
Designing Compact Data Structures for
NetworkMeasurement and Control

Xiaoqi Chen

a dissertation
presented to the faculty
of princeton university

in candidacy for the degree
of doctor of philosophy

recommended for acceptance
by the department of
computer science

adviser: jennifer rexford

november 2023

© Copyright by Xiaoqi Chen, 2023. All rights reserved.

Abstract

This dissertation explores the implementation of network measurement and closed-loop
control in the data plane of high-speed programmable switches. After discussing the algo-
rithmic constraints imposed by the switch pipeline architecture, primarily stemming from
the requirement of high-speed processing, we share our experience in tailoring algorithms
for the data plane. Initially, we focus on efficient measurement algorithms, and present
two works for detecting heavy hitters and executing multiple distinct-count queries; both
require designing novel approximate data structures to meet the tight memory access con-
straints. Subsequently, we pivot towards using real-time, closed-loop control in the data
plane for performance optimization, and present two works for mitigating microbursts
and enforcing fair bandwidth limits; both require approximated computation and exploit
the sub-millisecond reaction latency unattainable through conventional control planes.
We hope by sharing our experience and techniques, which are widely applicable to various
algorithms and other data-plane hardware targets, we can lay the foundation for future in-
novations in the field of network programming for researchers and practitioners alike.

3

Contents

Abstract 3

1 Introduction 11

2 Background of PISA switches 19
2.1 Switch hardware architecture . 20
2.2 Hardware-imposed algorithmic constraints 23

I Enabling Network Measurement in the Switch Data Plane 29

3 PRECISION: Heavy-hitter detection via partial recirculation 30
3.1 Introduction . 31
3.2 RelatedWork . 37
3.3 Design and Implementation of PRECISION 41
3.4 Hierarchical Heavy Hitters . 52
3.5 Prototype and Evaluation . 54
3.6 Conclusions . 64

4 BeauCoup: Running multiple measurement queries simultaneously 66
4.1 Introduction . 67
4.2 The BeauCoup Algorithm . 71
4.3 The BeauCoup Query Compiler . 79
4.4 BeauCoup on PISAHardware . 83
4.5 Evaluation . 91
4.6 Discussion . 104
4.7 RelatedWork . 107
4.8 Conclusion . 110

4

II Real-time, Closed-loop Control in the Switch Data Plane 111

5 ConQuest: Measuring and mitigating microbursts in real time 112
5.1 Introduction . 113
5.2 QueueMeasurement Use Cases . 117
5.3 ConQuest Data Structure . 118
5.4 P4 Hardware Switch Prototype . 129
5.5 Evaluation . 133
5.6 ConQuest for Legacy Devices . 147
5.7 RelatedWork . 153
5.8 Conclusion . 156

6 AHAB: Enforce hierarchical fairness via closed-loop adjustment 157
6.1 Introduction . 158
6.2 Hierarchical Fair Bandwidth Allocation 163
6.3 AHAB SystemOverview . 167
6.4 Scaling BeyondMemory Limits . 168
6.5 Approximate Arithmetic in the Data Plane 175
6.6 Evaluation . 184
6.7 RelatedWork . 193
6.8 Conclusion . 195

Concluding Remarks 196

References 209

5

List of Figures

2.1 An illustration of the programmable data plane. 20
2.2 Illustration of some constraints imposed by PISA switch pipeline for design-

ing measurement algorithm. 25

3.1 We reduce the number of pipeline stages used by stacking together indepen-
dent actions between different ways. For d-way PRECISION, this reduces the
number of pipeline stages required from d× 3 to d+ 2. 50

3.2 An illustration of our two implementation approaches for Hierarchical Heavy
Hitters. 53

3.3 Effect of limited associativity on the frequency estimation error and top-k re-
call, on CAIDA trace. Using d = 2-way is a right balance between achiev-
ing good accuracy and saving pipeline stages usage. 56

3.4 Effect of the delayed update on the frequency estimation error and top-kRe-
call, on CAIDA trace. Even a delay of 100 packets has minimal impact on the ac-
curacy. 57

3.5 Effect of initial value on the overall frequency estimation error and top-k re-
call, on CAIDA trace. An initial value of 100 leads to fast convergence and does
not hurt accuracy, while upper-bounding recirculation to 1%. 58

3.6 The effect of approximating the recirculation probabilities on the accuracy
for frequency estimation and top-32. 60

3.7 Comparative evaluation of the frequency estimation and top-32 problems. 61
3.8 The error of the ”Independent Stacking” and ”Randomized Prefix Selection”

implementations of HHH-PRECISION for a given number of counters. We
also compare with the state of the art software solution, RHHH13. 63

3.9 Comparison between the Deterministic PRECISION (DPRECISION) vari-
ant and the randomized one. 63

4.1 We collect coupons by updating bit vectors in an in-memory coupons table.
. 74

6

4.2 Different queries use disjoint ranges to map the random hash function’s out-
put to coupons. 78

4.3 BeauCoup runs queries by installing a static data-plane program on the PISA
switch, then generating and installing TCAM rules on the fly. 84

4.4 Using TCAM rules to draw coupons. 86
4.5 When using various coupon collector configurations, we find that collecting

approximately n = 0.75m out ofm coupons produce the lowest error. . . 92
4.6 Using more coupons lead to lower Mean Relative Error. A coupon collector

can achieve 13.7% minimum error when usingm = 32 coupons. 93
4.7 BeauCoup’s coupon collector approach uses 4x fewer memory access than NitroSketch-

UnivMon or sampling to achieve the same accuracy. 97
4.8 The average error of all queries gradually improve as we allow more memory

access per packet, which is shared among all queries. 99
4.9 Query with the lowest threshold experiences the most significant accuracy im-

provement when allowing more memory access per packet. 99
4.10 Queries with the same threshold exhibits similar accuracy improvement trend

when given more allowed memory access, despite different key and attribute
definitions. 100

4.11 The query time window sizeW and the memory space S (number of coupon
collector bit vectors) required by BeauCoup follows power law. 101

4.12 Queries with higher threshold Tq need fewer memory accesses per packet. . 104

5.1 Packet departure time (di) vs. arrival time (ai) in a queue. While packet iwas
queued, three (shaded) packets of the associated flow fi departed. 120

5.2 Time-window snapshots on a queue. 122
5.3 Round-Robin between h Snapshots. In any given time window, ConQuest

writes into one snapshot, reads many, and cleans one for the next time win-
dow. Snapshot roles are rotated every time interval T. 126

5.4 Simulated queue buildup on the UWTrace shows low average utilization with
occasional bursts. 134

5.5 Precision vs. snapshot data structure size. Using 24-32 counters per CMS is
adequate. 137

5.6 Recall vs. number of snapshots. Using 8 snapshots gives sufficiently high Re-
call. 137

5.7 With large CMS, the effect of hash collisions becomes negligible; the flow size
estimation error is mainly contributed by snapshot rounding. 139

5.8 Scatter plot of estimated flow size vs. ground truth, using different number
of snapshots h and different CMS width C. 140

7

5.9 Attributing estimation errors to flow ID hash collisions and snapshot round-
ing errors. 141

5.10 Precision-Recall curve for ConQuest under simulation, for different contribut-
ing flow thresholds. 142

5.11 We can configure ConQuest to selectively mark ECN for only the burst flow
and not for small flows, leading to better FCT for small flows workload. . . 145

5.12 By only marking ECN on contributing flow’s packets, ConQuest can effec-
tively throttle the bursty flow and maintain a shorter queue length. 146

5.13 Using a PISA switch to analyze queuing in a legacy router, by tapping ingress
and egress links. 149

5.14 Queuing delay measured by our prototype matches the ground-truth queue-
depth reported by the legacy switch. 151

5.15 Precision-Recall curve for ConQuest’s P4 prototype under tapping setup. . 153

6.1 In (a), all links are fully utilized. In (b), Users 1a, 2a, and 3a do not need their
fair share and the surplus is redistributed. 160

6.2 Limit Tn is enforced against those users in slice nwhose demand exceeds than
Tn, so that the total bandwidth consumed is exactly Cn. 165

6.3 The control plane maintains inter-slice fairness by periodically reading each
slice bandwidth demandsDn and writing fair capacities Cn; the data plane keeps
intra-slice fairness by iteratively updating bandwidth limits Tn. 167

6.4 When a packet arrives, AHAB first maps it to a slice n and estimates its user’s
sending rateRm using the CMS-LPF estimator (§6.4.2), then uses probabilis-
tic dropping to enforce slice n’s bandwidth limit Tn (§6.5.1). AHAB also main-
tains two bandwidth limit candidates Tlow, Thi and tracks the hypothetical to-
tal bandwidth usagef(·) (§6.5.2), which is used to derive a more accurate band-
width limit Tnew via approximated linear interpolation (§6.5.3). 174

6.5 Relationship between bandwidth limit candidates Tlow, Tmid, Thi and total band-
width consumed by all users f(Tlow), f(Tmid), f(Thi). 178

6.6 Finding new bandwidth limit using interpolation. When we plot f(T∗), x-axis
in this figure refers to the bandwidth limit T∗ (y-axis in Fig. 6.5), while y-axis
in this figure refers to the area under line T∗ in Fig. 6.5. 179

6.7 We use a lookup table to implement approximate linear interpolation. We first
match on the highest binary bits of numerator and denominator to get a scaled
division result, then multiply Δ via bit shifting for the final result. 180

6.8 AHAB (left) converges to fair bandwidth allocation within 3.1ms on average,
while HCSFQ129 (right) needs 42.3ms. 186

6.9 Goodput of two competing TCP flows over time. 187

8

6.10 Cumulative distribution of competing TCP flows’s goodput when using AHAB
versus HCSFQ. 188

6.11 Given flows with various sending rates, AHAB’s approximate probabilistic drop-
ping achieved fair bandwidth allocation within 6% error. 188

6.12 Goodput of weighted TCP and UDP flows sharing one 1Gbps slice. 189
6.13 Three experiments showing two slices sharing a common bottleneck. Slice 1

uses half the bandwidth even when Slice 2 has twice as many flows. 189
6.14 3x4096 CMS-LPF estimator is sufficient for serving millions of users, with neg-

ligible error in drop probability. 191

9

Acknowledgments

I can never express enough gratitude to my advisor, Prof. Jennifer Rexford, whose un-
wavering mentorship, guidance, support, and inspiration have shaped my journey over the
past six years. Jen nurtured my growth from a curious novice to a confident researcher, and
have always encouraged me to freely explore my interests even when they’re sometimes too
diverse. I am also deeply appreciative of the members of my thesis committee: Prof. Mark
Braverman, Prof. DaveWalker, Prof. Maria Apostolaki and Prof. Minlan Yu. All your help
and advise extended far beyond the scope of this dissertation, and I am truly grateful.

I want to express my heartfelt thanks for the help and feedback I’ve received from all my
collaborators and everyone in our research group: Shir Landau Feibish, Ori Rottenstre-
ich, LiangWang, John Sonchack, Oliver Michel, Mina Tahmasbi Arashloo, Rob Harrison,
Robert MacDavid, Mary Hogan, Yufei Zheng, Satadal Sengupta, Sophia Yoo, Mengying
Pan; as well as other colleagues in the department, particularly Zhuqi Li and Zhenyu Song.

I also want to thank my classmates from IIIS; I began my research journey while soaked
in the collaborative atmosphere of our undergraduate days. All of your exemplary achieve-
ments since then have served as my beacon, always motivating me to strive for excellence.

Finally, I’d like to sincerely thank my family for their steadfast support in all my endeav-
ors. I’m also immensely thankful to my partner, who has stood by my side through all the
highs and lows of my PhD journey.

The work in Chapter 3 has been supported in part by NSF Grant CCF-1535948. The
work in Chapter 4 has been supported in part by NSF Grant CNS-1704077, the NSF Alan
T. Waterman Award Grant No. 1933331, a Packard Fellowship in Science and Engineer-
ing, the Simons Collaboration on Algorithms and Geometry and The Eric andWendy
Schmidt Fund for Strategic Innovation. The work in Chapter 5 has been supported in part
by NSF Grant CCF-1535948, a gift from AT&T, and The Eric andWendy Schmidt Fund
for Strategic Innovation. The work in Chapter 6 has been supported in part by DARPA
grant HR001120C0107. I also want to acknowledge the generous support by the Siebel
Foundation for my PhD study. This document was typeset using a modified version of the
LATEX template made by Jordan Suchow, available at github.com/suchow/Dissertate.

10

https://github.com/suchow/Dissertate

1
Introduction

Since its inception five decades ago, the Internet has evolved from a niche research proto-

type into a technological marvel connecting billions of devices across the planet. Today,

networks supports many components of our modern society, encompassing digital com-

merce, media, entertainment, education, and healthcare. The COVID-19 pandemic and

the subsequent transition towards remote-first workplace and hybrid social interactions

11

have further emphasized the importance of connectivity. Networks have, undoubtedly,

become an essential component of our daily lives.

When users open an app on their smartphone or browse a website on their computer,

they often take the fast, reliable, and omnipresent networks for granted. However, under

the hood, serving user requests depends on the correct operation of a myriad of networks,

ranging from the carrier access network nearby to the networks in data centers across the

globe. Every day, network operators face many challenges in consistently providing high

quality of service, for an increasingly diverse set of user applications with many different

demands. For example, live streaming and VR/AR gaming requires very low and stable

latency to avoid rebuffering or viewer discomfort122. Data center network operators strive

for ultra-high reliability, as downtime leads to thousands or even millions of dollars of loss.

Meanwhile, for many Internet-of-Things and smart home devices, privacy and security

are the paramount requirement. In their day-to-day operations, network operators also

need to cope with misconfigurations, equipment failures, and increasingly sophisticated

attacks, which they must detect and react to quickly in order to maintain high reliability

and minimize any disruption.

Therefore, operators need to perform network measurement, to improve network per-

formance and reliability. One commonmeasurement task is identifying heavy hitter flows*:

network packets are often grouped into flows based on criteria such as sharing the same

source and destination addresses, or belonging to the same user or application. Real-world

network traffic exhibits skewness, with a small fraction of flows often consuming a signifi-

cant portion of the network’s bandwidth. By measuring these heavy hitter flows and possi-

*Also referred to as elephant flows.

12

bly re-route them, the network can use the bandwidth of different links more efficiently20.

Moreover, measurement is also vital for maintaining network security; operators need to

continuously monitor the network traffic to detect attacks and anomalies. As an example,

a network need to look out for a source host sending packets to many different ports of the

same destination host, which is a sign of a Port Scanning attack and needs to be reported or

blocked.

Traditionally, network operators mostly rely on coarse-grained statistics and packet sam-

pling42,105 for measurement. However, as network speed grows exponentially, operators

are using lower and lower sampling rate — as low as 1 in 30,000 to 1,000,000— to avoid

the prohibitive overhead in storing or processing the samples. The sparse samples and ag-

gregated statistics are often insufficient for measuring transient anomalies that only affect a

small fraction of all network packets.

Software-Defined Networking (SDN) is a revolutionary approach to building and man-

aging computer networks. Traditionally, network devices like switches and routers have

fixed-function, proprietary firmware, and each of them has to be configured separately.

Different standards between vendors adds to the operator’s efforts and chances for con-

figuration mistakes. SDN, on the other hand, decouples the data plane that takes care of

forwarding individual packets quickly, from a centralized control plane that decides how

packets should be forwarded by each device. By requiring all devices to support a uniform

standard (e.g., OpenFlow85), a SDN can run a single centralized control plane to configure

the data plane of all devices. This makes it easier to manage large-scale networks with many

heterogeneous devices and complex topology.

13

One of the latest development in SDN is the introduction of programmable data plane,

which empowers network operators to deploy customized packet-processing algorithms

directly in high-speed switches. In contrast to the earlier SDNs supported by fixed-function

data planes and standardized control-plane APIs, which are upgraded in 2-3 year cycles,

programmable data planes offer network operators increased agility. Network operators

can now reprogram their network devices to support new protocols and implement new

features, without waiting for switch vendors to design and ship new hardware or firmware,

significantly accelerating the feature deployment cycles. Bosshart et al. proposed the Proto-

col Independent Switch Architecture (PISA)23, a blueprint for switching chip design that

adds reconfigurability to pipeline-based packet processing. In 2017, Barefoot Networks re-

leased the Tofino9,65 switch based on PISA. Tofino is the first commercially-available high-

speed programmable switch, supporting forwarding line rate up to 6.5 Terabits per second.

Since then, operators like Alibaba and Facebook have been deploying Tofino switches in the

field and exploit their programmability to implement novel network functions, such as load

balancing87, service gateway97, and so on.

Programmable data planes present an unique opportunity for fine-grained network mea-

surement. Measurement algorithms deployed in the data plane can efficiently handle every

single packet at line rate and maintain statistics in the data-plane memory, avoiding the sig-

nificant accuracy loss caused by sampling. However, the memory size available in the data

plane is many magnitudes smaller than the enormous volume of network traffic being pro-

cessed by switches. Fortunately, there exists an extensive body of theoretical works known

as Streaming Algorithms91, tailor-made for processing large data with small memory. We

can take inspiration from these earlier works when designing data-plane algorithms.

14

Nonetheless, designing efficient data-plane algorithms for programmable switches is

challenging. To achieve Terabits-per-second line rate and low forwarding latency, pro-

grammable switches impose strict memory and computational constraints on any algo-

rithm we deploy. Therefore, we cannot simply reuse an arbitrary algorithm designed for

running on general-purpose CPU, and must implement some adaptations for the switch

architecture. The works in this dissertation are based on switches using PISA23; in Chap-

ter 2, we will discuss some background about PISA and summarize the algorithmic con-

straints it imposes into a few easy-to-follow rules. It is important to note that the tech-

niques we used to tailor algorithms to these constraints are also widely applicable to other

devices processing high-speed network traffic.

The most salient constraint imposed by the programmable switch, from the perspec-

tive of designing network measurement algorithms, is the limited memory access. Namely,

the data-plane algorithm can only update a very small number of memory addresses when

processing a packet; it cannot arbitrarily access a large number of memory addresses or ac-

cess memory addresses in an arbitrary order. If we take existing measurement algorithms

designed to run on general-purpose CPU, they usually need to maintain sophisticated

data structures in memory, using complex memory access patterns that cannot be im-

plemented on the switch hardware. In particular, the Streaming Algorithms theoretical

model assumed arbitrarily complex memory accesses to the small local memory are allowed.

Therefore, an important step of designing efficient data-plane algorithm is to redesign the

data structures to confront to the limited memory access, among other computational con-

straints imposed by the switch pipeline.

15

Once measurement results are available directly in the data plane, the switch can change

its forwarding configuration within microseconds. This opens up new possibilities for

real-time reactions and optimizations that were previously impossible through the control

plane, as it takes at least 10-100 milliseconds for the control plane to collect statistics and

install new configurations. For example, microbursts are small-timescale queue anomalies

that lasts shorter than a few milliseconds, causing delay and possibly packet drops; only the

data plane can react quick enough to prevent microbursts from affecting user experience.

The overarching objective of this dissertation is to examine the intricate challenges and

offer adaptations and solutions for effectively utilizing data plane programmability, hoping

to providing practical guidance for future researchers and practitioners alike. We observe

that the techniques used to adapt algorithms to the switch’s hardware constraints naturally

fall into two categories: those involving the redesign of measurement to provide approxi-

mated results, and those using algorithmic changes to design a fuzzy, approximated control.

Therefore, we divide the rest of the dissertation into two cohesive halves, centered around

the key themes of (I)measurement and (II) real-time, closed-loop control.

In the first part of the dissertation, we emphasize designing efficient algorithms and data

structures for network measurement to adapt to the constraints imposed by the switch

pipeline. Here we showcase two works addressing two important classes of measurement

queries, heavy hitters and count distinct, noting that the techniques presented can also be

applied to adapting other data structures for other measurement queries.

• In Chapter 3, we present the PRECISION heavy hitter algorithm, which uses the

partial recirculation technique to simplify the more complex memory access pattern

16

used by prior works. PRECISION also uses approximations to replace exact calcula-

tions for hardware-friendliness without sacrificing accuracy.

• In Chapter 4, we introduce BeauCoup, a system that enables simultaneously exe-

cuting many measurement queries while using a constant number of memory access

per packet. This helps meet the operator’s need to concurrently monitor an ever-

expanding set of traffic anomalies, while respecting the switch hardware’s memory

access constraints. Notably, BeauCoup is the first system of its kind to allow dynam-

ically updating traffic queries without reloading the data-plane program and causing

downtime in forwarding.

The second part of this dissertation focuses on real-time, closed-loop control in the data

plane. Using closed-loop control allows us to implement many novel features in high-speed

networks; here we showcase two works, one optimizes network performance via queue and

burst management, the other implements resource allocation and performance isolation via

network slicing. We share our experiences in applying approximation techniques at every

step of the closed-loop control algorithms, hoping to provide insights for other researchers

in this emerging area when designing their own closed-loop control features.

• In Chapter 5, we present ConQuest, a framework for fine-grained, flow-level queue

occupancy analysis. ConQuest empowers a switch to identify the root cause of

small-timescale queue anomalies, commonly known asmicrobursts. Subsequently,

the switch can react in real time to mitigate microbursts and protect other flows

from suffering higher latency or packet drops.

17

• In Chapter 6, we introduce AHAB, an algorithm for approximately enforcing scal-

able hierarchical bandwidth fairness using programmable switch, avoiding the la-

tency and jitter introduced by CPU-based software switch. Given a large number

of users, it is infeasible to maintain per-user state and calculate a fair bandwidth al-

location; instead, AHAB uses a novel memory-efficient data structure to estimate

per-user sending rate, and employs closed-loop iterative update to quickly and accu-

rately converge to fair allocation.

18

2
Background of PISA switches

In this chapter, we present an overview of the programmable switches using Protocol In-

dependent Switch Architecture (PISA) and introduce the different type of architectural

constraints they impose on algorithm designers.

19

Parser Ingress Pipeline Egress PipelineQueue Deparser

01011010…01011010…

Croosbar

Figure 2.1: An illustration of the programmable data plane.

2.1 Switch hardware architecture

In order to handle packets using various protocols and support many different forward-

ing features, typical network switches include four components: the parser, the packet-

processing pipelines, the queuing buffer, and the deparser. PISA switches also follow this

design pattern, as illustrated in Figure 2.1, except these components are all programmable.

In this Section, we present an overview on how each of these components work.

At first, in the parser, the packet (represented as bit streams from the wire) is parsed into

semantic fields (or headers) and stored in the Packet Header Vector (PHV), alongside meta-

data such as the current timestamp and port number. The parser transitions between dif-

ferent states defined by the programmer, extracting some number of bytes and branching

based on the extracted bytes. This allows the switch to parse packets with different protocol

headers, both conventional (Ethernet, IP, TCP) and custom-defined ones. Here, we omit

the technical details of the parser as it is mostly unrelated to this thesis, as measurement al-

gorithms mostly do not use parsing/deparsing features beyond storing a few custom fields

in the packet header. We refer interested readers to works that exploited the parser, such as

Elmo107, for a more in-depth discussion.

After the packet headers are parsed, the PHV is passed to the ingress pipeline. The re-

mainder of the packet (the payload) is stored in the switch’s buffer, and will only be re-

20

joined with the header when the packet is finally deparsed into bits and transmitted on the

wire.

To achieve Terabits-per-second line rate throughput, a switch must process a packet

within 0.5-1 nanosecond. Given the highest clock rate of typical chips (1-5 gigahertz per

second), the line rate translates to only a few clock cycles per packet. Since we can only

finish very primitive operations within this tight time constraint, PISA uses a pipeline ar-

chitecture with many distinct stages. When the switch runs at its fastest speed (at line rate

with minimum sized packets), at any given time each stage is processing a different packet;

all packets move to the next stage within every 0.5-1 nanoseconds. Each stage contains mul-

tiple primitive operations calledMatch-Action Tables (MAT); we can compose different

MATs using multiple stages to implement complex packet-processing logic.

EachMATwill firstmatch on a particular PHV field using different bit patterns. For

example, in order to forward a packet to its destination, we will match on the packet’s desti-

nation IP address. The program can specify the match rules in different ways: besides exact

match, we can also use ternarymatch, which requires each bit to be ”0”, ”1”, or ”*” (don’t

care). The latter is implemented on hardware using Ternary Content-Addressable Mem-

ory (TCAM); each ternary match rule has a priority, which helps tie-breaking when the

same input bit pattern matched multiple rules. We also note that, for ease of expression, the

ternary match functionality is represented by two other kinds of match logic. The longest-

prefix match (lpm) is commonly used for routing, which represents prefix matching rules

as ternary, with a more specific, longer-prefix rule having priority over a shorter-prefix rule.

The range match (range) specifies lower and upper limits for a number, and use many pre-

fixes of the binary representation to implement these limits.

21

Based on different matches, the MAT can then take different actions to modify the

PHV. To achieve terabits-per-second throughput consistently, the pipeline needs to run

at a fixed clock cycle≥ 1GHz and process one packet every several nanoseconds. This

limits the complexity of pipeline stages, which can only implement some elementary ac-

tions. The most simple action is to write a value to PHV, to update a packet header field or

custom-defined metadata variable. TheMAT also supports a set of arithmetic operations,

including addition, subtraction, and bit shifting. For example, to implement a router, we

need to update ip.ttl=ip.ttl-1 as an action. Furthermore, the MAT supports updating

values stored in the register memory arrays available in each stage using a register action. The

packet-processing program can first specify or calculate an index in the array, then perform

a read-modify-write operation for the value in this array index. It is also possible to use val-

ues stored in PHV as operands of the read-modify-write, and write the result back into

PHV. For example, to maintain statistics for the total traffic volume for each port, we can

use the port number as array index; in the register action, we simply read the existing value

in register memory, increment it by the size of the current packet (available as metadata in

the PHV), and write the value back to register memory. In contrast to other actions, which

are all stateless and always process the same packet the exact same way, register action allows

us to implement stateful programs and is the key to network measurement.

It’s important to note that between reading a value from the register memory and sub-

sequently writing a new value, the data-plane program is constrained to executing very lim-

ited calculations that are supported by the pipeline’s hardware circuit. This is because all

these calculations must finish within the tight clock timing of a single pipeline stage. The

22

extent of complexity allowable can vary based on the specific design of the switch hardware

and the trade-off between expressiveness and chip area, as discussed by Domino109.

Each pipeline stage supports running manyMATs in parallel. After they simultaneously

read from the PHV and performed their actions, the modified PHV is passed onto the next

pipeline stage, while the current stage starts procesing the PHV of the next packet.

After going through all stages in the ingress pipeline, the packet is passed to the Traffic

Manager, which first uses a crossbar to bring the bytes to the corresponding egress port

(specified as metadata in PHV), then adds the packet to the queuing buffer to wait for

egress processing. Alternatively, if the metadata indicated this packet should be dropped,

the processing will stop here.

The egress pipeline consumes and processes packets from the queuing buffer. Note

that egress pipeline has exactly the same architecture as the ingress pipeline; however, at

this point, there are additional metadata (such as queuing delay) available, so some egerss-

specific logic related to ports or congestion can be executed here. After finishing egress

pipeline stages, the packet is deparsed into bits and transmitted.

2.2 Hardware-imposed algorithmic constraints

As we discussed in the previous section, in order to consistently achieve line-rate process-

ing, the programmable switch hardware design only allows the data-plane program to run

primitive actions in a pipeline fashion. In this section, we discuss the type of constraints

relevant to algorithm designers.

23

2.2.1 Computational constraints

As we discussed earlier, given the tight timing requirement for implementing line-rate for-

warding, the pipeline stages can only implement primitive actions. Thus, there is only a

limited set of arithmetic operations available in an action, namely addition, subtraction,

and shifting. We cannot calculate division or multiplication natively, nor can we perform

floating-point operations, as these operations are generally much slower in a hardware cir-

cuit.

As a workaround, we can use match-action table rules to mimic low-precision floating

point arithmetic, with division and multiplication results represented in lookup tables, as

we will later discuss in Section 6.5. We can also use bit shifting to implement multiplication

and division with integer powers of two.

Also, to achieve low forwarding latency, the switch pipeline has a fixed, limited number

of stages. While designing an algorithm, we need to avoid complex and long dependencies,

so it can be completed within a small number of total pipeline stages.

2.2.2 Memory size

To achieve line rate of Terabits per second, the packet-processing pipeline must process

one packet every 1-2 nanoseconds. Thus, the slower Dynamic RAM (DRAM) cannot

meet the speed requirements, and the register memory arrays are implemented using Static

RAM (SRAM), which has lower density and therefore smaller size compare to DRAM.

For example, the first generation programmable switches, Intel Tofino series, offered 4-32

MB of register memory in the pipeline.

24

Stage 1

memory

Stage 2 Stage d

(a)Memory cannot be accessed from multiple stages

Stage 1

memory

Stage 2 Stage d

(b) Limited memory access within a stage

Stage 1

If (·)?

Stage 2 Stage d

(c) Limited in‐stage branching

Figure 2.2: Illustration of some constraints imposed by PISA switch pipeline for designing measurement algorithm.

This memory size is many orders of magnitude smaller compared to the huge volume

of line-rate traffic we try to measure. Fortunately, in the theory literature, there is a class

of algorithms called streaming algorithms, designed to have very small memory footprint

while analyzing data streams. Naturally, the design principles of the streaming algorithms

are a perfect fit for network measurement. However, existing streaming algorithms only

considered limited memory size and assumed unlimited access to the memory. We have to

adapt these algorithms to also consider the constraints on memory access patterns.

25

2.2.3 Memory access constraints

When designing data-plane algorithms, one of the most crucial challenges lies in ensur-

ing the algorithm’s memory access patterns follow the constraints dictated by the switch’s

pipeline architecture. These constraints can be distilled into three rules: 1) partitioned

memory, 2) limited concurrency, and 3) limited branching.

Partitioned memory

The switch partitioned all its register memory between different pipeline stages. Namely,

any particular register memory array can only be accessed from one pipeline stage; we can-

not access the same memory from different stages. This is because at any given time, differ-

ent stages are processing different packets. If a memory address is accessed by two different

stages simultaneously, we cannot avoid a memory access hazard or pipeline stalling. Sim-

ilarly, memory is partitioned between the ingress and egress pipelines. We illustrate this

constraint in Figure 2.2a.

In the first-generation commodity programmable switch (the Intel Tofino), each pipeline

stage has its own fixed amount of register memory. dRMT38 proposed a newer architecture

that allows a shared pool of memory to be more flexibly split between stages when running

different data-plane programs; however, at runtime, memory is still partitioned between

different stages.

Therefore, in normal cases, a packet being processed through the pipeline can only visit

each memory array once. The switch also offers a feature called packet recirculation, which

allows a packet to go through the pipeline a second time and access the same memory ar-

ray twice. Recirculation also provides twice as many pipeline stages for complex compu-

26

tation operations. However, we note that every recirculated packet will also consume the

pipeline’s processing capacity, competing with incoming packets. When the fraction of re-

circulated packet exceeds the pipeline’s reserved capacity, the switch cannot maintain line

rate. We should therefore keep the fraction of recirculated packets to the minimum.

Limited concurrency.

In a pipeline stage, we can only access a small number of memory addresses within all the

register memory attached to this stage. While processing a single packet, we cannot con-

currently access many different indices in an array. This is because we cannot scan through

all the memory within the clock cycle of a single stage. We illustrate this constraint in Fig-

ure 2.2b.

Limited branching.

Recall that while accessing register memory we can perform a read-modify-write operation.

Since branching operations are expensive in circuits, the pipeline stage only supports very

limited branching within a stage. Here, we cannot have complex conditions between read-

ing and writing back to the same register memory address. We illustrate this constraint in

Figure 2.2c.

Note that this constraint only applies to branching between reading and writing mem-

ory within a single stage. Between pipeline stages, we can still perform complex branching

across stages using sophisticated matching rules in a MAT. The only limitation is we can-

not write back to the same memory address if we use complex branching based on the value

read from this particular address.

27

2.2.4 Summary

In summary, the programmable switch pipeline enforces computational, memory size, and

memory access constraints. When designing data-plane algorithms, it is imperative that the

computational operations align with the switch’s capabilities. Moreover, we must ensure

that the data structures utilized by these algorithms are efficient, optimizing memory size

and, notably, employing straightforward memory access patterns that are compatible with

the pipeline architecture.

It’s worth noting that while the detail of constraints we discussed are specific to PISA

switches, other high-speed networking devices will present their own computational and

memory limitations following a similar pattern. This is because many of the underlying

tradeoffs, particularly the limited memory size and memory access bandwidth relative to

the increasing speed of network traffic, are inherent to all high-speed networking hardware.

Consequently, algorithmic designs for the network data plane should prioritize the use of

simple memory access patterns, as they are more likely to remain compatible with more

networking hardware.

28

Part I

Enabling Network Measurement in the

Switch Data Plane

29

3
PRECISION: Heavy-hitter detection via

partial recirculation

In this chapter, we introduce PRECISION, an algorithm that uses Partial Recirculation

to find heavy hitter flows on a programmable switch. As discussed in Chapter 2, the PISA

switch pipeline imposed memory access constraints, making it challenging to implement

30

prior heavy hitter algorithms. By recirculating a small fraction of packets, PRECISION

simplifies the access to stateful memory to conform with the memory access constraints.

We also evaluate each of the hardware-friendly adaptations made by PRECISION and an-

alyze its effect on the measurement accuracy. Finally, we suggest two algorithms for the hi-

erarchical heavy hitters detection problem in which the goal is identifying the subnets that

send excessive traffic and are potentially malicious. To the best of our knowledge, PRECI-

SIONwas the first algorithm to implement hierarchical heavy-hitter detection on PISA

switches.

The work in this chapter was completed in collaboration with Ran Ben Basat, Gil Einziger,

and Ori Rottenstreich. It was first presented in the IEEE International Conference on Net-

work Protocols (ICNP) 201815 and later appeared in the IEEE/ACMTransactions on Net-

working12.

3.1 Introduction

Identifying heavy hitter flows is an important task for network monitoring and manage-

ment. For example, traffic engineering20 may want to identify the largest (heavy hitter)

flows, and forward them to use the most idle link. An intrusion detection system50,90,93,104

may be interested in hierarchical heavy hitters13,88, i.e., IP address blocks of various sizes

that consume a lot of traffic.

Ideally, we can allocate some memory for every flow to store its measurement statistics,

including its volume. However, this is infeasible given the large number of flows processed

in high-speed switches and the limited data plane memory size. Heavy hitter algorithms

only store flow state for the largest flows to overcome this limitation. This approach ex-

31

poses a trade-off between memory space and accuracy, where additional space improves the

accuracy.

There are two types of solutions for the heavy hitter detection problem— counter-based

algorithms and sketch-based algorithms. Counter-based algorithms maintain a bounded-

size flow cache. Only a small portion of the flows are measured, and each monitored flow

has its own counter. Examples of counter-based algorithms include Lossy Counting 84, Fre-

quent 67, Space-Saving 45,86, andRAP 11. In sketch-based algorithms, counters are implicitly

shared by many flows. Examples of sketch-based algorithms includeMulti Stage Filters51,

Count-Min Sketch48, Count Sketch28,Randomized Counter Sharing 73, Counter Tree29, and

UnivMon78.

Heavy hitter measurement has two closely related goals. In the frequency estimation

problem, we wish to approximate the size of a flow whose ID is given at query time. Al-

ternatively, in the top-k problem, the algorithm is required to list the k top flows. In gen-

eral, sketch algorithms solve the frequency estimation problem but require additional

efforts to address the top-k problem. For example, UnivMon78 uses heaps alongside the

sketches to track the top flows. FlowRadar74 and Reversible Sketch103 encode flow ID in

the sketch, and have a small probability to fail to decode. In contrast, counter algorithms

already store flow identifiers and can directly solve the top-k problem. While sketch algo-

rithms are readily implementable in programmable switches, supporting top-kmeasure-

ments is a strong motivation for deploying counter algorithms in such switches. Unfor-

tunately, high-performance packet processing imposes severe restrictions on the program-

ming model which makes implementing counter algorithms a daunting task.

