

TRACKING P4 PROGRAM EXECUTION IN THE DATA PLANE

Suriya Kodeswaran

A MASTER’S THESIS

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF MASTER OF SCIENCE IN ENGINEERING

 RECOMMENDED FOR ACCEPTANCE BY

 THE DEPARTMENT OF COMPUTER SCIENCE

Adviser: Jennifer Rexford

June 2020

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License . (https://creativecommons.org/licenses/by-sa/4.0/)

ABSTRACT

While programmable switches provide operators with much needed control over the network,

they also increase the potential sources of packet processing errors. Bugs can happen

anywhere: in the P4 program, the controller installing rules into tables, or the compiler that maps

the P4 program into the resource constrained switch pipelines. Most of these bugs manifest

themselves after certain sequences of packets with certain combinations of rules in the tables.

Tracking each packet’s execution path through the P4 program, i.e., the sequence of tables hit

and the actions applied, directly in the data plane is useful in localizing such bugs as they occur

in real time. The fact that programmable data planes require P4 programs to be loop-free and

can perform simple integer arithmetic operations makes them amenable to Ball-Larus encoding,

a well known technique in profiling execution paths in software programs that can efficiently

encode all N paths in a single ⌈log(N)⌉ bit variable. However, for real world P4 programs, the

path variable can get quite large, making it inefficient for integer arithmetic at line rate.

Moreover, the encoding could require a subset of tables that would otherwise have no data

dependency, to update the same variable. By carefully breaking up the P4 program into disjoint

partitions and tracking each partition’s execution path separately, we show how to minimally

augment P4 programs to track the execution path of each packet. With this system in place, we

then provide intuition towards using the tracked path to detect and localize bugs in P4

programs.

iii

ACKNOWLEDGEMENTS

I would like to thank my adviser, Jennifer Rexford for her invaluable knowledge and experience.
I also want to thank my colleagues Praveen Tammana and Mina Arashloo for their significant

contributions to the project.

iv

TABLE OF CONTENTS

1. Introduction

2. Ball-Larus for P4 Programs

a. Running example

3. Challenges

a. Addition on large operands

b. Extra data dependencies

4. Multi-Variable Path Encoding

a. The partitioning problem

b. Running example

c. Choosing K (# path variables)

d. The optimization problem

5. Evaluation

a. Prototype

b. Augmenting the program

c. Integration with existing compilers

d. Benchmark programs

e. Data-plane overhead

6. Usecases: Detecting and Localizing Bugs

a. Including ground truth in data-plane

b. Run time path assertions

c. Sample and check paths offline

7. Related Works

a. Data-plane postcards

b. Test packet generation

c. Verification

8. Conclusion

9. References

v

Tracking P4 Program Execution in the Data Plane

Suriya Kodeswaran

1 Introduction

Programmable switches [16, 11, 7, 4] allow network
operators to customize the switch data-plane using
high-level languages such as P4 [12]. This provides
much-needed flexibility and fine-grained control over
switches in the network. However, compared to fixed-
function switches, programmability increases the po-
tential sources of packet processing errors as a sig-
nificant portion of the data-plane behavior is only
specified at program compile or run time.
To see why, consider all the complicated pieces

of software involved in operating the data plane of
a programmable switch. The P4 program itself,
which specifies the match-action tables and the or-
der in which they should process incoming pack-
ets, can get quite large and complicated in prac-
tice: the switch.p4 program [15], the open-source
implementation of a standard switch in P4, has
⇠1034 di↵erent control paths through 157 tables
and ⇠307 actions! To fit these programs into the
extremely resource-constrained physical pipelines of
programmable switches, P4 compilers implement sev-
eral rounds of aggressive target-specific optimizations
and code transformations, which makes the compiler
software grow into large complicated pieces of soft-
ware with hundreds of thousands of line of code. Fi-
nally, after the P4 program is compiled and installed
on the switch, the contents of match-action tables
are continuously modified by control-plane programs
that add, modify, and remove rules from the tables at
run-time. In practice, these control-plane programs
are often large and complicated as well, as they have
to deal with the intricacies of consistently transition-
ing the data plane from one set of rules to another in
response to various run-time events.
Any bug in this complex collection of software can

