updates, RPC delays (which in-

clude network path delays), etc. [31, 58, 113, 36]. To illustrate this variability, we perform

controlled experiments on commodity switches. In these experiments, RPC delays are neg-
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ligible and identical switch hardware and software are used, yet significant variability is

evident.

The experiments explore the impact of four factors: i) the number of rules to be up-

dated; ii) the priorities of the rules; iii) the types of rule updates (e.g., insertion vs. mod-

ification); and iv) control load on the switch. We measure switches from two different

vendors and observe similar results. Figure 3.1 shows results for one switch vendor. We

build a customized switch agent on the switch and obtain confirmation of rule updates in

both the control and data planes. The control plane confirmation is based on the switch

agent verifying that the update is installed in the switch’s TCAM (ternary content address-

able memory), and the data plane confirmation is based on observing the impact of the

update in the switch’s forwarding behavior (e.g., changes in which interface a packet is

sent out on).

Figure 3.1(a) shows the impact of the number of rules by plotting the time to add differ-

ent numbers of rules. Here, the switch has no control load besides rule updates, the switch

starts with an empty TCAM, and all rule updates correspond to adding new rules with the

same priority. We see that, as one might expect, that the update time grows linearly with

the number of rules being updated, with the per-rule update time being 3.3 ms.

Figure 3.1(b) shows the impact of priorities. As above, the switch has no load and

starts with an empty TCAM. The difference is that the inserted rules are assigned random

priorities. We see that the per-rule update time is significantly higher than before. The

slope of the line increases as the number of rules increase, and the per-rule update time

reaches 18 ms when inserting 600 rules.

This variability stems from the fact that TCAM packing algorithms do different

amounts of work, depending on the TCAM’s current content and the type of operation

performed. For instance, the TCAM itself does not encode any rule priority information.

The rules are stored from top to bottom in decreasing priority and when multiple rules

match a packet, the one with the highest place is chosen. Thus, when a new rule is inserted,
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it may cause existing rules to move in the table. Although the specific packing algorithms

are proprietary and vary across vendors, the intrinsic design of a TCAM makes the update

time variable.

Figure 3.1(c) shows the impact of the type of rule update. Rather than inserting rules

into an empty TCAM, we start with 600 rules of the same priority and measure the time

for rule modifications. We modify only match fields or actions, not rule priorities. The

graph is nearly linear, with a per-rule modification latency of 11 ms. This latency is larger

than the per-rule insertion latency because a rule modification requires two operations in

the measured switch: inserting the new rule and deleting the old rule.

Finally, Figure 3.1(d) shows the impact of control load, by engaging the switch in dif-

ferent control activities while updates are performed. Here, the switch starts with the 600

same-priority rules and we modify 100 of them. Control activities performed include read-

ing packet and byte counters on rules with OpenFlow protocol, querying SNMP counters,

reading switch information with CLI commands, and running BGP protocol (which SDN

systems use as backup [58]). We see that despite the fact that update operations are iden-

tical (100 new rules), the time to update highly varies, with the 99th percentile 10 times

larger than the median. Significant rule update time variations are also reported in [58, 36].

In summary, we find that even in controlled conditions, switch update time varies sig-

nificantly. While some sources of this variability can be accounted for statically by update

algorithms (e.g., number of rule updates), others are inherently dynamic in nature (e.g.,

control plane load and RPC delays). Accounting for these dynamic factors ahead of time

is difficult. Our work thus focuses on adapting to them at runtime.

3.2.2 Consistent Updates amid Variability

We illustrate the downside of static ordering of rule updates with the example of Figure 3.2.

Each link has a capacity of 10 units and each flow’s size is marked. The controller wants

to update the network configuration from Figure 3.2(a) to 3.2(b). Assume for simplicity
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Figure 3.2: A network update example. Each link has 10 units of capacity; flows are labeled
with their sizes.

that the network uses tunnel-based routing and all necessary tunnels have already been

established. So, moving a flow requires updating only the ingress switch.

If we want a congestion-free network update, we cannot update all the switches in “one

shot” (i.e., send all update commands simultaneously). Since different switches will apply

the updates at different times, such a strategy may cause congestion at some links. For

instance, if S1 applies the update for moving F1 before S2 moves F2 and S4 moves F4,

link S1-S5 will be congested.

Ensuring that no link is congested requires us to carefully order the updates. Two valid

orderings are:

Plan A: [F3→ F2] [F4→ F1]

Plan B: [F4] [F3→ F2→ F1]

Plan A mandates that F2 be done after F3 and F1 be done after F4. Plan B mandates

that F1 be done after F2 and that F2 be done after F3. In both plans, F3 and F4 have no

pre-requisites and can be done anytime and in parallel.1

Which plan is faster? In the absence of update time variability, if all updates take unit

time, Plan A will take 2 time units and Plan B will take 3. However, with update time

variability, no plan is a clear winner. For instance, if S4 takes 3 time units to move F4, and

other switches take 1, Plan A will take 4 time units and Plan B will take 3. On the other
1Some consistent update methods [55] use stages, a more rigid version of static ordering. They divide

updates into multiple stages, and all updates in the previous stage must finish before any update in the next
stage can begin. In this terminology, Plan A is a two-stage solution in which the first stage will update F3
and F4 and the second will update F2 and F1. Plan B is a three-stage solution. Since SWAN minimizes the
number of stages, it will prefer Plan A.
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hand, if S2 is slow and takes 3 time units to move F2, while other switches take 1, Plan A

will take 4 time units and Plan B will take 5.

Now consider a dynamic plan that first issues updates for F3 and F4, issues an update

for F2 as soon as F3 finishes, and issues an update for F1 as soon as F2 or F4 finishes.

This plan dynamically selects between the two static plans above and will thus equal or beat

those two plans regardless of which switches are slow to update. Practically implementing

such plans for arbitrary network topologies and updates is the goal of our work.

3.3 Dionysus Overview

We achieve fast, consistent network updates through dynamic scheduling of rule updates.

As in the example above, there can be multiple valid rule orderings that lead to consistent

updates. Instead of statically selecting an order, we implement on-the-fly ordering based

on the realtime behavior of the network and the switches.

Our focus is on flow-based traffic management applications for the network core (e.g.,

ElasticTree, MicroTE, B4, SWAN [53, 15, 58, 55]). As is the case for these applications,

we assume that any forwarding rule at a switch matches at most one flow, where a flow is

(a subset of) traffic between ingress and egress switches that uses either single or multiple

paths. This assumption does not hold in networks that use wild-card rules or longest prefix

matching. Increasingly, such rules are being moved to the network edge or even hosts [96,

23, 108], keeping the core simple with exact match rules.

The primary challenge is to tractably explore valid orderings. One difficulty is that there

are combinatorially many such orderings. Conceivably, one may formulate the problem as

an ILP (Integer Linear Program). But this approach would be too slow and does not scale to

large networks with a lot of flows. Also it is static and not incrementally computable; one

has to rerun the ILP every time the switch behaviors change. Another difficulty is that the

extreme approach of being completely opportunistic about rule ordering does not always
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Figure 3.3: An example in which a completely opportunistic approach to scheduling up-
dates leads to a deadlock. Each link has 10 units of capacity; flows are labeled with their
sizes. If F2 is moved first, F1 and F4 get stuck.
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Figure 3.4: Our approach.

work. In such an approach, the controller will immediately issue any updates that are not

gated (per consistency requirements) on any other update. While this approach works for

the simple example in the previous section, in general, it can result in deadlocks (that are

otherwise resolvable). Figure 3.3 shows an example. Since F2 can be moved without

waiting for any other flow movement, an opportunistic approach might make that move.

But at this point, we are stuck, because no flow can be moved to its destination without

overloading at least some link. This is avoidable if we move other flows first. It is because

of such possibilities that current approaches carefully plan transitions, but they err on the

side of not allowing any runtime flexibility in rule orderings.
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(b) Dependency graph for Figure 3.3

Figure 3.5: Example dependency graphs.

We balance planning and opportunism using a two-stage approach, shown in Figure 3.4.

In the first stage, we generate a dependency graph that compactly describes many valid

orderings. In the second stage, we schedule updates based on the constraints imposed by

the dependency graph. Our approach is general in that it can maintain any consistency

property that can be described using a dependency graph, which includes all properties

used in prior work [58, 55, 112]. The scheduler is independent of the consistency property.

Figure 3.5(a) shows a simplified view of the dependency graph for the example of

Figure 3.2. In the graph, circular nodes denote update operations, and rectangular nodes

represent link capacity resources. The numbers within rectangles indicate the current free

capacity of resources. A label on an edge from an operation to a resource node shows the

amount of resource that will be released when the operation completes. For example, link

S2-S5 has 0 free capacity, and moving F3 will release a capacity of 10 to it. Labels on

edges from resource to operation nodes show the amount of free resource needed to conduct

these operations. As moving F1 requires 5 free capacity on link S1-S5, F1 cannot move

until F2 or F4 finishes.

Given the dependency graph in Figure 3.5(a), we can dynamically generate good sched-

ules. First, we observe that F3 and F4 don’t depend on other updates, so they can be
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scheduled immediately. After F3 finishes, we can schedule F2. Finally, we schedule F1

once one of F2 or F4 finishes. From this example, we see that the dependency graph cap-

tures dependencies but still leaves scheduling flexibility, which we leverage at runtime to

implement fast updates.

There are two challenges in dynamically scheduling updates. The first is to resolve

cycles in the dependency graph. These arise due to complex dependencies between rules.

For example, Figure 3.5(b) shows that there are cycles in the dependency graph for the

example of Figure 3.3. Second, at any given time, multiple subsets of rule updates can

be issued, and we need to decide which ones to issue first. As described later, the greedy

heuristics we use for these challenges are based on critical-path scheduling and the concept

of SCC (strongly connected component) in graph theory.

3.4 Network State Model

This section describes the model of network forwarding state that we use in Dionysus. The

following sections describe dependency graph generation and scheduling in detail.

The network G consists of a set of switches S and a set of directed links L. A flow f

is from an ingress switch si to an egress switch sj with traffic volume tf , and its traffic is

carried over a set of paths Pf . The forwarding state of f is defined as Rf = {rf,p|p ∈ Pf}

where rf,p is the traffic load of f on path p. The network stateNS is then the combined state

of all flows, i.e., NS = {Rf |f ∈ F}. For example, consider the network in Figure 3.6(a)

that is forwarding a flow across two paths, with 5 units of traffic along each. Here, tf = 10,

Pf = {p1 = S1S2S3S5, p2 = S1S2S5}, and Rf = {rf,p1 = 5, rf,p2 = 5}.

The state model above captures both tunnel-based forwarding that is prevalent in WANs

and also WCMP (weighted cost multi path) forwarding that is prevalent in data center

networks. In tunnel-based forwarding, a flow is forwarded along one or more tunnels. The

ingress switch matches incoming traffic to the flow, based on packet headers, and splits
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Forwarding schemes WCMP forwarding
Tunnel-based forwarding

Consistency properties

Blackhole-freedom
Loop-freedom
Packet coherence
Congestion-freedom

Table 3.1: Forwarding schemes and consistency properties that can currently be handled
by the dependency graph generation.

it across the tunnels based on configured weights. Before forwarding a packet along a

tunnel, the ingress switch tags the packet with the tunnel identifier. Subsequent switches

only match on tunnel tags and forward packets, and the egress switch removes the tunnel

identifier. Representing tunnel-based forwarding in our state model is straightforward. Pf

is the set of tunnels and the weight of a tunnel is rf,p/tf .

In WCMP forwarding, switches at every hop match on packet headers and split flows

over multiple next hops with configured weights. Shortest-path and ECMP (equal cost

multipath) forwarding are special cases of WCMP forwarding. To represent WCMP routing

in our state model, we first calculate the flow rate on link l as rlf =
∑

l∈p,p∈Pf
rf,p. Then at

switch si, the weight for next-hop sj is: wi,j = r
lij
f /
∑

l∈Li
rlf where lij is the link from si

to sj and Li is the set of links starting at si. For instance, in Figure 3.6(a), w1,2 = 1, w1,4 =

0, w2,3 = 0.5, w2,5 = 0.5.

3.5 Dependency Graph Generation

As shown in Figure 3.4, the dependency graph generator takes as input the current state

NSc, the target state NSt, and the consistency property. The network states includes the

flow rate, and as in current systems [53, 15, 58, 55], we assume that flows obey this rate as

a result of rate limiting or robust estimation. A static input to Dionysus is the rule capacity

of each switch, relevant in settings where this resource is limited. Since Dionysus manages

all rule additions and removals, it then knows how much rule capacity is available on each
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Figure 3.6: Example of building dependency graph for updating flow f from current state
(a) to target state (b).

switch at any given time. This information is used such that rule capacity is not exceeded

at any switch.

Given NSc and NSt, it is straightforward to compute the set of operations that would

update the network from NSc to NSt. The goal of dependency graph generation is to inter-

link these operations based on the consistency property. Our dependency graph has three

types of nodes: operation nodes, resource nodes, and path nodes. Operation nodes repre-

sent addition, deletion, or modification of a forwarding rule at a switch, and resource nodes

correspond to resources such as link capacity and switch memory and are labeled with the

amount of resource currently available. An edge between two operation nodes captures an
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Figure 3.7: Links and relationships among path, operation, and resource nodes; RD indi-
cates a resource dependency and OD indicates an operation dependency.

operation dependency and implies that the parent operation must be done before the child.

An edge between a resource and an operation node captures a resource dependency. An

edge from a resource to an operation node is labeled with the amount of resource that must

be available before the operation can occur. An edge from an operation to a resource node

is labeled with the amount of the resource that will be freed by that operation. There are no

edges between resource nodes.

Path nodes help group operations and link capacity resources on a path. Path nodes can

connect to operation nodes as well as to resource nodes. An edge between an operation and

a path node can be either an operation dependency (un-weighted) or a resource dependency

(weighted). The various types of links connecting different types of nodes are detailed in

Figure 3.7.

During scheduling, each path node that frees link resources has a label committed

that denotes the amount of traffic that is moving away from the path; when the movement

finishes, we use committed to update the free resource of its child resource nodes. We

do not need to keep committed for path nodes that require resource, because we always

reduce free capacity on its parent resource nodes first before we move traffic into the path.

In this thesis, we focus on four consistency properties from prior work [89] and show

how our dependency graphs capture them. The properties are i) blackhole-freedom: no

packet should be dropped at a switch (e.g., due to a missing rule); ii) loop-freedom: no

packet should loop in the network; iii) packet coherence: no packet should see a mix of
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old and new rules in the network; and iv) congestion-freedom: traffic arriving at a link

should be below its capacity. Table 3.1 gives a list of forwarding schemes and consistency

properties we can handle. Dionysus cannot handle network updates across layers, i.e.,

updates of forwarding rules in switches in the network layer and optical circuit setup in

optical switches in the optical layer. §4.3.3 describes how to extend Dionysus to coordinate

the updates between the network and optical layers. In cases where it is urgent to update

some switches, i.e., blocking data leakage, operators may sacrifice consistency and choose

the enforce the new policy right away. The dependency graph is not useful in such cases.

We now describe dependency graph generation. We first focus on tunnel-based forward-

ing without resource limits and then discuss WCMP forwarding and resource constraints.