32

Some applications such as attack mitigation and intrusion detection require something

more sophisticated than (plain) heavy hitters50,90,93,104. For example, in a Distributed De-

nial of Service (DDoS) attack, a large number of devices collaborate to overwhelm an In-

ternet service. In many cases, the source IP addresses of the attacking devices are different

from the legitimate traffic. That is, the attack shares common prefixes which correspond

to several sub-networks that do not deliver much legitimate traffic. Hierarchical Heavy

Hitters (HHH) identify frequently appearing sub-networks. These can be used to either

white-list traffic from the most frequent sub-networks of the legitimate traffic or to detect

that traffic from specific sub-networks is likely due to an attack and blacklist them. Since

programmable switches are powerful enough to cope with the current volume of DDoS

attacks, performing HHH analysis on such switches offers exciting opportunities. Unfor-

tunately, even (plain) heavy hitters are non-trivial to implement in programmable switches.

Contribution

We present Partial RECirculation admisSION (PRECISION) – a heavy hitter algorithm

that is fully compatible with PISA programmable switches. We implemented PRECISION

in the P4 language22 on the Intel Tofino65 programmable switch that achieves multiple

Tbps of aggregated throughput, and deployed it in Princeton University’s campus network

to measure real-world heavy hitter flows. The core idea behind PRECISION is Partial re-

circulation; PRECISION recirculates a small portion of packets from unmonitored flows;

we decide probabilistically or deterministically if the packet should be recirculated and pass

again through the programmable switching pipeline. In the first pipeline pass, we try to

match a packet to an existing flow entry; if this succeeds, we increment its counter. If un-

33

matched, we sometimes recirculate it to claim an entry with the new packet’s flow ID. Us-

ing the packet recirculation feature greatly simplifies the memory access pattern without

significantly degrading throughput, while by carefully setting the recirculation portion we

achieve high monitoring accuracy.

Previous suggestions include HashParallel and HashPipe111, two counter-based heavy

hitter detection algorithms proposed specifically for running on high-throughput pro-

grammable switches. They both maintain a d-stage flow table tailored to the pipeline ar-

chitecture of programmable switches but differ in whether to recirculate an unmatched

packet. HashPipe never recirculates packets and always inserts the new entry, which yields

high throughput but lower accuracy. Instead, HashParallel recirculates every unmatched

packet, which achieves much better accuracy but lowers the throughput. In contrast, PRE-

CISION only recirculates a tiny portion of the unmatched packets with a minimal impact

on performance. This approach allows PRECISION to conform to the switch pipeline’s

memory access constraints and also improves accuracy over HashPipe, especially for heavy-

tailed workloads. We then analyze the impact of each constraint individually and find that

most limitations have little effect in practice. We also show that HashPipe111 cannot sat-

isfy both the limited branching rule and the single stage memory access rule, requiring more

sophisticated memory access not supported by the switch hardware.

Next, we suggest two methods to implement Hierarchical Heavy Hitters (HHH) detec-

tion on programmable switches. These, utilize PRECISION as a black box, and demon-

strate the feasibility of HHH detection entirely in the data plane of a high performance

switch. Such a capability is an important enabler for attack mitigation systems.

34

Finally, we evaluate PRECISION on real packet traces and show that it improves on

the state-of-the-art for high-performance programmable switches (HashPipe) for the two

variants of the heavy hitter problem. It is up to 1000 times more accurate than HashPipe

for the frequency estimation problem and reduces the space required to correctly iden-

tify the top-128 flows by a factor of up to 32 times. When compared to general (software)

heavy hitter algorithms, PRECISION often has similar accuracy compared to Space-Saving

and RAP. Interestingly, approximating the desired recirculation probability appears very

important, with a stage-efficient 2-approximate solution PRECISION requires at most

four times as much memory as RAP. When we dedicate more hardware pipeline stages to

achieve a better approximation, the performance gap between PRECISION and RAP di-

minished.

Outline

The chapter is structured as follows. We first introduce the reader to the heavy hitter detec-

tion problem in Section 3.2 and survey related work in Subsection 3.1.1. In Section 3.3, we

discuss the implementation of PRECISION, specifically how we adapt to the limitations

imposed by the PISA switch pipeline to achieve probabilistic recirculation. Here, we also

discussed a deterministic variant of PRECISION. Section 3.4 shows two designs to extend

PRECISION to perform the Hierarchical Heavy Hitters (HHH) measurement. In Sec-

tion 3.5, we evaluate PRECISION, by first quantifying the impact of each adaptation on

the accuracy, and then position it within the field by comparing it with other heavy-hitter

detection algorithms. Finally, we conclude in Section 3.6.

35

3.1.1 HeavyHitter ProblemDefinition

In this section, we present formal definitions for the heavy hitter measurement problem.

Our work targets two commonmeasurement forms, the frequency estimation problem and

the top-k problem. For both, we refer to a quasi-infinite packet stream, where each packet is

associated with a flow as explained below.

A flow refers to a particular subset of the packet stream that we choose to combine and

analyze as a whole. For example, a flowmay apply to a TCP connection or a UDP flow, in

which case the five-tuple (source and destination IP, protocol, source and destination port)

becomes the flow identifier. Alternatively, a flowmay refer to just the source IP address, or

just the destination IP and port pair. In any case, we assume that a flow identifier is avail-

able from some fields of the packet header, and that flows partition the stream such that

each packet belongs to a single flow.

We denote the frequency of a network flow with ID s, or the total number of pack-

ets belonging to flow s, as fs. For the frequency estimation problem, we use the OnArrival

model11, which requires an algorithm to estimate the flow frequency for each new packet it

sees, and evaluates the estimation error upon each packet arrival. Formally, we reveal pack-

ets in a stream (p1, p2, . . .) one packet at a time, and on each packet arrival, with packet

pt belonging to some flow s. An algorithm Alg is required to provide an estimate f̂s for

fs ≜ | {pi ∈ s|1 ≤ i ≤ t} |— the number of packets belonging to flow s in p1, . . . , pt.

The top-k identification problem is defined as follows: Given a stream (p1, p2, . . .) and a

query parameter k, the algorithm outputs a set of flows containing as many of the k largest

flows as possible.

36

3.2 RelatedWork

The Space-Saving algorithm

Space-Saving (SS)86 is a heavy hitter algorithm designed for database applications and soft-

ware implementations. Space-Saving maintains a fixed-size flow table, where each entry has

a flow identifier and a counter. When a packet from an unmonitored flow arrives, the iden-

tifier of the minimal table entry is replaced with the new flow’s identifier, and its counter

is incremented. Space-Saving uses a sophisticated data structure named stream-summary

which allows it to maintain the entries ordered according to counter values in constant

time as long as all updates are of unit weight.

Space-Saving was designed for database workloads, which often exhibit a heavily con-

centrated access pattern, i.e. most of the traffic comes from a few heavy hitters. In contrast,

networking traces are often heavy-tailed11,64. That is, a non-negligible percentage of the

packets belong to tail flows or those other than heavy hitters. Unfortunately, Space-Saving

works poorly on such workloads. For conciseness, we present only the Space Saving algo-

rithm between all classical heavy hitter algorithms, as it is often considered to be the most

accurate44,45,83.

Optimization for heavy-tailed workloads

To deal with heavy-tailed workload, Filtered Space-Saving64 attempts to filter out tail flows

before inserting into flow table. It utilizes a bitmap alongside a Space-Saving instance.

When a packet arrives, a hash function is used to map its flow ID into a bitmap entry. If

37

the entry is zero, it merely sets the entry to one. Otherwise, we update the Space-Saving in-

stance.

Maintaining additional data structures to filter tail flows may be wasteful. Therefore,

Randomized Admission Policy (RAP)11 suggests using randomization instead. When an

unmonitored flow arrives, it is admitted only with a small probability. Thus, most tail flows

are filtered while heavy hitters that appear many times are eventually admitted. Specifi-

cally, if the minimal entry has a counter value of c, RAP requires the competing flow to win

a coin toss with a probability of 1
c+1 to be added. The idea of RAP can be applied to the

Space-Saving algorithm for software implementations. For hardware efficiency, the authors

evaluate a limited associativity variant.

Unfortunately, the programming model of high-performance programmable switches is

too restrictive to implement these algorithms directly. Specifically, Space-Saving evicts the

minimal flow entry across all monitored flows, whereas the architecture of programmable

switches does not permit finding (and replacing) the minimum element among all coun-

ters. Even for the limited associativity variant of RAP, it is still difficult to implement the

randomize replacement after finding the approximate minimum value, due to same-stage

memory access restriction.

High-performance switch algorithms

HashPipe111 adapts Space-Saving to meet the design constraints of the P422 language and

PISA23 programmable switch architecture. The authors suggest partitioning the counters

into d separate stages to fit the programmable switch pipeline. They use d hash functions

that dictate which counter can accommodate each flow on each stage. They first propose a

38

strawman solution,HashParallel, which makes each packet traverse all d stages while track-

ing the minimal value among the counters associated with its flow. If the flow is monitored,

HashParallel increments its counter. If not, it recirculates the packet to replace the minimal

entry among the d. The authors explain that HashParallel potentially recirculates all the

packets, which halves the throughput.

Hence, they suggest HashPipe as a practical variant with no recirculation. In HashPipe,

each packet’s flow entry is always inserted in the first stage. They then find a rolling mini-

mum— the evicted flow proceeds to the next stage where its counter is compared with the

flowmonitored there. The flow with the larger counter remains, while the smaller flow’s

entry is propagated further. Eventually, the smaller counter on the dth stage is evicted. This

allows HashPipe to avoid recirculation but introduces the problem of duplicates — some

flows may occupy multiple counters, and small flows may still evict other flows.

FlowRadar74 is another P4 measurement algorithm that follows a different design pat-

tern. The main design difficulty to overcome is the lack of access to a fully associative hash

table in programmable switches. While HashPipe and this work implement a fixed asso-

ciativity table using multiple pipeline stages, FlowRadar potentially stores multiple flows

within the same table entry. That is, upon hash collision the new flow identifier is XORed

into the existing identifier. FlowRadar works best when the measurement is distributed,

where multiple programmable switches can share their state to decode flow entries. Ini-

tially, FlowRadar recovers all flow entries that had no collision. Recovered flows are then

recursively removed from the data structure, enabling for more flows to be recovered.

This approach is differentiated from our own as it attempts to perform an accurate mea-

surement and therefore requires space which is proportional to the number of flows. In

39

contrast, our approach provides an approximation of the flow sizes, and the required mem-

ory is independent of the number of flows. Also, FlowRadar requires multiple measure-

ment devices each encoding a different subset of flows whereas our solution can also be

implemented on a single device.

The more recently proposed CocoSketch131 algorithm also inserts new flow ID prob-

abilistically when the ID was not tracked by an existing counter, similar to PRECISION;

CocoSketch also sets the takeover probability to be 1/(c + 1) for an existing counter with

value c. However, CocoSketch always increment the approximate minimum counter by

one, even when the new flow is not inserted. The unconditional increment makes the Co-

coSketch algorithm easy to implement on the switch pipeline without using any recircula-

tion. However, the extra increments also lead to worse memory efficiency and accuracy for

heavy-tailed workloads.

Sampling

Instead of running algorithms in the data plane, one may also sample a fraction of pack-

ets and run sophisticated algorithms elsewhere16. This approach simplifies the hardware

implementation but the problemmigrates elsewhere. Namely, to process the samples in

real time, we need additional computation and bandwidth overheads. Also, achieving high

monitoring accuracy on smaller flows requires high sampling rate.

Hierarchical HeavyHitters

MST is an HHH algorithm that utilizes an independent (plain) heavy hitter instances for

each prefix length88. Once in a while, MST calculates the set of HHH prefixes from the

40

heavy hitters of each prefix length. The RHHH algorithm13 optimizes the performance of

MST in software by updating a single random prefix. These algorithms are non-trivial to

implement in programmable switches due to the limited programming model.

3.3 Design and Implementation of PRECISION

In this section, we present several hardware-friendly adaptations that address the architec-

tural constraints imposed by the PISA switch hardware.

3.3.1 From fully associative to d-way associative memory access

Building on top of Space-Saving86 and RAP11, we first tackle the fact that a programmable

switch cannot perform the fully-associative memory access to evict the minimum item. At

any given pipeline stage, the algorithm can specify an index to access some location in the

register array. The switch may allow accessing a small number of positions simultaneously

but definitely cannot compute a global minimum across an entire register array.

We adopt the limited-associativity idea fromHashParallel and HashPipe111 to approx-

imately evict a small element, by choosing the minimum across d randomly selected el-

ements from d separate register arrays. With this relaxation, we can naturally spread the

memory access across different hardware stages, and at each hardware stage, we only ac-

cess one memory location. Specifically, we use d independent hash functions h1, . . . , hd to

compute a different index for each stage, and at each stage, we access the hi(key)th element

of the ith register array. Note that PRECISION performs d flow entry reads, but it does not

consume exactly d hardware pipeline stages, as processing each read involves two branch-

41

ings, and costs three hardware stages. We also discuss how to reduce the total number of

hardware stages required in Section 3.3.6.

3.3.2 Simplified memory access

Implementation requirements of HashPipe

Although the design of HashPipe has already satisfied many restrictions imposed by PISA,

its memory access pattern prevents us from implementing it in today’s programmable

switch hardware (that has a limited support for Paired atoms). The high-level idea of the

HashPipe algorithm (see pseudocode in Algorithm 1) is to always evict the minimum out

of d elements, by “carrying” a candidate eviction element through the pipeline. At each

stage, we compare the counter read from register memory with that of the carried element.

Then, the smaller of which is propagated further onward.

We now scrutinize the register memory access to different arrays of HashPipe, as high-

lighted in Algorithm 1. If we look at Line 14 and Line 23, they both access the register array

key holding flow identifiers. The single stage memory access restriction requires that line 14

through line 23 would be placed within the same hardware pipeline stage.

However, the execution flow is branched in line 21 based on the values in another reg-

ister array (val). Such branching violates the limited in-stage branching restriction. Refer-

ring to the model presented in Domino109, to implement HashPipe, the simpleRAW *

action atoms at each stage are inadequate, and at least Paired † action atoms are required.

*The RAW action unit is capable of Reading an element from register memory, Add a value to it, and
Write it back. See Domino109.

†The Paired action unit is capable of reading two different elements from register memory, conditionally
branch twice (two nested if s), perform addition or subtraction to the elements, and write two new values
back. See Domino109.

42

Algorithm 1:HashPipe111 heavy hitter algorithm
1 l1 ← h1(iKey) ▷Always insert in the first stage;
2 if key1[l1] = iKey then
3 val1[l1]← val1[l1] + 1;
4 end processing;
5 else if l1 is an empty slot then
6 (key1[l1], val1[l1])← (iKey, 1);
7 end processing;
8 else
9 (cKey, cVal)← (key1[l1], val1[l1]);

10 (key1[l1], val1[l1])← (iKey, 1);
11 for i← 2 to d do
12 ▷Track a rolling minimum;
13 li ← hi(cKey);
14 if keyi[li] = cKey then
15 ▷Read keyi ;
16 vali[li]← vali[li] + cVal ▷R/W vali ;
17 end processing;
18 else if [li] is an empty slot then
19 (keyi[li], vali[li])← (cKey,CVal) ▷Write keyi, val ;
20 end processing;
21 else if vali[li] < cVal then
22 ▷Condition on vali; Violating branching constraints;
23 swap (cKey, cVal)⇔ (keyi[li], vali[li]) ▷R/W keyi ;

While the PISA23 does not specifically define what features the action units need to sup-

port, Paired action atoms are more expensive to implement than RAW atoms and require

14x larger chip area than RAW atoms109. Therefore, today’s programmable switches, the

Tofino series, do not support Paired atoms. We strive to design our measurement algorithm

to only require the simpler RAW atoms.

With only the simple RAW atoms, it is not possible to conditionally update a flow entry

while simultaneously incrementing the corresponding counters. As long as we place flow

identifier and counter in two separate register arrays, this seemingly innocuous set of oper-

43

ations has some inevitable in-stage branching: if we access flow identifiers first, we need to:

(i) Read flow ID from flow entry array; (ii) If ID matched, increment counter; otherwise,

compare the counter to the carried counter value; (iii) If the condition is satisfied, replace

flow ID. This leads to a write to flow entry register memory conditioned on reading from

another counter register memory. Therefore, two nested branching within the stage is in-

evitable.

Some may argue that we can cleverly rearrange the operations to mitigate the branching;

however, even if we access the counter first, we still encounter the same restriction: (i) Read

a counter from the counter register memory; (ii) Read flow ID; if ID not matched, check

if the counter is smaller than the carrier counter to decide whether to replace the flow ID;

(iii) Write the incremented counter value, if the IDmatched. Again, the conditional write

after reading another register forces two nested branching within a hardware pipeline stage

(requiring Paired atom). Therefore, we cannot implement HashPipe on the first generation

programmable switches available on the market.

PRECISION’s solution

The implementation of PRECISION is even more challenging. We decide to replace an

entry after knowing the minimum sampled counter value, but we only know this value

after reaching the end of the pipeline, at which point it is too late to write to the register

memory of earlier stages.

We resolve this difficulty using the recirculation feature on switches6,118, that allows

packets to traverse the pipeline again, removing all conditional branching for register ac-

cess. When a packet leaves the last stage of the pipeline, instead of leaving the switch, we

44

may choose to bring it to the beginning of the pipeline and go through all stages again. We

can use metadata to distinguish between recirculated packets (which should be dropped)

and regular packets that should be forwarded to their next hop.

Using recirculation allows more versatile packet processing at the cost of packet forward-

ing performance, as the recirculated packet will compete for resources with new incoming

packets. However, we believe it’s a necessary trade-off to satisfy the no-branching-within-

stage constraint for high-performance programmable switches.

At the end of the pipeline, we ignore those packets already matched to flow entries and

probabilistically recirculate the other packets using probability 1
carry_min+1 , where carry_min

is the value of the minimum sampled entry. The recirculated packet will evict and replace

the minimum sampled entry. It will traverse the pipeline again to write its flow identifier

into the corresponding register array when it arrives at the right pipeline stage, and also

update the corresponding counter to a new value carry_min + 1. In expectation, for every

unmatched packet we increased the count for its flow by 1.

As a packet recirculates, it introduces a delay between the point in which we chose to

admit it, and when it writes its flow ID on its second pipeline traversal. During this period

other packets may increment the counter, an effect that will be overridden. Thus, the recir-

culation delay may have some impact on PRECISION’s accuracy. The duration of such

delay is architecture-specific and depends on both the queuing before entering the pipeline

and the length of the pipeline. In Section 3.5.2, we evaluate its impact on PRECISION’s

accuracy and show that PRECISION is insensitive to such delay.

45

3.3.3 Efficient recirculation

We avoid packet reordering and minimize application-level performance impact by using

the clone-and-recirculate primitive, which routes the original packet out of the switch as

usual, and drops the cloned packet after it finishes the second pipeline traversal. This im-

plies that in-flow packet order is preserved and that a packet can only be recirculated once.

Since recirculated packets compete for resources with incoming packets, we would like

to minimize the number of recirculated packets. Fortunately, recirculation happens only

for unmatched packets, with a probability of 1
carry_min+1 , where carry_min is the minimal

counter value the packet saw in all pipeline stages. Thus, recirculation becomes less fre-

quent as the measurement progresses and the counters grow.

We can further bound the expected recirculation ratio at the beginning of the execu-

tion by initializing all counter registers to a non-zero minimum value. For example, if we

initialize all counters to 100, we also set an upper bound 1% for the expected recirculation

probability. Subsequently, because of concentration bound, the probability for having

more than (1+ ε)% recirculation becomes negligible. In Section 3.5.3 we show that adding

an appropriate initial value has a negligible accuracy impact. We also note that in hardware

switches, recirculating 1% of packets leads to at most 1% impact on throughput.

3.3.4 Approximating the recirculation probabilities

Recall that the original RAP algorithm admits packets from new flows with probability
1

carry_min+1 . Intuitively, a flow needs to arrive carry_min + 1 times on average to capture a

counter with a value of carry_min+ 1.

46

It is straightforward to achieve this probability if a random arbitrary-range integer gen-

erator is available: we can generate an integer within [0, carry_min] and check if it’s 0.

However, we can only obtain random bits from programmable switch’s hardware random

source, and this effectively limits us to generate random integers within [0, 2x − 1] range.

Without the capability to do division or multiplication, we cannot accurately sample with

desired probability 1
carry_min+1 .

The most simple approximation is to only use probabilities of the form 2−x, which can

be done by matching x random bits to zeroes. That is, we recirculate unmatched packets

with probability 1
carry_min+1 rounded to the next smallest 2−x. This is a 2-approximation of

the desired recirculation probability. The recirculated packet will update the counter to 2x.

Rounding is achieved by using a ternary matching over bits of carry_min variable to find

the highest 1 bit. The evaluation in Section 3.5.4 shows that this method has a noticeable

but acceptable impact on accuracy.

We now introduce a tighter method for approximating the desired recirculation proba-

bility. Inspired by floating point arithmetic, we may decompose carry_min + 1 = 2y ×

T,T ∈ [8, 16) and use a probability of the form 1
2y ×

1
⌊T⌋ to approximate 1

carry_min+1 . We can

directly implement the 1
2y , while the

1
⌊T⌋ is approximated by randomly generating an integer

between [0, 2N] and comparing it against a pre-computed constant ⌊ 2N
⌊T⌋⌋, via a lookup ta-

ble. Further, to avoid non-integer number representation, we always increment the counter

value by 1 upon recirculation. This achieves a 9/8-approximation of the desired recircula-

tion probability. In Section 3.5.4, we show that the accuracy gains are significant. Yet, this

method requires an additional pipeline stage.

47

Algorithm 2: PRECISION heavy hitter algorithm
1 for i← 1 to d do
2 li ← hi(iKey) ;
3 if keyi[li] = iKey then
4 ▷Hardware stage iA: access keyi register;
5 matchedi ← true;
6 if matchedi then
7 vali[li]← vali[li] + 1 ▷Hardware stage iB: access vali register ;
8 else
9 ovali = vali[li]

10 if (¬matchedi) ∧ (ovali < carry_min) then
11 ▷Hardware stage iC: maintain carry minimum;
12 carry_min← ovali;
13 min_stage← i
14 if

∧d
i=1(¬matchedi) then

15 ▷ iKey not in cache; do Probabilistic Recirculation. new_val = 2⌈log2(carry_min)⌉;
16 Generate random integerR ∈ [0, new_val− 1], by assembling ⌈log2(carry_min)⌉

random bits;
17 if R = 0 then
18 clone and recirculate packet;
19 if packet is recirculated then
20 i← min_stage;
21 li ← hi(iKey);
22 keyi[li]← iKey ▷Hardware stage iA: access keyi register ;
23 vali[li]← new_val ▷Hardware stage iB: access vali register;
24 Drop the cloned copy;

3.3.5 Putting all adaptations together

With all the aforementioned hardware-friendly adaptations in mind, we assemble the PRE-

CISION algorithm, which satisfies all hardware-imposed constraints of PISA switches.

Algorithm 2 is a pseudocode version of PRECISION. Line 1 reflects PRECISION’s d-way

associative memory access, iterating through each way. In Line 7 we increment the counter

for matched packets, while unmatched packets handled between Line 15 and Line 19. We

48

flip a coin in Line 17, and the 2-approximation of recirculation probability manifests in

Line 16. Recirculated packets update register memory corresponding to their minimal

entries. This is described between Line 20 to Line 24. We highlighted accesses to register

memory in color, note that registers are only accessed once per stage. Each branching fits

in a transition between hardware pipeline stages, removing the need to perform in-stage

branching.

3.3.6 Parallelizing actions to reduce hardware stages used

Algorithm 2 presented PRECISION in its most straightforward arrangement, iterating

through the d-way in tandem, while each uses three pipeline stages. This costs as much as

d×3 hardware pipeline stages for register memory reads. Since the total number of pipeline

stages is very limited, we explain how to optimize the required number of stages further,

and fit a larger d on the same hardware. This optimization may also be applicable to other

algorithms with a similar repeated register array access pattern.

Intuitively, each ‘if’ in the pseudocode is a branching, separating the algorithm into dif-

ferent hardware stages. However, it may be possible to group independent stages and re-

duce the total number of hardware stages needed.

In our implementation, PRECISION requires two branching for each of the dways.

That is, it requires three pipeline stages for each way. The stages in each way are:

• Stage A:Read flow ID from flow entry array.

– Branching: does entry’s ID match my ID?

• Stage B:Read/Update from the counter array.

49

1 2 3 4 5 6

(a) Without stacking (b) Stacking actions to efficiently
use hardware pipeline stages

A B C

A B C

A B C1 2 3 4 5 6

A B CA B C

Figure 3.1: We reduce the number of pipeline stages used by stacking together independent actions between different
ways. For d‐way PRECISION, this reduces the number of pipeline stages required from d× 3 to d+ 2.

– Branching: is counter smaller than the current minimum?

• Stage C:Compute and “carry” the newminimum value.

If we indeed require three hardware stages for each pair of flow entry array and counter

array, a switch with X physical stages can at most implement PRECISIONwith d = X/3.

This assumes that all pipeline stages serve for heavy-hitter detection. In practice, we would

like to leave enough pipeline stages for other network applications.

However, our algorithm does not have a hard dependency between different groups of

stages. If we denote the dways as 1, 2, 3 and the three pipeline stages for each action as A,

B, and C, we can observe that (for example) 2A and 1C are independent. Thus, it’s not nec-

essary to serialize everything into the pattern shown in Figure 2(a). Instead, we can “stack”

operations from different groups together, as shown in Figure 2(b). Specifically, reading

the flow identifier for the next flow entry array can be parallelized with incrementing a

counter for the previous way’s counter array and so forth. Therefore, we can parallelize

different execution stages of multiple ways as there is no direct causal relation or data de-

pendency between stage action (i + 1)B and iC, or between (i + 1)A and iB. Thus, by using

50

the stacking pattern shown in Figure 2(b), we reduce the number of required stages to im-

plement d-way PRECISION from d× 3 to d+ 2, amortizing to one stage per way. ‡

For a programmable switch with a limit of X hardware stages, the actual maximum dwe

can implement will be smaller, because we need extra stages before and after the core algo-

rithm for setup and teardown, such as extracting flow ID and performing random coin-

tossing. Furthermore, a network switch will need to fulfill its regular duties like routing,

access control, etc., and would not devote all its resources to the PRECISION algorithm.

Nevertheless, we can expect any commodity programmable switch to run the d = 2 version

of PRECISION smoothly, alongside its regular duties. When extra resources are available,

we may increase d to improve accuracy as shown in Section 3.5.1.

3.3.7 A deterministic PRECISION variant

In this section, we consider a variant that replaces the probabilistic recirculation mecha-

nism of PRECISION by a deterministic one. Intuitively, instead of admitting each packet

with probability pwe can admit the 1/p’th packet. To implement this, we change the hash-

ing scheme of PRECISION so that each flow is only hashed once (i.e., all li are the same,

see Line 2 in Algorithm 2). We add a single counter per row that is initialized to zero and

incremented for every packet that is mapped to this row. Then, if the counter equals the

minimal value observed by the packet, we recirculate the packet and reset the counter.

While this approach is not suitable for adversarial traffic (where a flow can deliberately

avoid being admitted), we show that on standard traffic workloads it outperforms the ran-
‡There is indeed a causal dependency between stage (i + 1)C and iC when computing the carried mini-

mum value carry_min, thus using only a constant number of 3 hardware stages is not possible. Also, other
hardware constraints that limit the number of parallel actions in one hardware stage exists, but these are less
stringent than the limit on the total number of hardware stages.

51

domized version (see Section 3.5.7). Such a deterministic approach has the following im-

plementation benefits: (i) it does not need to approximate the sampling probability (e.g.,

we can add the 100’th packet and not approximate 1/100 which leads to biases). (ii) it does

not require random bits generation, or a lookup table and (iii) its results are easily repro-

ducible given the packet trace. As a potential implementation drawback of this approach,

the added counter requires slightly more memory than the randomized variant. However,

this seems to be rather low overhead and the improved accuracy allows the deterministic

variant to use fewer counters for the same performance.

3.4 Hierarchical HeavyHitters

In this section, we suggest two implementations of Hierarchical Heavy Hitters (HHH)

on programmable switches. HHH is a generalization of the heavy hitter / top-k problems

in which the goal is to identify subnets that send an excessive amount of traffic. HHH is

motivated by the need to identify the attackers in a distributed denial of service (DDoS)

attacks. Intuitively, the attack has access to many devices, each of which only sends a mod-

erate amount of traffic, eliminating detection by standard top-k solutions. If the malicious

devices share a common subnet (or a small number of subnets), HHH algorithms are able

to identify them by considering the aggregated traffic that originates from each network.

The full definition of the HHH problem is complex and appears in various literature46,47.

Here, we present two possible solutions for finding HHHwith PRECISIONwith dif-

ferent accuracy-resources tradeoffs. The Independent Stacking suggestion is based on the

MST algorithm88 and requires running multiple instances of PRECISION in parallel.

Each such instance is updated in parallel with one of the prefixes of the current packet

52

Prefix
1.2.3.4/32
1.2.3.*/24
1.2.*.*/16
1.*.*.*/8

PRECISION
instance
PRECISION
instance
PRECISION
instance
PRECISION
instance

1.2.
3.4

1.2.3.*

1.2.*.*
1.*.*.*

Prefix Probability
1.2.3.4/32 1/4
1.2.3.*/24 1/4
1.2.*.*/16 1/4
1.*.*.*/8 1/4

PRECISION
instance

(1.2.*.*, /16)IP=1.2.3.4IP=1.2.3.4

(a) Parallel instances (b) Single instance

Figure 3.2: An illustration of our two implementation approaches for Hierarchical Heavy Hitters.

as illustrated in Figure 3.2(a). For example, in the common use case of source hierarchies

in byte granularity, we are required to monitor (i) the total number of packets (i.e., /0

sub-network), (ii) the number of packets from each sub-network of size 8 bits, (iii) from

each sub-networks of size 16 bits, (iv) from each sub-network of size 24 bits, and (v) sub-

networks of size 32 bits. Clearly (i), and (ii) can be accurately counted using one and 256

counters, which requires three parallel instances of PRECISION for (iii)-(v). Such a sug-

gestion is efficient in a pipeline architecture, as the independent PRECISION instances

can be stacked together without requiring additional stages. However, Independent Stack-

ing does not scale very well for larger hierarchies. Further, some architectures may limit the

amount of stacking. Thus, our second suggestion is focused on implementing HHH using

fewer hardware resources.

The basic idea of our second suggestion is to use RHHH as a model. We use a single

PRECISION instance to monitor all prefix lengths, as illustrated in Figure 3.2(b). We add

a pipeline stage that counts the total number of packets and then pick a prefix uniformly

at random. The number for possible prefix lengths is 4 (for byte-level) or 32 (for bit-level),

which are both power of 2 and easy to sample from. We update the single PRECISION

instance in the same way as PRECISION does. The controller then receives the heavy

hitters of the unified instance, separate them by prefix types and calculate the HHH list

in the same manner as the previous work13. The work of RHHH showed that random-

53

ization works upon having a large number of packets. This is a reasonable assumption to

make under our setup with high-throughput programmable switches. Further, the second

suggestion requires only a single instance of PRECISION (with more allocated memory),

therefore is applicable whenever PRECISION can work.

3.5 Prototype and Evaluation

This section presents an evaluation of PRECISION’s accuracy and adaptation mecha-

nisms. We implement PRECISION in 800 lines of P422 code on an Intel Tofino65 Wedge-

100 programmable switch; the prototype implementation is available on GitHub32. It sup-

ports d=2 stages each tracking 64k flows, saving a total of 128k heavy hitter flows (defined

as source-destination IP pairs). The implementation used 15% of header metadata mem-

ory and 20% of total register memory available to save flow IDs and counters. It computed

d=2 hash functions, less than 10% of totally available. Our PRECISION prototype was

deployed in Princeton University’s campus network to report heavy flows to network oper-

ators, and has correctly reported the flows with empirically largest volume. The prototype

processes mirrored traffic from campus Internet border, and implements recirculation us-

ing ingress pipeline resubmit.

We also run PRECISION on a Python-based simulator, as simulation allows us to choose

parameters freely and independently manipulate each hardware restriction. We start by

studying the effect of each hardware-friendly adaptation on PRECISION’s accuracy.

Next, we compare PRECISION to related work, including HashPipe111, as well as Space-

Saving86 and RAP11 that are not directly implementable on programmable switches. We

obtain the code of HashPipe from its authors, and run it on a Java-based simulator.

54

For evaluating frequency estimation, we measure the OnArrivalMean Square Error

(MSE) of the algorithm, i.e.,

MSE(Alg) ≜ 1
N

N∑
t=1

(f̂s − fs)2. (3.1)

We judge the quality of the top-k based on the standardRecallmetric that measures how

many top flows it identifies. Specifically, denoting the kth largest flow’s frequency by Fk,

when the algorithm outputs a flow setC, quality using:

Recall(C) ≜ |e ∈ C : fe ≥ Fk|/k. (3.2)

Our evaluation utilizes the following datasets:

• CAIDA: The CAIDAAnonymized Internet Trace 201625 (in short, CAIDA). Data

is collected from the Equinix-Chicago backbone link with a mix of UDP, TCP, and

ICMP packets.

• UWISC-DC: A data center measurement trace recorded at the University of Wis-

consin19.

• UCLA: The University of California, Los Angeles Computer Science department

packet trace70.

We truncate each trace to its first 2 million packets, and use packets’ Source-Destination

IP address pair as their flow ID. In general, the CAIDA trace is heavy tailed, while the

UWISC-DC trace and the UCLA traces are skewed.

55

27 28 29 210 211

Number of Counters
104

105

106
M

ea
n

Sq
ua

re
 E

rr
or

 (M
SE

)

(a) Frequency Estimation

27 28 29 210 211

Number of Counters
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

(b) Top‐128

Figure 3.3: Effect of limited associativity on the frequency estimation error and top‐k recall, on CAIDA trace. Using
d = 2‐way is a right balance between achieving good accuracy and saving pipeline stages usage.

We also tested our algorithm using synthetic trace with Zipf distribution and observed

similar results.

All experiments were performed using a software emulated version of PRECISION,

and we repeated each experiment 10 times with different random hash functions. Unless

specified otherwise, the default associativity for PRECISION is 2-way.

3.5.1 Limited associativity

We start with the frequency estimation problem and measure OnArrival Mean Square Er-

ror (MSE). In this measurement, we evaluate PRECISIONwith a varying number of ways

(d) and use the same amount of total memory for all trials. Our results in Figure 3.3a show

that for this problem 1-way associativity (d = 1, abbreviated as 1W) is a bit too low, but

2-way is already reasonable and further increasing d has diminishing returns. Figure 3.3b

evaluates how d affects the Recall in top-k problem, using 512 counters to find top-128

56

27 28 29 210 211

Number of Counters
103

104

105

106
M

ea
n

Sq
ua

re
 E

rr
or

 (M
SE

)

(a) Frequency Estimation

27 28 29 210 211

Number of Counters
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

(b) Top‐128

Figure 3.4: Effect of the delayed update on the frequency estimation error and top‐k Recall, on CAIDA trace. Even a
delay of 100 packets has minimal impact on the accuracy.

flows. In this metric, we see that associativity is more important than in frequency estima-

tion. d = 2 requires up to 2×more counters than d = 16 to achieve the same recall.

Changing to smaller or larger k yields similar observation.

We conclude that limited associativity incurs minimal accuracy loss in frequency estima-

tion and is more noticeable in top-k. Our suggestion is to use d = 2 as it achieves the right

balance between accuracy and the number of pipeline stages.

3.5.2 Entry update delay

We now evaluate the impact of update delay between the decision to recirculate and the ac-

tual flow entry update. Instead of using empirical evidence on one particular programmable

switch, we simulate various possible delay values in terms of pipeline length. Figure 3.4a

shows results for the MSE (Mean Square Error) in the frequency estimation problem and

Figure 3.4b shows the Recall in top-k problem when trying to find the top-128 flows. As

57

27 28 29 210 211

Number of Counters
103

104

105

106
M

ea
n

Sq
ua

re
 E

rr
or

 (M
SE

)

(a) Frequency Estimation

27 28 29 210 211

Number of Counters
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

(b) Top‐128

0 2 4 6 8 10
Number of packets [x105]

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

(c) Convergence of Top‐128 Recall
over time

Figure 3.5: Effect of initial value on the overall frequency estimation error and top‐k recall, on CAIDA trace. An initial
value of 100 leads to fast convergence and does not hurt accuracy, while upper‐bounding recirculation to 1%.

can be observed, the lines are almost indistinguishable. That is, update delay has a minor

impact on accuracy for both metrics, even for a delay of 100 packets. We assume that prac-

tical switching pipelines would have shorter recirculation delays, as today’s programmable

switches have much less than 100 stages. A possible reason for this insensitivity to update

delays is that replacing flow entries is already a rare and random event. Thus, the actual re-

placement time barely affects the accuracy even if it slightly deviates from the decision time.