adversely a↵ect how packets are processed in the data

plane. Previous work has uncovered several bugs in
existing P4 and control-plane programs [8, 14, 5, 3].
There are also several bug reports for existing com-
pilers, describing non-trivial mismatches between the
expected packet processing behavior described in the
P4 program and the observed behavior of the com-
piled program running on the switch. In most cases,
these bugs happen in corner cases, only manifesting
themselves after certain sequences of incoming pack-
ets with certain combinations of rules in the tables.
Thus, given the size and complexity of real-world P4
programs, they are typically not uncovered during
testing prior to deployment. Even when they are trig-
gered by production tra�c afterwards, their subtle
nature makes them di�cult to reproduce for analysis.
In this paper, we propose a useful data-plane prim-
itive for detecting and localizing such bugs as they
occur in real time: tracking each packet’s execution
path through the P4 program, i.e., the sequence of
tables hit and the actions applied, directly on the
data plane. This e↵ectively turns every packet that
goes through the switch into a potential test packet
for the data plane. If there is prior knowledge about
expected execution paths for certain classes of tra�c,
e.g., from static analysis of the program or in form
of assertions from the programmers themselves, it is
possible to detect when the observed execution path
deviates from the expected one directly in the data
plane. Alternatively, one could send some packets
from every observed path to a local controller run-
ning on the switch CPU to compute their expected
execution paths and compare them against the ob-
served ones. One could even have each switch tag
the packet with the observed execution path, e.g., as
part of the INT header, so that the final destination
can recover and analyze every decision made by every
switch in processing the packet.

1

Besides detecting bugs, tracking packets’ execution
paths in the data plane is a valuable tool for localizing
bugs as well. Suppose the operators detect a problem
with a certain subset of tra�c, either a mismatch be-
tween their expected and observed execution paths
as described above or other correctness and perfor-
mance problems detected through other monitoring
tools. To localize the problem, operators can simply
ask the switch to send the program paths that those
packets are taking right then in the data plane to the
controller to analyze where in the P4 program the
problem is coming from. Once the problem is local-
ized to a certain part of the program, they can then
find out whether it is due to a bug in the P4 program
itself, or an incorrect match-action rule installed by
the control plane, or the compiler not compiling that
part of the program correctly.
To track packet execution paths in the data plane,

we need to augment the original P4 program to en-
code the sequence of tables and actions that process
the packet as it goes through the switch. As table
and actions are triggered, we can track their execu-
tion by updating the Packet Header Vector (PHV),
the limited per-packet state that travels with the
packet throughout its processing time. The PHV is a
valuable fixed size resource, typically a few hundred
bytes, storing parsed packet header as well as any
meta data required for processing the packet. Typ-
ically, the more complex a program is, the greater
number of PHV bits it requires for processing pack-
ets. A seemingly natural approach towards tracking
packet execution paths is to have a flag bit for each
portion of the program we want to track, setting it
to one if it was used in processing the packet. This,
however, can quickly deplete the available bits in the
PHV.
We find that Ball-Larus encoding [2], a well-known

technique in profiling execution paths in software, is
a promising fit for tracking packet execution paths
in P4 programs: As we show in §2, when programs
are loop free, like in P4, Ball-Larus can encode all N
program paths in a single dlog(N)e-bit variable, thus
adding minimal overhead to the per-packet meta-
data that is carried across data-plane stages. More-
over, Ball-Larus encoding does not require sophisti-
cated updates to the path variable: it carefully labels

every transition between program statements with an
integer. As the input (packet in our setting) tran-
sitions from one statement to the next, the integer
label for that transition is added to the path vari-
able, an operation perfectly within the capabilities of
programmable data planes today.