Similar to SWAN [55], we remove old flows at the beginning of the update and add new

flows at the end of the update. This gives us most free resources to play with during the

update. The following description mainly concerns with flows that change their forwarding

states in the update.

Tunnel-based forwarding: Tunnel-based forwarding offers loop freedom and packet co-

herence by design; it is not possible for packets to loop or to see a mix of old and new

rules during updates. We defer discussion of congestion freedom until we discuss resource

constraints. The remaining property, blackhole freedom, is guaranteed as long as we ensure

that i) a tunnel is fully established before the ingress switch puts any traffic on it, and ii)

all traffic is removed from the tunnel before the tunnel is deleted.

A dependency graph that encodes these constraints can be built as follows. For each

flow f , using NSc and NSt, we first calculate the tunnels to be added and deleted and

generate a path node for each. Then, we generate an operation node for every hop, adding

an edge from each of them to the path node (or from the path node to each of them),

denoting adding (or deleting) this tunnel at the switch. Then, we generate an operation node

that changes the tunnel weights to those in NSt at the ingress switch. To ensure blackhole

freedom, we add an edge from each path node that adds new tunnels to the operation node
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Index Operation
A Add p3 at S1
B Add p3 at S4
C Add p3 at S5
D Change weight at S1
E Delete p2 at S1
F Delete p2 at S2
G Delete p2 at S5

Table 3.2: Operations to update f with tunnel-based rules.

Index Operation
X Add weights with new version at S2
Y Change weights, assign new version at S1
Z Delete weights with old version at S2

Table 3.3: Operations to update f in WCMP forwarding.

that changes tunnel weights, and an edge from the operation node that changes tunnel

weights to each path node that deletes old tunnels.

We use the example in Figure 3.6 to illustrate the steps above. Initially, we set the

tunnel weights on p1 and p2 with 0.5 and 0.5 respectively. In the target state, we add tunnel

p3, delete tunnel p2, and change the tunnel weights to 0.5 on p1 and 0.5 on p3. To generate

the dependency graph for this transition, we first generate path nodes for p2 and p3 and

the related switch operations as in Table 3.2. Then we add edges from the tunnel-addition

operations (A, B and C) to the corresponding path node (p3), and edges to the tunnel-

deletion operations (E, F and G) from the corresponding path node (p2). Finally, we add

an edge from the path node of the added path (p3) to the weight-changing operation (D)

and from D to the path node for the path to be deleted (p2). The resulting graph is shown

in Figure 3.6(c). The resource nodes in this graph are discussed later.

WCMP forwarding: With NSc and NSt, we calculate for each flow the weight change

operations that update the network from NSc to NSt. We then create dependency edges

between these operations based on the consistency property. Algorithm 2 shows how to do

that for packet-coherence, using version numbers [85, 112]. In this approach, the ingress
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Algorithm 2 Dependency graph for packet coherence in a WCMP network
– v0: old version number
– v1: new version number

1: for each flow f do
2: s∗ = GetIngressSwitch(f)
3: o∗ = GenRuleModifyOp(s∗, v1)
4: for si ∈ GetAllSwitches(f)− s∗ do
5: if si has multiple next-hops then
6: o1 = GenRuleInsertOp(si, v1)
7: o2 = GenRuleDeleteOp(si, v0)
8: Add edge from o1 to o∗

9: Add edge from o∗ to o2

switch tags each packet with a version number and downstream switches handle packets

based on the embedded version number. This tagging ensures that each packet either uses

the old configuration or the new configuration, and never a mix of the two. The algorithm

generates three types of operations: i) the ingress switch tags packets with the new version

number and uses new weights (Line 3); ii) downstream switches have rules for handling

the packets with the new version number and new weights (Line 6); and iii) downstream

switches delete rules for the old version number (Line 7). Packet coherence is guaranteed

if Type i operation occurs after Type ii (Line 8) and Type iii operations occur after Type i

(Line 9). Line 5 is an optimization; no changes are needed at switches that have only one

next hop for the flow in both the old and new configurations.

We use the example in Figure 3.6 again to illustrate the algorithm above. For flow f ,

we need to update the flow weights at S1 from [(S2, 1), (S4, 0)] to [(S2, 0.5), (S4, 0.5)],

and weights at S2 from [(S3, 0.5), (S5, 0.5)] to [(S3, 1), (S5, 0)]. This translates to three

operations (Table 3.3): add new weights with new version numbers at S2 (X), change to

new weights and new version numbers at S1 (Y), and delete old weights at S2 (Z). We

connect X to Y and Y to Z as shown in Figure 3.6(d).

Blackhole-freedom and loop-freedom do not require version numbers. For the former,

we must ensure that every switch that may receive a packet from a flows always has a rule

for it. For the latter, we must ensure that downstream switches (per new configuration)

are updated before updating a switch to new rules [89]. These conditions are easy to en-
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code in a dependency graph. For space constraints, we omit detailed description of graph

construction.

Resource constraints: We introduce resource nodes to the graph corresponding to re-

sources of interest, including link bandwidth and switch memory. These nodes are labeled

with their current free amount or with infinity if that resource can never be a bottleneck.

We connect link bandwidth nodes with other nodes as follows. For each path node and

bandwidth node for links along the path: if the traffic on the path increases, we add an

edge from the bandwidth node to the path node with a label indicating the amount of traffic

increase; if the traffic decreases, we add edges in the other direction. For a tunnel-based

network, we add an edge from each path node on which traffic increases to the operation

node that changes weight at the ingress switch with a label indicating the amount of traffic

increase; similarly, we add an edge in the other direction if the traffic decreases. For a

WCMP network, we add an edge from each path node on which traffic increases to each

operation node that adds weights with new versions with a label indicating the amount

of increase; similarly, we add an edge from the operation node that changes weight at

the ingress switch to each path node on which traffic decreases with a label indicating the

amount of decrease. This difference is due to that tunnels offer packet coherence by design,

while WCMP networks need version numbers.

Connecting switch memory resource nodes with other nodes is straightforward. We add

an edge from a resource node to an operation node if the operation consumes that switch

memory with an weight indicating the amount of consumption; we add an edge from an

operation node to a resource node if the operation releases that switch memory with an

weight indicating the amount of release.

For example, in Figure 3.6(c) node D, which changes tunnel weights at S1, increases 5

units of traffic on p3 which includes link S1-S4 and S4-S5, and decreases 5 units of traffic

on p2 which includes link S1-S2 and S2-S5. Node A that adds tunnel p3 consumes 1 rule
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Figure 3.8: Critical-path scheduling. C has larger CPL than B, and is scheduled.

at S1. In Figure 3.6(d), we link p3 to X and link X to Y . X and Y essentially takes the

same effect as D in Figure 3.6(d).

Post-processing: After generating the dependency graph, we reduce it by deleting edges

from non-bottlenecked resources. For each resource node Ri, we check the edges to its

child nodes Nj . If the free resource Ri.free is no smaller than
∑

j lij where lij is the

edge weight, we delete all the edges from Ri to its children and decrease the free capacity

by
∑

j lij . The idea is that Ri has enough free resource to accommodate all operations

that need it, so it’s not a bottleneck resource and the scheduling will not consider it. For

example, if S1-S4 has over 5 units of free capacity, we can delete the edge from S1-S4 to

p3 in Figures 3.6(c) and 3.6(d).

3.6 Dionysus Scheduling

We now describe how updates are scheduled in Dionysus. First, we discuss the hardness

of the scheduling problem, which guided our approach. Then, we describe scheduling

algorithm for the special case where the dependency graph is a DAG (directed acyclic

graph). Finally, we extend this algorithm to handle cycles.

3.6.1 The Hardness of the Scheduling Problem

Scheduling is a resource allocation problem, that is, how to allocate available resources to

operations to minimize the update time. For example, resource node R1 in Figure 3.8 has

5 units of free resource. It cannot cover both B and C. We must decide to schedule i)
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B, ii) C, or iii) part of B and C. Every time we make a scheduling decision, we decide

how to allocate a resource to its child operations and which parent operation to execute

to obtain a resource. Additional constraints on scheduling are placed by dependencies

between operations.

We can prove the following about network update scheduling.

Theorem 1. In the presence of both link capacity and switch memory constraints, finding

a feasible update schedule is NP-complete.

Proof. Given a network, where all flow demands from a set of sources to a set of destina-

tions must go through either switch u or v. Each switch has a memory limit for k rules

(flows), and each switch has a bandwidth capacity limit of c. We have 2k − 1 flows, one

big flow with capacity c/2, k − 1 flows with capacity ε (think of ε = 0), plus a set S of

k − 1 flows, all with integer capacity, in total c. Currently, the set S goes through switch

v, all other flows (the big one and the tiny ones) go through switch u. The target state is to

swap the switches of all flows, i.e. the big and the tiny flows should go through switch v,

the set S through switch u. Note that both current and target solution are feasible regarding

both capacity and memory. Initially, we cannot move any flow from v to u, not even par-

tially, because the rule limit on switch u is already maxed out. So we can only (partially)

move a single flow from u to v. If we move the big flow, we need a new rule on switch

v, which will also max out the rule limit on switch v, at which point we are stuck as both

memory limits are maxed out. However, we can move an ε flow from u to v, first creating

an additional rule at v, then moving the flow, then removing one rule at u. At this stage

have used all rules on v, but we have one spare rule at u, which gives us the possibility to

(partially) move a flow from v to u. Again, partially moving a flow is not a good idea as we

are maxing out regarding rules on both switches. However, there is enough spare capacity

on switch u to completely move one of the flows in S. We do that, as it is the only thing

we can do. We continuing moving ε-flows from u to v and then S S-flows from v to u.

However, since we cannot move flows partially, we always must move complete flows, and
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at some point, capacity on u will become a problem. In order to be able to move the big

flow from u to v, we must have moved a subset S ′ of S from v to u such that this subset

has exactly a total capacity c/2. In order to figure out the set S ′, we need to partition the

flows into two equal-capacity sets. This is equivalent to the so-called partition problem, an

NP-complete problem that must partition of set of n integers into two sets with the same

sum.

The hardness stems from the fact that memory constraints involve integers and mem-

ory cannot be allocated fractionally. Scheduling is simpler if we only have link capacity

constraints, but finding the fastest schedule is still hard because of the huge search space.

Theorem 2. In the presence of link capacity constraints, but no switch memory constraints,

finding the fastest update schedule is NP-complete.

Proof. We use the same network as above, i.e. all flow demands from a set of sources to

a set of destinations must go through either switch u or v. Each switch has a bandwidth

capacity limit of c. We have k flows, one with capacity c/2, plus a set S of k − 1 flows,

all with integer capacity, in total c. The big flow initially goes through switch u, the set S

through switch v. Again, as above, we want to swap all flows. If we could solve partition,

we would in a first step move a set S ′, subset of S with total capacity of c/2 from v to

u, then the big flow from u to v, and finally all the other flows (S \ S ′) from v to u. All

flows are properly moved and touched only once. If we cannot solve partition, at least one

flow must first be split (some part of the flow going through switch u while the other part

going through switch v). Eventually this flow is properly moved as well, but in addition

to touching each flow once, we need to touch at least one flow at least twice, which costs

time.

3.6.2 Scheduling DAGs

We first consider the special case of a DAG. Scheduling a DAG is, expectedly, simpler:
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Lemma 3. If the dependency graph is a DAG, finding a feasible update schedule is in P.

While it is easy to find a feasible solution for a DAG, we want to find a fast one.

Different scheduling orders lead to different finishing times. For example, if all operations

take the same amount of time Figure 3.8, scheduling C before B will be faster.

We use critical-path scheduling. The intuition is that the critical path decides the com-

pletion time, and we thus want to schedule operations on the critical path first. Since re-

source nodes and path nodes in the dependency graph are only used to express constraints,

we assign weight w=0 to them when calculating critical paths; for operation nodes, we

assign weight w=1. With this, we calculate a critical-path length CPL for each node i as:

CPLi = wi + max
j∈children(i)

CPLj (3.1)

To calculate CPL for all the nodes in the graph, we first topologically sort all the nodes

and then iterate over them to calculate CPL with Equation 3.1 in the reverse topological

order. In Figure 3.8, for example, CPLD=1, CPLC=2, CPLB=1, CPLA=3. The CPL for

each node can be computed efficiently in linear time.

Algorithm 3 shows how Dionysus uses CPL to schedule updates, with key notations

summarized in Table 3.4. Each time we enter the scheduling phase, we first update the

graph with finished operations and delete edges from unbottlenecked resources (line 2).

Then, we calculate CPL for every node (Line 3) and sort nodes in decreasing order of

CPL (Line 4). Then, we iterate over operation nodes and schedule them if their operation

dependency and resource dependency are satisfied (Lines 6, 7). Finally, the scheduler waits

for some time for all scheduled operations to finish before starting the next round (Line 10).

To simplify presentation, we first show the related pseudo code ofCanScheduleOperation(Oi)

and UpdateGraph(G) for tunnel-based networks and describe them below. Then, we

briefly describe how the WCMP case differs.

73



Symbol Description
Oi Operation node i

Rj Resource node j

Rj .free Free capacity of Rj

Pk Path node k

Pk.committed Traffic that is moving away from path k

lij Edge weight from node i to j

Table 3.4: Key notation in our algorithms.

Algorithm 3 ScheduleGraph(G)
1: while true do
2: UpdateGraph(G)
3: Calculate CPL for every node
4: Sort nodes by CPL in decreasing order
5: for unscheduled operation node Oi ∈ G do
6: if CanScheduleOperation(Oi) then
7: Schedule Oi

8: Wait for time t or for all scheduled operations to finish

CanScheduleOperation (Algorithm 4): This function decides if an operation Oi is ready

to be scheduled and updates the resource levels for resource and path nodes accordingly. If

Oi is a tunnel addition operation, we can schedule it either if it has no parents (Lines 2, 3)

or its parent resource node has enough free resource (Lines 4–8). If Oi is a tunnel deletion

operation, we can schedule it if it has no parents (Lines 11–12); tunnel deletion operations

do not have resource nodes as parents because they always release (memory) resources. If

Oi is a weight change operation, we gather all free capacities on the paths where traffic

increases and moves traffic to them (line 14-34). We iterate over each parent path node and

obtain the available capacity (available) of the path (Lines 16–27). This capacity limits the

amount of traffic that we can move to this path. We sum them up to total, which is the total

traffic we can move for this flow (Line 26). Then, we iterate over child path nodes (Lines

30–33). Finally, we decrease Pj.committed traffic on path represented by Pj (Line 31).