3.5.3 Initial value

We now evaluate the impact of having an initial value larger than zero set to all counters.

Intuitively, the initial value limits the number of recirculated packets, but also requires

some time to converge. This is because having a non-zero initial value means that we need

to see more unmatched packets before we claim an entry— even if that entry is empty. Fig-

ure 3.5a show results for the frequency estimation metric. As can be observed, the initial

value does affect the accuracy, and the effect is small until initial value 100, but initial value

1,000 causes a large impact. A similar picture can be observed in Figure 3.5b that evaluates

58

Recall in the top-128 problem using 512 counters. As depicted, initial value also has a little

impact up to 100, but an initial value of 1,000 results in a poor Recall.

Figure 3.5c completes the picture by showing the change of the Recall over time when

trying to find top-128. As shown, the convergence time is inversely correlated with the ini-

tial value. In most cases, 1 million packets are enough for converging with an initial value of

100. We observed similar behavior for different packet traces. It appears that an initial value

of 1,000 requires more packets to converge.

We conclude that a small initial value has a limited impact on the performance when the

measurement is long enough. To facilitate quick convergence, we suggest an initial value of

100 (and use it in the following experiments), as it seems reasonable to upper bound recir-

culation to at most 1% of the packets, and the convergence time is shorter than 1 million

packets, which translates to less than 10 milliseconds on fully-loaded 100 Gbps links.

3.5.4 Approximating the desired recirculation probability

We now evaluate the impact of only using random bits as random source. This limits us to

approximate the ideal recirculation probability 1
carry_min+1 with a probability of the form

2−x or 2−y × 1
⌊T⌋ . Figure 3.6 shows results for frequency estimation problem (a) and (b),

and for the top-k problem (c) and (d). We evaluated four variants: “NoAdaptation” is

the algorithm without any hardware-friendly adaptation beyond limited associativity; “2-

Approximate” is the variant added with an approximate recirculation probability of 2−x

form; “PRECISION (2-Approximate)” is the standard PRECISION algorithm with all

other hardware-friendly adaptations also added; and “9/8-Approximate PRECISION” is

59

25 26 27 28 29 210
Number of Counters

103

104

105

106

107

108
M

ea
n

Sq
ua

re
 E

rro
r (

M
SE

)

(a) CAIDA

25 26 27 28 29 210
Number of Counters

103

104

105

106

107

108

M
ea

n
Sq

ua
re

 E
rro

r (
M

SE
)

(b) UWISC‐DC

25 26 27 28 29 210
Number of Counters

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

(c) CAIDA

25 26 27 28 29 210
Number of Counters

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

(d) UWISC‐DC

Figure 3.6: The effect of approximating the recirculation probabilities on the accuracy for frequency estimation and
top‐32.

the PRECISION algorithm using the 2−y × 1
⌊T⌋ form of approximate recirculation proba-

bility.

For frequency estimation, the 2-approximation in recirculation probability increases the

error noticeably (in both workloads) possibly due to counters are always bumped to the

next power of 2 when replacing a flow entry, causing some overestimation. Meanwhile,

using the 9/8-approximation is almost as accurate as having no restriction on the recircula-

tion probability.

For the top-k problem, we continue with our ongoing evaluation of howmany coun-

ters are needed to identify the top-32 flows. Notice that recirculation probabilities are less

impactful in this metric and in both workloads we need≈ 2× as many counters as NoAd-

aptation to achieve the same Recall.

It is surprising at first to notice that approximating the recirculation probability has a

minimal performance impact in the UWISC-DC trace for the top-kmetric. The reason is

the highly-concentrated nature of this trace. In such workload where heavy hitters domi-

nate, the sizes of tail flows are too small compared with the large counters maintained for

heavy hitters, thus the tail flows have little chance to evict heavy hitters regardless of how we

approximate probability.

60

25 26 27 28 29 210 211

Number of Counters

103

104

105

106

107

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

(M
S
E
)

(a) CAIDA

25 26 27 28 29 210 211

Number of Counters

101

102
103
104
105

106
107

108
109

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

(M
S
E
)

(b) UCLA

25 26 27 28 29 210 211

Number of Counters

10-1
100
101
102
103
104
105
106
107
108

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

(M
S
E
)

(c) UWISC‐DC
2W-PRECISION

SS

2W-RAP

2W-HashPipe

4W-HashPipe

6W-HashPipe

25 26 27 28 29 210 211

Number of Counters

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

(d) CAIDA

25 26 27 28 29 210 211

Number of Counters

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

(e) UCLA

25 26 27 28 29 210 211

Number of Counters

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

(f) UWISC‐DC

Figure 3.7: Comparative evaluation of the frequency estimation and top‐32 problems.

3.5.5 Comparisonwith other algorithms

Next, we evaluate PRECISIONwith d = 2 and compare it with Space-Saving86, and

HashPipe111 with d = 2, 4, 6 associativity. Similarly, we also compare with a 2-way set

associative RAP11. Note that RAP was originally designed with a less restrictive program-

ming model, and PRECISION adapts it to PISA switches.

Figure 3.7 shows results for the frequency estimation and top-k problems on the CAIDA

(a), UCLA (b), and UWISC-DC (c) traces. Figures 3.7(a)-(c) shows that, for the frequency

estimation problem, 2-way RAP and Space-Saving are the most accurate algorithm. They

are followed by (2W-)PRECISION, which is orders of magnitude more accurate than 2W-

HashPipe. PRECISION also has better performance than 4W- and 6W-HashPipe. We

61

note that PRECISION also improves using higher associativity, as shown in Figure 3.3.

Thus, we conclude the frequency estimation evaluation by saying that PRECISION is a

dramatic improvement over HashPipe and is not much worse than the state-of-the-art algo-

rithms despite its restricted programming model.

Figures 3.7(d)-(f) show the Recall performance for the top-k problem. In our top-32

setup, we see similar trends in all the traces, in which the best Recall is achieved by the 2-

way RAP algorithm followed by PRECISION and Space-Saving. The algorithm with the

lowest Recall is HashPipe, especially for d=2-way. We see that PRECISION is on par with

Space-Saving and not far behind 2-way RAP. PRECISION yields similar performance in

all traces and requires at most 2×more space than RAP or Space-Saving. Compared to

2W-HashPipe it requires up to 8× less space for the same Recall. PRECISION also im-

proves over 4W- and 6W-HashPipe by up to an 4× factor.

3.5.6 Hierarchical HeavyHitters

Next we show results for our Independent Stacking, and Randomized Prefix Selection al-

gorithms. Recall that Independent Stacking implements the MST algorithm88 where each

Space Saving instance is replaced by PRECISION. Thus, as PRECISION’s accuracy is

similar to that of Space Saving we use it as a baseline. That is, the accuracy of Random-

ized Prefix Selection can only be as good as the baseline. In Figure 3.8 we show results for

these options, where each PRECISION instance is configured with the default parameters

(4-way, initial value of 100, delay of 10 packets, 9/8-approximation of the sampling prob-

ability). The figure shows the obtained accuracy for different prefix lengths when varying

the number of counters. As can be observed both algorithms obtain similar accuracy and

62

25 26 27 28 29 210 211

Number of Counters

104

105

106

107

108

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

(M
S
E
)

(a) net/8

25 26 27 28 29 210 211

Number of Counters

103

104

105

106

107

108

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

(M
S
E
)

(b) net/16

25 26 27 28 29 210 211

Number of Counters

103

104

105

106

107

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

(M
S
E
)

(c) net/24

25 26 27 28 29 210 211

Number of Counters

103

104

105

106

107

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

(M
S
E
)

(d) net/32

Figure 3.8: The error of the ”Independent Stacking” and ”Randomized Prefix Selection” implementations of HHH‐
PRECISION for a given number of counters. We also compare with the state of the art software solution, RHHH 13.

25 26 27 28 29 210

Number of Counters

103

104

105

106

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

(M
S
E
)

(a) Frequency Estimation

27 28 29 210

Number of Counters

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

(b) Top‐128

0 2 4 6 8 10
Number of packets [x105]

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

(c) Convergence of Top‐128 Recall
over time

Figure 3.9: Comparison between the Deterministic PRECISION (DPRECISION) variant and the randomized one.

indeed the light-weight Randomized Prefix Selection is slightly worse. However, the differ-

ences are small and the two algorithms are comparable for each prefix size.

To illustrate the attrativeness of our solution, we add a comparison to the state of the

art software HHH algorithm, Randomized HHH (RHHH)13. As shown, our solutions

are not far behind in terms of accuracy and it is usually enough to use PRECISIONwith

double the space for getting comparable, or better, results. The exception is for the 8-bit

networks, where RHHH gets significantly better accuracy. However, one can avoid using

approximation algorithms altogether for these and count each of them separately using

only 28 = 256 counters.

63

3.5.7 Deterministic PRECISION

We evaluate the deterministic variant of PRECISION and compare it to our randomized

algorithm and RAP. As depicted in Figure 3.9, the deterministic version outperforms the

randomized one on the CAIDA trace and, after convergence, has similar accuracy to RAP.

We therefore conclude that in workloads which are not adversarial there are benefits for the

deterministic approach.

3.6 Conclusions

We designed a novel heavy hitter detection algorithm, PRECISION, that confronts to the

memory access constraints imposed by PISA switches and can run on the Intel Tofino

programmable switch. PRECISION recirculates a small fraction of the packets for a sec-

ond pipeline traversal, inducing a small (e.g., 1%) throughput overhead in order to follow

the constraints. We studied the impact of each PISA architectural restriction on our algo-

rithms’ accuracy. We concluded that the most severe impact comes from the lack of access

to an unrestricted random integer generator, and specifically build a better approximation

technique to mitigate the impact. We also present a deterministic variant of PRECISION,

and further generalized PRECISION to solve the Hierarchical Heavy Hitters problem.

We performed extensive evaluation using real and synthetic packet traces, and demon-

strated PRECISION is up to 100×more accurate when estimating per-flow frequency, or

saves up to 8×memory space when identifying the top-128 flows, compared with Hash-

Pipe111, a recently suggested alternative for programmable switches.

64

PRECISION enables heavy-hitter measurements at Tbps-scale aggregated throughput

on today’s high-performance programmable switches, at competitive accuracy compared

to the state-of-the-art algorithms. Furthermore, we hope that our detailed case study of

adapting a measurement algorithm to the programmable switch pipeline would provide

useful insights for implementing various other algorithms on such switches.

65

4
BeauCoup: Running multiple

measurement queries simultaneously

In this chapter, we propose BeauCoup, a system based on the coupon collector problem, that

supports multiple distinct counting queries simultaneously while making only a small con-

stant number of memory accesses per packet. It helps network operators who need to con-

66

stantly monitor network traffic for different types of anomalies and attacks, while still con-

forming to the constrained memory architecture of high-speed programmable switches.

We implement BeauCoup on PISA commodity programmable switches, satisfying the

strict memory size and access constraints while using a moderate portion of other data-

plane hardware resources. Evaluations show BeauCoup achieves the same accuracy as other

sketch-based or sampling-based solutions using 4x fewer memory access.

The work in this chapter was completed in collaboration with Shir Landau-Feibish,

Mark Braverman, and Jennifer Rexford. It was first presented in ACM SIGCOMM 202036.

4.1 Introduction

Network operators constantly monitor network traffic to detect attacks, performance

problems, and faulty equipment. To ensure that networks are functioning properly, net-

work operators often need to monitor formultiple kinds of problems simultaneously, in-

cluding worms, port scans, DDoS attacks, SYN floods, and heavy-hitter flows.

A variety of network-monitoring tasks can be modelled as counting the number of dis-

tinct attributes seen across a set of packets. As the simplest example, to detect a host that

is spreading a worm we may look for a super-spreader 119, or a source IP that sends packets

to many (e.g., 1000+) distinct destinations. However, there may be multiple hosts that are

spreading worms, thus we need to identify all the source IPs sending traffic to many desti-

nations. Furthermore, different tasks may define their keys differently: to identify victims

of a DDoS attack, for example, we need to instead look for destination IPs that are receiving

67

frommany distinct source IPs. The diversity of monitoring tasks with different key defini-

tions makes executing them simultaneously even more challenging.

Traditionally, researchers developing measurement algorithms for the switch data plane

has mostly focused on the limited memory space in the data plane, designing compact data

structures that can compute approximate answers for a single traffic-monitoring query61,74,79,111,119,123,

or multiple queries over the same key78,123. Extending these solutions to support multiple

queries over different keys would require instantiating multiple separate data structures.

Having separate data structures would consume precious memory space in the data plane,

but this is not the only problem. As we discussed in Subsection 2.2.3, to maintain line rate,

programmable switches only allow a small number ofmemory accesses per packet, making it

infeasible to update multiple data structures for every packet.

Most existing techniques for handlingmultiple queries rely heavily on software running

outside of the data plane, introducing communication overhead and latency. The sim-

plest approach is to randomly sample packets in the data plane10,42, and have the software

compute multiple statistics on the samples. While useful for detecting high-volume flows,

random sampling significantly reduces the accuracy for queries that count the number of

distinct attributes. To improve accuracy, several recent works collect information about all

potentially relevant flows in the data plane, and have the software compute the statistics of

interest59,74,92. However, these solutions introduce a tension between the volume of data

exported from the data plane and the number and diversity of queries that can be answered

with reasonable accuracy in real time.

Instead, we need new techniques that can handle numerous heterogeneous queries di-

rectly in the data plane, despite the limited memory space and memory access. We present

68

BeauCoup, which supports a general query abstraction that counts the number of distinct

items (i.e., with different attributes) seen across a set of related packets (with the same key),

and flags the keys with distinct counts above a threshold. For example, when searching for

worms, a packet’s source IP is the key, its destination IP is the attribute, and the threshold

decides howmany distinct destination IPs are needed to flag a source IP as a worm sender.

Our goal is to generate an alarm for those source IPs, approximately, within a reasonable

error such as 20%-30% of the threshold. BeauCoup runs multiple queries simultaneously,

under a strict per-packet memory access constraint. BeauCoup also allows users to define

arbitrary packet-header field tuples as query keys and attributes, providing great expressive-

ness. The query set can be updated on the fly without the need to re-compile the data-plane

program; re-compilation is required only when new header field tuples are defined.

The design of BeauCoup takes inspiration from the coupon-collector problem53. Using

super-spreader detection as an example, suppose we want to know if a sender has sent pack-

ets to at least 130 different destination IP addresses. Instead of recording all destination IPs

we see, we define 32 coupons, and map each destination IP to one of the 32 coupons uni-

formly at random. Now, for each packet from that sender, we extract the destination IP

and collect its associated coupon. The coupon may be a duplicate (was already collected ear-

lier), either because the same destination IP appears twice, or because two destination IPs

map to the same coupon. We then wait until we have collected each of the 32 coupons at

least once to flag the sender as a super-spreader.

The coupon-collector problem asks howmany random draws (with replacement) are

needed to collect all of the coupons, i.e., have every coupon drawn at least once. With 32

coupons, we need 129.9 draws in expectation. We therefore can use a 32-coupon collector

69

to identify if a particular sender is sending to 130 (or more) distinct destination IPs. An-

swering a query with a different threshold (say, 1000 destination IPs) requires tuning the

coupon collector’s configuration, by changing the number of coupons (m), the probability

(p) of drawing each coupon for a new destination IP, or the number of coupons that must

be collected (n). Essentially, we are using am-bit vector to estimate whether the number of

distinct items seen has exceeded a threshold. A naivem-bit coupon collector is equivalent

to either a HyperLogLog52 register withm 1-bit hash functions, or am-bit Bloom Filter7

with only 1 hash function. We discuss the equivalence in more detail in Section 4.7.

The challenge in designing BeauCoup lies in applying the coupon-collection problem

tomultiple queries, each with different keys and attributes entirely in the data plane, un-

der strict memory constraints. To limit memory size, BeauCoup must keep coupon state

small, devote state to a key only when needed, and share memory across queries and keys.

Furthermore, to limit the memory accesses when processing a packet, BeauCoup collects at

most one coupon per packet. BeauCoup must ensure each query only draws a coupon with

a small enough probability, and coordinate among different queries to avoid collecting

many coupons concurrently. Thus, BeauCoup must tune the coupon-collector parame-

ters (i.e.,m, p, and n) carefully to simultaneously achieve accurate results for each query and

ensure that the combination of queries does not violate the memory access constraint. Fi-

nally, we must implement each part of the BeauCoup algorithm using only the operations

available in high-speed programmable switches.

70

Outline

The chapter is structured as follows. In Section 4.2, we introduce a novel algorithm for

executing multiple count-distinct queries under memory size and access constraints. In Sec-

tion 4.3, we discuss how a compiler optimizes the accuracy of a set of queries, subject to the

memory constraints. Section 4.4 presents a prototype system design that translates high-

level queries into data-plane configuration for a PISA switch. In Section 4.5 we evaluate

our prototype’s accuracy. We discuss some future work in Section 4.6 and compare with

related work in Section 4.7. Finally, we conclude in Section 4.8.

4.2 The BeauCoup Algorithm

We now show the BeauCoup algorithm for network-monitoring queries. We first present

a query model based on distinct counting, that supports a variety of network-monitoring

tasks. Next, we discuss how to use coupon collectors to implement these queries. Finally,

we discuss how to use coupon collectors to run multiple queries simultaneously, under a

strict per-packet memory access constraint.

4.2.1 Query: Count-Distinct with Threshold

A wide variety of network-monitoring tasks can be characterized as a query qwhich (1)

maps each packet i to a key keyq(i), (2) counts the number of distinct attributes attrq(i)

that appear for each key, and (3) applies a threshold Tq to the count to decide whether to

report a key. That is, BeauCoup should output an alert (q, k) for query q and key k, when

71

Name Key Attribute Threshold
Super-
spreader

srcIP dstIP 1000

DDoS
victim

dstIP srcIP 1000

Port scan {srcIP, dstIP} dstPort 100
Heavy hitter
IP pair {srcIP, dstIP} timestamp 10000

Heavy hitter
IP&Port pair

{srcIP, srcPort,
dstIP, dstPort} timestamp 10000

SYN-flood {dstIP, dstPort}
{srcIP, srcPort}
if TCP SYN,
otherwise ∅

5000

Table 4.1: Examples of count‐distinct query definitions.

the packets in a time windowW satisfy:

∣∣{attrq(i) | keyq(i) = k}
∣∣ > Tq. (4.1)

For the super-spreader example in the Introduction, the key is the packet’s source IP, the at-

tribute is the destination IP, and the threshold is 1000. For DDoS detection, we can instead

use the destination IP as a packet’s key, use the source IP as the attribute, and perhaps use a

higher threshold like 10000.

In Table 4.1, we present more examples of common network-monitoring tasks under

our query model. In particular, the special attribute i.timestamp is unique across all pack-

ets, so the user may write a query to count packets by defining attrq(i) = {i.timestamp},

i.e., counting the number of unique timestamps seen. Filtering operations can also be ex-

pressed in this query formulation, as shown in the SYN-flood example above—by map-

ping irrelevant packets to a fixed value, the distinct counting query effectively ignores them.

72

Notation Definition
keyq(·) Key definition for query q
attrq(·) Attribute definition for query q
Tq Threshold for query q
W Time window for answering queries
Γ Maximummemory access per packet
c Number of accesses for collecting one

coupon
S Memory size
mq Total number of coupons for query q
pq Probability of drawing a particular

coupon
nq Number of different coupons to

collect
γq Average number of coupons activated

per packet

Table 4.2: Summary of notations used in this Chapter.

Many other network-monitoring tasks can be expressed in this formulation by using a com-

bination of packet IP addresses, ports, timestamps, etc. as the query key and attribute.

Our goal is to build a system that simultaneously executes a set of queriesQ = {q1, q2, . . . }

and outputs alerts (qj, kj), subject to the hardware constraints of a maximummemory size

S and at most Γmemory accesses per packet. In the rest of this section, we discuss how Beau-

Coup achieves Γ = O(1), i.e., answering multiple queries in the data plane using a small

constant number of memory accesses per packet, independent of the number of queries.

4.2.2 Updating the Coupon-Collector Table

We maintain a table with bit vectors representing the coupon collectors, as shown in Fig-

ure 4.1. Upon collecting the first coupon for the query-key pair (q, k), BeauCoup creates a

73

Q , Key Coupons
1, A
1, B
1, C
2, A

1 2 3 4
1 3 4

1 2 3 4Packet #42
SrcIP: C
DstIP: Y

Alert:
Query 1
Key C

Select Query
and Coupon

1 2 3 4

Query: 1
Key: C

Coupon: 2

…
Figure 4.1: We collect coupons by updating bit vectors in an in‐memory coupons table.

new table entry; when the bit vector indicates enough coupons have been collected, Beau-

Coup generates an alert for (q, k).

The example in Figure 4.1 uses 4-coupon collectors for all queries. When a packet ar-

rives at the switch, BeauCoup first selects a query and a coupon. In this case, coupon #2 for

query q1 is selected, and we can extract the query key C from the packet, using the query’s

key definition. Now BeauCoup finds the coupon collector in the in-memory coupon table

under row (1,C), and collects the second coupon by marking the bit vector’s second bit to

1. If there is no such row in the table, we allocate a new row and collect the single coupon.

Since now all four coupons are collected at least once for row (1,C), BeauCoup reports that

key C satisfied query q1. Other packets may collect coupons for other queries, or do not

collect any coupon at all.

The coupon table shown in Figure 4.1 is designed to fit the hardware constraints of

PISA programmable switches:

• Compact rows: Each row of the table stores one w-bit word as a bit vector, repre-

senting at most w coupons, where each bit represents whether a particular coupon

has been collected at least once. (We also store two more words of auxiliary data per

74

row, to record a timestamp and a checksum of the query key, which are used for de-

tecting timeouts and hash collisions.)

• Space efficiency: We only maintain the bit vector for a query key when there’s at

least one coupon collected for that key. Therefore, although each query has many

keys (e.g., 232), only a small fraction of active keys occupies memory. Different keys

(such as keys A, B, and C for query q1) and different queries (such as queries q1 and

q2) effectively multiplex a shared memory space, and a new entry is created when a

key collects its first coupon.

• Limited access: BeauCoup only needs to access the in-memory table when it needs

to collect a coupon. When a packet does not produce any coupon for a query, we do

not need to access memory. This effectively allows us to multiplex memory accesses

across queries, by having different packets updating the table for different queries.

A coupon collector definesm coupons, a probability p for drawing each coupon in a

random draw, and stops when there are at least n different coupons collected, i.e., each of

these n coupons had been drawn at least once. Since BeauCoup uses a random (yet fixed)

mapping from attributes to coupons, observing a new, unseen attribute is equivalent to

randomly drawing a coupon. Seeing the same attribute more than once has no effect on the

coupon collector, as it merely draws the same coupon again. With an appropriate combina-

tion of parameters (m, p, n), the coupon collector can be used to indicate if there are more

than Tq distinct attributes seen, while automatically ignoring duplicate attributes.

75

4.2.3 Selecting a Query and a Coupon

We now discuss how we select one coupon for a given query, and how we coordinate be-

tween multiple queries.

Selecting one ofm coupons. For every query q, with key definition keyq and attribute

definition attrq, BeauCoup applies a random hash function h on packet i’s attribute attrq(i),

where

h : {attrq(i),∀i} → [0, 1), (4.2)

and checks if the output of the hash function falls into a range. For example, suppose query

q uses four coupons (mq = 4) and selects each coupon with probability pq = 1/8. Then,

BeauCoup would map all attributes satisfying

h(attrq(i)) ∈ [0, 1/8) (4.3)

to coupon #1; similarly, coupons #2, #3, and #4 are associated with output ranges [1/8, 2/8),

[2/8, 3/8), and [3/8, 4/8), respectively. If the output of the hash function for packet i falls

in [0, 4/8), BeauCoup sets the bit for the associated coupon to 1 for that query-key pair,

creating an entry in the table if needed.

If the output of the hash function falls in [4/8, 1), BeauCoup does not need to access

memory for this query on behalf of this packet, and it can use the memory access for other

queries. We define γq as the average number of activated coupons allowed per packet for

query q; with the random hash function h, the example query only activates

γq = mq · pq = 1/2 (4.4)

76

coupons per packet in expectation. A small γq < 1 has two main advantages. First, the

coupon table does not need to maintain state for every active key. Instead, BeauCoup only

allocates memory for a query-key pair upon collecting the first coupon for that key. Second,

a small γq allows multiple queries to run concurrently under a maximummemory access

constraint Γ = O(1). In particular, when a particular query q is not collecting a coupon,

BeauCoup can devote the unused memory access “budget” to collect a coupon for another

query, as we discuss next.

Each query q has its own limit γq on howmany coupons to collect per packet. For sim-

plicity, we assume a naive fair allocation that gives each query the same share of memory

accesses. Given that collecting a coupon costs cmemory accesses and a total memory access

budget of Γ per packet, we limit each query to collect at most

γq = Γ/|c · Q| (4.5)

coupons per packet on average. Therefore, each query’s coupon-collector configuration

should satisfy

mq · pq ≤ γq. (4.6)

However, a naive choice of hash functions could have a single packet need to collect a

coupon for many different queries, even if the average rate of memory accesses is constant.

To obey the strict per-packet memory access constraint Γ, BeauCoup coordinates the hash

functions across the queries, first among all queries using the same attribute, and second

across sets of queries using different attributes.

77

Grouping queries with the same attribute. Queries may have the same attribute def-

inition (say, destination IP) but with different key definitions (say, source IP for query q1,

and source IP and source port tuple for query q2). These queries can use the same hash

function, applied to their common attribute, to draw their coupons. To guarantee that at

most one query collects a coupon, BeauCoup divides the hash output across the queries.

For example, suppose query q1 usesm1 = 2 coupons each with probability p1 = 1/4, while

query q2 usesm2 = 2 coupons each with probability p2 = 1/8. We partition the range

[0, 1) of the hash output as follows: [0, 1/4) for coupon #1 of q1, [1/4, 2/4) for coupon #2

of q1, [2/4, 2/4+ 1/8) for coupon #1 of q2, and [2/4+ 1/8, 2/4+ 2/8) for coupon #2 of

q2. Other output values are not associated with any coupon. We illustrate this example in

Figure 4.2. We can stack additional queries using the same attribute accordingly. Note that

we never run out of the [0, 1) range, as long as the total memory accesses across all queries

(
∑

q mq · pq) is bounded by Γ ≤ c, i.e., each packet collects at most one coupon.

h(dstIP)
1/4 1/2 5/8 3/4 10

Coupon #1 Coupon #2 C #1 C #2

Query 1, p=1/4 Query 2, p=1/8

No Coupon

Figure 4.2: Different queries use disjoint ranges to map the random hash function’s output to coupons.

Coordinating across queries with different attributes. To support queries with dif-

ferent attribute definitions, BeauCoupconstructs one random hash function for each

unique attribute (e.g., one hash function for destination IP, one for timestamp, and so

on). When a packet arrives, BeauCoup computes all of these random hash functions to de-

termine if any hash function’s output value is associated with a coupon for some query. If

only one hash function draws a coupon, BeauCoup collects the coupon for the associated

78

query and key. However, if multiple coupons are drawn, we perform tie-breaking. Cur-

rently, BeauCoup only tie-breaks if exactly two hash functions draw coupons, by tossing

a coin and allowing each coupon to succeed with 50% probability. In Subsection 4.4.1 we

will discuss the implementation detail of the coin toss, and prove that the probability of

simultaneously drawing too many coupons for one packet is very small.

With the coordination within and across hash functions, BeauCoup can now guarantee

collecting at most one coupon per packet, without meaningfully impacting the accuracy of

individual query’s coupon collectors. Each individual query still collects coupons with the

right probability, as if it is the only query running in the system. Given the strict memory

access constraint, such coordination is what makes it possible to run many queries simulta-

neously while maintaining reasonable accuracy for all of them.

4.3 The BeauCoup Query Compiler

For each query q, BeauCoup computes three coupon-collector parameters: collect nq out of

mq coupons, each with probability pq. Taking the threshold Tq and the average per-packet

coupon limit γq for all queries q ∈ Q as input, the BeauCoup compiler produces the con-

figuration of {mq, pq, nq} that maximizes accuracy. A configuration satisfies the average

per-packet coupon limit as long asmq · pq ≤ γq,which means a query produces at most γq

coupons per packet in expectation. However, characterizing a coupon collector’s accuracy

for tracking the threshold Tq is less straightforward. We want the number of random draws

needed until the coupon collector collects enough coupons to both be unbiased (close to Tq

in expectation) and stable (has small variance). In this section, we first define and analyze an

79

accuracy metric for coupon-collector configurations, then present our method for finding

the best configuration for each query.

4.3.1 Coupon Collector’s Accuracy

Given a specific query threshold Tq, a coupon-collector configuration is accurate if the

number of random draws it needs has an expectation close to Tq and a small variance. Let

us first analyze the expectation. We note that the traditional coupon-collector problem

requires n = m = 1/p, so we present the following analysis for our generalized coupon-

collector problem (1 ≤ n ≤ m, 0 ≤ p ≤ 1/m):

Lemma 4.3.1. A generalized coupon collector with m coupons in total, each coupon having

probability p being drawn upon each random draw, and stops after collecting n different

coupons, needs in expectation

CC(m, p, n) ≜
n−1∑
j=0

1
p(m− j)

(4.7)

coupon draws.

Proof. With j coupons already collected, the probability that the next draw produces a new,

unseen coupon (out of them − j remaining) is p(m − j). Thus, the number of draws

needed until receiving a new coupon is a geometric random variableGeo(p(m − j))with

expectation 1
p(m−j) . We need to collect n new coupons, hence the total number of draws is

n−1∑
j=0

Geo(p(m− j)) =
n−1∑
j=0

1
p(m− j)

(4.8)

80

in expectation.

However, the configuration with the closest expectation CC(m, p, n) from Tq may have

a large variance in the number of draws needed. Therefore, we defineRelative Error, an

accuracy metric for a distinct counting algorithm running query qwith threshold Tq, that

simultaneously captures the bias and variance of a coupon-collector configuration.

• True count: Say the algorithm first outputs an alert (q, k) after observing the input

stream i1, i2, . . . , it; at this time, the ground truth number of distinct attributes seen

by the algorithm is T =
∣∣{attrq(i) | keyq(i) = k, i ∈ i1, i2, . . . , it}

∣∣.
• Absolute error: However, the algorithm should generate an alert when there are

exactly Tq distinct attributes. We define the absolute error as |T − Tq|.

• Relative error: We normalize and use |T −Tq|
Tq

as the relative error of output (q, k).

This scaled error includes both the bias E[T]− Tq and the variance of T .

By running the same algorithmmany times with different random hash functions, we can

have many observations of Relative Error for the same query, and we can subsequently de-

fineMean Relative Error as the mean of all observations.

Next, we discuss how BeauCoup finds a coupon-collector configuration with small

Mean Relative Error for every query.

4.3.2 Finding the Best Configuration

The BeauCoup compiler needs to identify one coupon-collector configuration for every

query given the query’s threshold Tq, and we focus on how we satisfy the strict per-packet

81

memory access constraint. When implementing BeauCoup on PISA switches, our choice

formq, pq, and nq is subject to hardware constraints. Namely, since a memory word is w =

32-bit we requiremq ≤ 32, and to facilitate efficient mapping from random hash function

to coupons we require pq to be an integer power of two. Also, we must satisfy the average

per-packet coupon limit γq: we require in expectation that we collect fewer than γq coupons

per packet, i.e.,mq · pq ≤ γq.

Thus, we use the following procedure to find the configuration given threshold Tq and

per-packet coupon limit γq:

1. For all feasible coupon probabilities pq = 2−j, we calculate the maximum number

of coupons allowed, based on both the per-packet coupon limit and the word length:

mq = min(w, γq/pq). We stop ifmq < 1.

2. For each pq, we identify all feasible configurations 1 ≤ nq ≤ mq ≤ mq. We then cal-

culate their expected number of draws CC(mq, pq, nq) for all feasible configurations,

and accept a configuration as reasonable when it is within a 5% tolerance from Tq,

i.e., 0.95Tq < CC(mq, pq, nq) < 1.05Tq. The 5% tolerance is selected because the

minimum relative error for the optimal collectors is about 10%, and is relaxed when

no reasonable configuration was found.

3. Given all of the reasonable configurations, we choose the optimal configuration

based on their minimum relative error, according to a lookup table prepared via sim-

ulations (shown later in the Evaluation section in Figure 4.5).

82

4.4 BeauCoup on PISAHardware

In this section, we describe how we implement BeauCoup on PISA programmable switches.

PISA switches always process packets at line rate (at least 100Gbps per port), which re-

quires the algorithms running on it to comply with several hardware-imposed resource

constraints.

PISA switches have two kinds of memory. Ternary Content-Addressable Memory (TCAM)

holds match-action rules installed by the control software, while Static Random Access

Memory (SRAM) holds general-purpose register arrays that can be updated within the data

plane. TCAM can simultaneously match a bit string with many match rules, and is typi-

cally used for forwarding packets by matching on the IP prefix. BeauCoup utilizes a small

fraction of the available TCAM space to efficiently implement both the mapping from at-

tributes to coupons and the tie-breaking process between queries. Meanwhile, BeauCoup

collects coupons by updating SRAM entries. The SRAMmemory space is limited (several

megabytes), and more importantly we can only perform a small, constant number of mem-

ory accesses to SRAM per packet. In this paper, we primarily focus on the limited SRAM

space and the limited number of SRAM accesses allowed.

BeauCoup’s implementation has two components: the data-plane program executes the

logic for collecting coupons, and the control algorithm transforms queries into coupon-

collector configurations, as illustrated in Figure 4.3. Now we first introduce how we imple-

ment the data-plane program to run the coupon collectors on PISA hardware, then discuss

how BeauCoup as a whole executes and updates queries.

83

EgressIngress

TCAM
matching rules

Key fields Attribute tuples Query 1, Query 2, Query 3, …

P4 Code
GeneratorTemplate

Query
Compiler

P4 Code (mq,pq,nq)
Rules

Generator
P4

Compiler
Data plane
program

Packets Alerts
Figure 4.3: BeauCoup runs queries by installing a static data‐plane program on the PISA switch, then generating and
installing TCAM rules on the fly.

4.4.1 Using TCAM for Drawing Coupons

BeauCoup needs to draw coupons based on the output of random hash functions. Since

each hash function maps to a large number of coupons, we utilize the TCAM to efficiently

check if the hash function’s output value maps to any of the ranges defined by the coupons.

Each random hash function’s output is encoded into 16 bits, and each coupon’s corre-

sponding range is translated to a bit prefix match for these random bits. For example, we

translate the coupons of q1 and q2 shown in Figure 4.2 into matching rules in Table #1

in Figure 4.4. Coupon #1 of query q1 matches on range [0, 1/4), which is transformed

to a bit prefix match 00* (the first rule in Table #1). Coupon #2 of query q2 matches on

[2/4+ 1/8, 2/4+ 2/8), which is transformed to prefix 101* (the last rule in Table #1).

After we use TCAM tables to match on every hash function’s output, we use a bit vector

to represent if any one of the many hash functions had matched with a coupon. As there

could be zero or more coupons, we again use the TCAM to efficiently tie-break and se-

lect one coupon to collect when there may be multiple coupons available. The matching

84

rules are trivial when there are zero or exactly one coupon matched. If there are exactly two

coupons available, we flip a random coin (by using a random bit from the random number

generator) to fairly tie-break and select one of the two for collection. We ignore all coupons

if there are more than three. We can show this has very minor effect on BeauCoup’s accu-

racy.

Remark We can bound the probability of having more than 3 coupons collide as follows.

Assume the system usesH ≥ 3 random hash functions, each with activation probabil-

ity x1, x2, . . . , xH. Since the expected number of coupons per packet
∑

q∈Q is bounded

by 1, we have
∑

xi ≤ 1. Collision happens when multiple hash functions activate; the

probability for having more than 3 coupons drawn is maximized when all hash functions

share the same probability, i.e., ∀i, xi = 1
H , due to the inequality of arithmetic and geo-

metric means. In this case, the number of coupons drawn follows a binomial distribution

B(n = H, p = 1
H), and the probability of having more than 3 coupons can be bounded by

Pr[collision] ≤ Pr
[
B(n = H, p =

1
H
) ≥ 3

]
. (4.9)

For example, if we takeH = 11 (from the example query set we used in Section 4.5), we

have Pr[collision] ≤ 7.11%. This error is small compared to the 10%-20% relative error

incurred by the coupon collector.