Nevertheless, if adapted näıvely, Ball-Larus encod-
ing can have prohibitive overhead in terms of action
complexity and number of stages. For large and com-
plex P4 program such as switch.p4, the path variable
can get as large as a few hundred bits, making it in-
e�cient for integer arithmetic at line rate. Moreover,
the encoding adds extra data dependencies between
tables that have to update the path variable. These
extra dependencies could force tables, that were oth-
erwise independent and mapped by the compiler to
the same stage in the hardware pipeline, to span
across multiple stages instead. We show, in §4, how
we overcome both of these challenges by carefully par-
titioning the P4 program and tracking the execution
path of each partition separately.

We have implemented a prototype that takes a P4
program as input and outputs an augmented P4 pro-
gram that can track packet execution paths. We aug-
ment a variety of P4 programs, including switch.p4,
using our prototype and evaluate the amount of data-
plane resource needed by our augmentation on a
Barefoot Tofino [16] switch. Our preliminary results
demonstrate that even for programs as large and com-
plicated as switch.p4 with ⇠1034 paths, we can track
packet’s execution path in the data plane using only
⇠178 bits of meta data and the same number of data-
plane stages as the non-augmented program.

2 Ball-Larus for P4 Programs

Ball-Larus encoding is a well-known technique for ef-
ficiently profiling execution paths in software [2]. For
loop-free programs, i.e., programs whose control flows
graphs (CFGs) are directed acyclic graphs (DAGs),
it can encode all N paths of a program in a single
dlog(N)e-bit variable. More specifically, it labels ev-
ery edge in the DAG, i.e., transitions between pro-
gram statements, with an integer. The pseudo-code
presented in the original Ball-Larus paper is included
in figure 1. The computation time for a DAG with E

2

Figure 1: Pseudo code to perform Ball-Larus algorithm
included in original paper [2]. After performing, the dic-
tionary BL will contain the update for each edge.

edges and V nodes is proportional to O(E + V), as
a reverse topological ordering can be implented as a
simple post-order traversal of the DAG. As the input
transitions from one statement to the next in the pro-
gram, the integer label assigned to that transition is
added to the variable that is tracking the input’s ex-
ecution path. When the program finishes processing
the input, the value in the path variable is a number
between 0 and N , uniquely identifying the path the
input took through the program.

With an observed path variable number in hand,
it is easy to recreate the exact path taken through a
DAG. Edge updates are placed to cover continous
ranges of path labels, which essentially makes the
DAG into a search tree. This means, by performing
simple comparisions starting from the root, we can
work our way down through the DAG to discover the
exact edge transitions that must have taken place to
result in our obersved path variable number. In es-
sense, this process is similar to performing a binary
search, but where each node can have more than two
outgoing edge transitions, thus requiring more than
one comparision at each vertex.

Ball-Larus encoding is a promising fit for track-
ing packet execution paths in P4 programs. First,
P4 programs are restricted to be loop-free to allow
for their e�cient implementation on programmable
switches. Thus, given a P4 program, we can con-
struct a DAG representing the program’s CFG and
run the Ball-Larus algorithm on it. Moreover, pro-
grammable switches allow P4 programs to define per-
packet meta-data variables carried with the packet
throughout its processing, and to define actions to
update them using simple arithmetic operations.
Thus, once the Ball-Larus algorithm assigns labels

Figure 2: The control flow graph of an example P4 pro-
gram with edges labeled by the Ball-Larus algorithm.

to the edges in the program’s DAG, we can augment
the program with a meta-data variable to track the
execution path, and extra actions to update its value
on the DAG’s transitions based on the labels.
Running example. Consider the control flow

graph of the simple P4 program in figure 2. It first
checks whether it has received a valid IPv4 packet
(node A in the CFG). If so, it first applies the T mbox

table (node B), which has two actions: A encap (node
D) tunnels packets towards sensitive destination IP
addresses specified in the table rules to a middlebox
for further analysis, and A noop (node C) simply lets
other packets through. Next, the program applies
the T ipv4 table (node E), which performs a longest
prefix match on the packet’s final destination and ei-
ther sets the address of its next hop in A set nhop