UpdateGraph (Algorithm 5): This function updates the graph before scheduling based

on operations that successfully finished in the last round. We get all such operations and

update related nodes in the graph (Lines 1–22). If the operation node adds a tunnel, we
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Algorithm 4 CanScheduleOperation(Oi)
// Add tunnel operation node

1: if Oi.isAddTunnelOp() then
2: if Oi.hasNoParents() then
3: return true
4: Rj ← parent(Oi) // AddTunnelOp only has 1 parent
5: if Rj .free ≥ lji then
6: Rj .free← Rj .free− lji
7: Delete edge Rj → Oi

8: return true
9: return false

// Delete tunnel operation node
10: if Oi.isDelTunnelOp() then
11: if Oi.hasNoParents() then
12: return true
13: return false

// Change weight operation node
14: total← 0
15: canSchedule← false
16: for path node Pj ∈ parents(Oi) do
17: available← lji
18: if Pj .hasOpParents() then
19: available← 0
20: else
21: for resource node Rk ∈ parents(Pj) do
22: available← min(available, lkj , Rk.free)

23: for resource node Rk ∈ parents(Pj) do
24: lkj ← lkj − available
25: Rk.free← Rk.free− available

26: total← total + available
27: lji ← lji − available

28: if total > 0 then
29: canSchedule← true

30: for path node Pj ∈ children(Oi) do
31: Pj .committed← min(lij , total)
32: lij ← lij − Pj .committed
33: total← total − Pj .committed

34: return canSchedule

delete the node and its edges (Lines 2, 3). If the operation node deletes a tunnel, it frees

rule space. So, we update the resource node (Lines 5, 6) and delete it (Line 7). If the

operation node changes weight, for each child path node, we release resources to links on

it (Lines 11–12) and delete the edge if all resources are released (Lines 13, 14). We reset
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Algorithm 5 UpdateGraph(G)
1: for finished operation node Oi ∈ G do

// Finish add tunnel operation node
2: if Oi.isAddTunneOp() then
3: Delete Oi and all its edges

// Finish delete tunnel operation node
4: else if Oi.isDelTunnelOp() then
5: Rj ← child(Oi)
6: Rj .free← Rj .free+ lij
7: Delete Oi and all its edges // DelTunnelOp only has 1 child

// Finish change weight operation node
8: else
9: for path node Pj ∈ children(Oi) do

10: for resource node Rk ∈ children(Pj) do
11: ljk ← ljk − Pj .committed
12: Rk.free← Rk.free+ Pj .committed
13: if ljk = 0 then
14: Delete edge Pj → Rk

15: Pj .committed← 0
16: if lij = 0 then
17: Delete Pj and its edges

18: for path node Pj ∈ parents(Oi) do
19: if lji = 0 then
20: Delete Pj and its edges

21: if Oi.hasNoParents() then
22: Delete Oi and its edges
23: for resource node Ri ∈ G do
24: if Ri.free ≥

∑
j lij then

25: Ri.free← Ri.free−
∑

j lij
26: Delete all edges from Ri

the amount of traffic that is moving away from this path, Pj.committed, to 0 (Line 15).

If we have moved all the traffic away from this path, we delete this path node (Lines 16,

17). Similarly, we check all the parent path nodes (Lines 18–20). If we have moved all the

traffic into a path, we delete the path node (Lines 19, 20). Finally, if all parent path nodes

are removed, the weight change for this flow finishes; we remove it from the graph (Line

22). After updating the graph with finished operations, we check all resource nodes (Lines

23–26). We delete edges from unbottlenecked resources (Lines 24–26).
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Algorithm 6 CanScheduleOperation(Oi) — WCMP Network
1: if !Oi.isChangeWeightOp() then
2: return false
3: canSchedule← false

// Check link capacity resource
4: total← 0
5: Oi0 ← parents(Oi)[0]
6: for path node Pj ∈ parents(Oi0) do
7: Pj .available← lji0
8: for resource node Rk ∈ parents(Pj) do
9: Pj .available← min(available, lkj , Rk.free)

10: total← total + Pj .available

11: if total > 0 then
12: canSchedule← true

// Check switch memory resource
13: for operation node Oj ∈ parents(Oi) do
14: Rk ← resourceParent(Oj)
15: if Rk 6= null && Rk.free < lkj then
16: canSchedule← false

17: if canSchedule then
// Update link capacity resource

18: Oi0 ← parents(Oi)[0]
19: for path node Pj ∈ parents(Oi0) do
20: for resource node Rk ∈ parents(Pj) do
21: lkj ← lkj − Pj .available
22: Rk.free← Rk.free− Pj .available

23: for operation node Ok ∈ children(Pj) do
24: ljk ← ljk − Pj .available

// Update switch memory resource
25: for operation node Oj ∈ parents(Oi) do
26: Rk ← resourceParent(Oj)
27: if Rk 6= null then
28: Rk.free← Rk.free− lkj

29: return canSchedule

WCMP network: Algorithms 4 and 5 for WCMP-based networks differ in two respects.

First, WCMP networks do not have tunnel add or delete operations. Second, unlike tunnel-

based networks that can simply change the weights at the ingress switches, WCMP net-

works perform a two-phase commit using version numbers to maintain packet coherence

(node X and Y in Figure 3.6(d)). The code related to the weight change operation in the
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Algorithm 7 UpdateGraph(G) — WCMP Network
1: for finished operation node Oi ∈ G do
2: if Oi.isDelOldV erOp() then
3: Rj ← child(Oi)
4: Rj .free← Rj .free+ lij
5: else if Oi.isChangeWeightOp() then
6: for path node Pj ∈ children(Oi) do
7: for resource node Rk ∈ children(Pj) do
8: ljk ← ljk − Pj .committed
9: Rk.free← Rk.free+ Pj .committed

10: if ljk = 0 then
11: Delete edge Pj → Rk

12: Pj .committed← 0
13: if lij = 0 then
14: Delete Pj and its edges

15: if Oi.hasNoChildren() then
16: Delete Oi, related nodes and edges
17: for resource node Ri ∈ G do
18: if Ri.free ≥

∑
j lij then

19: Ri.free← Ri.free−
∑

j lij
20: Delete all edges from Ri

two algorithms has minor difference accordingly. Algorithm 6 and 7 show the pseudo code

of CanScheduleOperation(Oi) and UpdateGraph(G) for WCMP networks.

CanScheduleOperation (Algorithm 6): Different from tunnel-based networks, WCMP

networks don’t have tunnel add or delete operation. Instead, every hop have weights to

split a flow among multiple next-hops. To update a flow, all switches of this flow have to

be touched to implement a two-phase update. Therefore, this function checks on a per-

flow basis by examining the change weight operation at the ingress switch for every flow,

e.g., Y in Figure 3.6(d) (Lines 1, 2). Similar to tunnel-based networks, it gathers all free

capacities on the paths where traffic increases (Lines 4-12). It iterates over path nodes and

obtain the available capacity (Pj.available) of the path (Lines 6-10). This capacity limits

the amount of traffic that we can move to this path. Note that these path nodes are the

parents of Oi’s parents (e.g., parents of X rather than parents of Y in Figure 3.6(d)) since

Oi is the change weight operation at the ingress switch (e.g., Y in Figure 3.6(d)). This flow

can only be scheduled if there is any free capacity on these paths (Lines 11, 12). Then we

78



check all the switches to see if they have free memory to accommodate the operations that

add weights with new version, e.g., S2 in Figure 3.6(d) (Lines 13-16). If we have both link

and switch resource, we can schedule update to this flow (Lines 17-28). We update link

resource (Lines 18-24) and switch resource (Lines 25-28) accordingly.

The function finally returns canSchedule denoting whether the flow can be scheduled.

In the schedule part (Line 7 in Algorithm 3), different from tunnel-based networks, we do

a two-phase update, where we first add weights with new version (e.g., X in Figure 3.6(d)),

change weights and assign new version at ingress switch (e.g., Y in Figure 3.6(d)) then

delete weights with old version (e.g., Z in Figure 3.6(d)).

UpdateGraph (Algorithm 7): This function updates the dependency graph based on fin-

ished operations in the last round. We iterate over all finished operations (Lines 1-15). If

the operation deletes weights with old version, we free rule space (Lines 2-4). If the op-

eration changes weights with new version, for each child path node, we release resources

to links on the path (Lines 8, 9) and delete the edge if all resources are released (Lines 10,

11). We reset Pj.committed to 0 (Line 12) and delete it if all traffic to be moved has been

moved (Lines 13-14). After this, we check whether Oi has any children left. If so, we keep

these nodes in order to move the remaining traffic. Otherwise, it means all traffic has been

moved, and we delete Oi and all the related two-phase commit nodes and edges (e.g., X, Y,

Z , the related path nodes and edges in Figure 3.6(d)). Finally, we iterate over all resource

nodes and remove edges from unbottlenecked resources (Lines 17-20).

3.6.3 Handling Cycles

Cycles in the dependency graph pose a challenge because inappropriate scheduling can

lead to deadlocks where no progress can be made, as we saw for Figure 3.5(b) if F2 is

moved first. Further, many cycles may intertwine together, which makes the problem even

more complicated. For instance, A, B and C are involved in several cycles in Figure 3.9.
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Figure 3.9: A deadlock example where the target state is valid but no feasible solution
exists.

We handle dependency graphs with cycles by first transforming them into a virtual DAG

and then using the DAG scheduling algorithm above. We use the concept of a strongly con-

nected component (SCC), a subgraph where every node has a path to every other node [80].

One can think of an SCC as a set of intertwined cycles. If we view each SCC as a virtual

node in the graph, then the graph becomes a virtual DAG, which is called the component

graph in graph theory. We use Tarjan’s algorithm [124] to efficiently find all SCCs in the

dependency graph. Its time complexity is O(|V |+ |E|) where |V | and |E| are the number

of nodes and edges.

With each SCC being a virtual node, we can use critical-path scheduling on the compo-

nent graph. While calculating CPLs, we use the number of operation nodes in an SCC as

the weight of the corresponding virtual node, which makes the scheduler prefer paths with

larger SCCs.

We make two modifications to the scheduling algorithm to incorporate SCCs. The first

is that the for loop at Line 5 in Algorithm 3 iterates over all nodes in the virtual graph. When

a node is selected, if it is a single node, we directly call CanScheduleOperation(Oi). If

it is a virtual node, we iterate over the operation nodes in its SCC and call the functions

accordingly. We use centrality [95] to decide the order of the iteration; the intuition is that a

central node of an SCC is on many cycles, and if we can schedule this node early, many cy-

cles will disappear and we can finish the SCC quickly. We use the popular outdegree-based
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Algorithm 8 RateLimit(SCC, k∗)
1: O∗ ← weight change nodes ∈ SCC
2: for i=0 ; i¡k∗ && O∗ 6=∅ ; i++ do
3: Oi ← O∗.pop()
4: for path node Pj ∈ children(Oi) do

// fi is the corresponding flow of Oi

5: Rate limit flow fi by lij on path Pj

6: for resource node Rk ∈ children(Pj) do
7: Rk.free← Rk.free+ lij

8: Delete Pj and its edges

definition of centrality, but other definitions may also be used. The second modification

is that when path nodes consume link resources or tunnel add operations consume switch

resources, they can only consume resources from nodes that either are in the same SCC

or are independent nodes (not in any SCC). This heuristic prevents deadlocks caused by

allocating resources to nodes outside the SCC (“Mv. F2”) before nodes in the SCC are

satisfied as in Figure 3.5(b).

Deadlocks: The scheduling algorithm resolves most cycles without deadlocks (§3.9).

However, we may still encounter deadlocks in which no operations in the SCC can make

any progress even if the SCC have obtained all resources from outside nodes. This can

happen because (1) given the hardness of the problem, our scheduling algorithm, which is

basically an informed heuristic, doesn’t find the feasible solution among the combinatori-

ally many orderings and gets stuck, or (2) there does not exist a feasible solution even if the

target state is valid, like the example in Figure 3.9. One should note that deadlocks stem

from the need for consistent network updates. Previous solutions face the same challenge

but are much slower and cause more congestion than Dionysus (§3.9.4).

Our strategy for resolving deadlocks is to reduce flow rates (e.g., by informing rate

limiters). Reducing flow rate frees up link capacity; and reducing it to zero on a path allows

removal of the tunnel, which in turn frees up switch memory. Freeing up these resources

allows some of the operations that were earlier blocked on resources to go through. In the

extreme case, if we rate limit all the flows involved in the deadlocked SCC, the deadlock
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can be resolved in one step. However, this extreme remedy leads to excessive throughput

loss. It is also unnecessary because often rate limiting a few strategically selected flows

suffices.

We thus rate limit a few flows to begin with, which enables some operations in the SCC

to be scheduled. If that does not fully resolve the SCC, we rate limit a few more, until the

SCC is fully resolved. The parameter k∗ determines the maximum number of flows that we

rate limit each time, and it controls the tradeoff between the time to resolve the deadlock

and the amount of throughput loss. Algorithm 8 shows the procedure to resolve deadlocks

for tunnel-based networks. It iterates over up to k∗ weight change nodes in the SCC, each

of which corresponds to a flow (Lines 2–8). The order of iteration is based on centrality

value as above.

We use Figure 3.9 to illustrate deadlock resolution. Let k∗=1. The procedure first

selects node A. It reduces 4 units of traffic on path P6 and 4 units on P7, which releases

4 units of free capacity to R1 and 4 units to R2, and deletes P6 and P7. At this point,

node A has no children and thus does not belong to the SCC any more. After this, we call

ScheduleGraph(G) to continue the update. It schedules C, and partially schedulesB (i.e.,

moves 4 units of traffic from path P3 to P4). After C finishes, it schedules the remainded

of operation B and finishes the update. Finally, for node A and its corresponding flow fA,

we increase its rate on P5 as long as R3 receives free capacity released by P4.

We have the following theorem to prove that as long as the target state is valid (i.e., no

resource is oversubscribed), we can fully resolve a deadlock using the procedure above.

Theorem 3. If the target state is valid, a deadlock can be always resolved by calling

RateLimit a finite number of steps.

Proof. Each time we call RateLimit(SCC, k∗), the deadlock reduces by at least k∗ num-

ber of operations. Let O∗ be the number of operations in the deadlock. We can resolve the

deadlock by at most dO∗/k∗e iterations of RateLimit.
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We find experimentally that often the number of steps needed is a lot fewer than the

bound above.

3.7 Implementation

We have implemented a prototype of Dionysus with 5,000+ lines of C# code. It receives

current state from the network and target state from applications as input, generates a de-

pendency graph, and schedules rule updates. We implemented dependency graph gener-

ators for both tunnel-based and WCMP networks and all the scheduling algorithms dis-

cussed above. For accurate control plane confirmations of rule updates (not available in

most OpenFlow agents today), we run a custom software agent on our switches.

3.8 Testbed Evaluation

We evaluate Dionysus using testbed experiments in this section and using large-scale sim-

ulations in the next section. We use two update cases, a WAN TE case and a WAN failure

recovery case. To show its benefits, we compare Dionysus against SWAN [55], a static

solution.

Methodology: Our testbed consists of 8 Arista 7050T switches as shown in Figure 3.10(a).

It emulates a WAN scenario. The switches are connected by 10 Gbps links. With the help

of our switch agents, we log the time of sending updates and receiving confirmation. We

use VLAN tags to implement tunnels and use prefix-splitting to implement weights when

a flow uses multiple tunnels. We let S2 and S4 be straggler switches and inject 500 ms

latency for rule updates on them. The remaining switches update at their own pace.

WAN TE case: In this experiment, the update is triggered by a traffic matrix change. TE

calculates a new allocation for the new matrix, and we update the network accordingly.