85

Table
#1

Table
#2

Table
#3

Table
#4

Match h(i.dstIP) Query#,Coupon#
00***** (1,0)
01***** (1,1)
100**** (2,0)
101**** (2,1)

No match
No match
No match
No match

Match h(i.srcIP) Query#,Coupon#
00000** (6,0)
00001** (6,1)
00010** (6,2)

Match
h(i.dstIP,i.dstPort) Query#,Coupon#

Match
h(i.srcIP,i.srcPort) Query#,Coupon#

Matched

No match

Matched

No match

Match (matched,rnd)Which coupon?
0000,* No coupon
1000,* From table #1
0100,* From table #2
0010,* From table #3
0001,* From table #4
1100,0 From table #1
1100,1 From table #2
1010,0 From table #1
1010,1 From table #3
1001,0 From table #1
1001,1 From table #4
0110,0 From table #2
0110,1 From table #3

… …

… …

… …

… …

Figure 4.4: Using TCAM rules to draw coupons.

We can further derive the upper limit for this probability:

lim
H→∞

1− Pr[B(n = H, p =
1
H
) ≤ 2]

= 1− lim
n→∞

∑
k=0,1,2

C(n, k)(1/n)k(1− 1/n)(n−k)

= 1− lim
n→∞

5n− 2
2n− 2

(1− 1
n
)n

= 1− 5
2e
≈ 8.03%

(4.10)

Still, this tiebreaking creates a small bias for individual coupon’s activation probability;

we leave the correction for this bias in the query compiler for future work.

We illustrate the coupon matching and the tie-breaking process in Figure 4.4. There are

four random hash functions and four corresponding match tables (on the left) to draw

coupons. After matching, Table #1 and #2 produced coupons while Table #3 and #4 did

not. We use the bit vector 1100 to represent which tables produced coupons. A tie-breaking

86

table (on the right) uses TCAMmatch rules to match on the bit vector 1100, and there are

two matching rules (highlighted in yellow). The table matches on the random bit to tie-

break, and chooses either the coupon from Table #1 or the one from Table #2 as the final

coupon for collection.

4.4.2 Recording Coupons in SRAM

After BeauCoup has selected a query q and chosen a coupon c for packet i (using TCAM

matching), we need to collect c into the in-memory coupon table. We used the SRAM-

based register arrays on PISA switches to record coupons and other states. Each array holds

Smemory words, indexed 0, 1,. . . , S-1, and each word has 32 bits. Given an index, we can

read the existing value at this index, perform arithmetics, and write a new value; this counts

as one memory access.

BeauCoup first extracts the query key keyq(i) from the packet, then locates an index

using the tuple (q, keyq(i)). We use an indexing random hash functionH to map the tuple

into an array index, denoted idx = H(q, keyq(i)).

BeauCoup defines three register arrays, each with Swords. T S[·] stores timestamps,

and is used to enforce the query time windowW for every coupon collector; we reclaim

memory when a collector is timed out before collecting enough coupons. QK[·] stores 32-

bit checksums checksum(keyq(i)) and is used to detect hash collisions in the indexing hash

functionH, avoiding two keys adding coupons into the same collector bit vector. Finally,

CC[·] stores all the coupon collector bit vectors.

The process for collecting the coupon c for query q and key keyq(i) is as follows, access-

ing at most three words of memory, First, we calculate the array index idx = H(q, keyq(i)),

87

and encode the coupon into a variable onehot(c), a 32-bit binary string “000...010...0”

with all bits 0 except one 1 at the location corresponding to the coupon c. Subsequently, we

check whether we are creating a new coupon collector or adding this coupon to an existing

collector, using query time windowW and current timestamp i.timestamp:

• Create new collector: If T S[idx] < i.timestamp −W, the current collector has

expired. We allocate a new coupon collector by setting T S[idx] ← i.timestamp as

well asQK[idx] ← checksum(keyq(i)). We initialize the collector bit vector with one

coupon: CC[idx]← onehot(c).

• Update existing collector: If T S[idx] ≥ i.timestamp − W andQK[idx] =

checksum(keyq(i)), we accumulate into an existing coupon collector. We update its

bit vector using bitwise-OR: CC[idx] ← (CC[idx] ∨ onehot(c)). Now, if the number

of one bits in CC[idx] reaches nq, we output an alert (q, keyq(i)).

• Handle collision: If T S[idx] ≥ i.timestamp−W yetQK[idx] ̸= checksum(keyq(i)),

we encountered a hash collision; the system ignores this coupon. This indicates there

are too many active coupon collectors, hence the system is running out of memory.

We discuss how to address memory size constraint and hash collisions in Section 4.6.

We note that coupon collectors for different queries uses the same block of memory space,

statistically multiplexing their memory demand. Therefore, we may encounter high mem-

ory load when many different queries simultaneously collect coupons for many keys. We

discuss BeauCoup’s memory size requirement under real-world traffic settings in Sec-

tion 4.5.2.

88

4.4.3 Query Compiler and Code Generation

Figure 4.3 presents the high-level architecture of the BeauCoup system. Given a set of

queriesQ, we first run a query compiler (using the algorithm in Section 4.3.2) to com-

pute a configuration {mq, pq, nq} for each query q, and produce the hash functions for

attributes. The query compiler generates an intermediate representation with the mapping

from each hash function’s output values to all of the coupons. Subsequently, the rules gen-

erator uses these mappings to generate the TCAMmatching rules and the corresponding

action parameters, representing the query setQ.

Meanwhile, BeauCoup generates the P4 code for the switch using a python-based code

generator. The generator uses an algorithm template (approximately 750 lines), written un-

der the Jinja102 templating language, that implements BeauCoup’s data-plane algorithm.

Jinja enables auto-generating repeated P4 elements, such as defining multiple hash func-

tions and variables. Given the queries’ key fields and attribute tuples as input, the code gen-

erator prepares the definition for hash functions, then expands the template into P422 code

(approximately 1500 lines), which is subsequently compiled and installed into the PISA

switch. In Listing 1 and Listing 2 we show two excerpts from the template that highlights

how it helps us efficiently generate the repetitive P4 data plane program. When the TCAM

matching rules are installed in the tables specified by the P4 program, the switch executes

the query setQ. We have open-sourced the complete template program, the code genera-

tor, as well as the query compiler on GitHub30.

Although the packet parser (header field definitions), hash functions, and query key

extraction rules are part of the P4 data-plane program, the TCAMmatching rules can be

updated on the fly. The user may frequently change the query setQ, by first running the

89

struct ig_metadata_t {
{% for h in hash_functions %}
bit<16> h_{{h.id}};
bit<1> h_{{h.id}}_matched;
bit<8> h_{{h.id}}_query_id;
bit<8> h_{{h.id}}_coupon_id;
bit<8> h_{{h.id}}_query_n;
bit<4> h_{{h.id}}_query_keydefn;

{% endfor %}
bit<32> coupon_onehot;
bit<1> random_coin;
//...

}
{% for h in hash_functions %}
action calc_hash_{{h.id}}(){
ig_md.h_{{h.id}}=hash_{{h.id}}.get({ {{h.fields}} });

}
action set_h_{{h.id}}_matched(bit<8> qid, bit<8> cid, bit<8> n, bit<4> kdf){
ig_md.h_{{h.id}}_matched=1;
ig_md.h_{{h.id}}_query_id=qid;
ig_md.h_{{h.id}}_coupon_id=cid;
ig_md.h_{{h.id}}_query_n=n;
ig_md.h_{{h.id}}_query_keydefn=kdf;

}
action set_h_{{h.id}}_no_match(){
ig_md.h_{{h.id}}_matched=0;

}
{% endfor %}

Listing 1: Use Templating to generate similar code for every hash function.

query compiler and the rules generator, then installing the newmatching rules, as long as

all queries are using existing key fields and attribute tuples already defined in the data-plane

program. This also avoids the potential network downtime caused by re-installing a new

data-plane program, which would temporarily interrupt the switch’s normal operation.

The green shaded box on the left half of Figure 4.3 represents the heavy-weight update of

the data-plane program, which is largely static, while the yellow shaded box on the right

represents light-weight update of query matching rules, which can be installed swiftly with-

90

action write_onehot(bit<32> o){
ig_md.coupon_onehot = o;

}
table tb_set_onehot {
key = {
ig_md.h_selected_coupon_id: exact;

}
size = 32;
actions = {
write_onehot;

}
default_action = write_onehot(0);
const entries = {
{% for i in range(32) %}
{{i}} : write_onehot(32w{{2**i}});

{% endfor %}
}

}

Listing 2: Use Templating to generate fixed, repetitive match‐action logic.

out causing downtime. Still, using a new header field in a query’s key or attribute defini-

tion requires re-generating P4 code and re-compiling the data-plane program.

4.5 Evaluation

In this section, we demonstrate that BeauCoup can accurately and efficiently execute mul-

tiple queries. We first show that the query compiler produces good parameters for coupon

collection. Then, we investigate BeauCoup’s performance when answering queries over a

real-world traffic trace, under limited memory access constraint, and show it achieves the

same accuracy using 4x fewer memory accesses than alternatives. Finally, we show Beau-

Coup ’s data-plane program only uses a modest fraction of the available hardware resources

on a commodity switch.

91

0 20 40 60
Coupons to collect (n)

0

10

20

30

40

50

60

To
ta

l c
ou

po
ns

 (m
)

n=0.75m

10%

30%

50%

M
ea

n
Re

la
tiv

e
Er

ro
r

Figure 4.5: When using various coupon collector configurations, we find that collecting approximately n = 0.75m out
ofm coupons produce the lowest error.

4.5.1 Evaluating the Query Compiler

We now investigate the coupon-collector configurations generated by the query compiler

under different thresholds Tq and average per-packet coupon limit γq. The compiler’s run-

ning time is negligible (< 1ms) given its time complexityO(w2|Q|).

Recall that the query compiler outputs the configuration {mq, pq, nq}with the lowest

Mean Relative Error given that its expected number of draws CC(mq, pq, nq) is close to the

query threshold Tq. In Figure 4.5 we plot the minimum possible Mean Relative Error of

various configurations, when the expected number of draws exactly matches the threshold

(Tq = CC(mq, pq, nq)). We note that adjusting pq does not noticeably change the error, and

only plotted the relationship betweenMean Relative Error and (mq, nq) for all configura-

tions in 2 ≤ nq ≤ mq ≤ 64.

92

1 16 32 64 128 192 256
Number of total coupons (m)

0%

10%

20%

30%

40%

50%

M
in

im
um

 M
ea

n
Re

la
tiv

e
Er

ro
r

Figure 4.6: Using more coupons lead to lower Mean Relative Error. A coupon collector can achieve 13.7% minimum
error when usingm = 32 coupons.

As we can see from Figure 4.5, in general, using more coupons leads to lower error. We

can further observe that for any givenmq (total coupons), the configuration with minimal

Mean Relative Error corresponds to a choice of nq around 0.75mq. That is, the coupon-

collector configuration should stop when around three-fourths of coupons are collected,

as this leads to the least variance in the number of random draws required. We also verified

that the nq ≈ 0.75mq heuristic still holds with thousands of coupons, although we defer a

rigorous analysis to future work. However, when memory access is extremely constrained,

the compiler often selects nq = mq = 1, as the configurations using more coupons con-

sume many more memory accesses per packet.

We now look at the relationship between the minimumMean Relative Error and the

total number of coupons (mq), as shown in Figure 4.6. In our current prototype imple-

mentation, we restrict the query compiler to use at mostmq = 32 coupons, as one memory

read on the PISA hardware reads a 32-bit memory word. Usingmq = 32 coupons achieves

13.7%minimum error, which means BeauCoup may send a super-spreader alert upon see-

93

ing 860∼1140 distinct IP addresses, given the threshold 1000. We note that BeauCoup can

maintain more coupons in a collector by using multiple memory words, if a higher accu-

racy is desired. Usingmq = 64 coupons achieves 9.8% minimum error, while using 128,

256, or 1024 coupons achieves 6.9%, 5.0%, or 3.1% error respectively. These errors are com-

parable with the HyperLogLog distinct counting algorithm using the same memory space.

4.5.2 Query Accuracy

Now we evaluate the accuracy of BeauCoup queries over real-world network traffic, by

first running a single query and comparing BeauCoup with related works, then run many

queries simultaneously. Our experiments mostly focus on BeauCoup’s accuracy under the

limited memory access constraint by providing abundant memory for all algorithms. We

also present some results regarding limited memory space.

One Query andOne Key

We first demonstrate BeauCoup’s coupon collectors are an efficient way to perform distinct

count queries, by comparing them against other approximate distinct counting algorithms.

Here we only focus on counting distinct attributes for one particular query and one par-

ticular key, as other distinct counting algorithms are designed for only one key and cannot

support multiple keys.

In this experiment, we use different algorithms to count the number of distinct source-

destination IP pairs in the traffic, and stop when the estimate exceeds T = 1000 distinct

IP pairs. All algorithms are implemented in Python. We use the CAIDAAnonymized In-

94

ternet Traces Dataset 201826 (CAIDA trace), and repeat all runs 100 times with different

random seeds.

HyperLogLog52 is a widely-used approximate distinct counting algorithm, that counts

distinct items by counting the maximum number of leading zeros seen from a random hash

function. The algorithm splits its input and feeds them to multiple independent estima-

tors, and outputs the harmonic mean across all estimators. We use a HyperLogLog instance

with 64 estimators.

UnivMon78 is the state-of-the-art multi-purpose measurement sketch that runs on PISA

programmable switches, and can compute various functions over a set of attributes, includ-

ing distinct counting. NitroSketch77 performs sampling over sketch memory updates to

reduce a sketching algorithm’s memory access while preserving its accuracy. The authors

of NitroSketch had proposed applying the NitroSketch technique to UnivMon to reduce

UnivMon’s average memory access per packet. We hereby refer to the new algorithm as

NitroSketch-UnivMon. NitroSketch-UnivMon supports all the queries supported by

UnivMon, including distinct counting. NitroSketch-UnivMon is the only sketch we are

aware of that achieves fewer than one memory access per packet on average and supports

distinct counting. We use 16 layers of 4x1024 CountSketch for UnivMon, and change Ni-

troSketch’s sampling parameters to let NitroSketch-UnivMon achieve different average

memory access per packet.

We also include a packet sampling approach in the comparison. As analyzed by Spang

&McKeown 114, it is possible to estimate the distinct number of flows (attributes) given a

sampled subset of all packets, using a statistical estimator27. We sample each packet with

95

a small probability p, and record each sampled packet’s IP pair. Subsequently, we feed the

sampled subset to the estimator.

We first note that the memory size used by BeauCoup is minimal: a coupon collector

uses one word of memory, at most w = 32 bits. Including auxiliary data (timestamp and

checksum), each key uses three words, or 96 bits. Meanwhile, one HyperLogLog instance

with 64 estimators uses 320 bits of memory. As we discussed in Section 4.5.1, when using

the same number of bits of memory space, coupon collectors can achieve comparable accu-

racy as HyperLogLog.

On the other hand, NitroSketch-UnivMon uses 256 kilobytes of memory space and

is not directly comparable, as it is a multi-purpose sketch supporting more than distinct

counting. It is possible to fit a handful of instances of NitroSketch-UnivMon into a switch’s

data-plane memory space, but it is unfeasible to run multiple queries with multiple keys,

which requires thousands of instances. Packet sampling usesO(p · L)memory space, pro-

portional to the sampling probability and stream length.

Since we need to simultaneously answer multiple queries under a total per-packet mem-

ory access constraint, each BeauCoup query can only make a very small number of memory

accesses per packet. We now compare the accuracy of each distinct counting algorithm un-

der the same average memory access constraint of γ ≤ 1 words per packet:

• When using packet sampling, for each sampled packet, we need to access two words

of memory to save its IP pair. Thus, we can satisfy the per-packet memory access

constraint by setting the sampling probability to p = γ/2.

• For NitroSketch-UnivMon, we tune each layer’s NitroSketch sampling probabil-

ity individually to achieve γ/16 average memory access, thus making total memory

96

10 2 10 1 100

Average memory access per packet ()

0%

20%

40%

60%

80%

100%

M
ea

n
Re

la
tiv

e
Er

ro
r Sampling

NS-UnivMon
BeauCoup
HyperLogLog

Figure 4.7: BeauCoup’s coupon collector approach uses 4x fewer memory access than NitroSketch‐UnivMon or sam‐
pling to achieve the same accuracy.

access across all layers to fit within γ words per packet. Since not all layers use their

access budgets fully, we record the actual number of total memory accesses in experi-

ments.

• For BeauCoup coupon collectors, recall that collecting each coupon requires ac-

cessing c = 3 words (for coupon vector, timestamp, and checksum). We specify an

average per-packet coupon limit γq = γ/c, and use the BeauCoup query compiler

to find the coupon collector configuration that satisfies the constraint. Here we also

record the actual number of memory accesses.

• Finally, although HyperLogLog is very accurate, it always accesses exactly one word

of memory per packet, regardless of the number of estimators. We nevertheless in-

cluded its accuracy for reference.

In Figure 4.7, we show that BeauCoup’s coupon collector achieves the same accuracy

(Mean Relative Error, plotted on y-axis) using at least 4x fewer memory accesses (γ, plot-

97

ted on x-axis with log scale), compared with NitroSketch-UnivMon, packet sampling, or

HyperLogLog.

We note that the statistical estimator used by the packet sampling approach114 is de-

signed for sparse samples, looking at IP pairs sampled exactly once or twice. Thus, it works

better for sparse samples and performs poorly with a very high sampling rate above 0.5, cre-

ating non-monotonicity in the figure.

To achieve less than 25%Mean Relative Error for queries, BeauCoup needs 0.04 words

of memory access per packet, which means we can run about 25 queries together per word

of memory access per packet, while NitroSketch-UnivMon requires 0.2 words of memory

access, and can only run about five queries for the same memory access limit. At higher

error ranges (e.g., to achieve less than 50%Mean Relative Error), BeauCoup only needs

0.009 words of memory access, while NitroSketch-UnivMon requires 0.09, yielding a 10x

saving. The improvements are similar for other attribute definitions and thresholds.

Multiple Queries and Keys

Next, we run BeauCoup with multiple queries and observe the average relative error under

varying memory access constraints. We wrote |Q| = 26 queries that resemble monitoring

demands a network administrator may have, with keys and attributes defined using com-

binations of source and destination IP addresses and TCP/UDP ports. The queries use

various different combinations of packet header fields as their key and attribute definitions.

Some queries also use the timestamp as the attribute definition—recall that we can count

the number of packets by performing distinct counting over timestamps. The thresholds

range from 100 to 10000, and are selected based on the likely use cases of the particular

98

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Allowed total memory access per packet ()

0%

20%

40%

60%

80%

100%

M
ea

n
Re

la
tiv

e
Er

ro
r

Figure 4.8: The average error of all queries gradually improve as we allow more memory access per packet, which is
shared among all queries.

0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%

M
ea

n
Re

la
tiv

e
Er

ro
r

Threshold=100

0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%
Threshold=500

0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%
Threshold=5000

0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%
Threshold=10000

Allowed total memory access per packet ()

Figure 4.9: Query with the lowest threshold experiences the most significant accuracy improvement when allowing
more memory access per packet.

queries. In each experiment, we set Γ, the total memory access constraint for all queries,

from 0.1 to 1 access per packet. We then run the query compiler to fairly allocate memory

access and generate the coupon-collector configuration for each query.

After obtaining the coupon-collector configurations, we run BeauCoup in a python-

based simulator, which is behaviorally equivalent to the data-plane P4 program, but allows

us to freely tune all parameters and concurrently run many simulations with different ran-

dom seeds. We once again use the CAIDA trace in the following experiments.

Average accuracy across queries. Figure 4.8 shows the overall accuracy of all queries,

measured byMean Relative Error, given different total memory access limits Γ. We can ob-

99

0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%
M

ea
n

Re
la

tiv
e

Er
ro

r

Key=ipv4.src
Distinct(ipv4.dst)>1000

0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%

Key=ipv4.src
Distinct(ipv4.dst+tcp.dst)>1000

0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%

Key=ipv4.dst+tcp.dst
Distinct(ipv4.src)>1000

0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%

Key=ipv4.dst+tcp.dst
Distinct(ipv4.src+tcp.src)>1000

Allowed total memory access per packet ()

Figure 4.10: Queries with the same threshold exhibits similar accuracy improvement trend when given more allowed
memory access, despite different key and attribute definitions.

serve that when the memory access limit becomes lower, the error becomes higher, and the

accuracy of different queries gradually converges. This is because when we have abundant

memory accesses, the queries with higher thresholds do not need to use all of their fair share

of memory accesses, and can achieve better accuracy than those actually constrained by

memory access; when all queries are constrained, the fair allocation policy leads to similar

accuracy for all queries.

Per-query accuracy. Nowwe scrutinize the accuracy of each query. We first compare

the effect of increasing memory access limit Γ on each query’s average relative error. In Fig-

ure 4.9, we choose four different queries with various Tq from 100, 500, 5000, to 10000

and analyze their accuracy. Naturally, the query with the lowest threshold is the hardest

to execute, as it requires coupons with larger probability pq and easily exhausts its memory

access budget. Increasing Γ allows the query to increase accuracy significantly. For queries

with larger Tq, the improvement is not as significant.

Notably, the query with Tq = 10000 reaches its optimal accuracy when Γ = 0.2, and its

accuracy slightly deteriorates when we allow more memory accesses. This is due to having

collisions with other queries when the system draws more than one coupon and enters tie-

breaking more often, which slightly skews the probability of drawing each coupon.

100

10 1 100 101 102

Query time window (W, seconds)

210

212

214

216

218

M
em

or
y

sp
ac

e
(S

)

=0.80
=0.40
=0.20
=0.10

Figure 4.11: The query time window sizeW and the memory space S (number of coupon collector bit vectors) required
by BeauCoup follows power law.

We also compare different queries with the same Tq = 1000 yet with different keyq and

attrq definitions. Here we use four queries as an example, the first one being super-spreader.

As we can see from Figure 4.10, their average relative error has almost the same relationship

regarding the total memory access constraint Γ. The third plot in Figure 4.10 has a slightly

higher variance, and is because this particular query outputs fewer alarms in our experiment

trace, hence has more outliers for the average relative error statistics.

Memory Size.

So far, we have focused on limited memory access and assumed unlimited memory size and

an infinite time window. However, practical systems have a limited amount of memory (S)

and can run out of space for large window sizeW.

We first observe that the number of unique query keys present in the traffic usually fol-

lows power law. For a stream of L packets, we can observe Lαq unique keys, with αq being

specific to the traffic and different key definitions. For the CAIDA trace, αq ranges between

101

Component Match
Coupons

Extract
Key

Collect
Coupons Teardown Overall

TCAM 39.6% 2.3% 0% 0% 13.2%
SRAM 9.1% 2.1% 26.3% 0% 12.3%

Instruction 25.0% 7.3% 5.4% 3.1% 12.8%
Hash Unit 50.0% 61.1% 29.1% 0% 41.7%

Table 4.3: BeauCoup’s hardware resource utilization, categorized into four functional components.

0.7 to 0.85. Therefore, given the average per-packet coupon limit γq, we can give an upper

bound (γqL)
αq for the number of coupon collectors needed for query q, and therefore the

maximum total memory needed by all queries is upper-bounded by
∑

q∈Q(γqL)
αq .

Figure 4.11 shows the actual memory space requirement of BeauCoup with regards to

different time window sizesW, when processing the same query setQ under the CAIDA

trace, under a log-log scale. We can observe that the relationship between the memory size

and window size closely follow a power law with an exponent α = 0.80. For example, for

a time window ofW = 1 second and memory access limit of Γ = 0.1 word per packet,

BeauCoup needs to store 4096 coupon collectors (48 kilobytes), while doubling the time

window toW = 2 seconds enlarges the memory size requirement by 2α = 1.74 times,

to 7150 collectors (84 kilobytes). A practical system on PISA switches can easily support

65, 536 collectors, corresponding to a time windowW = 30 seconds for the CAIDA trace.

Still, BeauCoup is optimized for memory access constraint, and we defer the discussion on

how to adapt BeauCoup with insufficient memory in Section 4.6.

4.5.3 Hardware Resource Utilization

To run on PISA switches and process packets at 100Gbps line rate, BeauCoup’s data-plane

programmust satisfy other resource constraints beyond limited memory access. Beau-

102

Coup’s auto-generated P4 data-plane program runs on an Intel Tofino65 Wedge100 pro-

grammable switch. It consumes about 40% of the programmable switch’s hash calculation

units and less than 15% of other resources. We note that BeauCoup is not bottlenecked by

TCAMmatch table size. The current version of our data-plane program supports match-

ing each attribute’s hash function output to 4096 different coupons; since every query

uses at most 32 coupons, the program supports at least 4096
32 = 128 queries for each at-

tribute. 4096 is the default size for the TCAMmatch tables set by the compiler, and can be

extended as needed. Resource utilization other than TCAM is independent of the number

of simultaneous queries we run.

To produce a more detailed picture of BeauCoup’s resource utilization, we slice the

data-plane program into four sequential functional components, and in Table 4.3 we drill

down the utilization for different types of resources by each component. We can see dif-

ferent functional components have distinctive resource utilization profiles. For example,

matching coupons extensively uses hash units to calculate random hash functions and uses

TCAM to draw coupons, while not using much SRAM; in contrast, collecting coupons

requires no TCAM, but uses SRAM to store the bit vectors.

Although the BeauCoup data-plane program uses more hardware resources than run-

ning one instance of HyperLogLog or UnivMon for a single key definition, we note that

the data-plane program already supports various different key and attribute definitions,

allowing us to install new queries on the fly without re-compiling the data-plane program.

Furthermore, BeauCoup does not exhaust any one switch resource, and its unique resource

usage profile co-habitates well with other typical resource-heavy switch functions or al-

gorithms. When two algorithms use the same resource heavily but at different pipeline

103

0.0 0.1 0.2 0.3 0.4 0.5
Allowed per-packet coupon limit (q)

0.0

0.1

0.2

0.3

0.4

0.5

Ex
pe

ct
ed

 #
co

up
on

s (
m

q
p q

)

Tq=100
Tq=200
Tq=500
Tq=1000
Tq=2000

Figure 4.12: Queries with higher threshold Tq need fewer memory accesses per packet.

stages, we can tessellate them without causing resource contention. For example, perform-

ing Equal-Cost Multi-Path (ECMP) routing requires computing hash functions late in the

switching pipeline, where BeauCoup does not compute many hash functions when col-

lecting coupons; running network measurement sketches like UnivMon78 or PRECISION

(Ch.3) requires using SRAMmemory early in the pipeline, whereas BeauCoup does not

consume a lot of SRAM early in the pipeline when it is matching coupons.

4.6 Discussion

Fairness between queries

In this paper, we use a fair allocation policy to distribute the limited memory access among

all queries.However, queries with larger thresholds require fewer memory accesses to achieve

the same accuracy. Figure 4.12 evaluates the optimal configurations found by the query

compiler under different per-packet coupon limit γq, for various query thresholds Tq. A

query with a small threshold of Tq = 100 almost always uses all of its budget (withmq · pq

104

very close to γq), while queries for larger thresholds do not need their full share. We can

improve the allocation policy to redistribute these “leftover” budget to improve the accu-

racy of the queries with the lowest thresholds. We can repeat the process until the leftover is

negligible or no query can be improved.

Multi-stage coupon table

Our current prototype uses a single hash-indexed array for storing coupons. Extending this

structure to a multi-stage table would offer several benefits. First, hash collisions are in-

evitable even when the hash table is lightly filled; using multiple tables can provide a query-

key pair more chances to insert successfully despite hash collisions. With more memory

accesses, we can also allow simultaneously collecting at most 2 or 3 coupons per packet.

Second, we can use multiple stages of tables to assign more coupons to each collector, for

example by using two tables to implementm = 64 coupons per collector.

Memory space

In designing BeauCoup our main concern was supporting multiple queries with limited

memory access. If memory size becomes constrained, BeauCoup has two possible ways to

address the issue. First, we can voluntarily limit memory access (Γ) below the limit imposed

by the hardware; a smaller Γ reduces space requirements, as demonstrated in Figure 4.11.

Second, we can implement an eviction mechanism that finds the coupon collectors least

likely to succeed; for example, we could look at the number of coupons not yet collected,

and howmuch time has elapsed since the last coupon was collected by this collector.

105

DistributedMonitoring

Currently, BeauCoup processes traffic at a single switch. To extend BeauCoup to multiple

vantage points, we could use multiple switches to run the same random hash functions and

a centralized collector to collect all the coupons. Each switch only needs to send packet to

the centralized collector when a new coupon is collected. We can minimize the traffic over-

head by specifying a small per-packet coupon limit, and de-duplicating the coupons at the

switches before sending. Similar to HyperLogLog registers, BeauCoup coupon collector

vectors are trivially mergeable.

Security

Some network queries look for adversarial traffic, and an attacker is motivated to craft its

attacking traffic to disrupt those queries. As BeauCoup uses random hash functions with

random seeds, the attacker cannot predict which packets lead to coupon collection without

knowing the seeds. However, with the seeds leaked, the attacker can precisely know which

packets trigger a coupon, and thus can deliberately craft traffic to avoid being reported. We

therefore should periodically replace the hash seeds and make sure they are not leaked.

Our current prototype uses the CRC-32 family of hash functions with different polyno-

mials, natively available on the programmable switch hardware. CRC-32 is prone to linear

correlation, and an attacker may recover the seed when it simultaneously controls the input

packets and observes the output coupon activation (performing aKnown Plaintext Attack).

To defend against powerful attackers, a more secure BeauCoup implementation should use

cryptographic hash functions. We leave this as future work.

106

4.7 RelatedWork

Approximate distinct counting

Plenty of related work discusses how to approximately count distinct elements under lim-

itedmemory space, culminating in the widely-used HyperLogLog52 distinct counting al-

gorithm.43 surveyed these prior works, which can be roughly categorized into two flavors:

K-Minimum-Value and Distinct Sampling. K-Minimum-Value8 computes a random hash

function over all input elements, and uses the k smallest values observed to infer howmany

distinct elements exist. Distinct Sampling58 samples new distinct elements at a small prob-

ability, and infers the count by the number of items sampled. We can sample an item out of

2n distinct items, if we wait for n consecutive leading zeros in the output bits of a random

hash function. HyperLogLog49,52 builds upon the idea of Distinct Sampling but instead

partitions the incoming stream into k sub-streams and uses k independent estimators, and

outputs the harmonic mean of their estimates. Each estimator records the longest consecu-

tive leading zeros seen from the output bits of a random hash function. We note that our

implementation of am-bit coupon collector is in fact equivalent to the HyperLogLog algo-

rithm using 1/p sub-streams, with the 1/p estimators each output only one bit. However,

we only store the output of firstm estimators, truncating the other 1/p − m estimators to

reduce memory access. Alternatively, a coupon collector can be viewed as a 1/p-bit Bloom

Filter with only one hash function, truncated to the firstm bits to reduce memory access.

Bloom Filters are originally designed for membership queries but can also be used for ap-

proximate distinct counting, as analyzed by Assaf et al. 7.

107

We also note that universal sketching (UnivMon78) can compute many different func-

tions over the input frequency vector, as long as the function is monotonic and bounded

by the l2-norm. In particular, it can compute distinct counting (the l0-norm). For input

length Lwith A unique items (attributes), UnivMonmaintains log(A) different count

sketches, and requires Γ = O(log(A))memory access per packet in the worst case.

Memory model

Muthukrishnan 91 surveyed several established streaming analysis models, and used an ab-

straction of maintaining one high-dimensional vector. Each incoming item changes one

entry in the vector. The streaming models differ in the changes they can make to items in

the vector: cash register is addition only, turnstile allows addition and subtraction, and strict

turnstile allows addition and subtraction, yet requires the entries to be always non-negative.

Subsequently, queries are made against this high dimensional vector. Our paper falls un-

der the cash register model, for each individual query and sub-streams of the input stream

partitioned by the query key.

The cell probe model71,98,124 is a limited memory access model often used to prove data

structure lower bounds. Yao 124 proved that ⌈log(S)⌉ probes (memory accesses) are neces-

sary to check whether an item exists in a memory array of size S. Larsen et al. 71 discussed

other similar lower bounds on howmany memory accesses are necessary to solve a certain

problem. Usually, in the cell probe model the algorithm is allowed to be adaptive, meaning

that it can decide which memory address to look at next based on the content of memory it

has already read earlier. We adapt cell probe into stream processing to allow at most Γ mem-

ory words to be accessed per packet, while introducing a new notion of sub-constant mem-

108

ory access, requiring each query to access fewer than one memory word per packet on aver-

age. This model is abstracted from our experience working with high-speed programmable

switches, yet we can also identify similar situations in other computing architectures where

low latency is required or a memory cache hierarchy exists. For example, a modern CPU has

a cache size of a few megabytes. The traditional streaming algorithmmodel strives to fit an

entire data structure (sketch) within this cache size, while our model resembles limiting the

number of accesses to external memory or disks, which are slower to access but consider-

ably larger.

Pontarelli et al. 100 proposed a related model where a system has both faster on-chip

memory and slower, larger off-chip memory, and can only perform a limited number of

off-chip memory accesses per packet. Kim et al. 68 implemented a practical off-chip mem-

ory for PISA switches.

Reducing memory access

NitroSketch77 is a novel technique that reduces memory access for sketching algorithms.

The authors identified memory access as one of the most expensive operations when run-

ning network measurement tasks on CPUs, and proposed to sample on memory accesses

to improve performance. Given a sampling probability p, all the+1 updates to the original

sketch data structures are changed to+1/p updates with probability p. A smaller p can fur-

ther reduce memory accesses and accommodate faster packet processing. NitroSketch can

be applied to many exising measurement sketches, including Count Sketch28 and Count-

Min Sketch48, to improve performance without significantly impact accuracy. Compared

109

with the naive approach of sampling packets, NitroSketch achieves better accuracy when

given the same amount of memory access.

NitroSketch can be applied to UnivMon and produce a distinct counting algorithm

with sub-constant memory access. UnivMon consists of multiple layers each hosting a

Count Sketch. For every incoming packet, we first select which UnivMon layers to up-

date using the original UnivMonmechanism, then each layer independently samples the

counter updates into its Count Sketch using the NitroSketch mechanism, possibly using

different sampling parameters according to the rate of each layer’s incoming packets. The

combined data structure NitroSketch-Univmon now uses sub-constant average memory

access, and the accuracy loss is negligible when we reduce memory access by 50%-75% per-

cent. However, the accuracy for distinct counting suffers greatly when we reduce memory

access by 90%-99%, as we have shown in Section 4.5.2.

4.8 Conclusion

We present BeauCoup, a system for simultaneously running many distinct-counting based

network monitoring queries while only using a small constant number of memory accesses

per packet. This allows BeauCoup to run on on PISA programmable switches, conform-

ing to the tight memory access constraint and using only moderate hardware resources.

Evaluation showed BeauCoup uses 4x fewer memory accesses to achieve the same error

rate compared with other state-of-the-art measurement sketch. BeauCoup is also the first

measurement algorithm running on PISA switches that support dynamic update of mea-

surement queries.

110

Part II

Real-time, Closed-loop Control in the

Switch Data Plane

111

5
ConQuest: Measuring and mitigating

microbursts in real time

In this chapter, we present ConQuest, a framework that allows fine-grained queue mea-

surement entirely in the data plane, enabling the switch to react and mitigate microbursts

in real time. Microbursts are transient traffic surges lasting shorter than a few milliseconds;

112

they cause high queue utilization that often leads to packet loss and delay. ConQuest uses

a novel compact data structure to approximately identify the flows that contribute signif-

icantly to queue build-up, while still confronting to the memory and computational con-

straints of the switch data plane. The switch can then run real-time, per-flow advanced

queue management that effectively mitigates microbursts and protects non-bursty traffic.

Simulations show that ConQuest can identify contributing flows with 90% precision on a

1 ms timescale, using less than 65 KB of memory. Experiments with our Tofino prototype

show that ConQuest help reduces flow-completion time by as much as 11%. Additionally,

we show how to measure queues in legacy devices through link tapping and an off-path

switch running ConQuest.