(node F) or drops it if it is not matched (node G).
Finally, the program applies the T stats table (node
H), which has two actions as well: A count (node I)
to count certain destination IP addresses, specified in
the table rules, and A noop (node J) to let other pack-
ets through. Non-IPv4 packets are simply dropped
(node K).
If we run the Ball-Larus algorithm on this DAG,

it will mark edges A ! B and H ! J with number
1, edge B ! C with 4, E ! F with 2, and all other
edges with 0. As shown in figure 2, adding up the
numbers on the edges along each of the nine di↵er-
ent paths in the CFG will lead to a unique number

3

(a) Without Augmentation (b) Augmented with a single variable for path tracking

Figure 3: Mapping of CFG nodes in our example programs to pipeline stages without augmentation for path
tracking (3(a)), and when augmented with a single variable for tracking paths (3(b)).

between 0 and 8 which uniquely identifies that path.
Now, to track each packet’s execution path in the P4
program, we augment the program with (i) a meta-
data variable, called V in the figure, to track the path
ID, and (ii) an extra action on any transition in the
CFG that is assigned a non-zero label, i.e., A ! B,
B ! C, and E ! F , to simply add the value of the
label to V . For transitions that are between a table
and its actions, i.e., B ! C and E ! F , we can-
not add an extra action on the transition. Instead
we can augment the table action itself to perform the
addition.

With this augmentation in place, when the pro-
gram finishes processing a packet on a switch, V con-
tains the unique identifier for the path the packet
has taken through the program. The path identified
shows precisely which CFG nodes, i.e., conditionals,
tables, and actions, the packet has hit in this switch.
However, as we discuss next, such augmentations can
cause non-negligible overheads when applied to real-
world P4 programs.

3 Challenges

By tracking all N paths of a program in a dlog(N)e-
bit variable, Ball-Larus has minimal overhead in
terms of the amount of per-packet meta-data it needs
in the data plane. However, when applied to P4 pro-
grams, using a single variable to keep track of the
execution path has two negative implications.

Addition on large operands. First, for large P4
programs with many paths, such as switch.p4, the
size of meta-data variable V that keeps track of the
path (log(N)) can get as large as a few hundred bits.
Existing programmable data planes, however, can-
not perform arithmetic operations on operands larger

than 64 bits in a single stage. Thus, performing ad-
dition on a few-hundred-bit-wide variable would have
to span multiple stages. Ball-Larus encoding requires
multiple such additions, one on every edge in the
CFG that has a non-zero label. Thus, for large P4
programs, it can significantly increase the number of
pipeline stages required for the augmented program
in the data plane.
Extra data dependencies. Second, all the

augmented actions, and their corresponding tables,
would have extra data dependencies with each other
as they all update the same path variable. This can
cause the augmented P4 program to use up more
stages on the data plane compared to the original one.
Consider T ipv4 and T stats for instance. Without
any augmentation, they have no data dependencies
as both just read the destination IP and do not write
to it. Thus, as shown in figure 3(a), both tables and
their corresponding actions can reside in the same
stage when the program is compiled and installed
on the switch. After augmentation, however, both
A set nhop from T ipv4 and A noop from T stats up-
date V , and therefore, as shown in figure 3(b), can no
longer be placed on the same stage. Similarly, the ex-
tra action that increments V on transition from node
A to node B cannot be placed on the same stage as
T mbox and its actions.
Thus, the augmented program needs four stages in

the data plane, two more than the original program:
A, K, and the action incrementing V on A ! B all
reside on the first stage, T mbox and its actions are
on the second stage, T ipv4 and T stats and their
actions each get their own stage as they were both
dependent on T mbox before and are now dependent
on each other as well. As the number of pipeline
stages on existing switches is typically small (¡32),

4

(a) sub-DAG 1 (b) sub-DAG 2 (c) Mapping to the pipeline

Figure 4: The example program partitioned into two sub-DAGs (4(a) and 4(b)), the execution path of each tracked
by a di↵erent meta-data variable. 4(c) shows how the program augmented with multiple variables is mapped to the
same number of stages as the non-augmented program in figure 3(a).

these extra dependencies quickly become problematic
for large programs such as switch.p4 that have hun-
dreds of mostly-independent tables and heavily rely
on the compiler placing multiple tables on the same
stage to fit in the data plane.