A simplified dependency graph for this update is shown in Figure 3.10(b). Numbers in
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Figure 3.10: Testbed setup. Path nodes are removed from the dependency graphs ((b) and
(c)) for brevity.

the circles correspond to the switch to which the rule update is sent. For example, the

operation node with annotation “S8” means a rule update at switch S8. The graph contains

a cycle that includes nodes “S8”, “S3-S6”, “S1” and “S8-S6”. Careless scheduling, e.g.,

one that schedules node “S3” before “S1” may cause a deadlock. There are also operation

dependencies for this update: to move a flow at S6, we have to install a new tunnel at S8

and S7; after the movement finishes, we delete an old tunnel at S5 and S7.

Figure 3.11 shows the time series of this experiment. The x-axis is the time, and the

y-axis is the switch index. A rectangle represents a rule update on a switch (y-axis) for

some period (x-axis). Different rectangular patterns show different rule update operations

(add rule, change rule, or delete rule). Rule updates on straggler switches, S2 and S4, take

84



longer than those on other switches. But even on non-straggler switches, the rule update

time varies—the lengths of the rectangles are not identical—between 20 and 100 ms.

Dionysus dynamically performs the update as shown in Figure 3.11(a). First it finds

the SCC and schedules node “S1”. It also schedules “S2”, “S8” and “S7” as they don’t

have any parents. After they finish, Dionysus schedules “S6” and “S8”, then “S3”, “S5”

and “S7”. Rather than waiting for “S2,” which is a straggler, Dionysus schedules “S4” after

“S3” finishes—“S3” releases enough capacity for it. Finally Dionysus schedules “S5”. The

update finishes in 842 ms.

SWAN uses a static, multi-step solution to perform the update (Figure 3.11(b)). It

first installs the new tunnel (node “S8” and “S7”). Then, it adjusts tunnel weights with a

congestion-free plan with the minimal number of steps, as follows:

Step 1: “S1”, “S6”, “S2”

Step 2: “S4”, “S8”

Step 3: “S3”, “S5”

Due to stragglers S2 and S4, SWAN takes a long time on both Steps 1 and 2. Finally,

SWAN deletes the old tunnel (node “S5” and “S7”). It does not start the tunnel addition

and deletion steps with the weight change steps. The whole update takes 1241 ms, 47%

longer than Dionysus.

WAN failure recovery case: In this experiment, the network update is triggered by a topol-

ogy change. Link S3-S8 fails; flows that use this link rescale their traffic to other tunnels.

This causes link S1-S8 to get overloaded by 50%. To address this problem, TE calculates

a new traffic allocation that eliminates the link overload. The simplified dependency graph

for this network update is shown in Figure 3.10(c). To eliminate the overload on link S1-S8,

a flow at S1 is to be moved away, which depends on several other rule updates. Doing all

the rule updates in one shot is undesirable as it may cause more link overloads and affect

more flows. For example, if “S1” finishes faster than “S3” and “S4”, then it causes 50%

link overload on link S3-S4 and S4-S7 and unnecessarily brings congestions to flows on
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Figure 3.11: Time series for testbed experiment of WAN TE.

these links. We present extensive results in §3.9.3 to show that one-shot updates can cause

excessive congestion.

Figure 3.12(a) shows the time series of the update performed by Dionysus. It first

schedules nodes “S7”, “S5” and “S2”. After “S7” and “S5” finish, a new tunnel is estab-

lished and it safely schedules “S8”. Then it schedules “S3”, “S5” and “S6”. Although “S2”

is on a straggler switch and is delayed, Dionysus dynamically schedules “S4” once “S3”

finishes. Finally, it schedules “S1”. It finishes the update in 808 ms, which eliminates the

overload on S1-S8, as shown in Figure 3.12(c).

Figure 3.12(b) shows the time series of the update performed by SWAN. It first installs

the new tunnel (node “S7” and “S5”), then calculates an update plan with minimal steps as

follows.

Step 1: node “S2”, node “S8”
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Figure 3.12: Time series for testbed experiment of WAN failure recovery.

Step 2: node “S3”, node “S4”

Step 3: node “S1”

This static plan does not adapt, and it is delayed by straggler switches at both Steps 1 and

2. It misses the opportunity to dynamically reorder rule updates. It takes 1299 ms to finish

the update and eliminate the link overload, 61% longer than Dionysus.
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3.9 Large-Scale Simulations

We now conduct large-scale simulations to show that Dionysus can significantly improve

update speed, reduce congestion, and effectively handle cycles in dependency graphs. We

focus on congestion freedom as the consistency property, a particularly challenging prop-

erty and most relevant for the networks we study.

3.9.1 Datasets and Methodology

Wide area network: This dataset is from a large WAN that interconnects O(50) sites.

Inter-site links have tens to hundreds of Gbps capacity. We collect traffic logs on routers

and aggregate them into site-to-site flows over 5-minute intervals. The flows are classified

into 3 priorities: interactive, elastic and background [55]. We obtain 288 traffic matrices on

a typical working day, where each traffic matrix consists of all the site-to-site flows in one

interval.

The network uses tunnel-based routing, and we implement the TE algorithm of

SWAN [55] which maximizes network throughput and approximates max-min fairness

among flows of the same priorities. The TE algorithm produces the network configuration

for successive intervals and we compute the time to update the network from one interval

to the next.

Data center network: This dataset is from a large data center network with several hun-

dred switches. The topoogy has 3 layers: ToR (Top-of-Rack), Agg (Aggeration), and Core.

Links between switches are 10 Gbps. We collect traffic traces by logging the socket events

on all servers and aggregate them into ToR-to-ToR flows over 5-minute intervals. As for

the WAN, we obtain 288 traffic matrices for a typical working day.

Due to the large scale, we do elephant-flow routing [4, 15, 31]. We choose the 1500

largest flows, which account for 40–60% of all traffic. We use an LP to calculate their traffic

allocation and use ECMP for other flows. This method improves the total throughput by up
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to 30% as compared to using ECMP for all flows. We run TE and update WCMP weights

for elephant flows every interval. Since mice flows use default ECMP entries, nothing is

updated for them.

For both settings, we leave 10% scratch capacity on links to aid transitions [55], and

we use 1500 as switch rule memory size. This memory size means that the memory slack

(i.e., unused capacity) is at least 50% in our experiments in §3.9.2 and §3.9.3. In §3.9.4, we

study the impact of memory limitation by reducing memory size.

Alternative approaches: We compare Dionysus with two alternative approaches. First,

OneShot sends all updates in one shot. It does not maintain any consistency, but serves

as the lower bound for update time. Second, SWAN is the state-of-the-art approach in

maintaining congestion freedom [55]. It uses a heuristic to divide the update into multi-

ple phases based on memory constraints so that each intermediate phase can fit all rules in

switches. SWAN may rate limit flows in intermediate phase as the paths in the network can-

not carry all the traffic. Between consecutive phases, it uses a linear program to calculate a

congestion-free multi-step plan based on capacity constraints.

Rule update time: The rule update time at switches is based on switch measurement

results (§3.2). We show results in both normal setting and straggler setting. In the former

case, we use the median rule update time in §3.2; in the latter case, we draw rule update

time from the CDF in §3.2. We use 50 ms as RTT in WAN scenario.

3.9.2 Update Time

WAN TE: Figure 3.13(a) shows the 50th, 90th, 99th percentile update time across all inter-

vals for the WAN TE scenario. Dionysus outperforms SWAN in both normal and straggler

settings. In the normal setting, Dionysus is 57%, 49%, and 52% faster than SWAN in

the 50th, 90th, 99th percentile, respectively. The gain is mainly from pipelining: in every

step, different switches receive different number of rules to update and thus takes different
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Figure 3.13: Dionysus is faster than SWAN and close to OneShot.

amount of time to finish. While SWAN has to wait for the switch with the most number of

rules to finish, Dionysus begins to issue new operations as soon as some switches finish.

In the straggler setting, Dionysus reduces update time even more. It is 88%, 84%,

and 81% faster than SWAN in the 50th, 90th, 99th percentile, respectively. This advantage

is because stragglers provide more opportunities for dynamic scheduling which SWAN

cannot leverage. Dionysus also performs close to OneShot. It is only 25% and 13% slower

than OneShot in the 90th percentile in normal and straggler settings, respectively.

Data center TE: Figure 3.13(b) shows results for the data center TE scenario. Again,

Dionysus significantly outperforms SWAN. In the normal setting, it is 53%, 48%, and 40%

faster than SWAN in the 50th, 90th, and 99th percentile; in the straggler setting, it is 81%,

74%, and 67% faster. Data center TE takes more time because it involves a two-phase

commit across multiple switches for each flow; WAN TE only needs to update the ingress

switch if all tunnels are established.

3.9.3 Link Oversubscription

We use a WAN failure recovery scenario to show that Dionysus can reduce link oversub-

scription and shorten recovery time. We use the same topology and traffic matrices as in the

WAN TE case. For each traffic matrix, we first use TE to calculate a state NS0. Then we
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Figure 3.14: In WAN failure recovery, Dionysus significantly reduces oversubscription and
update time as compared to SWAN. OneShot, while fast, incurs huge oversubscription.

fail a randomly selected link, which causes the ingress switches to move traffic away from

the failed tunnels to the remaining ones. For example, if flow f originally uses tunnels T1,

T2 and T3 with weights w1, w2 and w3 and the failed link causes T1 to break, then f carries

its traffic using T2 and T3 with weights w2/(w2 + w3) and w3/(w2 + w3). We denote the

network state that emerges after the failure and rescaling as NS1. Since rescaling is a local

action, NS1 may have overloaded links. The TE calculates a new state NS2 to eliminate

congestion. The network update that we study is the update from NS1 to NS2.

If the initial state NS1 already has congestion, there will be no congestion-free update

plan. For Dionysus and SWAN, we generate plans in which, during updates, no oversub-

scribed link carries more load than its current load. In such plans, the capacity of congested

links is virtually increased to its current load, to make each link appear non-congested. For

Dionysus, we increase the weight of overloaded links to the overloaded amount in CPL

calculation (Equation 3.1). Then, Dionysus will prefer operations that move traffic away

from overloaded links. For SWAN, we use the linear program to compute the plan such that

total oversubscription across all links is minimized at each step. Of all possible static plans,

this modification makes SWAN prefer one that minimizes congestion quickly. OneShot op-

erates as before because it does not care about congestion.
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Figure 3.14 shows the update time and link oversubscription—the amount of data above

capacity arriving at a link. Dionysus has the least oversubscription among the three.

OneShot, while quick, has huge oversubscription. SWAN incurs 1.49 GB and 2.04 GB

oversubscription in the 99th percentile in normal and straggler settings, respectively. As

even high-end switches today only have hundreds of MB buffer [11], such oversubscrip-

tion will cause heavy packet loss. Dionysus reduces oversubscription to 0.88 GB and 1.19

GB, which are 41% and 42% less than SWAN. For update time, Dionysus is 45% and 82%

faster than SWAN in the 99th percentile in normal and straggler setting, respectively.

3.9.4 Deadlocks

We now study the effectiveness of Dionysus in handling circular dependencies, which can

lead to deadlocks. First, we show that, as mentioned in §3.3, completely opportunistic

scheduling can lead to frequent deadlocks even in a setting that is not resource-constrained.

Then, we show the effectiveness of Dionysus in handling resource-constrained settings.

Figure 3.15 shows the percentage of network updates finished by Dionysus, SWAN,

and an opportunistic approach without deadlocks, that is, without having to reduce flow

rates during updates. The opportunistic approach immediately issues any updates that do

not violate consistency (§3.3), instead of planning using a dependency graph. The data

in the figure corresponds to the WAN and data center TE scenarios in §3.9.2, where the
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Figure 3.16: Dionysus only occasionally runs into deadlocks and uses rate limiting, and
experiences little throughput loss. It also consistently outperforms SWAN in update time.

memory slack was over 50%. We do not show results for OneShot; it does not deadlock by

design as it does not worry about consistency.

We see that planning-based approaches, Dionysus and SWAN, lead to no deadlocks,

but the opportunistic approach deadlocks 90% of the time for WAN TE and 70% of the

time for data center TE. It performs worse for WAN TE because the WAN topology is less

regular than the data center topology, which leads to more complex dependencies.

We now evaluate Dionysus and SWAN in resource-constrained settings. To emulate

such a setting, instead of using 1500 as memory size, we vary switch memory slack; 10%

memory slack means we set the memory size as 1100 when the switch is loaded with

1000 rules. We show three metrics in the WAN TE setup: (1) the percentage of cases that

deadlock and use rate limiting to finish the update, (2) the throughput loss caused by rate

limiting (i.e., the product of the limited rate and the rate limited time), and (3) the update

time. We set k∗=5 in Algorithm 8 for Dionysus.
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Figure 3.16 shows the results for the straggler setting. The results with the normal

setting are similar. Figure 3.16(a) shows the percentage of cases that use rate limiting

under different levels of memory slack. Dionysus only occasionally runs into deadlocks

and uses resorts to rate limiting more sparingly than SWAN. Even with only 2% memory

slack, Dionysus uses rate limiting in fewer than 10% cases. SWAN, on the other hand, uses

rate limiting in more than 80% of the cases. This difference is because the heuristics in

Dionysus strategically account for dependencies during scheduling. SWAN uses simplistic

metrics, such as the amount of traffic that a tunnel carries and the number of hops of the

tunnel, to decide which tunnel to add or delete.

Figure 3.16(b) shows the throughput loss. The throughput loss with SWAN can be as

high as 20 GB, while that with Dionysus is only tens of MB. Finally 3.16(c) shows the

update time. Dionysus is 60%, 145%, and 84% faster than SWAN in the 90th percentile

under 2%, 6% and 10% memory slack respectively.

3.10 Related Work

In the domain of distributed protocols, there is a lot of work on avoiding transient misbe-

havior during network updates. Much focuses on maintain properties like loop-freedom

for specific protocols or scenarios. For example, Francois etal. [41], John etal. [66] and

Kushman etal. [77] focus on BGP, Francois etal. [42, 40] and Raza etal. [111] focus on

link-state protocols, and Vanbever etal. [128] focus on migration from one routing protocol

to another.

With the advent of SDN, many recent works propose solutions to maintain different

consistency properties during network updates. Reitblatt etal. [112] provide a theoretical

foundation and propose a two-phase commit protocol to maintain packet coherence. Katta

etal. [72] and McGeer etal. [90] propose solutions to reduce the memory requirements

to maintain packet coherence. SWAN [55], zUpdate [85] and Ghorbani and Caesar [45]
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provide solutions for congestion-free updates. Noyes etal. [97] propose a model checking

based approach to generate update orderings that maintain invariants specified by the op-

erator. Mahajan and Wattenhofer [89] present an efficient solution for maintaining loop

freedom. As mentioned earlier, unlike these works, the key characteristic of our approach

is dynamic scheduling, which leads to faster updates.

Mahajan and Wattenhofer [89] also analyze the nature of dependencies among switches

induced by different consistency properties and outline a general architecture for consistent

updates. We build on their work by developing a concrete system.