The work in this chapter was completed in collaboration with Shir Landau-Feibish,

Yaron Koral, Jennifer Rexford, Ori Rottenstreich, Steven AMonetti, and Tzuu-Yi Wang. It

was first presented in ACMCoNEXT 201935. A preliminary short paper was presented in

the ACM SIGCOMM 2018 AfternoonWorkshop on Self-Driving Networks (SelfDN 2018)34.

5.1 Introduction

In packet-switched networks, the queues that buffer packets awaiting transmission are fun-

damental components of the network. Much of the packet losses and delays that occur in

the network are caused by backlogs in these queues. Yet, existing network devices offer sur-

prisingly little visibility into the state of the queues, making it difficult to detect, diagnose,

and fix performance problems.

113

Fine-grained, real-time queue monitoring is now possible with the emergence of high-

speed commodity programmable switches. By running queue analysis algorithm directly

in the switch data plane, we can not only detect queue-related performance anomalies and

pinpoint their root cause, but also implement real-time reactions to mitigate their impact.

However, in order to achieve line rate, the programmable switch hardware imposes mem-

ory and computational constraints, as we discussed in Chapter 2. Thus, we have to care-

fully design our queue analysis algorithm to follow those constrains, such as limited num-

ber of pipeline stages and limited arithmetic operations supported.

Most importantly, in a PISA switch, register memory are partitioned between pipelines

(Subsection 2.2.3). Recall that a packet first goes through ingress pipeline processing, then

waits in the queue, before going through egress pipeline. The ingress and egress pipeline

cannot have access to the same register memory* – since both pipelines are processing pack-

ets at high clock rate, concurrent access to the same memory could create a memory hazard.

Due to the concurrent memory access limitation, a data structure cannot be updated

both when a packet enters the queue and when it departs. Instead, we can only analyze the

queue in one place, when a packet’s queuing metadata becomes available. Prior research

shows how to work within the PISA constraints to perform fine-grained logging of packet

bursts66,112,125. However, given all of these constraints, designing a data structure that can

analyze the queue buildup entirely in the data plane—rather than collecting logs for offline

analysis—remains an unsolved problem.

*This constraint is likely true for not just PISA but due to the fundamental mismatch between the aggre-
gated speed of the link and the speed of memory.

114

Contribution

ConQuest uses a novel approximate data structure called round-robin snapshots that allows

estimating the size of individual flows † in the switch queuing buffer, avoiding memory up-

dates both before entering and after departing the queue. ConQuest maintains multiple

compact “snapshots” of the queue occupants over time; each packet updates one snap-

shot and queries multiple past snapshots. We can now analyze each flow’s contribution to

backlogged queues and detect the root cause of microbursts, entirelywithin the data plane,

enabling immediate control actions. This is useful for a wide range of applications, from

preventing congestion-related attacks to implementing active queue management (AQM)

schemes.

We implement ConQuest using a P422 template program, which allows generating

switch-specific code to accommodate the different limitations (number of pipeline stages,

available register memory writes, etc.) of each hardware target. The implementation is

open-sourced on GitHub31. We then run a prototype of ConQuest on the Intel Tofino

switch65 to demonstrate a real-world implementation of queue measurement and manage-

ment in the data plane.

In trace-based simulation experiments, we quantified the benefit of queue measurement

in the data plane and characterized how the number and size of snapshots affect measure-

ment accuracy. ConQuest can achieve over 90% precision and recall using less than 65 KB

of memory. Meanwhile, using the Tofino-based prototype and a testbed experiment, we
†Flows can be defined at various levels of granularity (e.g., five-tuple, source-destination pair, or destina-

tion address) depending on the purpose, such as detecting a single bursty TCP connection or an end-host or
service receiving large bursts of traffic.

115

demonstrated the ConQuest-powered real-time, closed-loop control can help improve end-

to-end performance.

Finally, we also share our experience implementing queue monitoring for legacy, non-

programmable routers, using off-path monitoring technique. Most legacy routers only

report coarse-grained queue statistics on a large timescale. We tap multiple links of a legacy

device, and feeds the data into a version of ConQuest extended to match the ingress and

egress observations of the same packet to perform the same queueing analysis. Fine-grained

monitoring of legacy routers enables network operators to troubleshoot performance prob-

lems in their network. We use our prototype to analyze queuing in a Cisco CRS router and

verify ConQuest’s accuracy. We also deployed ConQuest in a campus network and success-

fully diagnosed queuing anomalies in the border router.

Outline

The chapter is structured as follows. In Section 5.2, we first discuss the important use cases

of on-switch queue analysis. Section 5.3 discussed how we designed the ConQuest Round-

Robin Snapshots data structure. In Section 5.4, we share our experience implementing

ConQuest for switch hardware. In Section 5.5, we present simulation-based evaluation re-

sults that quantify ConQuest’s accuracy, as well as testbed closed-loop experiments that

demonstrate ConQuest can indeed mitigate microbursts and protect other traffic. In Sec-

tion 5.6, we share our experience implementing queue monitoring for legacy routers using

tapped traffic. We also compare ConQuest to related work in Section 5.7. Finally, we dis-

cuss some future work and conclude in Section 5.8.

116

5.2 QueueMeasurement Use Cases

While networks typically rely on end-hosts to perform congestion control, fine-grained

queue measurements at switches are still critical for a wide range of purposes, including:

• Stopping congestion-related attacks. In a Shrew attack69, a few bursty flows (each

sent every few seconds, for a short duration) cause a large transient backlog in the

queue. Quickly identifying the queue buildup, and the contributing flows, enables

rapid mitigation of these attacks.

• Avoiding conflicting workloads. Interactions across multiple connections, such as

TCP Incast4,37, can cause sudden queue buildup, leading to high tail latency for big

data applications. Identifying the responsible applications enables better scheduling,

load balancing, and VM placement decisions in data centers.

• Optimizing switch configurations. Queuing parameters, such as weights in ac-

tive queue management (AQM) schemes like W-RED94, are notoriously difficult to

tune41. With a fine-grained understanding of queuing dynamics, network operators

can better configure these parameters to the prevailing workload.

• Deploying new AQM schemes. While congestion control has long been an area

of innovation, deploying new AQM schemes is challenging due to a lack of fine-

grained queue measurement support in switches. A data-plane queue measurement

primitive would provide the metrics necessary for more sophisticated AQM schemes.

• Debugging switch implementations. Queue management in high-speed switches

is a complex mechanism, with flow control between multiple queues on different

117

ports. Implementation mistakes by equipment vendors can lead to counter-intuitive

phenomena, like high packet loss and delay during periods of low link utilization.

These bugs are difficult and time-consuming to detect, let alone diagnose and fix,

without better visibility into queuing dynamics.

• Using switches with shallow buffers. Cheaper switches with small buffers are suf-

ficient for many networks5,120. Finding a way to monitor queues of legacy routers

can help network operators decide whether they can adopt shallow-buffer switches

without compromising performance. In addition, a data-plane queue-monitoring

primitive in new commodity switches can help manage the limited buffer resources

to run the network at high utilization.

5.3 ConQuest Data Structure

ConQuest needs a measurement data structure that operates in real time (to detect and

mitigate even short-lived queue buildup as it forms), at a fine granularity (to pin-point in-

dividual contributing flows), and with high accuracy (to make good decisions). Meeting

these requirements is not easy. A 100 Gbps link sends new packets every few nanoseconds,

and a transient congestion event may last less than a hundred microseconds19,130. To an-

alyze a queue on a small timescale, we cannot rely on packet sampling or coarse-grained

statistics such as queue length, as fine-grained information about transient congestion

events would be lost with the high sampling rates (as low as 1 in every 30,000 packets101)

in today’s networks. Yet, processing every packet in software would not scale to high link

speeds. Instead, our data structure must operate at line rate, within the data plane.

118

As discussed earlier in Subsection 2.2.3, our data-plane data structure design is subject

to a fundamental architecture limitation: we cannot concurrently perform updates at both

ends of the queue, meaning, ConQuest cannot increment a counter as it enters the queue

and later decrement it when the packet departs. This encouraged us to design a snapshot-

based data structure that passively expires groups of packets instead of actively deleting data

for old departing packets. To estimate flow-level queue occupancy in real time, ConQuest

combines results across multiple snapshots, and cleans and reuses expired snapshots in the

background.

5.3.1 Contributing Flows in a Queue

For a constant-rate link serving a single FIFO queue, a packet’s queuing delay corresponds

directly to the length of the queue when it arrives. ConQuest identifies the flows that con-

sume a large portion of the queue and are, therefore, significant contributors to the back-

log. Tracking these flows would seem to require per-flow counters, updates to the coun-

ters on both packet arrival and departure, and identifying the largest counters at any given

time. Realizing such a data structure in the data plane is inherently difficult, due to the

constraints outlined in Subsection 2.2.3 Fortunately, we do not need to estimate the con-

tribution of all flows all of the time, just some flows (i.e., the most significant contributors)

some of the time (i.e., when we see a packet of that flow and queuing is long).

Querying a flow’s own contribution to the queue: For the switch to take corrective

action on the flows causing the backlog, we need only identify the contribution of the cur-

rent packet’s flow to the queue. More precisely, for each packet, we ask: while this packet

was queued, what fraction of the packets (or bytes) transmitted over the link belonged to its

119

Departure time

di

ai

Queuing
Delay

i

“While packet i
is waiting”

Arrival time

Figure 5.1: Packet departure time (di) vs. arrival time (ai) in a queue. While packet i was queued, three (shaded) packets
of the associated flow fi departed.

own flow? As shown in Figure 5.1, for a packet iwith flow ID fi arriving at time ai and de-

parting at time di, all packets jwith departure time dj ∈ [ai, di) departed while packet i

was waiting in the queue. Some of these packets belong to the same flow as i (i.e., fj = fi,

shaded blue). As an example, in Figure 5.1, packet iwas the tenth packet in the queue when

it arrived, and three of those packets were from flow fi.

Each egress pipeline witnesses packets leaving the queue as a stream of (fi, ai, di) tuples,

where flow ID fi is determined from packet headers and timestamps ai and di are queuing

metadata, which are available in the data plane after the packet leaves the queue. We define

a queue to be congested when the queuing delay of the packets reaches a threshold of τ.

When congestion occurs, ConQuest aims to identify the contributing flows, whose packets

occupy at least an α fraction of the queue. Or, more formally:

Contributing flow Given a FIFO queue with a congestion threshold τ and a contribution

threshold α, when packet i is departing with flow ID fi and arrival/departure timestamps

120

ai, di, if (di − ai) ≥ τ, and:

∣∣{j | (ai ≤ dj < di) & (fj = fi)}
∣∣∣∣{j | ai ≤ dj < di}

∣∣ ≥ α (5.1)

then fi is currently a contributing flow.

For ease of exposition, we assume that all packets have unit size; however, it is straightfor-

ward to extend the definitions to consider packet length.

Accuracy when it matters: Hence, to understand queue backlog, ConQuest needs

to report accurate estimates (i) only for the contributing flows, rather than the many less

significant flows, and (ii) only when the queuing delay is high. This allows ConQuest to

use approximation techniques to work within the constraints imposed by PISA switches.

5.3.2 Traffic Snapshots for Bulk Deletion

To determine if a packet is part of a contributing flow, ConQuest maintains information

about past packet departures. When packet i departs the queue, ConQuest queries packets

from the past based on the time range [ai, di), and also inserts the current packet’s flow ID

and departure timestamp (fi, di) into the data structure to support future queries.

The main challenge of performing these operations on PISA switches is to accurately

delete information about packets whose departure timestamp has become too old to be

relevant to any future packet’s query. Since packets do not actively delete themselves, we

group packets into fixed time-window snapshots of length T based on their departure time,

allowing us to passively expire a window of past packets in bulk. Let us choose T=3 for

demonstration: in Figure 5.2(a), the rightmost packet (shaded blue) with departure time 0

121

BC ABC C

Snapshot #2 Snapshot #1 Snapshot #0Snapshot #3

t=2

AC CBC ABC

Snapshot #2 Snapshot #1 Snapshot #0

t=0

C AC

AC CAC CB BC C

Snapshot #2 Snapshot #1 RecycledSnapshot #3Snapshot #0

t=4 BC A

(a) Each snapshot captures a fixed-sized time window of traffic.

(b) We aggregate snapshots to approximate the set of packets in queue.

(c) We clean and recycle the oldest snapshot for future time windows.

Figure 5.2: Time‐window snapshots on a queue.

goes into snapshot ⌊0/T⌋ = 0. The next packet from flow A (also in blue) departs later at

time 4 (as shown in Figure 5.2(c)), thus falling in snapshot ⌊4/T⌋ = 1.

For each snapshot, we count the total number of packets for each flow; for example,

snapshot #0 in Figure 5.2(a) has one packet for flow A and two packets for flow C. After-

wards, we can query this snapshot to obtain the sizes of flows during this time window.

Using snapshots, we can implicitly expire old packets in bulk from the system by no longer

querying the oldest snapshot. We can ignore expired snapshots, or better yet, recycle them

(illustrated in Figure 5.2(c)) as discussed in more detail in Section 5.3.4.

If the number of flows is limited and known beforehand, each snapshot could consist

of simple per-flow counters. For a network with a large number of flows, per-flow coun-

ters are not feasible. While solutions such as Counter Braids80 and FlowRadar75 can record

122

precise per-flow counts, they require offline decoding and thus cannot be queried from

within the data plane. However, since we care about the large contributors to the queue,

any approximate data structure that supports inserting or incrementing counts and query-

ing flow sizes with reasonable accuracy can achieve our purpose; in our prototype, we use

the Count-Min Sketch (CMS)48 due to its ease of implementation in the data plane. The

CMS can estimate flow sizes with a possible overestimation error due to hash collisions;

the error bound depends on the selected size of the structure. Note that incrementing the

CMSmay be easily modified to estimate flow sizes based on either packet count or byte

count.

Hence, ConQuest makes two kinds of approximations: (i) when we divide traffic into

time windows, the query for a particular time range [ai, di)will be rounded into a query

to an approximated range and (ii) the use of sketches can lead to overestimates in the flow

counts in each window. We evaluate the effect of both types of error in Section 5.5.1.

5.3.3 Aggregating overMultiple Snapshots

Ideally, to decide if packet i belongs to a contributing flow, we would compute fi’s flow size

within the departure time range [ai, di). ConQuest computes an approximate answer by

looking at a number of recent time windows that are contained in [ai, di), namely from

snapshot ⌈ aiT ⌉ to snapshot ⌊
di
T ⌋ − 1 (we round towards the more conservative side, which

also uses fewer snapshots). Thus, by aggregating the flow size of fi in the corresponding

snapshots, we know approximately howmany packets from fi departed during [ai, di).

Since we can only aggregate an integer number of snapshots, our estimate of the queue’s

content will differ from the actual queue’s head and tail, with “rounding error” no more

123

than T on both sides. When the queuing delay (di−ai) is much larger than T, i.e., when the

queue is backlogged and, therefore, we are interested in measuring, we have smaller relative

error. Aggregating over multiple snapshots allows us to estimate longer queue with more

snapshots and shorter queue with fewer snapshots; using only a single snapshot would re-

sult in always analyzing a fixed time window, which is less accurate given the varying queue

length.

As a concrete example, in Figure 5.2(b), the leftmost packet (shaded yellow) from flow C

arrived at ai=2. This packet will ultimately depart the queue at di=8, assuming one packet

departs the queue in each time unit. Once we know ai and di in the egress pipeline, the

packets of interest are those that departed in the time range [2, 8), i.e., the seven packets

shown inside the queue in Figure 5.2(b) (other than i itself); out of these packets, there

are three packets from flow C (yellow packets). Snapshot #1 recorded one packet for flow

C, while Snapshot #2 recorded two packets. By aggregating the two shaded snapshots, #1

and #2, we can get an approximate value 3, i.e., there are around three packets from flow C

among the seven packets that departed between time [2, 8).

Besides simple summation, we may also aggregate snapshots differently to compute

other metrics in the data plane. This creates more applications for snapshots beyond ana-

lyzing congestion. For example, we can detect rapid changes in flow throughput in the data

plane, by computing the difference between the flow sizes reported by the two most recent

snapshots. This technique would help network operators locate flows which rapidly ramp-

up without obeying congestion control. Furthermore, by operating only on packet arrival

and departure times, ConQuest can analyze congestion under a range of queuing disci-

plines. In this paper, we mainly focus our discussion on a link with a single FIFO queue.

124

The extension to more general queuing disciplines is relatively straightforward, and we

leave the technical details to Section 5.3.6.

5.3.4 Cleaning & Reusing Expired Snapshot

ConQuest only needs a constant number of snapshots to analyze a FIFO queue of bounded

length served by a constant-rate link. For example, a 20Mb queue served by a 10 Gbps link

would have a maximum queuing delay max(di − ai) = 2 ms. If each snapshot covers a

time window of length T = 1 ms, ConQuest needs to read from at most two past snap-

shots. Namely, we can choose time window T based on the total number of snapshots

h, such that aggregating all snapshot time windows would approximately cover the entire

queue. When a snapshot is no longer useful, we can recycle the snapshot for recording fu-

ture traffic, as shown in Figure 5.2(c). Since snapshots are rotated on a very small timescale,

we cannot rely on the control plane to clean expired snapshots in a timely manner; there is

also no straightforward way to batch clean the register memory in data plane. Instead, we

clean expired snapshots gradually, one entry at a time.

More generally, ConQuest maintains ⌈max(di−ai)
T ⌉ snapshots for reading (i.e., queries),

one for writing (i.e., for inserting new packets), and one for cleaning (i.e., recycling), for a

total of h = ⌈max(di−ai)
T ⌉ + 2 snapshots. As illustrated in Figure 5.3, the roles of snapshots

rotate every T seconds, synchronized with the progress of the time window. Each packet

i traverses all h stages, indexing the Count-Min Sketch with its own flow ID fi in the read-

ing and writing stages, and indexing with a global index for clearing part of the CMS in

the cleaning stage. In summary, in handling packet i from flow fi, ConQuest performs the

following operations based on its arrival and departure timestamps ai, di:

125

Snapshots

Sn
ap
sh
ot

1

Sn
ap
sh
ot

2

Sn
ap
sh
ot

3

Sn
ap
sh
ot

4

Sn
ap
sh
ot

0

Sn
ap
sh
ot

h-1

…

Re
ad

Re
ad

W
rit
e

Cl
ea
n

Re
ad

Re
ad

Figure 5.3: Round‐Robin between h Snapshots. In any given time window, ConQuest writes into one snapshot, reads
many, and cleans one for the next time window. Snapshot roles are rotated every time interval T.

• Write: Increment the size of flow fi in the CMS associated with snapshot ⌊diT ⌋mod h.

• Read: Accumulate the estimated size of flow fi in snapshots (⌊diT ⌋ − 1)mod h,

(⌊diT ⌋ − 2)mod h, . . ., ⌈ aiT ⌉mod h. The number of aggregated snapshots varies,

and depends on the time the packet spent in the queue.

• Clean: Zero an entry in snapshot (⌊diT ⌋ + 1)mod h. For a CMS with C columns, we

maintain a global packet counter cnt, and write zero to the (cntmod C)-th item in

each row.

Using the cleaning technique described above, the CMS is cleaned after C packets—

we choose C and T such that there are at least C packet departures in one snapshot time

window of length T, say, at 10% link utilization. If this is not the case, i.e., the link is very

underutilized such that the number of packets per time window T is smaller than C, the

last packet (that departs a now-empty queue) can trigger a report to the control software to

clean the snapshot; note that this software can run at a timescale relative to T, which is sig-

126

Definition
ai, di Arrival and departure times of packet i
fi Flow identifier for packet i
wfi Weight (size) of flow fi across packets departed

during [ai, di)
W Total weight (size) of all flows inserted into

snapshots
h Number of snapshots

R, C Number of rows & columns in Count-Min
Sketch

α Threshold for identifying a contributing flow
τ Queuing delay threshold
S Number of pipeline stages available in switch
M Number of concurrent register memory

accesses per stage supported by switch

Table 5.1: Summary of notations used in this Chapter.

nificantly slower than the timescale of individual packets. Alternatively, if the target switch

supports packet generation (such as on the Intel Tofino), when the link is underutilized the

data plane can generate the additional packets needed for cleaning the snapshot and filter

them before the end of the egress pipeline.

5.3.5 Error Analysis

We now analyze the worst-case estimation error for the ConQuest data structure due to

hash collisions, and show that when using hCount-Min Sketches each withR columns and

C rows, it achieves ε = e/R additive error with failure probability δ = (h− 2)e−C.

First of all, each snapshot Count-Min Sketch48 provides ε = e/R additive error with

δCMS = e−C failure rate, which means with (1 − δ) probability a query with ground truth

flow size wwill return an estimate ŵ satisfying w ≤ ŵ ≤ w + εWCMS, withWCMS being

the total size of all inserted flows into this CMS.

127

ConQuest reads from at most h − 2 snapshots to aggregate flow size estimates. Since

each read has failure probability δCMS, we can use union bound to bound the probability

of having any failure as (h − 2)δCMS. Therefore, the aggregate read’s failure probability is

δ = (h − 2)e−C. When the aggregate read succeeded, the read error produced by each

CMS is at most εWCMSj , and the total additive error for the output is bounded by
∑h−2

j=1 ε ·

WCMSj = ε ·W, whereW is the total size of all flows inserted into all (h − 2) snapshots.

Thus, we show that ConQuest has additive error bound ε = e
R , i.e., returns estimated flow

size ŵf within wf ≤ ŵf ≤ wf +
e
RW, with failure probability at most (h− 2)e−C.

Plugging in the parameters from our hardware prototype (h = 4,C=2,R=2048), we have

worst-case additive error rate ε=0.0013 with maximum failure probability δ=0.27. We also

analyze this error empirically in Figure 5.5.1.

5.3.6 Non-FIFOQueuing Disciplines

So far, we assumed that each link serves a single FIFO queue. In practice, links often use

non-FIFO queuing, such as when an outgoing link has multiple FIFO queues (serviced

by a scheduler), or even more exotic queuing disciplines. Here we describe some potential

future works for utilizing ConQuest for analyzing queuing and congestion in general queu-

ing disciplines.

Contributing flows within a traffic class. Under multiple traffic classes, a link may

have one FIFO queue per class, as well as a scheduler (e.g., strict priority or weighted fair

queuing). Since ConQuest considers only the packet arrival and departure times, the ques-

tion “while iwas waiting, what fraction of the packets transmitted over the link belonged

to its own flow fi” from Section 5.3.1 is still germane. The answer is useful to assess how

128

much packet i’s flow contributes to queuing for its own traffic class, and act on the current

packet accordingly. However, unlike the case of single FIFO queue, themaximum queuing

delay can be large (and, in the worst case, unbounded), under heavy load in higher-priority

traffic classes. Instead, we can specify a maximum history to maintain, and answer queries

about contributing flows relative to traffic departing during that bounded period.

Contributing flows across all traffic. More generally, high queuing delays for low-

priority traffic may stem almost entirely from other, higher-priority flows that receive fast

service (i.e., di − ai is small). By querying on the narrow range [ai, di), ConQuest would

not realize that packets of flow fi are adversely affecting other (lower-priority) flows. The

query for packet iwould report that few, if any, packets of flow fi were transmitted while

packet iwas waiting! To analyze contributing flows across traffic classes (or across groups of

flows with FIFO scheduling), we can slightly modify the definition of a contributing flow to

enable these significant flows with small delay to recognize the harm they do to other traffic.

In particular, ConQuest can maintain an additional register to store the maximum delay

(MaxDelay) experienced by packets that recently left the queue, and perform a query for

packet i that considers a larger time range [di −MaxDelay, di). The value ofMaxDelay

can decay gradually over time, when queuing delays are low.

5.4 P4 Hardware Switch Prototype

We implemented a prototype of ConQuest in P4 on an Intel Tofino65 switch. We first

show how to map ConQuest to different PISA targets and how we automatically gener-

ate target-specific P4 code. Then, we describe and implement some of the possible control

actions the switch can take based on ConQuest measurements.

129

5.4.1 Mapping ConQuest to PISAHardware

Although P4 is a target-independent programming language, different hardware targets

may vary significantly from one another in characteristics like the number of pipeline

stages, size of memory, number of concurrent actions in each stage, etc. Therefore, even

though we designed ConQuest to fit within the PISA processing model, we still need to

configure its parameters to fit within individual PISA hardware target’s memory and pro-

cessing capacities.

Automated generation of target-specific P4 code. To facilitate the use of our code on

different targets, instead of writing a P4 program, we write a parameterized program that

can be instantiated with a range of parameter values. Namely, we implement ConQuest in

P4 with inline C-style macros. Once we specify parameters h,R, and C, a compiler auto-

matically generates the expanded P4 code that fits the constraints of the specific hardware

target.

The parameterized P4 program is roughly 900 lines, 60% of which are boilerplate code

supporting packet parsing, hashing etc, and 40% are ConQuest’s snapshot logic. The pro-

gram first parses the IP and TCP/UDP headers to obtain the 5-tuple as the packet’s flow

ID. Then, it computes hash functions over the flow ID for reading or writing the Count-

Min Sketches. The header parsing and hashing steps are programmable, and can change to

use other flow ID definitions (e.g., source-destination pair, destination IP, etc.).

Mapping the logical structures to physical hardware. We now discuss how to map

the logical structure presented in Section 5.3 to the pipeline stages in a hardware target.

We assume ConQuest is only allowed to use S pipeline stages to manipulate snapshots,

constrained by the capacity of the hardware target, and further limited by the other duties

130

the switch must perform, such as packet forwarding. Additionally, we denoteM as the

maximum number of concurrent register accesses the target can support in each stage.

Assume a ConQuest implementation with h snapshots, and withR rows and C columns

in each snapshot’s CMS. Each CMS usesR register arrays, and reads/updates one entry per

array for each packet. We therefore need h × R register accesses per packet in total in the

worst case, which implies a necessity for at least ⌈ h×R
M ⌉ stages for memory access. Since each

snapshot operates independently, at each stage we can “stack” multiple rows of different

snapshots, and perform the read, write, or clean operations concurrently.

After reading the snapshots, we need another ⌈log2(h − 2)⌉ stages to sum the counts

from all snapshots. We require the total number of stages used to manipulate snapshots not

exceed the available stages: ⌈ h×R
M ⌉ + ⌈log2(h − 2)⌉ ≤ S.Additionally, we need a small

constant number of stages for pre-processing, such as computing the read/write/clean roles

for snapshots and the memory addresses to use in the CMS.

ConQuest needs to fit into the hardware resource constraints of programmable switches

while sharing resources with other switch functionality; under these constraints, we would

choose the largest possible values of h,R, and C to achieve optimal accuracy. We further

discuss the effect of each parameter on accuracy in Section 5.5.1. Furthermore, since arbi-

trary division is not supported on PISA hardware targets, we implement division and floor

operations using bit right-shift, and implement modulus using bit slicing, which are ex-

plicitly defined in P4 specification117. Consequently, we choose both T and h to be integer

powers of 2.

131

5.4.2 Actions on the Contributing Flows

In this section, we discuss how ConQuest allows the switch data plane to take action on

packets based on a flow’s contribution to queue backlog. As we discuss later in Section 5.5.2,

we have implemented flow-based ECNmarking and dropping in our ConQuest prototype

to prevent contributing flows from further deteriorating congestion. We discuss these, as

well as other potential solutions.

Marking/dropping based on flow weight. When the queue builds up, the data plane

can mark the Early Congestion Notification (ECN) bit of the packets; if the queue grows

even longer, the switch can go further and start dropping packets. In conventional Ran-

dom Early Detection (RED)54 schemes, the packets from different flows are simply dropped

(or marked) with the same probability depending on average queue utilization. ConQuest

enables the switch to decide actions on packet i from flow fi, based on the current size of

flow fi in the queue when i arrived, denoted as flow weight wfi . As a basic example, given

a threshold wT, we mark packet from flow f only if wf ≥ wT. This will throttle the heav-

iest flow in the queue, while leaving small flows intact. We can also probabilistically drop

(or mark) the packet with probability Pr[ECN] ∝ max(wf − wT, 0), or with other more

sophisticated probability functions such as Pr[ECN] ∝ max(wf − wT, 0)2, inspired by

CHOKe96. In this way, ConQuest enables fast prototyping of active queue management

algorithms that target contributing flows by using probabilistic dropping, based on the

individual flow’s size in the queue.

Our P4 prototype of ConQuest supports dynamically specifying threshold wT at run

time to achieve threshold-based ECNmarking or dropping for contributing flows. We

demonstrate the effectiveness of this flow-based ECN approach in Section 5.5.2. The pro-

132

totype also supports piecewise constant approximation of any ECNmarking (or dropping)

probability function based on wf.

Act on future packets. Upon identifying a contributing flow, the switch can feed its ID

from the egress pipeline back to the ingress pipeline using packet recirculation. The ingress

pipeline may then prevent this flow from exacerbating the imminent queue buildup, by

re-routing, rate-limiting, or dropping its packets.

Report flow IDs. Transient congestion is sometimes not caused by individual con-

tributing flows. In some cases, we can identify the cause of the congestion by defining

flows at a coarser level of granularity. For example, TCP Incast37 is caused by many sources

sending packets to the same destination simultaneously, and can be accurately captured

by defining flows by destination IP address. In other cases, ConQuest can report packets

from contributing flows to a software collector for further analysis, such as aggregating the

reports to detect hierarchical heavy hitters or other groupings of flows belonging to a single

distributed application (e.g., coflows39,40). We leave these extensions as future work.

5.5 Evaluation

We evaluate ConQuest using two different setups. We use multi-factor simulation exper-

iments to test the accuracy of ConQuest under different parameter settings. We do so by

comparing ConQuest’s output to the ground truth found in the simulation. Subsequently,

we verify ConQuest’s effectiveness in detecting and acting on the flows contributing to a

backlogged queue, by evaluating our ConQuest prototype in a real-world testbed. We show

that using measurements from ConQuest, the switch can throttle bursty flows to reduce

median flow completion time.

133

00:00:10 00:00:30 00:00:50 00:01:10
Time in trace

0 ms

1 ms

2 ms

3 ms

4 ms

5 ms

6 ms

Qu
eu

in
g

De
la

y
(d

i
a i

) Queuing Delay
=0.8ms

Figure 5.4: Simulated queue buildup on the UW Trace shows low average utilization with occasional bursts.

For consistency across our experiments, we match the link rates of the legacy equipment

and use an egress line rate of 10 Gbps in all of our experiments, including the tapping setup

in Section 5.6.3. Selecting this link rate affects the timescale of a backlogged queue. On a

10 Gbps link, using a 40Mbit buffer space (typical in commodity switches) leads to a max-

imum delay of 4 milliseconds, and a snapshot time window of T=1 ms using 4 snapshots;

at 100 Gbps line rate, we would have 400 microseconds maximum delay and ConQuest

would run with T=100μs.

5.5.1 Multi-Factor Simulation Experiments

Simulation experiments allows us to freely tune all parameters of ConQuest that practical

hardware may not permit, and gives us full detail about the queuing dynamics at any given

time. Therefore, we use simulations to evaluate ConQuest’s accuracy while changing its

parameters.

Dataset and implementation. To simulate queuing delay, we utilize the publicly avail-

able University of Wisconsin Data Center Measurement traceUNI1 (UW trace)19, by feed-

134

ing the trace through a single FIFO queue with constant 10 Gbps drain rate and unlimited

queuing buffer. We use the UW data-center trace in our experiment as it is the only pub-

lic trace we are aware of that exhibits significant burstiness for simulating queue buildup,

while other public traces such as CAIDA are less bursty. Since the original trace is pub-

lished when links are predominantly 1 Gbps or 100Mbps, and the trace has an average

throughput of only 25.3 Mbps, we replay the trace 50x faster to reach 7.5% average link

utilization at 10 Gbps. As seen in Figure 5.4 the queue length exhibits a bursty pattern over

time. Similar pattern arises when we calibrate the trace to 3.75% or 15% utilization (replay

25x or 100x). The maximum queue utilization during the replay is around 8MB (6.4 ms at

10 Gbps).

We simulate the queuing delay and ConQuest snapshots using Python. When a packet i

experienced queuing delay (di − ai) greater than τ=0.8 ms (about 1/8 of maximum queue

depth observed), ConQuest reads past snapshots and reports an estimated flow size in the

queue wfi for flow fi when i entered the queue. Flow fi is flagged as a contributing flow if

wfi exceeds α fraction of the queue length. Note that for FIFO queues, “packets in queue at

time ai” is equivalent to “all packets departed during [ai, di)”. We also use simulation data

to compute the ground truth contributing flows based on actual flow sizes. We first show

results for α=1% as a representative threshold, and later show that ConQuest is robust for

various choices of α.

We note that ConQuest is answering an imbalanced binary classification problem, as the

packets belonging to contributing flows are not half of all packets queried. Therefore, we

use Precision and Recall analysis to precisely describe ConQuest’s accuracy. Precision is

defined as the number of packets correctly identified by ConQuest as part of a contributing

135

flow divided by the number of all packets reported by ConQuest. Recall is defined as the

number of packets correctly identified by ConQuest as part of a contributing flow divided

by the ground truth number of packets belonging to contributing flows. As a standard

metric for evaluating a binary classifier, Precision and Recall capture how ConQuest trades

false positives for false negatives and achieves balanced accuracy.

We define a flow based on the standard 5-tuple (source and destination IP address, proto-

col, and source and destination port). The UW trace has around 550, 000 distinct flows

in total. In our queuing simulation, when the queue is congested, there are on average

63.6 distinct flows in the queue (with 130 flows at 95%-percentile and 200 flows at 99.9%-

percentile), out of which there are an average of 3.7 contributing flows (for α=1%).

There are two primary design choices for ConQuest, the snapshot data structure’s mem-

ory size and the snapshot time window size. Using more memory to construct larger Count-

Min Sketch (CMS) data structures reduces collisions and improves accuracy. Using a smaller

time window T provides better granularity when approximating the range [ai, di) by low-

ering the rounding error, at the cost of using more pipeline stages. We evaluate the effect of

both on accuracy.

Effect of limited per-snapshot memory. We first evaluate the memory needed to achieve

adequate accuracy. For each snapshot, we use a CMS withR=2 rows and vary the number

of columns C. When C is small (hence using less memory), CMS suffers from hash colli-

sions and over-estimates the size of flows, reporting more false positives and lowering Preci-

sion (but Recall does not change since CMS would not underestimate flow size). Figure 5.5

shows the effect of varying the total number of counters in the CMS on Precision. The

Precision plateaus when there are (R · C)=32 counters per CMS with diminishing returns

136

10 20 30 40 50 60
#Counters Per Snapshot Count-Min Sketch

80%

85%

90%

95%

100%

Pr
ec

isi
on

h=32 snapshots
h=16 snapshots
h=8 snapshots
h=4 snapshots

Figure 5.5: Precision vs. snapshot data structure size. Using 24‐32 counters per CMS is adequate.

4 8 16 32
#Snapshots h

92%

94%

96%

98%

100%

Re
ca

ll

Total Memory = 0.5 KB
Total Memory = 1.0 KB
Total Memory = 2.0 KB
Total Memory = 4.0 KB

Figure 5.6: Recall vs. number of snapshots. Using 8 snapshots gives sufficiently high Recall.

for additional counters. This aligns with our observation that there are only tens of active

flows in the queue during congestion and only very few heavy flows, hence even a small

CMS can already distinguish heavy flows from small flows. With enough counters in the

CMS, there is practically no hash collision. We note that Recall is influenced more by the

number of snapshots and not by CMS size, as shown later in Figure 5.6. In real-world de-

ployments, we should use a larger CMS with more counters if there are more active flows

in the queue during congestion. We expect ConQuest to achieve nearly 100% Precision

137

whenever the number of counters in CMS is approximately the number of active flows in

queue.