4 Multi-Variable Path Encoding

To make Ball-Larus feasible for large P4 programs,
we make the following observation: if we break-up
the program’s CFG into multiple sub-DAGs, we can
concurrently track the execution path in each sub-
DAG using independent meta-data variables. This
helps alleviate both of the challenges in §3. First,
each sub-DAG has fewer paths compared to the orig-
inal DAG. Thus, its path variable can potentially stay
within the bit-width limits of arithmetic operands in
each stage. Moreover, augmented actions and their
corresponding tables in di↵erent sub-DAGs update
di↵erent path variables. As such, they can co-exist
in the same stage and no longer need to span across
multiple stages.

The partitioning problem. Given a DAG D,
we want to find K sub-DAGs D1, · · · , DK that re-
spectively have P1, · · · , PK paths tracked by variables
V1, · · · , VK , such that (i) the bit-width of each Vi, i.e.,
len(Vi) = dlog(Pi)e is within the limits of arithmetic
operands in programmable switches, and (ii) once the
program is augmented to track the execution path
of these K sub-DAGs, it still uses the same number

of data-plane stages as the non-augmented program.
Note that the tuple (Vi, · · · , VK) still uniquely iden-
tifies the execution path throughout the entire pro-
gram.

Running example. Suppose we break up the
CFG in figure 2 into two sub-DAGs as shown in fig-
ures 4(a) and 4(b). The first sub-DAG contains the
conditional (node A), the drop action (node K), and
table T ipv4 and its actions (nodes E, F , and G)
while the second sub-DAG contains the rest, i.e., ta-
ble T mbox and T stats and their actions. In each sub-
DAG, connected sets of the nodes from the original
DAG that are not present are replaced with dummy
nodes. We run Ball-Larus independently on each sub-
DAG to mark the edges with labels, and use two sep-
arate meta-data variables to track the execution path
in each sub-DAG: V1 will updated on transitions in
the first sub-DAG, and V2 is updated on transitions
in the second sub-DAG.

This partitioning satisfies our conditions: V1 and
V2 track 3 and 4 paths, respectively, and each need
two bits. Thus, they are within the bit-width limits
of arithmetic operands on programmable switches.
Moreover, there is no extra dependency between
T ipv4 and T stats as each are updating a di↵erent
path variable. Similarly, there is no extra depen-
dency between T mbox and the action updating the
path variable for the edge between A and B. Thus,
as depicted in figure 4(c), the augmented program

5

Program Statistics Path Encoding Statistics

Programs Paths (N) Tables Stages Actions Path Vars (K)
Added Added Metadata (bits)
Actions our approach optimal (dlog(N)e)

tna-action-selector.p4 6 2 2 6 1 0 3 3
source-routing.p4 5 1 7 6 3 3 3 3
tna-multicast.p4 36 6 4 15 2 2 6 6
fabric-bng.p4 1.01⇥ 109 67 11 73 20 35 46 30
simple switch.p4 1.76⇥ 109 35 7 157 8 11 47 31
switch.p4 1.75⇥ 1034 157 12 307 21 71 178 114

Table 1: A summary of our benchmark programs and the extra data-plane resource needed for multi-variable path
encoding.

can be mapped to two stages, not using any extra
stages compared to the original program.