Petri net [134] is a model to describe distributed systems. At a high level, the depen-

dency graph in Dionysus is similar to Petri net in the sense that they both intends to capture

state transitions and resource consumptions. But the details on how the graph is constructed

and used are different between the two approaches. Petri net only has two types of nodes,

i.e., place nodes and transition nodes. The dependency graph in Dionysus is tailored to

network forwarding rule updates. It contains three types of nodes, i.e., operation nodes,

resource nodes, and path nodes. We incorporate domain-specific knowledge to define how

these nodes are connected and how the resources are consumed in the dependency graph.

Some works develop approaches that spread traffic such that the network stays

congestion-free after a class of common failures [132, 83], and thus no network-wide

updates are needed to react to these failures. These approaches are complementary to our

work. They help reduce the number of network updates needed. But network updates

are still be needed to adjust to changing traffic demands and reacting to failures that are

not handled by these approaches. Dionysus ensures that these updates will be fast and

consistent.
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3.11 Conclusion

Dionysus enables fast, consistent network updates in SDNs. The key to its speed is dynamic

scheduling of updates at individual switches based on runtime differences in their update

speeds. We showed using testbed experiments and data-driven simulations that Dionysus

improves the median network update speed by 53%-88% over static scheduling. These

faster updates translates to a more nimble network that reacts faster to events like failures

and changes in traffic demand.
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Chapter 4

Owan: Dynamic Topology

Reconfiguration

This chapter focuses on supporting the joint management of the optical and network lay-

ers. Traditionally, ISPs manage the optical layer and the network layer separately. Ad-

vancements in software-defined networking and optical hardware make it feasible to build

centralized systems to dynamically reconfigure optical devices in the optical layer together

with switches in the network layer. We use bulk transfer as a specific application to show

the benefits of the joint control. Bulk transfer on the wide-area network is a fundamen-

tal service to many globally-distributed applications. It is challenging to efficiently utilize

expensive WAN bandwidth to achieve short transfer completion time and meet mission-

critical deadlines. This chapter presents Owan, a novel traffic management system that

optimizes wide-area bulk transfers with centralized joint control of the optical and network

layers. Owan can dynamically change the network-layer topology by reconfiguring the

optical devices. We develop efficient algorithms to jointly optimize optical circuit setup,

routing and rate allocation, and dynamically adapt them to traffic demand changes. We

have built a prototype of Owan with commodity optical and electrical hardware. Testbed

experiments and large-scale simulations on two ISP topologies and one inter-DC topology
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show that Owan completes transfers up to 4.45× faster on average, and up to 1.36× more

transfers meet their deadlines, as compared to prior methods that only control the network

layer.

4.1 Introduction

Many globally-distributed applications have bulk data to transfer over the wide-area net-

work (WAN). For example, search engines need to synchronize search indexes between

data centers; financial institutions need to backup everyday transactions over remote sites;

media companies need to deliver high-definition video content to multiple distribution ar-

eas. Bulk transfers have large size (terabytes to petabytes) and account for a big proportion

of traffic, e.g., 85–95% for some inter-datacenter (inter-DC) WANs [58, 55, 69, 140].

Optimizing bulk transfers is important to network operators. Although bulk transfers

are not as delay-sensitive as interactive traffic like web queries, it is beneficial and some-

times necessary to finish them quickly, as it is essential for service quality. For instance,

the time to finish search index synchronization directly impacts the search quality [69].

Furthermore, some bulk transfers are associated with deadlines, e.g., timely delivery of

high-definition video content to some cities by a certain time is the key for business suc-

cess [69, 140]. It requires network operators to carefully schedule these transfers in order

to meet their deadlines.

Existing practice performs traffic engineering (TE) in the network layer. Traditional

WAN designs over-provision the network with 30–40% average network utilization, in

order to handle traffic demand changes and failures [58]. Recent designs like Google B4

and Microsoft SWAN leverage software-defined networking (SDN) to directly control the

network with a global view [58, 55, 69, 140]. They use a global TE to dynamically change

routing and rate allocation, so that they can accommodate more traffic and meet more

deadlines. They all assume a fixed network-layer topology.
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(a) Internet2 physical infrastructure. (b) Internet2 IP layer topology. 

SEA 

LA 

Figure 4.1: WAN infrastructure example (Internet2 [57]).

In a modern WAN, the network-layer topology is constructed over an intelligent opti-

cal layer.1 By reconfiguring the optical devices, the operator can dynamically change the

network-layer topology. Figure 4.1 shows an example of a modern WAN infrastructure—

the Internet2 network [57]. The network-layer link between SEA and LA in Figure 4.1(b)

is implemented by an optical circuit that traverses multiple optical switches in the optical

layer in Figure 4.1(a). In practice, a WAN router is connected to an optical switch called

Reconfigurable Optical Add-Drop Multiplexer (ROADM) via short-reach wavelength. To

connect two WAN router ports, the operator needs to properly configure the ROADMs

along the path to establish an optical circuit. By changing the circuits in the optical layer,

operators can change which two router ports are connected.

Traditionally, the optical layer is reconfigured on a long time scale, e.g., weeks to

months, or even years. The major reason is the labor and risk involved in the reconfig-

uration: operators need to deal with sophisticated configurations, including IP, BGP and

access control list (ACL), and they have to perform operations on many routers without

consistent configuration interfaces, which is tedious and error-prone. Also, after a optical

layer reconfiguration, traditional distributed routing protocols may be slow to converge.

In this chapter, we present Owan, a new traffic management system that optimizes

wide-area bulk transfers with centralized joint control of the optical and network layers.

We leverage two technology trends. The first is SDN that allows direct control of network

1A WAN network is a packet-switched network, which is usually built on top of an optical network. In
this chapter, the WAN network is referred as the network layer, and the optical network is referred as the
optical layer.
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devices and simplifies network management; the second is modern ROADM devices that

allow fast remote reconfigurations (e.g., provisioning a circuit in tens to hundreds of mil-

liseconds [27]). Owan orchestrates bulk transfers in a centralized manner. It computes

and implements the optical circuit configuration (the optical circuits that implement the

network-layer topology) and the routing configuration (the paths and rate allocation for

each transfer) to optimize the transfer completion time or the number of transfers that meet

their deadlines.

A major technical challenge for Owan is that the optimization problem includes a large

number of constraints, some of which are integral. Most TE algorithms assume a given

topology and only compute the network-layer configuration [58, 55, 69, 140]. While there

is research on reconfigurable optics, these projects focus on data center networks under

the assumption of specific optical devices (e.g., MEMS switches) and certain topologies

[35, 129, 25, 50, 26]. However, there are three unique constraints on WANs that do not

present in data centers: ROADMs, regenerators and arbitrary topology. We accommodate

ROADMs in our formulation which are typically used as building blocks for WANs. We

take into account regenerators, which regenerates optical signals after certain distance.

Also, we do not make any assumptions of the optical-layer topology, allowing it to be

irregular.

The key idea to solve the optimization problem is to do a probabilistic search in the

search space with simulated annealing. At each time slot, we use the current topology as

the starting point, and use simulated annealing to find a topology with the highest total

throughput. There are two major benefits. First, searching for a topology, instead of the

entire optical and routing configurations, substantially reduces the search space. Second,

using the current topology as the starting point in simulated annealing allows us to find

a target topology that is close to the current topology but has higher throughput. This

significantly reduces the number of changes we need to make in the optical layer, in order

to update the topology.
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We build a Owan prototype using commodity optical and electronic hardware. The

prototype has nine sites and emulates the Internet2 topology in Figure 4.1. We conduct

extensive evaluations through both testbed experiments with our prototype that emulates

the Internet2 network and large-scale simulations with data from an ISP network and an

inter-DC network. Our results show that Owan improves the transfer completion time by

up to 4.45× on average and 3.84× at the 95th percentile, as compared to prior methods that

only control the network layer. Furthermore, Owan allows up to 1.36× more transfers to

meet their deadlines and up to 2.03× more bytes to finish before their deadlines.

4.2 Background and Motivation

We focus on bulk transfers on the WAN. Our design applies to both private WANs (e.g.,

inter-DC WANs) and public WANs (e.g., provided by ISPs). Large ISPs usually own both

the public WAN and the underlying optical network. They can directly use Owan to manage

their networks. Small ISPs and private WANs usually lease optical circuits from optical-

network providers. In such case, they would need an interface with the optical-network

operator to change the optical configurations together with Owan. Furthermore, Owan

requires to know the traffic demand and to control the rate of each transfer, which can be

assumed for inter-DC networks but not for ISP networks. To use Owan in ISP networks,

ISPs can provide a bulk transfer service to their clients. This service has an interface

for clients to submit transfer requests that contain traffic demand information and inform

clients data rates they can use for their transfers. Before we introduce Owan, we give some

background on WAN infrastructure and a motivating example to show the benefits of joint

optimization of the optical and network layers.
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Figure 4.2: Example of topology reconfiguration. Different line types/colors in (a) and (c)
denote different wavelengths. A router port or a wavelength carries 10 bandwidth units.
By reconfiguring how wavelengths are switched in ROADMs (rectangle nodes), we can
change how routers (circle nodes) are connected. (b) and (d) show the resulting network-
layer topologies.

4.2.1 Background on WAN Infrastructure

A typical WAN infrastructure consists of network routers, optical devices, and fibers. A

bulk transfer enters a WAN on a router from an access network (e.g., a data-center network

or a metro network) or other autonomous systems, passes through intermediate routers to

the destination router, and leaves the network. Since a WAN link is a circuit in the optical

layer, packets over any WAN link actually traverse multiple optical switches in the form of

optical signals.

Optical layer: A modern optical network consists of ROADMs connected by fiber pairs.

Today’s commercial ROADM technology is able to support 80 or more wavelengths per

fiber pair and 40 Gbps (100 Gbps, and higher with high-order modulations and digital

coherent receivers) per wavelength, which leads to 3.2 Tbps (8 Tbps, and even higher ca-

pacity) per fiber pair. A router port can connect to a ROADM port with a tunable optical

transponder via standard short-reach wavelength. The tunable optical transponder is able to

tune the standard wavelength to another specific wavelength. The ROADM can switch the
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wavelength to an output port or an add/drop port connected to another router port. Com-

mercial ROADMs can be reconfigured in hundreds of milliseconds and future ROADMs

can reduce the time to tens of milliseconds and even lower [27, 56, 98].

Due to optical signal loss and some non-linear impacts on optical signals, a wavelength

normally has limited transmission range, which is called optical reach. When an optical

signal transmits beyond the optical reach, a regenerator device is required to regenerate

the signal. In order to dynamically establish optical circuits on demand, operators usu-

ally pre-deploy some regenerators at certain concentration sites such that between any two

ROADMs, there is at least one path using those limited regenerator concentration sites to

satisfy the optical reach constraint [138, 14].

Network layer: A router is usually co-located with a ROADM. Customer-facing router

ports are connected to customer equipment, such as data-center routers or metro-network

routers; network-facing router ports are connected to ROADM ports via standard short-

reach wavelength. A network-layer link is implemented by an optical circuit. By reconfig-

uring the optical layer, we can change the connectivity of router ports in the network layer,

i.e., the network-layer topology.

Topology reconfiguration example: We use the example in Figure 4.2 to illustrate how

the network-layer topology can be reconfigured with optical devices. In the network, we

have four routers R0-R3 and four ROADMs O0-O3. Each router has two WAN-facing

ports. In configuration A, each ROADM converts electrical packets from two router ports

to different wavelengths and sends them to different ROADMs. For example, O0 sends

the solid/blue wavelength to O1 and the dashed/red wavelength to O2 (Figure 4.2(a)). In

the resulting network-layer topology, each router is connected to two other routers (Fig-

ure 4.2(b)). In configuration B, a ROADM multiplexes two wavelengths on to the same

fiber and is connected to only one other ROADM. For example, both wavelengths at O0 are

multiplexed to the fiber to O1, with the fiber between O0 and O2 carrying no wavelengths

(Figure 4.2(c)). In the network-layer topology, a router has both ports connected to an-
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Figure 4.3: Example of optimizing bulk transfers. (a) Plan A transmits F0 and F1 simulta-
neously. (b-c) Plan B first transmits F0 and then F1. (d) Plan C reconfigures the topology
and has the lowest average transfer completion time. (e) Time series to show the transfer
completions of these three plans.

other router (Figure 4.2(d)), doubling the capacity between R0 and R1 from configuration

A (Figure 4.2(b)).

4.2.2 Motivating Example

Topology reconfiguration opens a new opportunity for optimizing bulk transfers. Existing

approaches assume a given and fixed network-layer topology, and optimizes bulk transfers

by controlling the routing and/or the rate of each transfer [58, 55, 69, 140]. We provide a

motivating example to show that by reconfiguring the topology we can significantly reduce

average transfer completion time (Figure 4.3).

In the example, we have four routers R0-R3 similar to Figure 4.2. We only show the

network-layer topology and omit the ROADMs for brevity. We have two transfers, F0

and F1. Each transfer has 10 units of traffic to send. Plan A only controls routing (Fig-

ure 4.3(a)). It uses the shortest paths and the two transfers are transmitted simultaneously.

The average transfer completion time is 1 time unit.

We can do better if we can control the sending rates too. Plan B (Figure 4.3(b-c))

schedules F0 first with two paths, R0-R1 and R0-R2-R3-R1, and let F0 wait. It takes 0.5

time unit for F0 to finish. Then F1 starts and takes another 0.5 time unit to finish. The

average transfer completion time is 0.5+1
2

= 0.75 time unit, or 1.33× faster than Plan A.
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Note that both Plan A and B waste available network capacity, in different ways. Plan

A leaves bandwidth unused while Plan B has two-hop routing paths. We can do better if we

control the network-layer topology. Plan C reconfigures the topology (Figure 4.3(d)). Two

router ports on R0 are all connected to R1. Now both F0 and F1 can enjoy a bandwidth of

20 units and finish within 0.5 time unit. Plan C is 2× faster than Plan A, and 1.5× faster

than Plan B.

4.3 Owan Design

In this section, we first provide an overview of Owan. Then, we present the algorithms

to compute the optical and routing configurations to optimize bulk transfers. Finally, we

describe how to deal with updates and some practical issues.

4.3.1 Owan Overview

Owan is a centralized system that orchestrates bulk transfers on the WAN. Figure 4.4 shows

the system architecture. Abstractly, Owan works as follows.

1. Clients submit bulk transfer requests to the controller. A request is a tuple (srci, dsti, sizei,

deadlinei) that denotes the source, destination, size, and deadline (optional) of transfer

request i.

2. The controller has a global view of the physical topology and transfer requests. It com-

putes the optical circuits that build the network-layer topology, the paths and the sending

rates for transfers.

3. The controller sends the rate allocation to each client and clients enforce rates on their

applications. The controller directly programs routers and ROADMs to set up routing

paths and optical circuits. On public WANs, the controller also needs to enforce rates
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Figure 4.4: System architecture.

with rate limiters on routers in case clients do not properly enforce these rate limits on

their applications.

The above process is an online process. We divide time into time slots. A time slot is much

longer than the time to reconfigure the network and adjust sending rates, i.e., a few minutes

vs. hundreds or thousands of milliseconds. The major job for the controller is to compute

the configurations at each time slot to optimize bulk transfers.

4.3.2 Computing Network State

All the configurations are denoted as network state. We precisely define the network state

and formulate the problem as follows. Table 4.1 summarizes the key notations.