Effect of snapshot time window size. Next, we evaluate the effect of snapshot win-

dow granularity on accuracy. Increasing the number of snapshots h (therefore using a

shorter time window T) reduces ConQuest’s rounding error when computing ⌈ aiT ⌉ and

⌊diT ⌋. Using fewer snapshots (and larger windows) would cause bursts that departed imme-

diately before ai to be erroneously included in the [ai, di) range, thus the rounding error

would lead to lower Recall. In the worst case, ConQuest can only look at one snapshot

and cannot adapt to the change in queuing delay. As shown in Figure 5.6, by aggregating

h=4 snapshots we can already achieve 93%Recall, and we have diminishing returns after

more than h=8 snapshots. Using more snapshots also slightly improves precision. Note

that since the maximum queuing delay in the simulated queue is around 6 ms, we config-

ure T = (6.4/h)ms in all combinations, such that aggregating time window from all

snapshots can approximately cover the entire queue. These results show that ConQuest

can achieve high accuracy once we use enough memory, with diminishing returns for ex-

tra resources. The multiple curves in Figure 5.6 almost overlap, since providing more than

enough memory yields negligible difference on Recall, or even slightly decreases Recall; this

is because hash collisions lead to over estimations, creating both more false positives and

true positives simultaneously.

Flow size estimation error. ConQuest produces an estimate of the size of each flow,

not only the largest ones. Such estimations can help network operators analyze the flow size

distribution. For example, if there is often only one large flow occupying 90% of the queue

during congestion, then it may be sensible to mark or drop the heaviest flow.

138

4 16 32 48 64
#Counters Per Snapshot Count-Min Sketch

0.0 MB

0.1 MB

0.2 MB

0.3 MB

0.4 MB

Av
er

ag
e

Es
tim

at
io

n
Er

ro
r

h=16 snapshots
Hash Collision Error
Snapshot Rounding Error

Figure 5.7: With large CMS, the effect of hash collisions becomes negligible; the flow size estimation error is mainly
contributed by snapshot rounding.

As we discussed earlier, the estimated flow size reported by ConQuest is only an approxi-

mate, and contains two types of errors: a snapshot rounding error is caused by reading an in-

teger number of past snapshots, when in reality the queuing delay may not be integer mul-

tiples of snapshot time window size; and a hash collision error happens when multiple flow

IDs encounter hash collisions, causing the CMS to overestimate flow sizes. In Figure 5.7,

we show ConQuest’s average flow size estimation error when using a different number

of counters per snapshot. We further separate the effect of hash collision from snapshot

rounding by simulating a special version of ConQuest with ideal per-flow counting in each

snapshot. As we can see, the error caused by hash collision diminishes quickly with more

counters. With C=4 counters per snapshot the effect of hash collision is prominent; with

C=64 counters the average flow size estimation error reduces to 120KB, which is mostly

caused by snapshot rounding.

Attributing the estimation error. ConQuest incurs two kinds of error when estimat-

ing the size of a flow in the queue: rounding error due to querying integer number of snap-

139

Figure 5.8: Scatter plot of estimated flow size vs. ground truth, using different number of snapshots h and different CMS
width C.

shots, and overestimation by Count-Min Sketch due to hash collisions with other flow

IDs. To further investigate the two kinds of errors, we draw scatter plots of ground truth

flow sizes versus estimated flow sizes reported by ConQuest in our simulation experiments.

In Figure 5.8, we first notice that the plots on the lower rows use fewer snapshots, hence

a ladder-shaped rounding effect (due to querying integer number of recent snapshots) is

prominent, while using more snapshots the estimation can have higher accuracy (closer to

y = x line). Meanwhile, the plots to the left use smaller CMS, causing some small flows

(with ground truth flow size close to zero) to collide with larger flows, and the overestima-

tion caused by such hash collisions is shown as dots close to the y-axis. When using larger

CMS, these hash collisions start to diminish.

140

4 16 32 48 64
#Counters

0.0 MB

0.2 MB

0.4 MB

0.6 MB
Av

er
ag

e
Es

tim
at

io
n

Er
ro

r
h=4 snapshots

4 16 32 48 64
#Counters

0.0 MB

0.2 MB

0.4 MB

0.6 MB

h=8 snapshots

4 16 32 48 64
#Counters

0.0 MB

0.2 MB

0.4 MB

0.6 MB

h=16 snapshots

4 16 32 48 64
#Counters

0.0 MB

0.2 MB

0.4 MB

0.6 MB

h=32 snapshots

Hash Collision Error Snapshot Rounding Error

Figure 5.9: Attributing estimation errors to flow ID hash collisions and snapshot rounding errors.

We can quantify the effects of the two kinds of errors by computing the average flow

size estimation error under various configurations. In Figure 5.9, we plot the average value

of absolute flow-size estimation error under different configurations. We can see that the

average estimation error is 120 KB for h=16 snapshots, withR=2, C=16 CMS.When us-

ing only h=4 snapshots andR=2, C=16, the average and median estimation error grows to

461 KB and 281 KB respectively. As a reference, under h=4 snapshots (T=1.6 ms), 10 Gbps

line rate setup, the total traffic recorded in each time window is 2 MB.

We separate the effect of rounding versus hash collision by simulating a special version of

ConQuest that does not use CMS and records exact flow sizes in snapshots, and attribute

its error to rounding (plotted in shaded green). As we can see from Figure 5.9, the error

caused by hash collisions diminished quickly with more counters in CMS; when ConQuest

is running with adequate memory, the estimation errors are mainly caused by snapshot

rounding error, and we shall note that such error will not cause significant impact for accu-

rately identifying heavy flows.

Changing contributing flow threshold. We plot the Precision-Recall curve of Con-

Quest while changing the contributing flow criteria from α=1% to smaller or larger val-

ues, while using a fixed number of h=4 snapshots, each with aR=2, C=8 CMS, creating

141

0.75 0.80 0.85 0.90 0.95 1.00
Recall

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on =0.1%

=0.3%
=1%
=3%
=10%
=30%

Figure 5.10: Precision‐Recall curve for ConQuest under simulation, for different contributing flow thresholds.

both collision and rounding error. A smaller α value requires ConQuest to detect heavy

flows earlier and report more flows, which is more challenging than reporting only one

or two heavy flows when α is very large. As shown in Figure 5.10, ConQuest can consis-

tently achieve over 90% Precision and Recall while we change α from 0.1% to 30%. In

Section 5.6.3 we perform the same Precision-Recall analysis in a real world prototype and

show similar results.

5.5.2 Closed-Loop Testbed Experiment

We build a testbed experiment to demonstrate ConQuest’s potential to analyze and proac-

tively manage queue buildup, by implementing a simple ConQuest-enabled Active Queue

Management scheme running at line rate within the data plane. We show that our Con-

Quest prototype can fit into the hardware constraints of a first-generation PISA programmable

switch, and furthermore, we can identify and throttle the flows contributing to congestion

to reduce the workload Flow Completion Time. Although the flow-based queue man-

agement scheme we implement is primitive and far from optimal, it already demonstrated

142

the potential of future works on building novel AQM schemes using programmable data

planes.

Dataset and testbed setup. Our testbed consists of two servers and one Intel Tofino65

Wedge-100 switch. Each server is a 20-core, 100G-memory blade server running Ubuntu

18.04, with Linux kernel version 4.15, and equipped with a Mellanox ConnectX-5 EN

100GbENIC.We connect both servers to the programmable switch: the sender is con-

nected via a 100 Gbps link, while the receiver is connected via a 10 Gbps bottleneck link.

This setup is designed to cause queuing: although one TCP flow can still manage to detect

the bottleneck rate correctly, the queue fills up quickly if there are many concurrent TCP

flows competing for bandwidth.

We generate workload using the flow-size distribution of a data center Web rack, which

are mostly small-to-medium size flows, from the Facebook Data Center Measurement

study101. The mean and median flow size are 38.8 KB and 1.44 KB, respectively. We sched-

ule flows using exponentially distributed inter-arrival time, choosing λ=155μs (sending

one flow every 155μs on average) to achieve 20% average link utilization (2 Gbps) on the

10 Gbps bottleneck link. The sender sends one million workload flows per experiment.

The sender also periodically starts one bursty flow per second, and we vary the size of bursty

flows between experiments.

All flows are independently managed by the Linux kernel built-in TCP congestion con-

trol mechanism, set to New Reno, Cubic, Vegas, DCTCP, or BBR.We bind multiple IP

addresses to the receiver and use the SO_REUSEADDR option on the sender to allow sending

more than 65,536 concurrent TCP flows. We verified that the servers are not CPU con-

tended.

143

We tune the baseline, flow-indiscriminative ECN setup to achieve optimal performance,

by configuring the switch to mark the ECN bit for outgoing packets when the switch’s

queue length exceeds the threshold 4096 packets (corresponding to less than 5 ms of queu-

ing delay). We found this to be the minimum queue size needed to allow a single TCP con-

nection to reach line rate, based on the minimum congestion window size required under

the Round-Trip Time on our testbed. We also configure the switch to drop packets when

the queue length exceeds 16384 packets, although this rarely happens when the sender hon-

ors the ECNmarking. Our switch is an output-buffered device and we use a single FIFO

queue.

Our prototype implementation of ConQuest has h=4 snapshots, each having a CMS

withR=2 rows, due to hardware pipeline constraints. We choose C=2048 columns, the

largest we can effectively clean within the snapshot clean phase. in total, they use (R·C·h)·4

bytes=65 KB of register memory, less than 1% of the total available on the hardware. The

prototype also utilized small fractions of several other hardware resources: it computes

R=2 hash functions and performs (R · h)=8 memory accesses, both less than 20% of total

capacity. This leaves plenty of room for other switch functionality to be run in parallel with

ConQuest.

We configure our prototype to rotate the snapshots every T=2 ms, such that aggregating

all snapshots will approximately cover the entire queue. We configure congestion threshold

to τ=2 ms. When transient congestion is identified, i.e., queuing delay exceeds τ, ConQuest

will start marking ECN for flows with wf > wT=512 packets, corresponding to approxi-

mately α=25%.

144

0MB 200MB 400MB 600MB
Burst Flow Size

75 s

80 s

85 s

90 s

95 s

100 s

105 s

W
or

kl
oa

d
Fl

ow
 C

om
pl

et
io

n
Ti

m
e

Basic ECN
Flow-based ECN

Figure 5.11: We can configure ConQuest to selectively mark ECN for only the burst flow and not for small flows, leading
to better FCT for small flows workload.

Flow Completion Time comparison. Figure 5.11 shows the median Flow Completion

Time (FCT) of the workload flows, i.e., the small and medium flows generated using the

Facebook web rack distribution, with respect to the bytes sent on the bursty flow. Under

conventional queue management, when a bursty flow fills up the queue and triggers ECN

marking, some packets from small flows inevitably get marked; this is true even if proba-

bilistic (RED-style) ECNmarking is used. This leads to a growing FCT for the workload

flows as the burst flow becomes larger. Instead, ConQuest only marks packets from the

bursty flow, while allowing all small flows to quickly finish sending without being throt-

tled. As a result, the bursty flow has less impact on the FCT of small flows. We have also

observed slight improvements in 90%-percentile FCT; however, 99%- and 99.9%-percentile

FCT deteriorates since the largest workload flows are also penalized by ConQuest.

The result shown in Figure 5.11 was performed using New Reno congestion control

(ConQuest reduced median FCT by 6.9%); experiment results for other congestion control

algorithms are similar (ConQuest reduced median FCT by: 7.3% for Cubic, 1.6% for Vegas,

145

0 20 40 60 80 100 120
Relative Time in Milliseconds

0

1000

2000

3000

4000

5000

Qu
eu

e
Si

ze
 (i

n
#p

ac
ke

ts
) Burst Start Burst EndBasic ECN

Flow-based ECN

Figure 5.12: By only marking ECN on contributing flow’s packets, ConQuest can effectively throttle the bursty flow and
maintain a shorter queue length.

0.56% for DCTCP), except for BBR. Notably, BBR does not honor ECNmarking (or

dropping) as the congestion control signal and performs its own queue buffer utilization

probing, and therefore ConQuest cannot affect its sending rate.

Figure 5.12 shows the queue length statistics we collected from the programmable switch,

while a 50MB burst flow interacts with the small flow workload. Under regular ECN set-

tings the queue is quickly filled up to the ECNmarking threshold, at which point all flows

are subject to congestion control and queue length oscillates, until the bursty flow finishes

sending. In contrast, when we enable flow-based ECN by querying ConQuest, the bursty

flow is quickly throttled and the queue remains short during the entire sending period.

Note that the queue length has many short spikes when ConQuest is enabled; this is be-

cause multiple short flows can all quickly finish without being marked or dropped.

Our results show that it is possible to improve network performance at the switch level

with flow-level queuing analysis and queue buildup mitigation. Although the AQM scheme

we implement with ConQuest in the testbed is very primitive, it already demonstrates the

146

potential performance improvements of using programmable switches to implement so-

phisticated AQM algorithms. We note that in practical networks such as wide-area / carrier

networks, merely adding an ECN flag cannot throttle flows immediately and effectively; we

need to take other actions on the packets of contributing flows, such as dropping, rerout-

ing, or scheduling them in a separate queue.

5.6 ConQuest for Legacy Devices

Legacy (i.e., non-programmable) routers are not designed for precise queuing analysis.

They often only support polling the total queue length statistics at a coarse time interval,

providing no insight into which flows occupy the queue. Existing networks are not going

to replace legacy routers with programmable switches overnight. Yet advanced fine-grained

queue monitoring techniques are necessary today, both for debugging existing devices and

for understanding the buffer capacity needed to support their operational workload. This

is especially true in carrier networks, where the upgrade cycles for network equipment are

longer and network operators cannot performmeasurements at end hosts. Therefore, net-

work operators have been looking for ways to use an advanced programmable switch as a

plug-in debugging tool, to measure and analyze queuing on legacy routers in their network

wherever problems arise.

We propose a novel way to use ConQuest as a tool for selectivelymonitoring one legacy

router, temporarily, in a non-intrusive manner, by tapping its existing ingress and egress

links and using a programmable switch to process the tapped traffic. With one programmable

switch at hand, network operators can debug any legacy device in the network, gaining on-

demand visibility into its queuing dynamics and congestion in real time, without having to

147

replace the device with a programmable one. Tapping is often readily available at the physi-

cal layer (split-fiber), or as a monitoring capability provided by the equipment vendor.

We deployed our extended prototype of ConQuest in two different settings: tapping

into a border router in a campus network‡, and tapping into a carrier-grade router in an ISP

testbed.

At Princeton University, our campus network operator had identified one border router

that occasionally suffers frommassive packet drops under low average link utilization. We

suspect transient congestion is taking place, however existing diagnostic tools only report

queue buffer utilization (alongside other metrics) at minute-level granularity, without ap-

parent anomaly. We helped our campus network operator to use a programmable switch

running ConQuest to tap and analyze this border router’s ingress and egress traffic, and

successfully located the cause of the drops: a performance monitoring tool that failed to

schedule throughput tests in series (as claimed), creating incast frommultiple senders across

Internet2. The queuing delay oscillates wildly from empty to full, and there are 4-5 con-

tributing flows in the queue, all for active throughput testing. Here we see that passive

monitoring powered by ConQuest was able to diagnose the performance problems caused

(ironically!) by an active performance monitoring tool.

At AT&T Labs, we use a Cisco carrier-grade router to process synthetic bursty traffic,

and let ConQuest analyze tapped traffic to verify its accuracy and robustness under the

tapping setup. We present the details of our testbed and the results in Section 5.6.3.
‡The diagnostic process involves no access to personal data and has been approved by our university’s

Institutional Review Board.

148

Programmable Switch

Legacy Router

1 2

Packet 2 Not
Tapped on Ingress

Packet 1, 3 Tapped
on Ingress

2 1
3

3

Packet 1 Not
Tapped on Egress

Packet 2, 3 Tapped
on EgressQueuing

Matching
and Snapshots

ai

di

1

ai

di

1

ai

di

1

ai

di

1

Figure 5.13: Using a PISA switch to analyze queuing in a legacy router, by tapping ingress and egress links.

5.6.1 TapMultiple Links of Legacy Router

Figure 5.13 illustrates the setup for using a PISA switch to monitor queuing in a legacy

router. We tap a subset of the legacy router’s ingress and egress ports and mirror their traf-

fic to ports with a common packet-processing pipeline in the PISA switch. Ideally, we

would like to tap all ingress and egress links; however, this may be impractical due to cost or

tapping link availability; nevertheless we can analyze the legacy router’s queuing efficiently

even by tapping only a subset of the links, as we discussed in Section 5.6.2.

The PISA switch records the arrival timestamp (ai) of a packet when it appears in a

tapped ingress link, and records the departure timestamp (di) of a packet when it appears

in a tapped egress link. To recover accurate and unbiased queuing delay (di − ai), the tap-

ping links for the ingress and egress ports should have equal and constant latency.

149

5.6.2 Match Ingress and Egress Packets

To recover the queuing delay (di − ai) experienced by packet i, we would like to match the

appearances of packet i in both the tapped ingress link and the tapped egress link. There are

several technical details to consider:

Hash digest. We hash a packet’s header fields to obtain a hash digest for efficiently

matching a packet’s appearance on a tapped egress link with its earlier appearance on the

ingress link. For IPv4 packets, we can examine the IPID field. For TCP packets, we can also

observe the sequence/acknowledgement number to distinguish individual packets within

the same flow. Matching IPv6/UDP packets is more challenging and we omit the imple-

mentation details.

Storage and timeout. The digest and arrival time ai from the tapped ingress are first in-

serted to a hash-indexed array. Later, when a copy of the same packet appears on the egress

tapping link at time di, we compute the same digest to fetch ai from the array and compute

the queuing delay (di − ai), and also clear the entry from the array.

Not seen on egress: Some packets that appear on a tapped ingress link may be dropped

or routed to an untapped egress port; therefore, they never appear on the tapped egress

link. For example, in Figure 5.13, packet 1was tapped on an ingress link, but was routed to

an egress port not being tapped. These packets would fill up the register array that would

never be matched and are therefore useless. We solve this issue by implicitly expiring entries:

we allow an entry to be evicted from the array once its arrival timestamp has aged more

than the maximum possible queuing delay, and can thus be considered expired.

Not seen on ingress. A packet that arrives at the tapped egress link may not have a cor-

responding digest and arrival timestamp stored in memory. This may occur if the packet

150

17:24:08 17:24:16 17:24:24 17:24:32
Time in GMT

0 ms

1 ms

2 ms

3 ms

4 ms

5 ms
Measured Queuing Delay
Polled Queue Length

0 MB

2 MB

4 MB

6 MB

Figure 5.14: Queuing delay measured by our prototype matches the ground‐truth queue‐depth reported by the legacy
switch.

entered the router from an untapped ingress link, or a failed insertion to the array due to

hash collision. For example, in Figure 5.13 packet 2 comes in from an untapped ingress

port, but appears on the tapped egress port, so d2 is known but a2 is unknown. We cannot

query if these packets belong to a contributing flow; however, we still insert them into the

current snapshot using the departure timestamp, since they contributed to the congestion

at our monitored egress port.

5.6.3 Validationwith a Cisco CRS Router

We built a tapping testbed to evaluate if ConQuest can accurately diagnose queuing in a

legacy switch. We use a programmable Barefoot TofinoWedge-100 switch (“programmable

switch”) to tap 3 ingress links and 1 egress link of a Cisco CRS 16-Slot Single-Shelf System

(“legacy router”), all running at 10 Gbps. We use an IXIA traffic generator to feed traffic

into the 3 ingress ports; the legacy switch is configured to route all traffic to the same egress

port, into a single FIFO queue.

151

We extend the ConQuest P4 program to match ingress and egress packets to calculate

queuing delay, and compute ground truth statistics for evaluation purpose. The combined

P4 program has around 1, 200 lines of code. We also validated that our extended Con-

Quest prototype correctly estimates the queuing delay in a legacy switch, by comparing

the queuing delay estimated by ConQuest with the ground truth queue length reported by

the legacy switch. We send periodically bursty traffic into the legacy switch to create queu-

ing. As shown in Figure 5.14, the queuing delay computed by our P4 program nicely aligns

with the queue length reported by the legacy switch (divided by line rate 10 Gbps).

We configure the IXIA traffic generator to send 10 flows as background workload, rang-

ing from 1Mbps to 5 Gbps, and send 3 periodically bursty flows, with varying burst dura-

tion from 50 µs to 5ms. Note that the number of flows are limited by our need to main-

tain ground truth per-flow counters for evaluation purpose, and ConQuest itself can work

with a large number of flows, as demonstrated in Section 5.5. Since the prototype has h=4

snapshots and the maximum observed queuing delay is around 4 ms, we configure the

ConQuest to use snapshot interval T=1 ms. Each snapshot uses aR=2 row, C=64 column

Count-Min Sketch, which is large enough to not cause any hash collision. The congestion

reporting threshold is set to τ=0.5 ms, about 1/8 of maximum queue length, similar to pre-

vious experiments.

We compared the reported packets ConQuest identified as part of a contributing flow to

the per-packet ground truths we fetched from IXIA and our extended P4 prototype, and

computed Precision and Recall metrics. Figure 5.15 shows the Precision-Recall curve, un-

der different contributing flow criteria α. ConQuest consistently achieves over 90% Preci-

sion and Recall when identifying contributing flows, for α ranging from 0.1% to 30%. Al-

152

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on =0.1%

=0.3%
=1%
=3%
=10%
=30%

Figure 5.15: Precision‐Recall curve for ConQuest’s P4 prototype under tapping setup.

though we cannot support taking immediate corrective action, ConQuest still provides us

unprecedented visibility and high accuracy for analyzing queuing in a tapped legacy router.

5.7 RelatedWork

Measuring queue buildups

Zhang et al.130 implemented a high-precision microburst measurement framework in data-

center networks, by polling multiple switches’ queue depth counter at high frequency, and

analyzing duration and inter-arrival time of microbursts. However, the system provides

limited insight into the contents of the queue, such as which flows contributed to a mi-

croburst or the flow size distribution during the queue buildup. Several recent papers use

programmable switches for fine-grain logging of traffic in the data plane. SpeedLight125

is a general system for recording synchronized traffic statistics across multiple switches for

offline analysis, including analyzing queuing dynamics. BurstRadar66 can log packets in

a ring buffer at a single switch during queue buildup for offline analysis. *Flow112 com-

153

presses the packet logs before exporting the measurement data to reduce overhead on the

remote hosts. Speedlight, BurstRadar and *Flow all provide fine-grained measurement data

for offline analysis, but cannot identify or act on contributing flows directly in data plane.

Meanwhile, HPCC76 measured switch queue length to improve end-host based congestion

control.

Data-center traffic management

In recent years there has been much work on alleviating congestion in data centers. For

example, load-balancing schemes like Presto63, DRILL57 and CONGA3 disperse the of-

fered load over multiple paths, without addressing the root cause of queue buildup. In con-

trast, ConQuest enables the switches to identify and target individual flows contributing

to backlogged queues. Meanwhile, data-center transport protocols such as NDP60 and

Homa89 reduce queuing delay at switches, but they typically assume the end-host network

stack (e.g., tenant VM) participates honestly in the protocol, or require enforcement by the

underlying hypervisor or NIC. Fastpass99 offers a centralized traffic orchestration approach

for preventing queue buildup, by centrally allocating the capacity of network links to in-

dividual senders. Meanwhile, ConQuest does not impose any additional mechanisms or

overheads on the end-host network stack, hypervisor, or NIC. This is especially critical for

transit and enterprise networks that do not have control over the end hosts.

Fair queuing

Sharma et al.108 proposed an approximate per-flow fair queuing mechanism using pro-

grammable switches, which reduces the bursty flow’s impact on other traffic. Instead of

154

enforcing fairness among all flows, ConQuest identifies individual flows contributing to

queue backlogs, and therefore enables acting directly on those flows.

Estimating FIFO queue state

Queue Inference Engine, by Larson 72 and later improved in21, is an algorithm to analyze

the queuing state of a FIFO queue, with random arrivals following a Poisson process. QIE

only uses departure timestamps as input, and can infer queuing delay based on observing

consecutive departures (“busy periods”). Instead, ConQuest calculates the exact queuing

delay for each packet using queuing metadata, and its goal is to analyze the heavy flows in

the queue. ConQuest can be used under arbitrary packet arrival time distributions, such as

microbursts.

Slidingwindow query

Our data structure contributes to a body of theoretical work on streaming algorithms

on sliding time windows. For example, several works1,17,24,126 propose algorithms for set

membership or heavy-hitter queries on a fixed-size sliding window. In contrast, our work

deals with a dynamic query window [ai, di), which varies across the packets in the stream.

As such, the window sizes of future queries are unknown when a packet enters the data

structure. ConQuest addresses this challenge by reading from a variable number of time-

window snapshots. Basat et al. 14 has explored a similar dynamic window query problem

and proposed advanced data structures that run on general purpose computers. To the best

of our knowledge, ConQuest is the first solution to be implemented within the resource

constraints of programmable switch hardware.

155

5.8 Conclusion

We present ConQuest, a framework for real-time, fine-grained queue analysis in the switch

data plane. ConQuest reports which flows contribute to the queue buildup, and enables

direct per-packet action in the data plane. We implement a ConQuest prototype on a pro-

grammable switch using only 65 KB of register memory. Testbed evaluation demonstrates

ConQuest can effectively identify the contributing flows, and enable the switch to throttle

them.

In addition, we propose a novel way to use ConQuest to monitor queuing in legacy net-

work switches. We deployed this setup in both a carrier and a campus network to measure

queuing and diagnose performance problems in legacy devices—as a first step in demon-

strating the benefits of data-plane queue measurement to network operators.

156

6
AHAB: Enforce hierarchical fairness via

closed-loop adjustment

In this chapter, we present AHAB, a per-user fair bandwidth enforcer running on pro-

grammable switches based on closed-loop iterative refinement. Network operators want

to enforce bandwidth fairness without solely relying on congestion control running on

157

end-user devices; however, traditional software-based schedulers struggle to achieve high

throughput and low latency. Meanwhile, in edge networks, the number of users far exceeds

the number of queues supported by today’s switch hardware; even accurately tracking per-

user sending rates may become too memory-intensive. AHAB tracks each user’s approx-

imate traffic rate and compares it against a bandwidth limit, which is iteratively updated

via a real-time feedback loop to achieve max-min fairness across users. Using a novel sketch

data structure, AHAB avoids storing per-user state, and therefore scales to thousands of

slices and millions of users. Furthermore, AHAB supports network slicing, where each slice

has a guaranteed share of the bandwidth that can be scavenged by other slices when under-

utilized. Evaluation shows AHAB can achieve fair bandwidth allocation within 3.1ms, 13x

faster than prior data-plane hierarchical schedulers.

The work in this chapter was completed in collaboration with Robert MacDavid and

Jennifer Rexford. It was first presented in IEEE INFOCOM 202382 and will appear in the

IEEE/ACMTransactions on Networking.

6.1 Introduction

Fair bandwidth allocation between users is an important goal for network operators, since a

minority of users demanding too much bandwidth should not negatively affect other users’

quality of service. Yet, leaving bandwidth allocation entirely to congestion control running

on end hosts may lead to unfair allocation between different congestion control algorithms.

Fair bandwidth allocation is, therefore, a necessary function of the core network. As mod-

ern networks scale to higher speed and more users, implementing per-user fair bandwidth

allocation becomes increasingly more challenging.

158

Network slicing is a network feature that allows an operator to divide its network re-

sources into many virtualized networks. Slicing enables operators to rapidly create new

service offerings for different markets, while achieving performance isolation and quality-

of-service guarantees between different slices. To support slicing, the network needs to im-

plement both intra-slice fairness where different users within the same slice gets a fair share

of the slice’s bandwidth, as well as inter-slice fairness where each slice gets its share of band-

width proportional to its specified weight. Meanwhile, the idle capacity from underutilized

slices must also be fairly distributed to other over-subscribed slices.

One real-life example of a sliced network is the mobile access network. As IoT and 5G

becomes prevalent, we face scalability challenges in implementing fairness. A base station

may serve 100-1000 user devices, which belong to different classes of services (IoT, smart-

phones, mobile broadband, first responders, etc.) and have different usage patterns. Each

slice (class of service) gets its guaranteed share of bandwidth; when a slice has few active

users, its unused bandwidth can be distributed to users in other slices. Meanwhile, we want

different users within the same slice to fairly share the limited physical-layer bandwidth: ev-

ery user in the same slice should be allocated the same maximum bandwidth limit, which

should be increased or decreased in real time based on both the number of active users in

the slice and the total bandwidth allocated to the slice.

The slice-based fairness paradigm also exists in other scenarios. A data-center network

operator may slice its network capacity into multiple classes of service (free tier, spot in-

stances, enterprise customers, etc.) and allocate bandwidth fairly between different tenants

within the same slice. Likewise, a network-layer DDoS mitigation mechanismmight slice

the network to serve different websites, and fairly allocate the bandwidth between all (po-

159

Figure 6.1: In (a), all links are fully utilized. In (b), Users 1a, 2a, and 3a do not need their fair share and the surplus is
redistributed.

tentially malicious) clients visiting a particular website. We illustrate an example two-layer

hierarchy in Figure 6.1, where many users (mobile devices, virtual machines, or clients) are

grouped into slices, and different slices divide the total bandwidth equally. As user band-

width demand changes constantly, the fair allocation also changes.

In all of these example use cases, the number of users within each network slice (from

thousands to millions) far exceeds the number of hardware queues available on today’s net-

working hardware, which commonly supports 8-32 queues per port. In today’s mobile net-

work, client rate-limiting and scheduling are sometimes implemented as a virtual network

function running on server CPUs62. Such a setup supports versatile scheduling policies, yet

it requires many CPU cores to serve high-speed traffic and often adds latency and jitter to

the traffic. Meanwhile, maintaining ultra-low latency for latency-sensitive applications is

one of the most important features in 5G and next-generation 6G networks, which already

achieves sub-10ms end-to-end latency113,121.

The emergence of high-speed programmable network devices had enabled implementing

Active QueueManagement (AQM) algorithms directly in the switch data plane108,116,128,129.

Although recent works81,106 have offloaded many mobile core network functionalities onto

programmable switches, traffic scheduling is a notable exception. To the best of our knowl-

160

edge, no existing work has attempted to offload scalable slice-based fair bandwidth alloca-

tion to high-speed programmable switches. Cebinae127 enforces long-term fair bandwidth

allocation but takes seconds to converge. HCSFQ129 supports slice-based fair bandwidth

allocation but requires per-user memory to monitor each user’s sending rate; this not only

adds control-plane overhead for adding and removing users, but also leads to scalability

challenges given the limited amount of memory in the data plane.

There are two main challenges for running fair bandwidth allocation directly within

the data plane of high-speed programmable switches. Firstly, the available memory is in-

sufficient for maintaining per-user state. We therefore need to use approximate data struc-

tures, whose memory footprint scales sub-linearly with the number of users (as discussed

in § 6.4). Secondly, we can only perform a limited set of arithmetic operations in the data

plane. We use lookup tables to implement approximated multiplication and division,

which is then used for calculating linear interpolation. This enables us to implement real-

time, closed-loop iterative update for the per-user bandwidth limit (as discussed in § 6.5).

Finally, without using separate queues for each user, we enforce per-user bandwidth limits

via probabilistic packet dropping, achieving approximate fair bandwidth allocation.

Contribution

We present Approximate Hierarchical Allocation of Bandwidth (AHAB), a hierarchical

per-user bandwidth limit enforcer directly implemented in the data plane of programmable

switch hardware. AHAB dynamically adjusts the per-user bandwidth limit for each slice in

real time, calculated using max-min fairness with the bandwidth demand of all users across

all slices. The novelty of AHAB can be summarized as follows:

161

• Scalability: By using a novel approximate data structure, AHAB avoids maintaining

per-user state in data-plane memory, thereby supporting millions of simultaneous

users.

• Fast Convergence: When user traffic changes, AHAB’s interpolation-based iterative

bandwidth limit update converges to fair bandwidth allocation within 3.1ms, 13x

faster than prior work129.

• Precise Enforcement: We use probabilistic dropping to precisely enforce bandwidth

limits. This allows users to steadily send at the fair rate observing the bandwidth

limit, without requiring hardware queues to pace packets as needed by prior work.

• One-stop Bandwidth Allocation: AHAB supports an arbitrary number of hierar-

chy levels. Therefore, a single instance of AHAB in the core network can rate-limit

traffic correctly to adhere to all downstream bandwidth bottlenecks. This is highly

useful when downstream devices do not support sophisticated scheduling policies

(e.g., legacy routers or thinWi-Fi access points), or when the network operator is

unable to arbitrarily adjust device configurations, possibly because the core and

downstream networks are managed between different administrative entities (e.g.,

MVNOs and wireless carriers).

Outline

The chapter is structured as follows. Section 6.2 defines the hierarchical fair bandwidth al-

location problem. Section 6.3 presents an overview of AHAB’s division of labor between

control and data plane. Section 6.4 discusses how AHAB overcomes the scalability chal-

162

lenge by avoiding per-user memory using a customized approximate data structure, while

Section 6.5 describes how AHAB approximately calculates an interpolation-based band-

width limit update given the arithmetic constraints in the data plane. Evaluation in Sec-

tion 6.6 demonstrate that AHAB converges to a fair bandwidth allocation quickly within

5 ms, achieving both fairness and throughput stability. Finally, we discuss related work in

Section 6.7 and conclude in Section 6.8.

6.2 Hierarchical Fair Bandwidth Allocation

AHAB needs to allocate a network slice’s available bandwidth fairly between all users in

different slices based on max-min fairness. In this section, we present the same problem

definition as in earlier works18,55,110,129. For simplicity of discussion, for now we assume all

users and slices in our system have equal weight, although it is trivial to add weights and

allocate bandwidth proportionally.

6.2.1 Motivating Example

In Figure 6.1, we illustrate a two-level scheduling hierarchy. The root has a total downlink

capacity of 600Mbps and serves three slices. There are 1, 2, and 5 users in each slice, respec-

tively.

Figure 6.1(a) depicts the “busy” scenario where all users are downloading as fast as pos-

sible; the total bandwidth of 600Mbps is equally divided into 200Mbps per slice. The

sole user in the first slice gets 200Mbps bandwidth, the users in the second slice both get

100Mbps, while the five users in the last slice each get 40Mbps.

163

Symbol Definition
Cn Bandwidth capacity allocated to slice n
Dn Total bandwidth demand of slice n
Tn Per-user bandwidth limit of slice n
Rm Bandwidth demand of userm ∈ child(n)

Tlow,Tmid,Thi Candidate bandwidth limit for next epoch
f(T∗) Hypothetical total sending if the limit was T∗

Table 6.1: Summary of notations used in this Chapter.

When user bandwidth demand changes, the fair allocation also changes. In Figure 6.1(b)

we show a scenario where user 1a and 3a leave the network (e.g., powered off) and user 2a

has a low bandwidth demand (e.g., audio streaming); all other users are still downloading

as fast as possible. In this case, slice 1 does not use any bandwidth, so the total bandwidth

is equally divided to the other two slices (300Mbps each). User 2b can use all the remaining

bandwidth in slice 2, which is 280Mbps. Users 3b-3e each can use 75Mbps of fair share.

Hierarchical fair bandwidth allocation achieve fairness in both levels: busy users in the

same slice get the same bandwidth, after considering the underutilized users in the same

slice; different busy slices also get the same aggregated bandwidth, after re-allocating the

unused bandwidth from underutilized slices.

6.2.2 Max-min Fairness Allocation

Now we formally define the fair hierarchical bandwidth allocation based on max-min fair-

ness and work-conserving scheduling.

Let us first denote a slice n’s total bandwidth capacity as Cn, and its set of users as child(n)

(its “children” in the scheduling hierarchy). Each userm ∈ child(n) has a bandwidth de-

mandRm, which is the maximum bandwidth it would like to consume if no bandwidth

limit is enforced. We can therefore calculate slice n’s total bandwidth demand as the sum of

164

Figure 6.2: Limit Tn is enforced against those users in slice n whose demand exceeds than Tn, so that the total band‐
width consumed is exactly Cn.

all user’s demand:

Dn =
∑

m∈child(n)

Rm, (6.1)

and we call slice n underutilized ifDn ≤ Cn. In this case, a bandwidth limit is unnecessary

as the slice’s capacity is greater than the total demand of all users.

However, when a slice is busy, the demand exceeds capacity and we need to impose a per-

user bandwidth limit, such that the actual total bandwidth usage of this slice equals to its

capacity. Based on max-min fairness, we can define the per-user bandwidth limit as

Tn = argmax
T

∑
m∈child(n)

min(T,Rm) ≤ Cn. (6.2)

Enforcing this bandwidth limit would have no effect for users requiring less bandwidth

(Rm < Tn) and only affects the users using more bandwidth. We can prove that such a

limit Tn always exist for a busy node n, and the resulting enforcement achieves the unique

max-min fairness allocation between users. For completeness, we define Tn =∞ for under-

utilized slices.