Choosing K. Setting a value forK is not straight-
forward as the benefits of partitioning come at a cost.
After partitioning, the total number of bits used for
path encoding across all sub-DAGs is ⌃k

i=1dlog(Pi)e.
Depending on the partitioning, this can be larger
than the optimal dlog(N)e that is achievable without
partitioning and using a single variable for tracking
the execution path. This can happen for two reasons.
First, not all combinations of paths in di↵erent sub-
DAGs construct a valid execution path in the entire
program. For instance, in our example in figure 4,
V1 can track AK and V2 can track BDHI, but their
combination, i.e., (AK,BDHI), will never happen in
the program as a whole. More generally, (V1, · · · , VK)
encodes P1 ⇥ P2 ⇥ · · ·⇥ PK paths which, due to par-
titioning, can become larger than N , the total num-
ber of valid paths in the program. Second, suppose
we manage to partition the original DAG such that
P1 ⇥ P2 ⇥ · · · ⇥ PK is equal to N , for instance by
using a larger K and partitioning the program into
more sub-DAGs. Then, dlog(N)e will be equal to
d⌃k

i=1log(Pi)e, and ⌃k
i=1dlog(Pi)e can become K bits

larger than log(N) due to rounding.

To find a suitable value for K, we exploit the map-
ping of tables and conditionals in the original non-
augmented P4 program to the switch pipeline. More
specifically, suppose Ts denotes the set of tables and
conditionals that are mapped to stage s when we
compile the original P4 program to the switch. This
information is available from the output of P4 com-
pilers for existing programmable switches. Suppose
Tmax is the size (in number of tables) of the largest

Ts. If we set K to Tmax, it is possible to assign all
tables and conditionals in the same Ts to di↵erent
sub-DAGs. As a result, after encoding, their aug-
mented actions will not be dependent on each other,
and therefore, they will remain on the same stage.
Thus, the augmented program will use the same num-
ber of data-plane stages as the non-augmented pro-
gram1.
The Optimization Problem. To decide how to

assign tables and conditionals in each Ts to the K
sub-DAGs, we use an integer linear program (ILP).
The ILP takes the CFG and Tss as input, and outputs
aij , which is set to one if node i is assigned to sub-
DAG j, and is zero otherwise. Here, a node is either
a table or a conditional (which is treated similar to
a table by existing programmable switches) together
with its actions. The objective is to minimize ⌃K

i=1vi,
where vi is the number of bits required to track all
the paths in sub-DAG i.
The first set of constraints are of the form 0 vi

MAX W , where MAX W is the maximum number
of bits allowed in arithmetic operands in each stage
on the switch. Next, as discussed above, for each
stage s and sub-DAG j, we ensure that only one node
from Ts is assigned to sub-DAG j using the following
constraint: ⌃i2Tsaij = 1. For each node i, we have
constraints of the form ⌃K

j=1aij = 1 that it is assigned
to only one sub-DAG. Finally, suppose pi 2 R is the

1Unless the augmented actions of the same Ti do not fit
in the same stage anymore due to the extra ALUs used for
addition. We have not observed this corner case even in our
most complicated evaluated programs (§5). But, even if it
happens, our approach still correctly tracks execution paths
and the augmented program just spans over one or few extra
stages.

6

log of the number of outgoing edges of CFG node
i. We estimate log of the number of paths in sub-
DAG j as ⌃N

i=1pi · aij , and relate that to vi using the
constraint ⌃N

i=1pi · aij vj .

5 Evaluation

Prototype. Using Barefoot Tofino [16] as target,
we have implemented a prototype that takes a P4
program as input and outputs an augmented P4 pro-
gram that can track packet execution paths. More
specifically, given an input program prog.p4, we first
compile the program using the Tofino compiler to ex-
tract the program’s control flow graph, and the map-
ping from the the program’s tables and conditionals
to the pipeline stages, both useful by-products of the
compilation process. We have developed a python
script that takes the CFG and the mapping as in-
put, and partitions the CFG into multiple sub-DAGs
by solving the optimization problem discussed in §4
using the puLP package. The script then runs the
Ball-Larus algorithm on each sub-DAG to obtain the
integer labels for each transition. Even for our largest
example programs, we found that the time required
to solve the optimization problem and obtain the in-
teger labels, takes under 5 seconds. A reference to
the entire system is provided in figure 5.