Network state: A WAN is represented as a graphG = (V,E) where V is the set of all sites

and E is the set of links in the network-layer topology. A site v consists of one ROADM, a

set of pre-deployed regenerators (could be zero), and zero or one router.

A network stateNS is a configuration of the devices in the WAN. It includes the optical

configuration OC and the routing configuration RC. OC is the set of optical circuits to be

configured on the optical devices, which builds the network-layer topology. A network-

layer link between u and v is implemented by a circuit ocuv in the optical layer. RC is the

set of routing configurations to be installed on routers (and end hosts if rates are enforced
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Symbol Description
V The set of sites.
E The set of network-layer links.
G The network-layer topology.
F The set of transfers.
NS The network state NS = (OC,RC).
OC The set of optical circuits.
RC The routing configuration RC = {rcf |f ∈ F}.
p A routing path.
rf,p The rate of transfer f on routing path p.
rcf The routing configuration of f : {rf,p|p ∈ Pf}.
θ The capacity of a wavelength.

Table 4.1: Key notations in problem formulation.

by clients). Specifically, the routing configuration of a transfer f , denoted by rcf , includes

its routing paths and rate limits for each path.

Problem formulation: The problem of finding the optimal network state is an online opti-

mization problem. There are a stream of new transfers arriving at the system. At each time

slot, we need to compute a network stateNS that optimizes the average transfer completion

time or the number of transfers that meet their deadlines. The problem has the following

constraints.

1. The number of router ports connected to ROADM ports at each site v is limited, denoted

by fpv. This constrains the total ingress and egress capacity of the router in the network-

layer topology.

2. A wavelength can traverse at most distance η before it needs to be regenerated. If an

optical circuit is longer than η, it has to use regenerators on its path to regenerate the

signal.

3. The number of regenerators at each site v is limited, denoted by rgv. A regenerator

can regenerate one optical circuit and transform the circuit to a different wavelength if

needed.
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4. The optical circuits in the same fiber have to use different wavelengths. A fiber can carry

at most φ different wavelengths and each wavelength can support a capacity of θ.

5. The total rate of transfers on a network-layer link cannot exceed its capacity θ.

As an additional consideration, we want to keep the changes to the network incremen-

tal, i.e., only updating a small number of optical links when we perform an update. This

minimizes the disturbance during the network update process.

Algorithm overview: The problem has a large number of constraints and variables. Some

constraints, like the number of router ports at each site, the number of regenerators at each

site, and the number of wavelengths on each fiber, are integral. Even if the network-layer

topology is given, optimizing for average transfer completion time is NP-hard [8].

A naive approach is to separately optimize the optical layer and the network layer. How-

ever, as the routing decisions are highly coupled with the underlying optical configuration,

this greedy approach does not yield good performance results, as we will show in §4.5.4.

Instead, we use simulated annealing [74] to search for an approximate solution. The

motivation for using simulated annealing is that we have a huge search space with integral

variables. Simulated annealing is effective in finding acceptable local optimums in a rea-

sonable amount of time while finding the global optimum is computationally expensive.

Furthermore, the potential loss of using local optimums is compensated by the fact that the

traffic demand changes over time and we frequently reconfigure the network to adapt to the

traffic demand changes.

At a high level, we use the network-layer topologyG as the state in simulated annealing.

We use the current topology as the initial state and probabilistically jump to a neighbor state

in each iteration, aiming to find a topology with the highest total throughput. To minimize

changes to the network, we construct neighbor states by randomly changing four links of

the current state, which is the minimal number of links to change to satisfy the port number

constraints.
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Algorithm 9 Compute Next Network State (Main Routine)
1: function ComputeNetworkState(G)
2: scurrent ← G
3: ecurrent ← ComputeEnergy(s)
4: T ← ecurrent
5: s∗ ← scurrent
6: e∗ ← ecurrent
7: while T > ε do
8: sneighbor ← ComputeNeighbor(scurrent)
9: eneighbor ← ComputeEnergy(sneighbor)

10: if eneighbor > e∗ then
11: s∗ ← sneighbor
12: e∗ ← eneighbor

13: if P (ecurrent, eneighbor, T ) > Rand(0, 1) then
14: scurrent ← sneighbor
15: ecurrent ← eneighbor

16: T ← T × α
17: return s∗

Algorithm 10 Generate A Random Neighbor State
1: function ComputeNeighbor(s)
2: luv, lpq ← RandomlySelectTwoEdges(El)
3: luv.capacity ← luv.capacity − θ
4: lpq.capacity ← lpq.capacity − θ
5: lup.capacity ← lup.capacity + θ
6: lvq.cacacity ← lvq.capacity + θ
7: return s

Our approach has two benefits. First, using the network-layer topology G as the state

in simulated annealing, instead of the entire network state NS, significantly reduces the

search space. If we search for NS, we have to decide both the optical circuits, the routing

paths, and the rate assignments for the network. Instead, if we search for G, we only need

to decide the links in the network-layer topology. Second, by using the current topology as

the initial state, we are likely to end up with a topology that is not very different from the

current one. This reduces the number of changes we need to make for network updates.

Now we describe the algorithms in detail.
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Simulated Annealing (Algorithm 9): The algorithm uses the current topology G as the

initial state and the current throughput as the initial temperature (line 2-3). s∗ is used to

store the topology with the highest throughput and e∗ is the energy (throughput) of s∗.

The algorithm searches in the search space (line 7-16) until temperature T is less than

an epsilon value. T is decreased by a factor of α in every iteration. At each iteration, it

uses ComputeNeighbor subroutine to find a neighbor state of the current state and uses

ComputeEnergy to compute the energy of the neighbor state. If the neighbor state has

a higher energy than s∗, it updates s∗ (line 10-12). The algorithm uses a probabilistic

function P to decide whether to transition from the current state to the neighbor state. The

probabilistic function P is defined as follows: if the neighbor state has a higher energy than

the current state, the probability is 1; otherwise, the probability is e(ecurrent−eneighbor)/T .

ComputeNeighbor (Algorithm 10): This subroutine finds a neighbor state of the current

state. It first randomly selects two links from E, say euv, epq. Then it decreases the capacity

of the selected two links by θ while increasing the capacity of eup, evq by θ. In other words,

it moves the capacity from epq and euv to eup and evq by reconfiguring the optical links.

This procedure ensures the total number of ports used on each router remains unchanged.

ComputeEnergy (Algorithm 11): This function computes the total throughput that can

be achieved on the given state s, where s is a network-layer topology. The computation is

divided into two steps. The first step is to establish multiple optical circuits for each link

(line 2-14) based on its desired capacity, and the second step is to assign routing paths and

rates to the flows based on the topology (line 15-25).

In the first step, we have constraints 2-4 in the problem formulation to affect whether

an optical circuit can be established for a link. We use a regenerator graph to help us

compute an optical circuit under these constraints. The nodes in a regenerator graph contain

the source site, the destination site, and the sites that have remaining regenerators. We

create an edge in the regenerator graph if the shortest paths between two sites is no longer

than η. Figure 4.5(a) shows a regenerator graph. If the source and the destination are
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Algorithm 11 Compute Energy
1: function ComputeEnergy(s)

// build optical circuits for each link
2: for network link l ∈ s.links do
3: Build regenerator graph RG
4: Build transformed graph TG
5: P ← TG.sortedPathsByLength(l.src, l.dst)
6: c← l.capacity
7: for path p in P do
8: if p.canBeBuilt() then
9: Build circuit p for l

10: c← c− θ
11: if c <= 0 then
12: break
13: if c > 0 then
14: Decrease the cacacity of l by c

// assign routing paths and rates
15: throughput← 0
16: Sort transfers F by policy // e.g., SJF, EDF
17: l← 1
18: while (there exists unsatisfied demand
19: and there exists free network capacity) do
20: for transfer f ∈ F do
21: for path p ∈ paths of f with length l do
22: min c← mine∈p e.remain capacity
23: rf,p ← min(f.demand,min c)
24: throughput+ = rf,p

25: l← l + 1

26: return throughput

directly connected in the graph, we can directly establish an optical circuit; otherwise, they

have to use regenerators in the intermediate sites. We want to balance the consumption

of regenerators in different sites to improve the possibility that a later optical circuits can

find an available one to use. To do this, we assign a weight to each node with the inverse

of their remaining regenerators; the source and the destination nodes are assigned with

weight zero. Then the problem is to find a path with smallest total node weight in the

regenerator graph. This problem can be transformed to the shortest path problem in a

directed graph. The transformation first builds a transformed graph from the regenerator
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Figure 4.5: Example of regenerator graph.

graph. The transformed graph has the same nodes as the regenerator graph. An undirected

edge in the regenerator graph is replaced by two directed edges; the weight of an edge is

set to be the weight of the node the edge points to. It is easy to prove that the shortest path

(the path with the smallest total edge weight) in the transformed graph corresponds to the

path with smallest total node weight in the regenerator graph. Figure 4.5(b) illustrates the

transformed graph of Figure 4.5(a). After we have the transformed graph, we iterate the

paths based on path length to find enough number of paths we need that can be built as

optical circuits (line 7-12). Line 8-12 check whether there are available wavelengths on the

path to use, and build the circuit if so. If there are not enough possible optical circuits to

satisfy all the desired capacity, we have to decrease the link capacity (line 13-14).

For the second step, we assign paths and rates to each transfer based on the topology

to optimize their completion times or deadlines met. The problem is known to be hard.

Even if the topology is non-blocking and only the ingress and egress ports are bottlenecks,

it is NP-hard to compute rate allocations to achieve the minimum average transfer comple-

tion time [8]. It is also NP-hard to maximize the number of transfers that can be finished

before the deadlines, when the network is fixed and three or more distinct deadlines are

present [16]. A good approximation algorithm is to route transfers based on the order of

the remaining transfer size or the deadline. However, in our scenario, the network is not

ideal and we need multi-path routing to route some transfers. We approximate the optimal

result by using the same ordering of transfers and prioritizing transfers to use shorter paths

first. We order transfers with classic scheduling policies like shortest job first (SJF) and
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earliest deadline first (EDF) (line 16). At each iteration, we only schedule transfers to use

paths with length l (line 18-25). At each iteration, we assign rates to each transfer based

on its demand and network capacity (line 22-23). Line 24 updates the total throughput. To

avoid starvation, we schedule a transfer if it is not scheduled for t̂ (configurable) time slots,

which we omit in the algorithm for brevity.

Example: We use the example in Figure 4.3 to illustrate how the algorithm works. The

initial state is the topology in Figure 4.3(a). The energy (i.e., the total throughput) of this

state is 20 units. We use simulated annealing to find a new topology that can give a higher

throughput (line 7-16 in Algorithm 9). We first find a neighbor state of the current state

using the ComputeNeighbor function (Algorithm 10). This function randomly select two

links. Suppose it selects R0-R1 and R2-R3. We decrease 10 units of capacity from these

two links, and adds 10 units of capacity to R0-R2 and R1-R3. Note that we change four

links to find this neighbor state. If we only change one, two or three links, we would have

a router that either does not fully use its two ports or uses more than two ports. Figure 4.6

shows the topology of the neighbor state. Since there are no paths to route F0 and F1, the

energy of this state is 0 units, which is lower than the current state. The probability to jump

to the neighbor state is e(ecurrent−eneighbor)/T = e20/T .

If we jump to the state in Figure 4.6, in the next round, we only have links R0-R2

and R1-R3 in the topology. The ComputeNeighbor function can only select these two

links and give us the original topology (the one in the Figure 4.3(a)) as the neighbor state.
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Since the energy of Figure 4.3(a) is higher than that of Figure 4.6, we would jump back to

Figure 4.3(a).

If we do not jump to the state in Figure 4.6, in the next round, we start again from the

state in Figure 4.3(a). Now suppose the ComputeNeighbor function selects R0-R2 and

R1-R3. This gives us the neighbor state in Figure 4.3(d). We then compute the energy

of the state. Since we add one link between R0-R1 and another one between R2-R3, we

need to check whether we can establish optical circuits for these two links (line 2-14 in

Algorithm 11). After we have all the links, we route F0 and F1 on the new topology (line

15-25). The routing first considers one-hop paths (line 17-25 in Algorithm 11). F0 has two

one-hop paths from R0 to R1, each of which has 10 units of free capacity. So the total rate

of F0 is 20 units. Similarly, F1 also has two one-hop paths and has a total rate of 20 units.

Then the routing considers two-hop paths (line 25 in Algorithm 11). Since F0 and F1 do

not have other available paths, the ComputeNeighbor function stops and returns 40 units

as the energy of the state. Since this state has a higher energy than the current state, the

algorithm jumps to this state and records this state as the best state encountered so far (line

10-12 in Algorithm 9). After a few other trials, the search stops and returns Figure 4.3(d)

as the best topology it finds.

4.3.3 Updating Network State

After we compute the network state, we need to update the device configurations to the

new state. Without careful update scheduling, there can be loops and routing blackholes

during the update process. For example, if some packets were sent over a link with the

underlying circuit being updated, these packets would be dropped. We need to be espe-

cially careful when updating the optical links as it can take several seconds. Dionysus is a

recent solution on consistent network updates [65]. Dionysus builds a dependency graph

to capture the dependencies between individual update operations and carefully schedules

them to make the update fast and consistent. But Dionysus only handles network-layer
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Figure 4.7: Owan testbed implementation.

updates and is not sufficient to handle cross-layer updates. To solve this problem, we ex-

tend Dionysus by introducing circuit nodes into its dependency graph. Circuit nodes have

dependencies on fibers as creating a circuit consumes a wavelength and removing a circuit

frees a wavelength; circuit nodes also have dependencies on routing paths as a routing path

cannot be used until circuits for all links on the path are established. After we build the de-

pendency graph, we use the same scheduling algorithm as Dionysus to schedule the update

operations.

4.3.4 Handling Practical Issues

Network failures: Link and switch failures are detected and sent to the controller. The

controller removes these links and switches from the physical network, and recomputes the

network state with the updated physical network. As our algorithm minimizes the amount

of updates needed, it is likely to converge to a new feasible schedule with only incremental

updates to avoid the failed links.
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Controller Failures: Since the scheduling algorithm is stateless, we only need to store

the physical network and the set of all transfers with a reliable distributed storage. When

the controller fails, we spawn a new instance, which starts to compute and reconfigure the

network state at the next time slot. During the controller failover, the network still carries

traffic for the current time slot and is not affected.

Group of transfers: Some applications may need to send traffic to multiple locations

and the important metric is the last completion time of all transfers in the group. This is

similar to the coflow concept in big data applications in data centers [29, 28]. We can either

treat them as single transfers or use better heuristics (like Smallest-Effective-Bottleneck-

First [29]) to optimize for groups. A full exploration is our future work.

4.4 Owan Implementation

We have built a prototype of Owan. We describe the testbed hardware implementation in

§4.4.1 and the controller software implementation in §4.4.2.

4.4.1 Owan Hardware Implementation

Our testbed has nine routers and ROADMs, and emulates the Internet2 topology in Fig-

ure 4.1. We use Arista 7050S-64 as the routers. Since commercial ROADMs are expensive,

we use commodity optical components to emulate ROADMs that have the features needed

to evaluate the system.

Figure 4.7 shows the prototype and the optical hardware design to emulate a ROADM.