165

In Figure 6.2, we illustrate the relationship between the bandwidth limit Tn and the total

bandwidth used by users in slice n. The demands {Rm |m ∈ child(n)}, when sorted from

least to greatest, form a demand curve. After enforcing per-user limit Tn, each user uses

min(Tn,Rm), and the total bandwidth used by all user is
∑

m∈child(n) min(Rm,Tn)which

is represented the size of the shaded area, under the intersection of demand curveRm and

the horizontal line of limit Tn. This area increases as we increase Tn, and the ideal limit Tn

means the shaded area has size exactly equal to the available bandwidth capacity Cn of this

slice. Thus, our goal for finding the right bandwidth limit Tn under max-min fairness is

equivalent to finding the right “horizontal cut” across the demand curve.

Note that the fair allocation is not fixed: As the user’s bandwidth demand constantly

changes, it is necessary to recalculate the fair allocation and update Cn and Tn. Calculating

the hierarchical fair bandwidth allocation requires a two-step process: aggregating the de-

mands upwards, then allocating the capacity downwards. First, we calculate the sum of all

slice’s demand,D =
∑

n Dn, which represents the total bandwidth demand at the root

of the entire scheduling hierarchy. We then allocate the total capacity C at the root of the

scheduling hierarchy for different slices. When the total demand exceeds capacity (D > C),

we can allocate per-slice capacity Cn for each slice, using exactly the same max-min fairness

principle as in Equation 6.2. Subsequently, using Cn, we can obtain the per-user rate limit

Tn for each slice. When these limits are enforced for every user, we implement max-min fair

bandwidth allocation across the entire scheduling hierarchy, and the total bandwidth used

by all slices will equal to the root’s total capacity.

The discussion here focused on a two-level scheduling hierarchy; the same definition

applies to more levels.

166

Figure 6.3: The control plane maintains inter‐slice fairness by periodically reading each slice bandwidth demandsDn and
writing fair capacities Cn; the data plane keeps intra‐slice fairness by iteratively updating bandwidth limits Tn.

6.3 AHAB SystemOverview

Figure 6.3 illustrates the basic design of AHAB. At a high level, we split the bandwidth allo-

cation process into a fast-reacting data plane component and a more sophisticated control-

plane component for hierarchical updates.

6.3.1 Data Plane: Intra-slice Fairness.

To quickly react to changes in individual user’s traffic, AHAB calculates iterative updates

for the per-user bandwidth limit Tn fully within the data plane, using approximated linear

regression. This allows the intra-slice bandwidth allocation to converge within millisec-

onds after a user starts or stops sending, much faster than updating using the switch control

plane.

Since it is impossible to perfectly predict the constantly changing per-user traffic de-

mand, AHAB splits the traffic into very small time epochs (on the order of milliseconds)

and uses the demand distribution in the past epoch as a prediction for the next epoch. At

167

the end of each epoch, we use this demand distribution (as illustrated in Figure 6.2) to it-

eratively refine the per-user bandwidth limit Tn, such that the total bandwidth used by all

users in the slice will be approximately equal to the capacity Cn.

6.3.2 Control Plane: Inter-slice Fairness.

The control plane is responsible for implementing fair allocation for all the other layers

of the scheduling hierarchy beyond the slice level. It periodically reads the per-slice total

bandwidth demandDn (by reading registers populated by the data plane), and calculate

the aggregate demand at higher level of the hierarchy. Then, it calculates the bandwidth

allocation according to max-min fairness (§6.2.2) starting from the root, until it obtains the

per-slice fair allocation capacity Cn. These values are then written to registers that will be

read by the data plane.

The periodic update happens every 10-20ms, mostly due to communication bottleneck

(reading demands and writing capacities). Thanks to statistical multiplexing, the aggregated

bandwidth demand of different slices changes on a longer timescale. Therefore, the slightly

slower update of capacities has little impact on maintaining intra-slice fairness. We also note

that when all slices are busy, their fair allocation is constant; the allocated capacities only

changes when some slices are underutilized.

6.4 Scaling BeyondMemory Limits

In this section, we discuss how AHAB overcomes the scalability challenge imposed by

hardware memory size limits. We first discuss how the bandwidth limit Tn is enforced on

each user using their estimated sending rates. Subsequently, we show how AHAB avoids al-

168

locating per-user memory, using a novel approximate data structure that combines Count-

Min Sketch with Low-Pass Filters to estimate per-user sending rates. Finally, we discuss

how we share one approximate data structure across all slices using weight-based normaliza-

tion.

6.4.1 Enforcing Bandwidth Limits

For the entire scheduling hierarchy to achieve bandwidth fairness, we must properly en-

force bandwidth limit Tn on all users. Naively, we can allocate one queue per user and as-

sign the bandwidth limit as the queue’s drain rate. However, the number of users (thou-

sands to millions) far exceeds the number of queues available in hardware switches (8-32

queues per port). Instead, as proposed by CSFQ115 and AFD95, we can enforce bandwidth

limits using active queue management, or more specifically probabilistic dropping, as long

as we know the user’s sending rate. This approach does not require a traffic scheduler, and

can be performed even if the switch has only a single queue.

For a userm in slice nwith bandwidth limit Tn and sending rateRm, we can enforce the

bandwidth limit Tn by dropping its packets with probability

Pr[drop] = 1−min
(
1,

Tn

Rm

)
(6.3)

as described in CSFQ115 and AFD95. If a user uses less than the limit Tn, no packet will

be dropped; otherwise, after probabilistic dropping the user’s remaining packets will use

bandwidth equal to Tn.

We also observe that probabilistic dropping is unfriendly for TCP flows, as TCP achieves

low goodput if we perform probabilistic dropping whenever its instantaneous sending rate

169

exceeds Tn. This is partly because TCP congestion control slows down severely upon two

consecutive packet drops, by reducing its congestion window back to slow-start; mean-

while, randomized packet dropping will quite often produce consecutive packet drops.

Therefore, we specifically optimize the rate-limiting for TCP flows by using periodic

instead of probabilistic dropping, and drop one packet approximately every Tn · const

bytes, corresponding to the desired congestion window size for achieving goodput equal

to Tn. We also adapt various TCP shaping techniques discussed in Nimble116, such as

adding Early Congestion Notification (ECN) flags. This way, much fewer TCP packets

are dropped compared to non-TCP flows; well-behaving TCP flows enjoy relatively steady

goodput while AHAB can enforce the bandwidth limit Tn effectively. We leave the open

question of how to optimally enforce bandwidth limits on TCP flows with various conges-

tion control algorithms as a future work.

6.4.2 Avoiding Per-userMemory

Knowing a user’s sending rateRm is vital for correctly enforcing the bandwidth limit. As

discussed in CSFQ115 and HCSFQ129, asking the sender of all traffic to attach their traffic

rate to each packet is an easy yet unrealistic solution, as the sender might belong to a differ-

ent administrative entity and may not honestly report the rate. Therefore, AHAB needs to

measure each user’s sending rate directly.

Recent works116,129 in queue scheduling within high-speed programmable switches rely

on using the onboard memory to maintain per-user sending rate statistics, by allocating one

traffic counter per user. However, programmable switches only have a limited amount of

onboard memory in the data plane, limiting its scalability. At any given time, a core net-

170

work switch may be servicing millions of users across thousands of base stations, making it

infeasible to store any per-user state in memory, not to mention the hassle of keeping the

memory allocation up-to-date when users constantly join or leave the network.

Instead, we build a customized memory-efficient approximate data structure to track

per-user sending rate, by combining two techniques: Low-Pass Filters (LPF) and Count-

Min Sketch (CMS)48:

• The LPF is a self-decaying counter, available as an advanced feature of the Tofino

switch hardware. If we add value x at time t to a LPF with previous value v0 and last

update time t0, its new value becomes

v = x+ v0e−(t−t0)/τ, (6.4)

where τ is its decay time constant. As discussed in115, if we aggregate the packet sizes

of a single user’s traffic in a LPF, the LPF will report an exponentially-decayed mov-

ing sum of recent packet sizes, which is proportional to a good estimate of the user’s

instantaneous sending rate.

• The CMS48 is an approximate data structure that answers frequency queries, using

r rows of hash-indexed arrays each having c counters. Given an “insertion” with a

size and a user ID, we find one location per row by applying r different random hash

functions over its ID, and increment the counters at those location by the size; when

querying the total size of a particular ID, we find the same r locations and report the

minimum of the r counters.

171

When used to estimate size of flows in traffic, CMS is good at reporting heavy flows, as it

never underestimates flow sizes. However, a vanilla CMS can only track the total number

of bytes sent by a user since the CMS is initialized, not the user’s instantaneous sending

rate. Although it is possible to run multiple instances of CMS in a round-robin fashion to

query moving-window flow rates, as discussed earlier in Chapter 5, such an arrangement

adds complexity and requires 2x-4x more memory.

AHAB combines CMS with LPF by replacing individual counters in the CMS struc-

ture with LPF counters. When inserting a packet with its size and user ID, we apply the r

hash functions over the user ID to locate one LPF counter per row, and add the packet size

to these r LPF counters. When querying the instantaneous sending rate of the same user

ID, we read the LPF counters in the same r locations, and use the minimum across their

reported rate as the estimated sending rate of this user. This allows us to estimate per-user

sending rate without the need to allocate per-user memory.

We note that the combined CMS-LPF estimator retains the following additive-error

guarantee:

Theorem 6.4.1. Let Ri be user i’s sending rate reported by an ideal LPF counter, and
∑

m Rm

be the total sending rate across all users, again reported by ideal per-user LPF counters. When

querying a CMS-LPF estimator of size r × c, the estimated sending rate R̃i satisfies R̃i ≥ Ri

and

Pr

[
R̃i ≤ Ri + ε

∑
m

Rm

]
≤ δ, (6.5)

with ε = e/r and δ = e−c.

172

Proof. Note that CMS is a linear sum in the ID dimension, where each counter is the sum

of a random subset of user IDs. Meanwhile, LPF is a linear sum of packet sizes in the time

dimension, where the reported rate is the inner product of past packet sizes and a time-

decaying constant function. The two linear operators are interchangeable. Thus, we can

naturally derive the error bound using the additive error property of an unmodified r-row,

c-column CMS.

The CMS-LPF also inherits the no-underestimation guarantee from CMS. Therefore, in

our context of enforcing bandwidth limit:

1. A user’s traffic rate is never underestimated, ensuring that a user exceeding band-

width limit will always be rate-limited.

2. With a small bounded probability, a user’s traffic rate may be overestimated and ap-

pear higher than the limit, resulting in rate-limiting. We can limit this probability by

adjusting the memory size of CMS-LPF.

6.4.3 Sharing One Rate Estimator Across Slices

Naively, AHAB would allocate one CMS-LPF estimator for each slice. However, due to

the natural skewness of traffic, not all slices will have lots of “heavy” users sending at high

rates. Some slices may be underutilized and have no heavy user at all, and the memory dedi-

cated for their estimators is wasted.

Instead, we share a single CMS-LPF estimator across all slices. We can then exploit sta-

tistical multiplexing, as the heavy users and busy slices are now effectively using the unused

memory sacrificed by the underutilized slices with no heavy user.

173

Figure 6.4: When a packet arrives, AHAB first maps it to a slice n and estimates its user’s sending rateRm using the
CMS‐LPF estimator (§6.4.2), then uses probabilistic dropping to enforce slice n’s bandwidth limit Tn (§6.5.1). AHAB
also maintains two bandwidth limit candidates Tlow, Thi and tracks the hypothetical total bandwidth usagef(·) (§6.5.2),
which is used to derive a more accurate bandwidth limit Tnew via approximated linear interpolation (§6.5.3).

However, we note that CMS provides an additive error guarantee, meaning that the er-

ror of each user’s estimated rate is of similar magnitude regardless of the true sending rate

of the user. This is not a problem for intra-slice comparison, as we only care about enforc-

ing bandwidth limits for heavy users and can safely ignore the underutilized users. Yet,

different slices may have vastly different bandwidth allocations. If two slices of capacity

100Mbps and 10Gbps naively share the same CMS-LPF structure, the 10Gbps slice will

dominate; “small” users of 200Mbps in the heavy slice will overwhelm the CMS while the

“heavy” users of 30Mbps in the small slice become a rounding error.

To ensure the estimation error is scaled proportionally with the bandwidth of different

slices, we perform pre-update normalization: before packet sizes are fed into the CMS-LPF,

we scale the packet size inversely proportional to the weight of their parent slice. This guar-

antees that we can track heavy users in each slice effectively, with the estimation error pro-

portional to its particular slice-level sending rate, regardless of how slow or fast other slices

are sending. Subsequently, when we enforce per-user bandwidth limits, the estimated send-

ing rates we read from CMS-LPF are also compared to scaled versions of bandwidth limits.

174

6.5 Approximate Arithmetic in the Data Plane

To achieve line-rate packet processing and low forwarding latency, high-speed programmable

switches like Intel Tofino support a limited set of arithmetic operations, and we can only

perform a constant number of computational steps per packet. Thus, it is infeasible to ex-

actly track the bandwidth demands, precisely calculate the fair allocation, or accurately

compute per-user drop probabilities.

Figure 6.4 shows an overview of the AHAB data plane, where we use approximate arith-

metic heavily to implement probabilistic dropping and interpolation-based iterative update

to the bandwidth limit. We also note that the approximate arithmetic techniques presented

here are widely applicable to other applications running in programmable switches, beyond

fair bandwidth allocation.

6.5.1 Approximated Probabilistic Dropping

For a given user, we obtain its estimated sending rateRm from the CMS-LPF estimator

and compare it against the per-user bandwidth limit Tn of its slice. For non-TCP traffic, we

need to enforce the bandwidth limit by dropping the packet with probability 1− Tn
Rm
.

Since we cannot calculate exact division in the data plane, we perform approximate arith-

metic using a TCAM lookup table, similar to the approximate multiplication technique

used in Nimble116.

The first step of approximate division is to truncate the numerator Tn and denominator

Rm in binary form. We focus on the highest b-bits of the denominator starting from the

leading 1. For example, let b = 5, ifRm is 0b0011010011010, the leading b-bit number is

j=11010. This means we can approximateRm ≈ 0b11010 × 26. We also look at the same

175

bits in the numerator: if Tn is 0b0001111110100, we extract the b-bit number i=01111 and

approximate it as Tn ≈ 0b01111 × 26. Note that, since the denominator is always larger

than the numerator (Rm > Tn), we will not miss any 1 in the higher bits in the nominator.

We now observe that the fraction Tn
Rm

can be approximated using these b-bit numbers, as

0b0001111110100

0b0011010011010
≈ 0b01111

0b11010
≈ 0.576. (6.6)

More formally, we use
I
J
≈ i · 2N

j · 2N
(6.7)

to approximate division, with i and j both being b-bit numbers. We build an approximate

division lookup table that maps (i, j) to an approximation of i/j. After picking the appro-

priate b-bit substrings i, j of the input numerator and denominator, the final step of ap-

proximate division is simply look up (i, j) in the table.

Since i and j are truncated from I and J, they both have a one-sided bias compared with

the original. To reduce the error bias of lookup table entries, the entries are computed as
i+0.5
j+0.5 instead of

i
j , which changes the x%worst-case one-sided error to x/2% two-sided er-

ror.

Here we make two observations. First, the most-significant 1-bit in J always end up in

j, so we only need to generate lookup table entries for half of the possible js starting with

1. Second, notice that the numerator is always smaller than the denominator in our use

case, lookup table entries do not need to be installed for any division results greater than

1, further reducing the number of entries. For example, for b = 5 bits, we only need to

176

generate entries for j =0b10000 to j =0b11111, and for each jwe generate j + 1 rules for

0 ≤ i ≤ j. In total, the number of rules in the lookup table is

(2b)−1∑
j=2(b−1)

(j+ 1) =
31∑

j=16

j+ 1 = 392. (6.8)

This table achieves an approximation error of 8.2% on average. With b = 6, the lookup

table grows to 1552 entries and we can reduce the error to 4.6%. One such lookup table

only costs approximately 9KB of data-plane memory.

The final step of implementing probabilistic dropping is to sample a number uniformly

at random between [0, 1] using the random number generator, and comparing it with the

approximated division. We drop a packet if

U(0, 1) >
Tn

Rm
≈ i+ 0.5

j+ 0.5
. (6.9)

Separately, for TCP traffic, we need to perform periodic rather than probabilistic drop-

ping. We maintain a hash-indexed array of “count-down” counters and map each TCP flow

to a counter using its 5-tuple. When a TCP packet arrives and the estimated rate exceeds

the bandwidth limit Tn, we check its corresponding counter: if the counter is already zero,

we drop this packet and reset the countdown counter to Tn · const; otherwise, we spare the

packet from being dropped and subtract its size from the counter. We also use another set

of counters to add ECNmarking periodically. This way, TCP flows can quickly converge

to the desired rate limit and enjoy steady goodput.

177

Figure 6.5: Relationship between bandwidth limit candidates Tlow, Tmid, Thi and total bandwidth consumed by all users
f(Tlow), f(Tmid), f(Thi).

6.5.2 Tracking the BandwidthDemand

For a given slice, it is infeasible for switches to track its entire bandwidth demand curve

(shown in Figure 6.2) representing all user’s sending rates, which we can neither store nor

sort. However, we can track the actual bandwidth used by all users f(Tn), which is a func-

tion of the currently-enforced bandwidth limit Tn and represented by the shaded area un-

der the demand curve intersected with Tn. To get f(Tn), we simply need to use a LPF to

track the size of all packets that are not dropped.

Still, comparing f(Tn)with Cn only tells us whether we are over- or under-utilizing the

capacity Cn, i.e., whether we should increase or decrease Tn. This does not say much about

what is the ideal limit or howmuch should we change Tn.

Adjusting Tn using a fixed step size or fixed proportion is problematic: if the steps are

too large, we cannot precisely converge to the exact allocation. Yet, small step sizes mean we

need to wait for many iterations before converging, when the fair rate changes dramatically.

178

Figure 6.6: Finding new bandwidth limit using interpolation. When we plot f(T∗), x‐axis in this figure refers to the
bandwidth limit T∗ (y‐axis in Fig. 6.5), while y‐axis in this figure refers to the area under line T∗ in Fig. 6.5.

To better analyze how to update Tn, we further specify two candidate bandwidth limits,

a lower candidate

Tlow = Tn − Δ (6.10)

and a higher candidate

Thi = Tn + Δ (6.11)

where Δ is the maximum step-size we want to change Tn. In practice, we choose Tlow ≈

0.5 · Tn and Thi ≈ 1.5 · Tn. From now on, we also refer to Tmid = 1.0 · Tn as the middle

candidate.

We now track two more hypothetical total transmitted bandwidth f(Tlow) and f(Thi),

by generating two hypothetical probabilistic dropping decisions in addition to the real

dropping decision. Using the same lookup table technique discussed in §6.5.1, we approx-

imately calculate Thi
Rm

and Tlo
Rm

and track the packets that are hypothetically not dropped un-

der Tlow or Thi respectively. As illustrated in Figure 6.5, f(Tlow), f(Tmid), and f(Thi) are the

shaded area under the demand curve intersecting with different horizontal lines.

179

Numerator, Denominator Approx. scale

01110, 11010 2241/212

01111, 11010 2396/212

10100, 11100 2946/212

11000, 11100 3521/212

… …

Cn-f(Tmid)

f(Thi)-f(Tmid)

0b0001111110100

0b0011010011010

1012

1690
=

Cn-f(Tmid)

f(Thi)-f(Tmid)
Δ

Δ=Thi-Tmid =214

2396 * 2(14-12)=9584

≈ 9584

Approximate Division Lookup Table

Figure 6.7: We use a lookup table to implement approximate linear interpolation. We first match on the highest binary
bits of numerator and denominator to get a scaled division result, then multiply Δ via bit shifting for the final result.

Figure 6.6 plots the monotonically-increasing function f. The optimal bandwidth limit

T̃ satisfies f(T̃) = Cn, thus we need to calculate a new limit Tnew that is as close to T̃ as

possible.

6.5.3 Update Bandwidth Limit via Approximate Interpolation

Instead of using a fixed step size, we can adjust the bandwidth limit much more accurately

using linear interpolation, given the three candidate points on the f curve.

Let us first assume the ideal bandwidth limit lies between the lower and higher candidate

points, i.e., f(Tlow) < Cn < f(Thi). Without loss of generality, assume we need to adjust to

a higher limit, i.e., f(Tmid) < Cn < f(Thi). As illustrated in Figure 6.6, we can calculate the

new bandwidth limit using linear interpolation:

Tnew = Tmid +
Cn − f(Tmid)

f(Thi)− f(Tmid)
× (Thi − Tmid). (6.12)

In Figure 6.7 we illustrate how to calculate the approximated linear interpolation using

an example. To calculate
Cn − f(Tmid)

f(Thi)− f(Tmid)
=

1012
1690

, (6.13)

180

we first use the same approximate division lookup table technique discussed earlier in

§6.5.1, except the division results are now stored as a (mantissa, exponent) pair. We trun-

cate the numerator and denominator to get most significant non-zero bits i =01111/j =11010,

and retrieve the approximate division result

i+ 0.5
j+ 0.5

=
2396
212

. (6.14)

After the approximate division, we need to multiply the result by Δ. To make this cal-

culation easier, we choose Δ to be a power of 2, reducing the multiplication into a bit-

shift. In practice, we set Δ = 2⌊log2 (1
2Tmid)⌋, meaning Tlow = Tmid − Δ ≈ 0.5Tmid and

Thi = Tmid + Δ ≈ 1.5Tmid.

The divide-then-multiply calculation can be applied as a single bit shift. In the example

in Figure 6.7, we have Δ = 214 and need to calculate 2396
212 · 2

14,which can be simplified into

a left shift:

2396 << (14− 12) = 9584. (6.15)

Finally, we finish the last addition operation in the approximate linear interpolation, and

obtain the new bandwidth limit

Tnew = Tmid + 9584. (6.16)

Similarly, when adjusting towards a lower limit, we use

Tnew = Tmid −
f(Tmid)− Cn

f(Tmid)− f(Tlow)
× (Tmid − Tlow). (6.17)

181

Notice that we use subtraction from Tmid instead of adding up from Tlo to interpolate.

This is because the approximate division has a constant relative error proportional to the

result. By subtracting the result from Tmid, we can make more accurate fine-grained adjust-

ments near Tmid to better converge towards the optimal bandwidth limit. Instead, if we use

Tnew = Tlow +
Cn − f(Tlow)

f(Tmid)− f(Tlow)
× (Tmid − Tlow), (6.18)

the approximated interpolation is more accurate near Tlow and has a larger error near Tmid.

When Cn falls out of the range [f(Tlow), f(Thi)], our estimate candidates are too far off

from the ideal bandwidth limit, and we clip the update by choosing f(Tlow) or f(Thi) di-

rectly. Clipping prevents overshooting caused by using linear interpolation outside of the

two candidate points.

We further note that although CMS-LPF will introduce over-estimation errors across the

board for all estimated rates, our closed-loop bandwidth limit update process will naturally

adapt to this error. When all rates are slightly over-estimated while the bandwidth limit

Tn is not yet over-estimated, users will suffer from an unnecessarily high drop probability,

leading to less than Cn total traffic; AHAB will then automatically raise Tn to account for

such global over-estimation.

6.5.4 Iterative Update UsingWorker Packets

To achieve fast convergence towards intra-slice fairness, AHAB updates the bandwidth

limit Tn fully within data plane. At the end of every epoch, AHAB calculates a new band-

width limit Tnew for each slice using approximate interpolation, and use it as the new band-

width limit for the next epoch.

182

However, as shown in Figure 6.4, Tn is stored in a register memory lookup table near the

beginning of the switch’s packet-processing pipeline while the new limit Tnew is only avail-

able in later pipeline stages; the pipeline’s memory access constraint does not allow us to

write Tnew back to the same register memory directly. Therefore, at the end of every epoch,

we generate one worker packet per slice by packet cloning, and use packet recirculation to

let the worker packet go through the pipeline twice. The worker packet reads all the can-

didate bandwidth limits, performs the approximated linear interpolation calculation to de-

rive the new bandwidth limit Tnew, and carries it to the beginning of the packet-processing

pipeline to be written into register memory.

Although the update is slightly delayed due to packet recirculation (about 0.65μs), only

a very small fraction of packets near the beginning of the epoch are affected, therefore the

actual difference in enforcement due to the delayed update is negligible. As we show in

§6.6, this closed-loop update process rapidly converges to the fair bandwidth allocation.

6.5.5 SupportingWeighted Allocation

A network operator sometimes needs to allocate bandwidth in proportion to a pre-assigned

weight, for example when implementing differentiated services. AHAB supports weighted

fair allocation at both the slice level and the user level.

To support weighted fair bandwidth allocation between users in the same slice, we scale

each packet’s length using the user’s weight: if a userm has weight wm, a packet with size

S is scaled into S
wm

before being used to calculate the user’s scaled sending rateRm in the

CMS-LPF estimator. This way, we can directly compare different user sending ratesRm

against the same per-user bandwidth limit Tn.

183

Meanwhile, the control plane is more flexible and trivially supports allocating bandwidth

to different slices based on their weight. We simply divide each slice’s demand and capacity

by its weight before computing the max-min fairness allocation.

We also note that the weights assigned to slices / users can be easily updated at run time.

To adjust the weight for a subset of users, we adjust the rules installed in the slice lookup

table in the data plane; to adjust the weight of a slice, we modify it directly from the control

plane.

6.6 Evaluation

Using a prototype implementation running in a hardware testbed, we show that AHAB

can quickly achieve fair and stable bandwidth allocation between users. Compared to the

prior state-of-the-art, HCSFQ129, AHAB not only converges to the target fair bandwidth

allocation faster (in 3.1ms), but also achieves comparable or better fairness and throughput

stability. Subsequently, we use real-world traffic traces in a simulation-based experiment to

show that AHAB scales well to 5.9-23.9 million users with a reasonable memory footprint,

and CMS-LPF has a minimal impact on scheduling fairness.

6.6.1 Testbed Experiment Setup

We implement a AHAB prototype on an Intel Tofino65 Wedge-100 programmable switch,

using approximately 2,000 lines of P422; we have released the code on GitHub33. We eval-

uate AHAB’s real-world scheduling fairness using a hardware testbed with two sender

and receiver servers connected via the programmable switch. Both servers have a 20-core

CPU and aMellanox ConnectX-5 2x100Gbps NIC, and run Ubuntu 20.04. The sender

184

sends TCP flows using iperf3with Linux’s default congestion control (cubic), and send

UDP flows using either iperf3 or a customized Go script that performs millisecond-level

throughput measurement. We set the iterative update epoch time to 1ms and configure the

LPF rate estimator’s time constant to τ=4ms. Unless otherwise noted, we use a CMS-LPF

estimator with size 3x2048.

In all experiments, we treat each flow as a unique user, using its 5-tuple (source and des-

tination IP/port pairs) as the user ID. We note that real-world traffic may be grouped more

coarsely; for example, one user in a mobile network may include all flows destined for the

same device (same destination IP).

6.6.2 Fast Convergence

We now compare AHAB to the state-of-the-art of hierarchical fair queuing based on pro-

grammable switch: HCSFQ129. HCSFQ iteratively converges to the fair rate via Additive

Increase Multiplicative Decrease, limiting its convergence speed when the number of users

decreases and the fair rate increases.

To demonstrate the difference in convergence time, we program both AHAB and HCSFQ

to enforce fairness between four UDP flows in a single slice, with a fixed 100Mbps capacity.

All four flows have the same 100Mbps constant sending rate, but have different starting

and ending time: they run between T=0-8s, T=1-7s, T=2-6s, and T=3-5s, respectively.

Figure 6.8 shows the actual bandwidth used by the four flows over time, after bandwidth

limit enforcement done by AHAB (left) or HCSFQ (right). At a longer timescale (top), the

two schedulers behaved similarly. However, if we zoom in to a smaller timescale and plot

the millisecond-level per-flow throughput (bottom) immediately after T=7s (where flow 1

185

0 2000 4000 6000 8000
Time (ms)

0

50

100

Th
ro

ug
hp

ut
 (M

bp
s)

0 2000 4000 6000 8000
Time (ms)

0

50

100

Th
ro

ug
hp

ut
 (M

bp
s)

6800 6900 7000 7100 7200 7300 7400 7500 7600
Time (ms)

0

50

100

Th
ro

ug
hp

ut
 (M

bp
s)

6800 6900 7000 7100 7200 7300 7400 7500 7600
Time (ms)

0

50

100

Th
ro

ug
hp

ut
 (M

bp
s)

Flow0 Flow1 Flow2 Flow3 target rate

Figure 6.8: AHAB (left) converges to fair bandwidth allocation within 3.1ms on average, while HCSFQ129 (right) needs
42.3ms.

stopped), we can see AHABconverges much faster than HCSFQ to allow flow 0 to use

the full 100Mbps bandwidth. We measured the time for flow throughput to converge to

within 10% of ideal fair bandwidth limit. AHAB’s interpolation-based update only needs

around three iterations to converge, taking only 3.1ms on average (at most 5ms). In com-

parison, HCSFQ needs on average 42.3ms (at most 234ms).

6.6.3 Fairness and Goodput Stability

We first demonstrate that AHAB can effectively enforce fair bandwidth allocation for TCP

flows, by simultaneously running 2, 4, or 8 flows sharing a slice with fixed 1Gbps capacity.

Figure 6.9 shows the goodput over time when we run two TCP flows; although both

systems achieve fairness between two flows in terms of average goodput over time, AHAB

achieve better goodput stability over time. For analysis and comparison, in Figure 6.10 we

plot the cumulative distribution function (CDF) of the TCP goodput of all flows, reported

by iperf3 in 1-second intervals across 60 seconds. In the ideal case, all flows exhibit the

186

Figure 6.9: Goodput of two competing TCP flows over time.

same goodput across time, leading to a steeper CDF. The stability achieved by AHAB is

comparable to that of HCSFQ: on average, the goodputs of flows enforced by AHAB are

within 12.1% of ideal fair share, while those enforced by HCSFQ exhibits 15.5%.

Meanwhile, we also show approximate probabilistic dropping can effectively achieve

fair bandwidth allocation for non-TCP traffic that does not react to bandwidth limiting

(no congestion control), even with very different sending rates. We let multiple UDP flows

share the same slice with fixed 100Mbps capacity, and configured their sending rate to be

10Mbps, 20Mbps, 30Mbps, and so on. In Figure 6.11, we show the throughput achieved

by these flows, when 4, 8, and 16 flows are sent simultaneously. In the latter two cases, the

slice is over-utilized and approximate probabilistic dropping kicks in. Although AHAB

needs to apply vastly different dropping probabilities for the wide range of sending rates,

187

Figure 6.10: Cumulative distribution of competing TCP flows’s goodput when using AHAB versus HCSFQ.

Figure 6.11: Given flows with various sending rates, AHAB’s approximate probabilistic dropping achieved fair bandwidth
allocation within 6% error.

the resulting allocation is quite fair. On average, the mean throughput achieved is within

4% and 6% of the fair bandwidth allocation target, for 8 and 16 flows respectively. This

corresponds to the error of the approximated division using the lookup table.

Figure 6.12 demonstrates AHAB’s support of weighted fairness. We start three groups

of flows with weight 1x, 2x, and 4x respectively, with four flows per group, all sharing one

slice with 1Gbps capacity. Flows with the same weight achieve the same throughput, pro-

portional to their allocated weight, and their attained throughput averages within 15% and

1% of the weighted fair allocation for TCP and UDP, respectively.

188

Figure 6.12: Goodput of weighted TCP and UDP flows sharing one 1Gbps slice.

Figure 6.13: Three experiments showing two slices sharing a common bottleneck. Slice 1 uses half the bandwidth even
when Slice 2 has twice as many flows.

189

6.6.4 Inter-slice Fairness

In Figure 6.13 we demonstrate that AHAB rapidly adjusts to the changing bandwidth de-

mands of different slices. We set up an experiment where Slice 1 always has x users (TCP

flows), and Slice 2 is initially idle with no user. At T=10s x users in Slice 2 that starts send-

ing, lasting until T=50s. At T=20s another x users join Slice 2 and start sending until T=40s.

In the ideal case, all bandwidth is fully allocated to Slice 1 between T=0-10s as well as T=50-

60s, fairly shared between x users; the total bandwidth is split in half between Slice 1 and

Slice 2 during T=10-50s. When more users are added to Slice 2 during T=20-40s, users in

Slice 2 each get a lower share while users in Slice 1 are not affected.

Figure 6.13 shows three scenarios: the total bandwidth shared by the two slices are 100,

1000, and 4000Mbps, respectively, and we also have x=2, 20, and 80 users proportionally.

We plot and compare the average goodput attained by the users in each slice, which is also

a good indicator of fairness between slices. The bandwidth allocation between slices always

quickly converged to fairness (within a few RTTs). When users send UDP traffic instead,

AHAB instantly achieves near-perfect fair allocation for all three cases; the result is omitted

here.

6.6.5 Scalability

To evaluate AHAB’s performance at scale, we run trace-based simulation experiments to

understand howmuch memory is needed to support a large number of users.

We collected a 15-minute anonymized traffic trace from the core network of a local Inter-

net Service Provider and played the trace through a Python-based simulator. We treat each

of the 5,980,000 unique source-destination IP pairs as an user, and let all users share a single

190

Figure 6.14: 3x4096 CMS‐LPF estimator is sufficient for serving millions of users, with negligible error in drop probabil‐
ity.

slice with capacity Cn set to 0.84Gbps, equal to the average throughput of the trace. Due

to natural fluctuations in traffic rate, the instantaneous bandwidth demand often exceeds

Cn. The simulator calculates the fair per-user bandwidth limit Tn for each epoch, and then

calculates the “target” probabilistic drop rate 1−min(Tn
Rm
) using the ground-truth per-user

sending rateRm.

Meanwhile, we also simulate the per-user estimated sending rate R̃m reported by CMS-

LPF estimators of different sizes, and use R̃m to calculate the “approximated” drop proba-

bility 1 − min(Tn
R̃m
). Shrinking the size of CMS-LPF estimator reduces the accuracy of rate

estimation, which in turns leads to more error in the drop probability.

As shown by Figure 6.14(a), using a CMS-LPF estimator with size 3x512 led to a frac-

tion of packets with drop rate higher than the target; although most errors lie in over-

utilized users, some users with a target drop rate of 0% (under-utilized users) also experience

significant packet drops. Meanwhile, CMS-LPF size 3x4096 is sufficient to reduce errors to

negligible level. We conclude that a CMS-LPF estimator with size 3x4096 is sufficient for

191

CMS-LPF Hardware Memory Supported
Dimension Utilization # of Users

2048x3 (24KB) 1.56% 2,990,000
4096x3 (48KB) 2.60% 5,980,000
16384x3 (768KB) 8.85% 23,920,000 (est.)

Table 6.2: Memory utilization and supported number of users w.r.t. different sizes of the CMS‐LPF estimator.

AHAB to accurately produce per-user rate estimate for the 5,980,000 unique users in our

trace.

We also run the same simulation using five minutes of CAIDAAnonymized Internet

Trace 201826. The trace has an average throughout of 3.5Gbps and has 7,300,000 unique

flow 5-tuples. We obtain similar results, as shown in Figure 6.14(b).

Now we analyze the switch hardware resources used by AHAB, and specifically focus

on the memory used by the CMS-LPF estimator. As shown in Table 6.2, a small 2048x3

CMS-LPF estimator only costs a small fraction (1.56%) of all stateful memory available

on the switch hardware, yet it already supports accurately enforcing bandwidth limit for 3

million users. We can fit a much larger sketch than what we used in the prototype: allocat-

ing a 16384x3 CMS-LPF estimator costs 8.85% of the available memory. Assuming similar

traffic skewness as in our ISP trace, a single programmable switch can support 23.9 million

devices across all slices, which is sufficient for many application scenarios.

As for the number of slices, our prototype program supports up to 16,000 slices. The

Tofino switch supports 3.2Tbps aggregated throughput, which can be shared among 2,000

downstream base stations. It is possible to expand further by adding more entries to the

slice lookup table and allocating more per-slice bandwidth demand trackers, as they only

occupy a small fraction of the total data-plane memory usage (with the majority being the

192

Resource Instr. Words Hash Units TCAM
Utilization 28.6% 37.5% 5.2%

Table 6.3: Utilization of other switch hardware resources.