The optical elements for each ROADM is arranged in a 1U box. We have a Freescale

i.MX53 micro controller in the box to control the optical elements. At the bottom of a

ROADM, it has n(=15) ports that interface with the router. Each interface is an optical

transceiver that can convert between electrical packets and optical signals at different wave-
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lengths. The fifteen transceivers are at wavelengths from 1553.33nm to 1542.14nm, which

are defined at standard ITU 100GHZ channel spacing.

In order to emulate any possible network-layer topology, we structure the nine

ROADMs as a full mesh, i.e., each ROADM has a fiber to connect to every other ROADM.

In this way, a ROADM can allocate the n wavelengths among the nine fibers arbitrarily as

long as the total number of wavelengths in the nine fibers sum up to n. This means that in

the network-layer topology, each router can have any number of links to any other router

as long as the total number of links adjacent to a router satisfy the router port constraint.

Therefore, our testbed can faithfully emulate the Internet2 network since the testbed is able

to construct any network-layer topology that the Internet2 network is able to construct.

Figure 4.7 depicts the internal structure of our ROADM. For the outward direction

of a ROADM, the n wavelengths from n transceivers are multiplexed by a multiplexer

(MUX) on to a single fiber. Then the splitter replicates them and sends them to eight other

ROADMs. For the inward direction, a Wavelength Selective Switch (WSS) receives n

wavelengths from each neighbor and selects up to n different wavelengths from the input

wavelengths. Then an Erbium-Doped Fiber Amplifier (EDFA) is used to amplify the wave-

lengths selected by the WSS, in order to compensate signal loss. Finally, a demultiplexer

(DEMUX) demultiplexes the selected wavelengths and send them to corresponding ports.

The MUXes and DEMUXes are the same type of device (Oplink AAWG) with different

configurations.

To transmit packets from one router to another, the optical signal passes through mul-

tiple optical elements, including MUX, splitter, fiber, WSS and DEMUX. These five el-

ements introduce typical optical power loss of 5 dB, 10.5 dB, 0.5 dB, 7 dB, and 5 dB,

respectively. The total optical power loss is∼28 dB, which is higher than the optical power

budget (∼16 dB) of the transceivers. That is the reason to put an EDFA between WSS and

DEMUX. The EDFA is set to operate at fixed gain mode, and has a default setting of gain

parameter of 18 dB to compensate the optical power loss.
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4.4.2 Owan Software Implementation

The Owan controller is implemented with 5000+ lines of Java code and uses several third-

party software and libraries. It has four modules. The core module computes the network

state, and the other three modules handle interactions with routers, ROADMs, and client

servers.

Core module: The core module implements the algorithms in §4.3. We have implemented

the blossom algorithm [43] for maximum matching in general graphs and used JGraphT

library [61] for other graph algorithms.

Router module: We configure the Arista switches to work in OpenFlow 1.0 mode. We use

the Floodlight controller [37] to handle the details of the OpenFlow protocol and interface

with the switches. The router module uses the RESTful API exposed by the Floodlight

controller to install routing rules.

ROADM module: The Freescale i.MX53 micro controller in each ROADM handles the

low level configurations, monitors the optical elements, and exposes a simple API for re-

mote configuration. The ROADM module uses this API to configure each ROADM.

Client module: The client module sends the rate allocation of each transfer to the end

hosts. Since a transfer may use multiple paths, we break a transfer into multiple flows and

use prefix splitting to implement multi-path routing. The client module configures Linux

Traffic Control on each end host to enforce rates.

4.5 Evaluation

In this section, we present the evaluation results. Besides a testbed that emulates the Inter-

net2 topology, we have also built a flow-based simulator to evaluate Owan in a large scale

with topologies and traffic from an ISP network as well as an inter-DC network from an

Internet service company.
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4.5.1 Methodology

Topologies: The testbed topology has nine sites as described in §4.4. We use Figure 4.1(b)

as the network-layer topology to evaluate TE methods with only network-layer control.

The simulations use a topology from an ISP backbone that contains about 40 sites. These

sites are connected into an irregular mesh. The inter-DC network has about 25 sites. There

are several sites called “super cores” that are connected to many smaller sites, and the super

cores are connected in a ring topology.

Workloads: We obtain traces from both the ISP network and the inter-DC network. The

traces are traffic counters collected from routers. From the traces, we can get site-to-site

traffic demand, but not transfer-level details like transfer sizes and deadlines. Similar to

previous work [69, 140], we use synthetic models to generate transfer-level information

as follows. First, we sum up all the incoming and outgoing traffic demand for each site.

Then we generate transfers for two hours. The transfers for the ISP network follow an

exponential distribution with a mean of 500GB/5TB for testbed/simulation experiments.

For each transfer, we randomly select a pair of sites whose total traffic demand has not

exceeded the sum obtained from the traces. We multiply the sum of traffic demand at each

site by a traffic load factor λ to evaluate the system under different loads. For deadline-

constrained traffic, we choose deadlines from a uniform distribution between [T, σT ] where

T is the time slot length and σ is deadline factor that is used to change the tightness of

deadlines. The inter-DC traffic follows roughly a similar distribution (with different λ

values), except for that it has some “hotspots” in the network that generate lots of transfers

for a period of time, and these hotspots can move from site to site.

Traffic engineering approaches: We compare the following approaches. Only Owan

has optical-layer control. Tempus [69] and Amoeba [140] only work with transfers with

deadlines, so we only compare them on deadline-constrained traffic in §4.5.3.
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• Owan: The approach described in this chapter. It jointly controls the optical layer and

the network layer.

• MaxFlow: This approach uses linear programming to maximize the total throughput for

each time slot.

• MaxMinFract: This approach uses linear programming to maximize the minimal fraction

that a transfer can be served at each time slot.

• SWAN [55]: It uses linear programming to maximize the throughput while achieving

approximate max-min fairness for each time slot.

• Tempus [69]: It deals with deadline-constrained traffic. It first maximizes the minimal

fraction a transfer can be served across all time slots and then maximizes the total number

of bytes that can be satisfied.

• Amoeba [140]: This is another approach that deals with deadline-constrained traffic. It

uses graph algorithms to compute routing and rate allocation for multiple time slots and

adjust previous allocation when new transfers arrive.

Performance metrics: For deadline-unconstrained traffic, the primary metric is transfer

completion time. We use factor of improvement to show the improvements of Owan over

other approaches, which is the transfer completion time of the alternative approach divided

by that of Owan. We also show makespan, which is the total time to complete a series of

transfers.

For deadline-constrained traffic, we use the percentage of transfers that meet deadlines

and the amount of bytes that finish before deadlines.

Performance validation: We have validated the results of our flow-based simulator with

our testbed results on the Internet2 topology. The difference on the performance metrics

is within 10%, which is mainly from the imperfect rate limiting and prefix splitting for

multi-path routing on the testbed.
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Testbed configurations: We run the controller on a commodity 2U server with two six-

core Intel Xeon E5-2620v2 processors running at 2GHz. As we will show later, even this

modest configuration is sufficient to run the Owan core module. All the test clients run on

servers with the same configuration, and they connect to the network with 10GE. We use

both iperf and a custom multi-threaded traffic generator to send emulated traffic, and we

have verified that each client is able to saturate a 10Gbps link. Both generators have TCP

enabled. We perform reconfigurations every five minutes.

4.5.2 Deadline-Unconstrained Traffic

In this experiment, the transfer requests submitted to the system do not have deadlines. The

key metric is to optimize the transfer completion time. Figure 4.8(a-b) shows the results

of the testbed experiments on the Internet2 topology. Figure 4.8(a) shows the factor of im-

provement on the average and the 95th percentile transfer completion time under different

traffic loads. Compared to MaxFlow, Owan improves the average (95th percentile) transfer

completion time by up to 4.45× (3.84×); compared to MaxMinFract, Owan improves the

average (95th percentile) transfer completion time by up to 18.66× (6.09×); compared to

SWAN, Owan improves the average (95th percentile) transfer completion time by 5.01×

(4.27×). The results show that by dynamically reconfiguring the optical layer, Owan can

significantly improve the transfer completion time for bulk transfers on the WAN. More-

over, we observe that Owan has bigger improvements over MaxMinFract than MaxFlow

and SWAN. This is because MaxMinFract optimizes for the minimal fraction served by

each transfer for each time slot, which causes most transfers to take several time slots to

finish.

To further zoom in on the results, we divide the transfers into three bins (small, middle,

large) based on transfer size, i.e., the smallest 1/3 transfers are in the small bin, the middle

1/3 in the middle bin, and the largest 1/3 in the large bin. Figure 4.8(b) shows the factor of

improvement in different bins when the traffic load factor is 1. Owan consistently improves
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Figure 4.8: Results for deadline-unconstrained traffic. (a-b), (c-d), and (e-f) are results of
the Internet2 network, ISP network, and inter-DC network, respectively.

the average and 95th percentile transfer completion time over MaxFlow, MaxMinFract and

SWAN in different bins. We observe the most improvement is in the small bin. This

is because Owan adjusts the network-layer topology based on traffic demand and small

transfers are prioritized to take the most benefits of the topology.
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Figure 4.9: Results for deadline-unconstrained traffic. (a), (b), and (c) are results of the
Internet2 network, ISP network, and inter-DC network, respectively.

To show the performance of Owan from another angle, we also plot the CDF of the

transfer completion time. Figure 4.9(a) shows the CDF of the transfer completion time

when the traffic load is 1. In the figure, the line of Owan stays at the leftmost, which means

Owan achieves the smallest transfer completion time across all percentiles. MaxFlow,

MaxMinFract and SWAN have longer tails than Owan. This means some transfers can

have longer completion time than other transfers if MaxFlow, MaxMinFract or SWAN is

used. The reason is also due to the fixed network-layer topology used by these approaches.

The fixed topology causes many transfers to use multiple hops to reach their destinations

and the total throughput of the network is lower than that in Owan. Overtime, some trans-

fers are accumulated in the scheduling queue because of the limited total throughput and

need to take a long time to complete.
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Figure 4.10: Results for deadline-unconstrained traffic. (a), (b), and (c) are results of the
Internet2 network, ISP network, and inter-DC network, respectively.

To evaluate Owan on a topology larger than our 9-site testbed, we also perform simu-

lations using the ISP topology and inter-DC topology. Figure 4.8 and Figure 4.9 show the

respective results. Similar to the Internet2 results, Owan significantly improves the transfer

completion time. Specifically, Figure 4.8(c) shows that Owan improves the average (95th

percentile) transfer completion by up to 3.52× (3.00×) as compared to MaxFlow, 19.42×

(7.86×) as compared to MaxMinFract, and 4.03× (3.00×) as compared to SWAN. Also,

Owan is better than the other three approaches across different bins (Figure 4.8(d)) and dif-

ferent percentiles (Figure 4.9(b)). Figure 4.8(e), Figure 4.8(f) and Figure 4.9(c) also show

improvement factors on the inter-DC topology.

Finally, we show the improvement on makespan. Makespan is the total time to fin-

ish a given number of requests. We inject traffic requests for two hours and measure the
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makespan of different approaches under different traffic loads. Figure 4.10 shows the im-

provement of Owan on makespan over the other three approaches. From the figure, we

can see that Owan improves the makespan by up to 2.56×, 1.80× and 1.60× in the three

topologies respectively. The improvement increases with the traffic load. This is because

by reconfiguring the topology Owan can achieve higher total throughput and thus finish

more requests in a certain time. When the load is higher, MaxFlow, MaxMinFract and

SWAN have more transfers accumulated over time than Owan.

4.5.3 Deadline-Constrained Traffic

This experiment evaluates the performance of Owan for deadline-constrained traffic. In

addition to MaxFlow, MaxMinFract and SWAN, we also compare Owan with another two

approaches, Tempus and Amoeba, which are specifically designed for deadline-constrained

traffic on the WAN. Figure 4.11(a-b) shows the results of testbed experiments on the Inter-

net2 topology. Figure 4.11(a) shows the percentage of transfers that meet deadlines under

different deadline factors. Owan enables the most number of transfers to meet deadlines.

Amoeba is particularly designed for transfers to meet deadlines and performs the second

best. The objective of Tempus is to maximize the minimal fraction served for each transfer

across all time slots and then maximize the total bytes that finish before their deadlines.

Thus it has relative poor performance to enable transfers to meet their deadlines. Overall,

Owan increases the number of transfers that meet their deadlines by up to 1.36×, as com-

pared to Amoeba, which performs the second best. The improvement is relatively small

when the deadline factor is too small or too large. This is because when the deadline factor

is too small, all the transfers have tight deadlines and there is little room for Owan to further

increase the number of transfers that can meet their deadlines. When the deadline factor

is too large, many transfers can easily meet their deadlines, and the absolute value of the

percentage is already high. The benefit of reconfiguring the optical layer is most significant

when the deadline factor is not at extreme values.
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Figure 4.11: Results for deadline-constrained traffic. (a-b), (c-d), and (e-f) are results of
the Internet2 network, ISP network, and inter-DC network, respectively.

Besides the percentage of transfers that meet their deadlines, we also show the per-

centage of bytes that finish before the deadlines in Figure 4.11(b). Owan outperforms

other approaches more significantly on this metric. It improves the bytes that finish before

the deadlines by up to 2.03× than the second best one (Amoeba). Also we can see that

126



 0
 20
 40
 60
 80

 100

Small Middle Large All

%
 o

f T
ra

ns
fe

rs

Bins

Owan
MaxFlow

          MaxMinFract
SWAN

          Tempus
Amoeba

 0

 20

 40

 60

 80

 100

Small Middle Large All

%
 o

f T
ra

ns
fe

rs

Bins

(a) % of transfers that meet deadlines.

 0

 20

 40

 60

 80

 100

Small Middle Large All

%
 o

f T
ra

ns
fe

rs

Bins

(b) % of transfers that meet deadlines.

 0

 20

 40

 60

 80

 100

Small Middle Large All

%
 o

f T
ra

ns
fe

rs

Bins

(c) % of transfers that meet deadlines.

Figure 4.12: Results for deadline-constrained traffic. (a), (b), and (c) are results of the
Internet2 network, ISP network, and inter-DC network, respectively.

MaxMinFract and Tempus perform better on this metric than the percentage of transfers

that meet their deadlines. This means they finish many bytes of a transfer though the entire

transfer does not meet the deadline. This metric is important to applications that can use

the available bytes as they arrive before the deadlines.

Similar to deadline-unconstrained traffic, we also show the breakdown of the percentage

of transfers that meet deadlines in different bins with regard to transfer size. Figure 4.12(a)

shows the result when the deadline factor is 20. Owan performs better than the other

approaches across different bins.

Figure 4.11 and Figure 4.12 also show the results of the simulation results on the ISP

and inter-DC topology. Similarly, Owan consistently outperforms other approaches. It

improves the number of transfers that meet their deadlines by up to 1.13× and 1.08×
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respectively, and the number of bytes that finish before their deadlines by up to 1.46× and

1.33× respectively, as compared to the second best alternative. Owan also performs well

across different transfer sizes.

4.5.4 Microbenchmarks

We now show some microbenchmarks. All the experiments are performed on the inter-DC

topology with deadline-unconstrained traffic and the load factor being 1 if not otherwise

specified.

Joint optimization of the optical and network layers: We show the benefit of jointly

optimizing the optical and network layers. For comparison, we develop a greedy algo-

rithm, which first builds a network-layer topology based on traffic demand between every

two sites, and then it tries to find a routing configuration that maximizes total throughput

using a similar routine as described in Algorithm 11. In other words, the greedy algorithm

optimizes the optical layer and the network layer separately. The greediness simplifies the

computation by limiting the search space. Unfortunately as Figure 4.13(a) shows, the total

throughput is 21% less than the joint optimization, even if the joint optimization is only an

approximation using simulated annealing. This performance difference is not incidental:

as we have multiple paths for each flow, the routing configuration is tightly coupled with

the optical configuration. Also, the greedy algorithm does not try to minimize the number

of optical links to change while the simulated annealing algorithm does.

Consistent network updates: It takes about three to five seconds on our testbed to recon-

figure an optical circuit. During the update of an optical circuit, the circuit goes dark and

cannot carry any traffic. To avoid traffic disruptions, we use a consistent update scheme in

§4.3.3. To demonstrate its effectiveness, Figure 4.13(b) shows the comparison of with and

without the consistent update scheme. Without consistent update, all links are updated si-

multaneously in one shot to minimize update completion time. The total throughput drops

10% during the update, as packets get lost on these links, affecting the overall TCP perfor-
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Figure 4.13: Microbenchmark results.

mance. With consistent update, we observe no throughput drop during the update process,

and we do not observe changes in end-to-end packet drop rate either.

Breakdown of gains: Owan jointly optimizes network-layer topology, routing and rate

allocation. We use an experiment to show a breakdown of gains from controlling the three

parts. Figure 4.13(c) shows the result of the experiment. In the experiment, we compare

the average transfer completion time when the system has different levels of control of the

network. All times are normalized by the average transfer completion time when the traffic

load factor is 0.5 and the system has controls of all three parts. In the most basic scheme,

the “rate” line in the figure, the system only controls rate allocation. The system cannot

reconfigure the network-layer topology, nor can it change routing. It can only adjusts the

sending rates of the transfers. In the second scheme, the “+rout.” line in the figure, the

system has controls of both routing and rate allocation. It assigns routing paths and rates to

transfers similar to line 15-25 in Algorithm 11. The third scheme, the “+topo.” line in the
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figure, has controls of all three parts. As we can see from the figure, we have lower average

transfer completion time when we have more control of the network.

Running time and convergence: We use simulated annealing to find a good topology.

Since simulated annealing is an approximation algorithm that performs probabilistic search

for the optimum, the quality of the result is related to its running time. The longer the al-

gorithm runs, the more states it can search in the search space and the better the result can

be. In our solution, since we use the current topology as the initial state of the algorithm,

instead of a random topology, the algorithm starts its search with a reasonable good state.

Since our system runs the algorithm and reconfigures the network every a few minutes,

the traffic on the network is unlikely to change dramatically. Therefore, the algorithm can

quickly find a good new topology by starting from the current topology and only changing

a few links, as compared to starting from a random topology and spending a lot of time

on finding a reasonably good topology. Figure 4.13(d) shows the performance of our al-

gorithm when we run simulated annealing for different amounts of time. The performance

is measured by the average transfer completion time. From the figure, we can see that the

algorithm performs very bad when the simulated annealing only runs for 20 ms. However,

the algorithm converges quickly, and it only requires about 320 ms to find a good topology

to significantly reduce the average transfer completion time.

4.6 Related Work

WAN Traffic Engineering: Traffic engineering is a classic topic in networking research.

Early work focuses on avoiding congestions. Many algorithms are developed to mini-

mize the maximum link utilization under different conditions, such as changing traffic

demands and network failures [10, 38, 68]. There are also efforts on achieving differ-

ent fairness metrics theoretically and practically [32, 33]. With the emergence of SDN

and the ability to program switches directly, researchers develop new centralized con-
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trol systems, like Google B4 and Microsoft SWAN, to improve network utilization and

its robustness in face of control plane and data plane failures [58, 55, 83, 76, 52]. Re-

cent work goes beyond network-wide objectives like network utilization, to more fine-

grained transfer-level objectives, like minimizing transfer completion time and meeting

deadlines [69, 140, 24, 109, 78], and controls not only switches, but also proxies, load bal-

ancers, and DNS servers [84]. Owan follows the trend of centralized control for WANs.

The key feature that differentiates Owan from previous solutions is the joint management

of the optical and network layers, and we show that dynamically reconfiguring the optical

layer can significantly.

The routing problem in overlay networks also concerns two layers [9, 81, 87]. The

routing in the underlay network (the network layer in this chapter) builds the topology for

the overlay network. However, the overlay and underlay networks are usually managed by

different parties, and an overlay network usually traverses multiple ASes and has unstable

end-to-end network performance.

Data-Center Traffic Engineering: Data-center networks have massive scale in terms of

number of switches and hosts. Most traffic engineering work in data-center networks fo-

cuses on routing elephant flows as it is impractical to deal with all flows in a centralized

manner [4, 15, 31, 118, 136, 107]. To cope with the scalability problem, CONGA designs

a distributed load balancing mechanism and implement it in switch hardware [6]. Most of

these solutions tackle the routing problem, i.e., choosing a path for a flow or flowlet. To

solve the rate allocation problem, i.e., deciding the rate for each flow to optimize the flow

completion time or the number of flows that meet deadlines, researchers have developed a

wide range of new flow scheduling and congestion control algorithms [8, 7, 135, 126, 139,

54, 102, 12]. Some of them are entirely host-based; others leverage both host and switch

features. There are also systems that optimize for a group of flows, which are important

for many big data applications [29, 28]. Owan has similar objectives as these works, but

the target of Owan is WANs. WANs do not have a structured topology as FatTree or CLOS
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in data center networks (which many algorithms for data-center networks rely on), and the

topology can be changed by reconfiguring the underlying optical layer.

Besides these works, some solutions propose to provide bandwidth guarantee to cloud

applications and tenants, in order to provide predictable performance and enforce isola-

tion [13, 60, 103, 79]. In these solutions, requests are formulated as bandwidth reservations

between ingress and egress points. For bulk data transfers, it is more appropriate to formu-

late requests as volumes of data as in Owan. On the other hand, bandwidth reservations

are also a useful abstraction for some use cases on the WAN. It is an interesting area of fu-

ture work to explore how the reconfigurability in the optical layer can improve bandwidth

reservations.

Optical Networks: With the advancements in optical technology and centralized control,

researchers have started to build centralized production systems to manage the optical layer

on the WAN [138, 14]. Xu etal. [138] present an on-line system to reconfigure the optical

circuits given a set of circuit demands with constraints. Bathula etal. [14] develop algo-

rithms to compute the minimal set of regenerator concentration sites such that any two

optical ROADMs have at least one path available by using the selected sites. In terms of

cross-layer control, early studies present algorithms and analysis for the joint optimization

of the optical and network layers [47, 18, 110]. They mainly focus on admissible traffic

demand and attempt to optimize for objectives like network cost and routing hops. Recent

work begins to explore building systems to jointly control the optical and network lay-

ers, such as the DARPA CORONET program [27]. Our work is built up these efforts and

presents the design and implementation of Owan to jointly control the optical and network

layers and optimize bulk transfers for transfer completion time and deadlines met.

In terms of data centers, many researchers have proposed to use optics to boost the

network performance. For example, Helios, cThrough and OSA use MEMS switches [35,

129, 25]; FireFly uses free-space optics [50]; WaveCube uses WSS switches [26]. The

major objective in these works is to improve the network throughput. By reconfigur-
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ing the topology, they can make the network be comparable to a non-blocking network,

while saving on power, cost, and wiring complexity. Other works use optics to reduce la-

tency [88]; use optics to support multicast [130, 115, 116, 137]; and design new optical

hardware [104, 82, 86]. Differently, Owan reconfigures topologies in the WAN scenario,

which uses ROADMs, regenerators and has the optical reach constraint, and Owan com-

bines topology reconfiguration with routing and rate allocation to optimize transfer-level

objectives.

4.7 Conclusion

We present Owan, a new traffic management system that optimizes bulk transfers on the

WAN. Besides controlling routing and rate allocation, Owan goes one important step fur-

ther than prior solutions into the optical layer. It reconfigures the optical layer in the same

time scale as routing and rate allocation in a centralized manner. We develop efficient

algorithms to compute the optical and routing configurations to optimize bulk transfers.

Testbed experiments and large-scale simulations show that Owan completes data trans-

fers up to 4.45× faster in average and up to 1.36× more flows meet their deadlines than

methods with only network-layer control. Owan is the first step towards software-defined

optical WANs. We believe centralized control of the optical and network layers would have

a far-reaching impact on the theory and practice of network management for WANs.
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Chapter 5

Conclusion

Network management is challenging as operators need to deploy multiple management

applications for various management tasks, efficiently handle network events, and control

network devices in different layers. This thesis presents a new network control platform to

address these challenges. In this chapter, we summarize our contributions in §5.1, discuss

open issues and future work in §5.2, and conclude in §5.3.

5.1 Summary of Contributions

Our control platform consists of three components: CoVisor, Dionysus and Owan. Our

contributions include both efficient algorithms as well as realistic system implementation

and evaluation.

Efficient algorithms: We design efficient algorithms to optimize the three components

of our control platform. In CoVisor, we design efficient algorithms to compose policies

from multiple applications into a single policy for the network, to compile policies from

the virtual topology to the physical topology, and to handle policy updates from applica-

tions. In Dionysus, we design a dependency graph to capture dependencies between update

operations, and develop adaptive scheduling algorithms to dynamically schedule updates

according to runtime conditions. In Owan, we design an optimization algorithm that jointly
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considers optical circuit setup, routing, and rate allocation to optimize bulk transfers. We

also extend Dionysus for Owan to coordinate the updates in the optical layer and the net-

work layer.

System implementation and evaluation: We build software prototypes and hardware

testbeds to implement our platform and perform extensive evaluations. In CoVisor, we

build a hypervisor prototype by extending and modifying OpenVirteX [5], and use a few

example application compositions to show that our prototype is several orders of magnitude

faster than a naive implementation. In Dionysus, we implement a scheduler prototype and

build a hardware testbed that consists eight Arista switches. We evaluate Dionysus using

both testbed experiments and large-scale simulations based on topology and traffic traces

from a production data center network and a production WAN. Evaluation results show

that Dionysus improves the median update speed by 53–88%. In Owan, we implement a

controller prototype and build a hardware testbed with commodity optical and electrical

hardware that emulates the Internet2 network. Besides testbed experiments, we also con-

duct large-scale simulations with data from an ISP WAN and an inter-DC WAN. Evaluation

results show that Owan completes bulk transfers up to 4.45× faster on average, and up to

1.36× more transfers meet their deadlines, as compared to prior methods that only control

the network layer.

5.2 Open Issues and Future Work

SDN is still at an early age. Our work is an attempt to improve the network control platform.

It has the following open issues and directions for future work.

5.2.1 System Integration and Deployment

CoVisor and Dionysus can be naturally integrated into a single system by having CoVisor

layered on top of Dionysus. CoVisor is used to host several applications and merge policy
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updates from these applications into a single update for the network. Then Dionysus takes

this single update as input and distribute it to multiple switches quickly and consistently.

To integrate Owan to the system, we need to divide Owan into two parts. One part is the

traffic management part, which computes the optical-layer configuration and the network-

layer configuration. This part can be integrated to the system as an application that runs on

top of CoVisor. The other part is the network update part, which coordinates the updates

between the optical layer and the network layer. This part can be integrated to Dionysus to

have the update scheduler handle both layers.

The overall system is a general network control system that can be deployed to networks

under a single administrative domain, like a data center network, an ISP WAN, an inter-

DC WAN, and an enterprise network. Some features of the system only apply to certain

networks. Specifically, the dependency graph in Dionysus currently supports tunnel-based

forwarding policies which are prevalent in WANs and WCMP-based forwarding policies

which are prevalent in data center networks. So all the features of Dionysus are available

for WANs and data center networks. The dependency graph is a general framework to

capture dependencies in network updates. To use Dionysus in other networks, we need

to extend the dependency graph to support policies in those networks. Furthermore, since

Owan jointly optimizes the optical and network layers, its deployment requires operators to

have control over both layers of the network, e.g., ISPs that control both layers of a public

WAN and data center operators that have control of both layers of a private WAN.

5.2.2 Multi-Table Support in CoVisor and Dionysus

OpenFlow 1.0 [1] models the packet processing in switches as a single match-action tables.

Later OpenFlow specifications [2] and recent initiatives on programmable data planes like

P4 [17] generalize this model to multiple match-action tables. Extending existing and ex-

ploring new compilation techniques for multi-table support in CoVisor is a very promising

direction [67, 117]. This would allow us to make efficient use of hardware capabilities and
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reduce the size of the final policies for composition and devirtualization. Furthermore, it

also introduces an incremental deployment path for new hardware as legacy applications

written in OpenFlow 1.0 can run on top of CoVisor with CoVisor compiling them to mul-

tiple match-action tables that are supported in new hardware.

We also need to extend Dionysus to support multiple tables in a switch. In the multi-

table setting, updates to multiple tables in the same switch are also dependent. We not

only need to model dependencies between updates to different switches, but also updates

to different tables in each single switch. Conceptually, we can view each table in the multi-

table setting as a switch in the single-table setting, and we can extend the dependency

graph to capture dependencies in the multi-table setting. A full exploration of this idea is

an interesting direction of future work.

5.2.3 Bridging the Gap between Optics and Networking

Traditionally, the optical communications and the computer networking communities are

separate, with one in EE and the other in CS. It requires different expertise to manage opti-

cal devices in the optical layer and electrical switches in the network layer. Operators have

separate teams to manage these two layers. The emergence of SDN and the commoditiza-

tion of optical devices and electrical switches greatly simplify the control of the two layers.

It is an exciting time to build new management applications and control platforms to jointly

manage these two layers and bridge the gap between the two communities. Our work on

Owan is just the first step in this direction. There are many unsolved research problems in

this direction, e.g., dynamically provisioning the optical layer to accept more bandwidth

reservation requests from customers. Furthermore, as most optical devices today are not

standard and use vendor-specific interfaces, there are also great opportunities in designing

open platforms and interfaces for optical networks, i.e., the “OpenFlow” for optics.
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5.3 Concluding Remarks

This thesis has (1) presented a new network hypervisor that can compose multiple network

management applications and can efficiently merge policy updates from these applications;

(2) designed a new network update scheduler that can quickly and consistently distribute

policy updates to a distributed collection of switches; (3) developed a traffic management

system that can jointly control the optical and network layers to optimize bulk data transfers

over the wide area network.

At a high level, the goal of this thesis is to design and build network control systems

to simplify network management, which is notoriously complicated today because of a

diverse set of management tasks, prevalent network events, and complex configurations of

devices in different layers. We leverage the emerging SDN technology to design a new

centralized control platform to solve these challenges with efficient algorithms and solid

system engineering. We believe this is a fruitful research area, and are excited about future

research on designing new network control platforms with next-generation programmable

switches and high-performance optical devices.
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