CMS-LPF rate estimator). The primary limiting factor on the number of slices is control-

plane speed, as supportingN slices requires the control plane to readN demands and write

N capacities per update.

We also report other resource utilization of AHAB data-plane program in Table 6.3.

These resource usages are constant regardless of the number of slices and users.

6.7 RelatedWork

Fair Queuing using estimated rate

Core Stateless Fair Queuing115 is a network architecture where edge nodes estimate the

rate of incoming flows and attach the rate to packets, while core nodes in the network

choose a fair per-flow rate and enforce it using probabilistic dropping. It requires main-

taining per-flow state to estimate sending rates. Approximate Fairness through Differential

Dropping95 uses a shadow buffer that holds recent packets to approximately derive per-

flow rates, and similarly performs probabilistic dropping. It is not straightforward to im-

plement a large shadow buffer given the computational constraints present in today’s high-

speed programmable switches. Also, both works require one dedicated hardware queue per

“slice” (group of flows).

193

Rank-based scheduling

In Push-In, First-Out (PIFO) queues, each packet is pushed in with a certain rank, and

packets with the highest rank are transmitted first. Admit-In, First-Out128 and SP-PIFO2

both approximate the behavior of a PIFO queue on commodity programmable switches.

AIFO uses a sample of recently admitted packets to estimate the rank distribution of pack-

ets in the queue, which is used to decide a threshold and reject low-ranked packets from

being admitted. Meanwhile, SP-PIFO uses an array of strict-priority queues and dynam-

ically adjust the mapping from ranks to queues using estimated quantile distribution of

ranks. These works both assume an oracle which assigns ranks to packets.

Fair queuing in the data plane

Approximate Fair Queuing108 implements scalable per-flow fair queuing by splitting traffic

into calendar epochs. This design requires rapidly rotating the priority between multiple

queues to serve different future epochs, and does not support a multi-layer scheduling hi-

erarchy. Gearbox56 proposed a new hardware design specifically supporting multi-level cal-

endar queuing. Meanwhile, Hierarchical Core-Stateless Fair Queuing129 extends CSFQ115

and uses Addictive Increase, Multiplicative Decrease (AIMD) to iteratively find a fair per-

user (per-tenant) sending rate limit using queue congestion status feedback. Although it

can support multiple layers of scheduling hierarchy, its dependency on per-user memory

for estimating per-user sending rates hurts scalability. The AIMD process also takes a rel-

atively long time to adapt when the fair rate increases. Cebinae127 uses leaky-bucket filters

to estimate per-flow rate and enforce fairness by “taxing” the heavy flows, however it takes

several seconds to converge to fair allocation. Nimble116 implements precise TCP flow rate

194

limiting by simulating queue draining in the data plane. However, it only supports fixed

rates set by the control plane and requires per-flowmemory. Instead, our work automat-

ically adjusts and enforces fair per-user bandwidth limit within milliseconds timescale for

millions of users.

6.8 Conclusion

We present AHAB, a data-plane hierarchical fair bandwidth limit enforcer. Using a novel

approximate data structure, AHAB scales to millions of users across thousands of network

slices. AHAB exploits approximate arithmetic to implement interpolation-based band-

width limit update fully within the data plane, leading to fast convergence. Evaluation

shows that AHAB converges to a fair allocation within 3.1ms, 13x faster than prior work,

without sacrificing fairness or stability.

195

Concluding Remarks

This dissertation has explored the realms of measurement and closed-loop control in the

network data plane, offering experience and insight from an algorithm design perspective

to tackle the intricate challenges imposed by the switch hardware. We hope the four works

presented can shed some light on a coherent, end-to-end approach for network program-

ming, with an emphasis on adapting for the programmable switch’s hardware architectural

constraints.

As we conclude this journey, it’s essential to acknowledge that designing and deploy-

ing algorithms for network data plane was once a meticulous effort involving a nontrivial

amount of hacks and workarounds, many of which are intentionally omitted from this

dissertation. Those issues are more or less specific to a particular early hardware design,

and will likely disappear as the field matures. Instead, we hope the readers can focus on

the more fundamental, long-term trends that shape the landscape of networking and data-

plane algorithm design. For example, given the twoMoore’s law-like trends in networking

hardware— network throughput doubles every 18-22 months, while memory bandwidth

196

doubles every 24-28 months—we have every reason to keep investigating innovative algo-

rithms that are memory access efficient. Also, the algorithmic insights unveiled here extend

well beyond a particular type of networking hardware. Surprisingly, even for eBPF pro-

grams running on a conventional CPU, we find memory access bottlenecks reminiscent of

those encountered within the switch pipeline, despite the underlying CPU hardware archi-

tecture providing an abundance of high-speed cache. One important future direction is,

therefore, building toolchains and unified programming abstractions that support many

different data-plane targets with automated adaptation and synthesis, easing the burden of

algorithm designers.

Of course, we must admit uncertainty shrouds the future trajectory of network hard-

ware evolution. Nevertheless, the approach adopted in this dissertation, which amalga-

mates theoretical insights with practical hardware-friendly adaptations, should prove in-

valuable in the years to come.

197

Bibliography

[1] Afek, Y., Bremler-Barr, A., Feibish, S. L., & Schiff, L. (2018). Detecting heavy flows
in the SDNmatch and action model. Computer Networks, 136, 1–12.

[2] Alcoz, A. G., Dietmüller, A., & Vanbever, L. (2020). SP-PIFO: Approximating
Push-In First-Out behaviors using Strict-Priority queues. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI’20) (pp. 59–76).

[3] Alizadeh, M., Edsall, T., Dharmapurikar, S., Vaidyanathan, R., Chu, K., Fingerhut,
A., Lam, V. T., Matus, F., Pan, R., Yadav, N., & Varghese, G. (2014). CONGA:
Distributed congestion-aware load balancing for datacenters. In ACM SIGCOMM
(pp. 503–514).

[4] Alizadeh, M., Greenberg, A. G., Maltz, D. A., Padhye, J., Patel, P., Prabhakar, B.,
Sengupta, S., & Sridharan, M. (2010). Data center TCP (DCTCP). In ACM SIG-
COMM (pp. 63–74).

[5] Appenzeller, G., Keslassy, I., &McKeown, N. (2004). Sizing router buffers. In
ACM SIGCOMM (pp. 281–292).

[6] Arista Networks (2017). Arista 7050X Switch Architecture (‘A
day in the life of a packet’). https://web.archive.org/web/
20170422142409/https://www.corporatearmor.com/documents/
Arista_7050X_Switch_Architecture_Datasheet.pdf. Accessed: 2017-04-22.

[7] Assaf, E., Basat, R. B., Einziger, G., & Friedman, R. (2018). Pay for a sliding bloom
filter and get counting, distinct elements, and entropy for free. In IEEE INFOCOM
2018 (pp. 2204–2212).: IEEE.

[8] Bar-Yossef, Z., Jayram, T. S., Kumar, R., Sivakumar, D., & Trevisan, L. (2002).
Counting distinct elements in a data stream. In InternationalWorkshop on
Randomization and Approximation Techniques in Computer Science (pp. 1–10).:
Springer.

198

https://web.archive.org/web/20170422142409/https://www.corporatearmor.com/documents/Arista_7050X_Switch_Architecture_Datasheet.pdf
https://web.archive.org/web/20170422142409/https://www.corporatearmor.com/documents/Arista_7050X_Switch_Architecture_Datasheet.pdf
https://web.archive.org/web/20170422142409/https://www.corporatearmor.com/documents/Arista_7050X_Switch_Architecture_Datasheet.pdf

[9] Barefoot Networks (2017). Product Brief Tofino Page. https://web.archive.
org/web/20180104235002/https://www.barefootnetworks.com/products/
brief-tofino/. Accessed: 2018-01-04.

[10] Basat, R. B., Chen, X., Einziger, G., Feibish, S. L., Raz, D., & Yu, M. (2020a). Rout-
ing oblivious measurement analytics. In IFIP Networking.

[11] Basat, R. B., Chen, X., Einziger, G., Friedman, R., & Kassner, Y. (2019). Ran-
domized admission policy for efficient top-k, frequency, and volume estimation.
IEEE/ACMTransactions on Networking, 27(4), 1432–1445.

[12] Basat, R. B., Chen, X., Einziger, G., & Rottenstreich, O. (2020b). Designing heavy-
hitter detection algorithms for programmable switches. IEEE/ACMTransactions on
Networking, 28(3), 1172–1185.

[13] Basat, R. B., Einziger, G., Friedman, R., Luizelli, M. C., &Waisbard, E. (2017).
Constant time updates in hierarchical heavy hitters. ACM SIGCOMM, (pp. 127–
140).

[14] Basat, R. B., Friedman, R., & Shahout, R. (2018). Stream frequency over interval
queries. Proceedings of the VLDB Endowment, 12(4), 433–445.

[15] Ben-Basat, R., Chen, X., Einziger, G., & Rottenstreich, O. (2018a). Efficient mea-
surement on programmable switches using probabilistic recirculation. In IEEE
International Conference on Network Protocols (ICNP’18) (pp. 313–323).

[16] Ben-Basat, R., Einziger, G., Feibish, S. L., Moraney, J., & Raz, D. (2018b). Network-
wide routing-oblivious heavy hitters. In Symposium on Architectures for Networking
and Communications Systems (ANCS) (pp. 66–73).

[17] Ben-Basat, R., Einziger, G., Keslassy, I., Orda, A., Vargaftik, S., &Waisbard, E.
(2018c). Memento: Making sliding windows efficient for heavy hitters. In ACM
CoNEXT (pp. 254–266).

[18] Bennett, J. C. R. & Zhang, H. (1996). Hierarchical packet fair queueing algorithms.
In ACM SIGCOMM (pp. 143–156).

[19] Benson, T., Akella, A., &Maltz, D. A. (2010). Network traffic characteristics of data
centers in the wild. In ACM SIGCOMM InternetMeasurement Conference (IMC)
(pp. 267–280).

199

https://web.archive.org/web/20180104235002/https://www.barefootnetworks.com/products/brief-tofino/
https://web.archive.org/web/20180104235002/https://www.barefootnetworks.com/products/brief-tofino/
https://web.archive.org/web/20180104235002/https://www.barefootnetworks.com/products/brief-tofino/

[20] Benson, T., Anand, A., Akella, A., & Zhang, M. (2011). MicroTE: Fine grained
traffic engineering for data centers. In ACMCoNEXT (pp. 1–12).

[21] Bertsimas, D. J. & Servi, L. D. (1992). Deducing queueing from transactional data:
the queue inference engine, revisited. Operations Research, 40(3-supplement-2),
S217–S228.

[22] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger,
C., Talayco, D., Vahdat, A., Varghese, G., et al. (2014). P4: Programming protocol-
independent packet processors. ACM SIGCOMMComputer Communication
Review, 44(3), 87–95.

[23] Bosshart, P., Gibb, G., Kim, H.-S., Varghese, G., McKeown, N., Izzard, M., Mujica,
F., & Horowitz, M. (2013). Forwarding metamorphosis: Fast programmable match-
action processing in hardware for SDN. In ACM SIGCOMM (pp. 99–110).

[24] Braverman, V., Gelles, R., & Ostrovsky, R. (2014). How to catch l2-heavy-hitters on
sliding windows. Theoretical Computer Science, 554, 82–94.

[25] CAIDA (2016). CAIDAAnonymized Internet Trace, 2016-04-06.

[26] CAIDA (2018). CAIDAAnonymized Internet Traces, 2018-03-15.

[27] Chao, A. (1984). Nonparametric estimation of the number of classes in a popula-
tion. Scandinavian Journal of Statistics, (pp. 265–270).

[28] Charikar, M., Chen, K. C., & Farach-Colton, M. (2004). Finding frequent items in
data streams. Theoretical Computer Science, 312(1), 3–15.

[29] Chen, M., Chen, S., & Cai, Z. (2016). Counter tree: A scalable counter architecture
for per-flow traffic measurement. IEEE/ACMTransactions on Networking, 25(2),
1249–1262.

[30] Chen, X. (2020a). Github Repository of BeauCoup. https://github.com/
Princeton-Cabernet/BeauCoup.

[31] Chen, X. (2020b). Github Repository of ConQuest. https://github.com/
Princeton-Cabernet/p4-projects/tree/master/ConQuest-tofino.

[32] Chen, X. (2020c). Github Repository of PRECISION. https://github.com/
Princeton-Cabernet/p4-projects/tree/master/PRECISION-tofino.

200

https://github.com/Princeton-Cabernet/BeauCoup
https://github.com/Princeton-Cabernet/BeauCoup
https://github.com/Princeton-Cabernet/p4-projects/tree/master/ConQuest-tofino
https://github.com/Princeton-Cabernet/p4-projects/tree/master/ConQuest-tofino
https://github.com/Princeton-Cabernet/p4-projects/tree/master/PRECISION-tofino
https://github.com/Princeton-Cabernet/p4-projects/tree/master/PRECISION-tofino

[33] Chen, X. (2023). Github Repository of AHAB. https://github.com/
Princeton-Cabernet/AHAB.

[34] Chen, X., Feibish, S. L., Koral, Y., Rexford, J., & Rottenstreich, O. (2018). Catch-
ing the microburst culprits with snappy. In ACM SIGCOMMWorkshop on Self-
Driving Networks (pp. 22–28).

[35] Chen, X., Feibish, S. L., Koral, Y., Rexford, J., Rottenstreich, O., Monetti, S. A., &
Wang, T.-Y. (2019). Fine-grained queue measurement in the data plane. In ACM
CoNEXT (pp. 15–29).

[36] Chen, X., Landau-Feibish, S., Braverman, M., & Rexford, J. (2020). Beaucoup:
Answering many network traffic queries, one memory update at a time. In ACM
SIGCOMM (pp. 226–239).

[37] Chen, Y., Griffiths, R., Zats, D., Joseph, A. D., & Katz, R. H. (2012). Understand-
ing TCP Incast and its implications for big data workloads. ;login, 37(3).

[38] Chole, S., Fingerhut, A., Ma, S., Sivaraman, A., Vargaftik, S., Berger, A., Mendelson,
G., Alizadeh, M., Chuang, S.-T., Keslassy, I., Orda, A., & Edsall, T. (2017). dRMT:
Disaggregated programmable switching. In ACM SIGCOMM (pp. 1–14).

[39] Chowdhury, M. & Stoica, I. (2012). Coflow: a networking abstraction for cluster
applications. In ACMHotNetsWorkshop (pp. 31–36).

[40] Chowdhury, M., Zhong, Y., & Stoica, I. (2014). Efficient coflow scheduling with
varys. In ACM SIGCOMMComputer Communication Review, volume 44 (pp.
443–454).: ACM.

[41] Christiansen, M., Jeffay, K., Ott, D., & Smith, F. D. (2001). Tuning RED for web
traffic. IEEE/ACMTransactions on Networking, 9(3), 249–264.

[42] Claise, B. (2004). Cisco Systems NetFlow Services Export Version 9. RFC 3954.

[43] Cormode, G. (2011). Sketch techniques for approximate query processing. Founda-
tions and Trends in Databases. NOW publishers.

[44] Cormode, G. &Hadjieleftheriou, M. (2008). Finding frequent items in data
streams. Proceedings of the VLDB Endowment, 1(2), 1530–1541.

[45] Cormode, G. &Hadjieleftheriou, M. (2010). Methods for finding frequent items in
data streams. The VLDB Journal, 19, 3–20.

201

https://github.com/Princeton-Cabernet/AHAB
https://github.com/Princeton-Cabernet/AHAB

[46] Cormode, G., Korn, F., Muthukrishnan, S., & Srivastava, D. (2003). Finding hier-
archical heavy hitters in data streams. In Proceedings of 2003 VLDB Conference (pp.
464–475).

[47] Cormode, G., Korn, F., Muthukrishnan, S., & Srivastava, D. (2004). Diamond in
the rough: Finding hierarchical heavy hitters in multi-dimensional data. In ACM
SIGMOD (pp. 155–166).

[48] Cormode, G. &Muthukrishnan, S. (2005). An improved data stream summary:
The count-min sketch and its applications. Journal of Algorithms, 55(1), 58–75.

[49] Durand, M. & Flajolet, P. (2003). Loglog counting of large cardinalities. In Euro-
pean Symposium on Algorithms (pp. 605–617).: Springer.

[50] Estan, C., Savage, S., & Varghese, G. (2003). Automatically inferring patterns of
resource consumption in network traffic. In ACM SIGCOMM (pp. 137–148).

[51] Estan, C. & Varghese, G. (2002). New directions in traffic measurement and ac-
counting. In ACM SIGCOMM (pp. 323–336).

[52] Flajolet, P., Fusy, É., Gandouet, O., &Meunier, F. (2007). Hyperloglog: The anal-
ysis of a near-optimal cardinality estimation algorithm. In Analysis of Algorithms
(AOFA).

[53] Flajolet, P., Gardy, D., & Thimonier, L. (1992). Birthday paradox, coupon collec-
tors, caching algorithms and self-organizing search. Discrete AppliedMathematics,
39(3), 207–229.

[54] Floyd, S. & Jacobson, V. (1993). Random early detection gateways for congestion
avoidance. IEEE/ACMTransactions on Networking, 1(4), 397–413.

[55] Floyd, S. & Jacobson, V. (1995). Link-sharing and resource management models for
packet networks. IEEE/ACMTransactions on Networking, 3(4), 365–386.

[56] Gao, P., Dalleggio, A., Xu, Y., & Chao, H. J. (2022). Gearbox: A hierarchical packet
scheduler for approximate weighted fair queuing. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’22) (pp. 551–565).

[57] Ghorbani, S., Yang, Z., Godfrey, P. B., Ganjali, Y., & Firoozshahian, A. (2017).
DRILL: Micro load balancing for low-latency data center networks. In ACM SIG-
COMM (pp. 225–238).

202

[58] Gibbons, P. B. (2001). Distinct sampling for highly-accurate answers to distinct
values queries and event reports. In Proceedings of 2001 VLDB conference, volume 1
(pp. 541–550).

[59] Gupta, A., Harrison, R., Canini, M., Feamster, N., Rexford, J., &Willinger, W.
(2018). Sonata: Query-driven streaming network telemetry. In ACM SIGCOMM
(pp. 357–371).

[60] Handley, M., Raiciu, C., Agache, A., Voinescu, A., Moore, A. W., Antichi, G., &
Wójcik, M. (2017). Re-architecting datacenter networks and stacks for low latency
and high performance. In ACM SIGCOMM (pp. 29–42).

[61] Harrison, R., Cai, Q., Gupta, A., & Rexford, J. (2018). Network-wide heavy hitter
detection with commodity switches. In ACM SIGCOMMSymposium on SDN
Research (SOSR’18) (pp. 8:1–8:7).

[62] Hasan, S., Padmanabhan, A., Davie, B., Rexford, J., Kozat, U., Gatewood, H.,
Sanadhya, S., Yurchenko, N., Al-Khasib, T., Batalla, O., Bremner, M., Lee, A., Ma-
keev, E., Moeller, S., Rodriguez, A., Shelar, P., Subraveti, K., Kandi, S., Xoconostle,
A., Ramakrishnan, P. K., Tian, X., & Tomar, A. (2023). Building flexible, low-cost
wireless access networks withMagma. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’23) (pp. 1667–1681).

[63] He, K., Rozner, E., Agarwal, K., Felter, W., Carter, J., & Akella, A. (2015). Presto:
Edge-based load balancing for fast datacenter networks. In ACM SIGCOMM (pp.
465–478).

[64] Homem, N. & Carvalho, J. P. (2010). Finding top-k elements in data streams. In-
formation Sciences, 180(24), 4958–4974.

[65] Intel (2020). Intel® Tofino™ Series Programmable Ethernet Switch ASIC.
https://web.archive.org/web/20201130025235/https://www.intel.com/
content/www/us/en/products/network-io/programmable-ethernet-switch/
tofino-series.html. Accessed: 2020-11-30.

[66] Joshi, R., Qu, T., Chan, M. C., Leong, B., & Loo, B. T. (2018). BurstRadar: Prac-
tical real-time microburst monitoring for datacenter networks. In ACM SIGOPS
Asia-PacificWorkshop on Systems (APSys).

[67] Karp, R. M., Shenker, S., & Papadimitriou, C. H. (2003). A simple algorithm for
finding frequent elements in streams and bags. ACMTransactions on Database
Systems, 28(1), 51–55.

203

https://web.archive.org/web/20201130025235/https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://web.archive.org/web/20201130025235/https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://web.archive.org/web/20201130025235/https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html

[68] Kim, D., Zhu, Y., Kim, C., Lee, J., & Seshan, S. (2018). Generic external memory for
switch data planes. In ACMWorkshop on Hot Topics in Networks (pp. 1–7).

[69] Kuzmanovic, A. & Knightly, E. W. (2003). Low-rate TCP-targeted denial of service
attacks: The shrew vs. the mice and elephants. In ACM SIGCOMM (pp. 75–86).

[70] Laboratory For Advanced Systems Research, UCLA (2001). UCLACSD Packet
Traces. http://www.lasr.cs.ucla.edu/ddos/traces/.

[71] Larsen, K. G., Nelson, J., & Nguyên, H. L. (2015). Time lower bounds for non-
adaptive turnstile streaming algorithms. In ACM Symposium on Theory of Comput-
ing (STOC’15) (pp. 803–812).

[72] Larson, R. C. (1990). The queue inference engine: Deducing queue statistics from
transactional data. Management Science, 36(5), 586–601.

[73] Li, T., Chen, S., & Ling, Y. (2012). Per-flow traffic measurement through random-
ized counter sharing. IEEE/ACMTransactions on Networking, 20(5), 1622–1634.

[74] Li, Y., Miao, R., Kim, C., & Yu, M. (2016a). FlowRadar: A better NetFlow for data
centers. In 13th USENIX Sym- posium on Networked Systems Design and Implemen-
tation (NSDI’16) (pp. 311–324).

[75] Li, Y., Miao, R., Kim, C., & Yu, M. (2016b). FlowRadar: a better NetFlow for data
centers. In 13th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI’16) (pp. 311–324).

[76] Li, Y., Miao, R., Liu, H. H., Zhuang, Y., Feng, F., Tang, L., Cao, Z., Zhang, M.,
Kelly, F., Alizadeh, M., et al. (2019). HPCC: high precision congestion control. In
ACM SIGCOMM (pp. 44–58).

[77] Liu, Z., Ben Basat, R., Einziger, G., Kassner, Y., Braverman, V., Friedman, R., &
Sekar, V. (2019). Nitrosketch: Robust and general sketch-based monitoring in
software switches. In ACM SIGCOMM (pp. 334–350).

[78] Liu, Z., Manousis, A., Vorsanger, G., Sekar, V., & Braverman, V. (2016). One sketch
to rule them all: Rethinking network flowmonitoring with UnivMon. In ACM
SIGCOMM (pp. 101–114).

[79] Liu, Z., Zhou, S., Rottenstreich, O., Braverman, V., & Rexford, J. (2020). Memory-
efficient performance monitoring on programmable switches with lean algorithms.
In SIAM-ACM Symposium on Algorithmic Principles of Computer Systems (pp. 31–
44).

204

http://www.lasr.cs.ucla.edu/ddos/traces/

[80] Lu, Y., Montanari, A., Prabhakar, B., Dharmapurikar, S., & Kabbani, A. (2008).
Counter braids: A novel counter architecture for per-flowmeasurement. ACM
SIGMETRICS Performance Evaluation Review, 36(1), 121–132.

[81] MacDavid, R., Cascone, C., Lin, P., Padmanabhan, B., Thakur, A., Peterson, L.,
Rexford, J., & Sunay, O. (2021). A P4-based 5G user plane function. In ACM
SIGCOMMSymposium on SDNResearch (SOSR’21) (pp. 162–168).

[82] MacDavid, R., Chen, X., & Rexford, J. (2023). Scalable real-time bandwidth fair-
ness in switches. In IEEE INFOCOM.

[83] Manerikar, N. & Palpanas, T. (2009). Frequent items in streaming data: An exper-
imental evaluation of the state-of-the-art. Data &Knowledge Engineering, 68(4),
415–430.

[84] Manku, G. S. &Motwani, R. (2002). Approximate frequency counts over data
streams. In Proceedings of 2002 VLDB Conference (pp. 346–357).

[85] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., & Turner, J. (2008). Openflow: Enabling innovation in campus
networks. SIGCOMMComputer Communication Review, 38(2), 69–74.

[86] Metwally, A., Agrawal, D., & Abbadi, A. E. (2005). Efficient computation of fre-
quent and top-k elements in data streams. In Proceedings of the International Con-
ference on Database Theory (pp. 398–412).: Springer.

[87] Miao, R., Zeng, H., Kim, C., Lee, J., & Yu, M. (2017). Silkroad: Making stateful
layer-4 load balancing fast and cheap using switching asics. In ACM SIGCOMM
(pp. 15–28).

[88] Mitzenmacher, M., Steinke, T., & Thaler, J. (2012). Hierarchical Heavy Hitters
with the Space Saving Algorithm. In 2012 Proceedings of the FourteenthWorkshop on
Algorithm Engineering and Experiments (ALENEX) (pp. 160–174).: SIAM.

[89] Montazeri, B., Li, Y., Alizadeh, M., & Ousterhout, J. (2018). Homa: A receiver-
driven low-latency transport protocol using network priorities. In ACM SIG-
COMM (pp. 221–235).

[90] Moshref, M., Yu, M., Govindan, R., & Vahdat, A. (2014). DREAM: Dynamic
resource allocation for software-defined measurement. In ACM SIGCOMM (pp.
419–430).

205

[91] Muthukrishnan, S. (2005). Data streams: Algorithms and applications. Foundations
and Trends in Theoretical Computer Science, 1(2).

[92] Narayana, S., Sivaraman, A., Nathan, V., Goyal, P., Arun, V., Alizadeh, M., Jeyaku-
mar, V., & Kim, C. (2017). Language-directed hardware design for network perfor-
mance monitoring. In ACM SIGCOMM (pp. 85–98).

[93] Nyalkalkar, K., Sinhay, S., Bailey, M., & Jahanian, F. (2011). A comparative study
of two network-based anomaly detection methods. In IEEE INFOCOM (pp. 176–
180).

[94] Olesinski, W. &Driediger, S. (2009). Fair WRED for TCPUDP traffic mix. US
Patent 7,616,573.

[95] Pan, R., Breslau, L., Prabhakar, B., & Shenker, S. (2003). Approximate fairness
through differential dropping. ACM SIGCOMMComputer Communications Re-
view, 33(2), 23–39.

[96] Pan, R., Prabhakar, B., & Psounis, K. (2000). CHOKe-A stateless active queue man-
agement scheme for approximating fair bandwidth allocation. In IEEE INFOCOM
(pp. 942–951).

[97] Pan, T., Yu, N., Jia, C., Pi, J., Xu, L., Qiao, Y., Li, Z., Liu, K., Lu, J., Lu, J., et al.
(2021). Sailfish: Accelerating cloud-scale multi-tenant multi-service gateways with
programmable switches. In ACM SIGCOMM (pp. 194–206).

[98] Patrascu, M. (2008). Lower Bound Techniques for Data Structures. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA.

[99] Perry, J., Ousterhout, A., Balakrishnan, H., Shah, D., & Fugal, H. (2014). Fastpass:
A centralized ”zero-queue” datacenter network. In ACM SIGCOMM (pp. 307–
318).

[100] Pontarelli, S., Reviriego, P., &Mitzenmacher, M. (2018). EMOMA: exact match
in one memory access. IEEE Transactions on Knowledge and Data Engineering,
30(11), 2120–2133.

[101] Roy, A., Zeng, H., Bagga, J., Porter, G., & Snoeren, A. C. (2015). Inside the social
network’s (datacenter) network. In ACM SIGCOMM (pp. 123–137).

[102] Rubio, D. (2017). Jinja templates in django. In Beginning Django (pp. 117–161).
Springer.

206

[103] Schweller, R., Li, Z., Chen, Y., Gao, Y., Gupta, A., Zhang, Y., Dinda, P. A., Kao, M.-
Y., &Memik, G. (2007). Reversible sketches: enabling monitoring and analysis over
high-speed data streams. IEEE/ACMTransactions on Networking, 15(5), 1059–
1072.

[104] Sekar, V., Duffield, N. G., Spatscheck, O., van der Merwe, J. E., & Zhang, H. (2006).
LADS: Large-scale automated ddos detection system. InUSENIX Annual Technical
Conference (pp. 171–184).

[105] Sekar, V., Reiter, M. K., Willinger, W., Zhang, H., Kompella, R. R., & Andersen,
D. G. (2008). csamp: A system for network-wide flowmonitoring. In 5th USENIX
Sym- posium on Networked Systems Design and Implementation (NSDI’08) (pp.
233–246).

[106] Shah, R., Kumar, V., Vutukuru, M., & Kulkarni, P. (2020). TurboEPC: Lever-
aging dataplane programmability to accelerate the mobile packet core. In ACM
SIGCOMMSymposium on SDNResearch (SOSR’20) (pp. 83–95).

[107] Shahbaz, M., Suresh, L., Rexford, J., Feamster, N., Rottenstreich, O., &Hira, M.
(2019). Elmo: Source routed multicast for public clouds. In ACM SIGCOMM (pp.
458–471).

[108] Sharma, N. K., Liu, M., Atreya, K., & Krishnamurthy, A. (2018). Approximating
fair queueing on reconfigurable switches. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI’18) (pp. 1–16).

[109] Sivaraman, A., Cheung, A., Budiu, M., Kim, C., Alizadeh, M., Balakrishnan, H.,
Varghese, G., McKeown, N., & Licking, S. (2016a). Packet transactions: High-level
programming for line-rate switches. In ACM SIGCOMM (pp. 15–28).

[110] Sivaraman, A., Subramanian, S., Alizadeh, M., Chole, S., Chuang, S.-T., Agrawal,
A., Balakrishnan, H., Edsall, T., Katti, S., &McKeown, N. (2016b). Programmable
packet scheduling at line rate. In ACM SIGCOMM (pp. 44–57).

[111] Sivaraman, V., Narayana, S., Rottenstreich, O., Muthukrishnan, S., & Rexford, J.
(2017). Heavy-hitter detection entirely in the data plane. In ACM SIGCOMM
Symposium on SDNResearch (SOSR’17) (pp. 164–176).

[112] Sonchack, J., Michel, O., Aviv, A. J., Keller, E., & Smith, J. M. (2018). Scaling
hardware accelerated network monitoring to concurrent and dynamic queries with
*Flow. InUSENIX Annual Technical Conference (pp. 823–835).

207

[113] Soós, G., Ficzere, D., Varga, P., & Szalay, Z. (2020). Practical 5G KPI measurement
results on a non-standalone architecture. In IEEE/IFIP Network Operations and
Management Symposium (pp. 1–5).

[114] Spang, B. &McKeown, N. (2019). On estimating the number of flows. In Stanford
Workshop on Buffer Sizing.

[115] Stoica, I., Shenker, S., & Zhang, H. (1998). Core-stateless fair queueing: Achieving
approximately fair bandwidth allocations in high speed networks. In ACM SIG-
COMM (pp. 118–130).

[116] Thapeta, V. S., Shinde, K., Malekpourshahraki, M., Grassi, D., Vamanan, B., &
Stephens, B. E. (2021). Nimble: Scalable TCP-friendly programmable in-network
rate-limiting. In ACM SIGCOMMSymposium on SDNResearch (SOSR’21) (pp.
27–40).

[117] The P4 Language Consortium (2018a). P416 language specification. https://web.
archive.org/web/20221127080230/https://p4.org/p4-spec/docs/P4-16-v1.1.
0-spec.html. Accessed: 2022-11-27.

[118] The P4 Language Consortium (2018b). P416 Portable Switch Architecture.
https://web.archive.org/web/20200711060854/https://p4.org/p4-spec/
docs/PSA-v1.0.0.pdf. Accessed: 2020-07-11.

[119] Venkataraman, S., Song, D. X., Gibbons, P. B., & Blum, A. (2005). New streaming
algorithms for fast detection of superspreaders. InNetwork and Distributed System
Security Symposium.

[120] Wischik, D. &McKeown, N. (2005). Part I: Buffer sizes for core routers. ACM
SIGCOMMComputer Communication Review, 35(3), 75–78.

[121] Xu, D., Zhou, A., Zhang, X., Wang, G., Liu, X., An, C., Shi, Y., Liu, L., &Ma, H.
(2020). Understanding operational 5G: A first measurement study on its coverage,
performance and energy consumption. In ACM SIGCOMM (pp. 479–494).

[122] Yang, M., Zhang, J., & Yu, L. (2019). Perceptual tolerance to motion-to-photon
latency with head movement in virtual reality. In Picture Coding Symposium (PCS)
(pp. 1–5).

[123] Yang, T., Jiang, J., Liu, P., Huang, Q., Gong, J., Zhou, Y., Miao, R., Li, X., & Uhlig,
S. (2018). Elastic sketch: Adaptive and fast network-wide measurements. In ACM
SIGCOMM (pp. 561–575).

208

https://web.archive.org/web/20221127080230/https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://web.archive.org/web/20221127080230/https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://web.archive.org/web/20221127080230/https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://web.archive.org/web/20200711060854/https://p4.org/p4-spec/docs/PSA-v1.0.0.pdf
https://web.archive.org/web/20200711060854/https://p4.org/p4-spec/docs/PSA-v1.0.0.pdf

[124] Yao, A. C. (1978). Should tables be sorted? (extended abstract). In Foundations of
Computer Science (pp. 22–27).

[125] Yaseen, N., Sonchack, J., & Liu, V. (2018). Synchronized network snapshots. In
ACM SIGCOMM (pp. 402–416).

[126] Yoon, M. (2010). Aging bloom filter with two active buffers for dynamic sets. IEEE
Transactions on Knowledge and Data Engineering, 22(1), 134–138.

[127] Yu, L., Sonchack, J., & Liu, V. (2022). Cebinae: Scalable in-network fairness aug-
mentation. In ACM SIGCOMM (pp. 219–232).

[128] Yu, Z., Hu, C., Wu, J., Sun, X., Braverman, V., Chowdhury, M., Liu, Z., & Jin, X.
(2021a). Programmable packet scheduling with a single queue. In ACM SIG-
COMM (pp. 179–193).

[129] Yu, Z., Wu, J., Braverman, V., Stoica, I., & Jin, X. (2021b). Twenty years after: Hi-
erarchical Core-Stateless fair queueing. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’21) (pp. 29–45).

[130] Zhang, Q., Liu, V., Zeng, H., & Krishnamurthy, A. (2017). High-resolution mea-
surement of data center microbursts. In ACM SIGCOMM InternetMeasurement
Conference (IMC) (pp. 78–85).

[131] Zhang, Y., Liu, Z., Wang, R., Yang, T., Li, J., Miao, R., Liu, P., Zhang, R., & Jiang, J.
(2021). CocoSketch: High-performance sketch-based measurement over arbitrary
partial key query. In ACM SIGCOMM (pp. 207–222).

209

	Abstract
	Introduction
	Background of PISA switches
	Switch hardware architecture
	Hardware-imposed algorithmic constraints

	I Enabling Network Measurement in the Switch Data Plane
	PRECISION: Heavy-hitter detection via partial recirculation
	Introduction
	Related Work
	Design and Implementation of PRECISION
	Hierarchical Heavy Hitters
	Prototype and Evaluation
	Conclusions

	BeauCoup: Running multiple measurement queries simultaneously
	Introduction
	The BeauCoup Algorithm
	The BeauCoup Query Compiler
	BeauCoup on PISA Hardware
	Evaluation
	Discussion
	Related Work
	Conclusion

	II Real-time, Closed-loop Control in the Switch Data Plane
	ConQuest: Measuring and mitigating microbursts in real time
	Introduction
	Queue Measurement Use Cases
	ConQuest Data Structure
	P4 Hardware Switch Prototype
	Evaluation
	ConQuest for Legacy Devices
	Related Work
	Conclusion

	AHAB: Enforce hierarchical fairness via closed-loop adjustment
	Introduction
	Hierarchical Fair Bandwidth Allocation
	AHAB System Overview
	Scaling Beyond Memory Limits
	Approximate Arithmetic in the Data Plane
	Evaluation
	Related Work
	Conclusion

	Concluding Remarks
	References