Augmenting the program. Next, we augment
prog.p4 in the following way. First, we add a meta-
data variable v i to track the execution path of each
sub-DAG. Second, for each action of each table that
has a non-zero integer label on its incoming edge, we
add a single instruction to add the label to the path
variable for the corresponding sub-DAG. Finally, in
Ball-Larus encoding, only one of the two outgoing
edges of each conditional will have a non-zero label.
Thus, for each conditional, we add an action on the
branch with the non-zero label to update the path
variable for the sub-DAG assigned to that conditional
accordingly.

Integration with existing compilers. An ideal
starting point for augmenting programs is to mod-
ify its intermediate representation (IR) typically used
by compilers during the compilation process. The
program’s IR is its parsed representation, typically
stored in a graph. It is a more detailed version of its

Figure 5: End to end system to augment an input P4
program with multi-variable Ball-Larus path encoding.

control graph with each node corresponds to some
piece of syntax in the original program. During the
compilation process, the IR goes through a sequence
of passes that transform it to a more optimized ver-
sion, some performing target-independent optimiza-
tions such as removing unreachable pieces of code,
and others transforming the IR to better fit on the
specified target. Our augmentations can be another
pass in the process, adding extra nodes in the graph
for the meta-data variables and actions required to
keep track of the execution paths in the computed
sub-DAGs. In fact, for our initial prototype, we im-
plemented our encoding as an IR pass in P4’s open-
source compiler [13]. However, we did not have access
to add passes to Tofino’s compiler. Thus, our proto-
type for Tofino parses the input program line by line
and injects the extra meta-data variables and actions
directly into the program’s code.
Benchmark Programs. We augment six P4 pro-

grams of varying size and complexity, listed in ta-
ble 1, using our prototype and evaluate the amount
of data-plane resource needed by our augmentation
on a Tofino switch. The first three, two taken from
the examples included with the Tofino compiler and
one from P4 tutorials [1], are smaller, with a few ta-
bles and actions, and not more than a few tens of
execution paths. The last three are much larger and
more complicated with hundreds of tables and actions
and more than billions of paths: fabric-bng.p4 and
switch.p4, specifically, are production-quality pro-
grams implementing a Broadband Network Gateway
(BNG) and a standard switch, respectively.
Data-Plane Overhead. Table 1 summarizes the

extra data-plane resources caused by program aug-
mentation. Our partitioning strategy (§4) ensures no
extra dependencies between tables and conditionals
that are mapped to the same stage after the compila-
tion of the original program. Thus, as expected, aug-
mented programs do not use any extra stages com-
pared to the original programs.

7

There is a slight increase in the number of actions
in the augmented program. This is expected: as dis-
cussed above, while we can augment existing table ac-
tions to update path variables, we have to add extra
actions to perform one addition to update path vari-
ables for transitions out of conditionals. These extra
light-weight actions, however, do not stop our aug-
mented benchmarks from fitting in the switch. This
is because the mapping from tables and conditionals
to the stages does not change after augmentation and
the extra actions merely use the extra ALUs in the
stages that were previously unused by the original
program.
Finally, recall from §4 that while partitioning

makes the augmentation feasible for large programs,
both in terms of the number of stages and complex-
ity of addition operations to path variables, it comes
at the cost of using extra bits to encode paths that
cannot occur in the program. Using extra bits for
encoding execution paths means leaving fewer bits in
the PHV for the original P4 program. Thus, we use
our benchmark programs to ensure that our multi-
variable approach can still e�ciently encode the exe-
cution paths for the program without exhausting the
available PHV bits.
More specifically, as shown in Table 1, we com-

pare the optimal number of bits required to encode
all N paths of the program, i.e., dlog(N)e, to the
number of bits used by our multi-variable encoding,
i.e., the sum of the sizes of the K path variables
tracking execution paths in the K di↵erent parti-
tions of the program. The most complicated pro-
gram, switch.p4, can be encoded with 178 bits, and
the other two large programs can be encoded with 47
and 46 bits. For comparison, KeySight, the closest
related work that can encode such information [18]
uses 32K bits of metadata for encoding in the worst
case (see §7). Moreover, recall that the optimal en-
coding would require a single Ball-Larus variable, cre-
ating extra data-dependencies between otherwise in-
dependent tables when their actions update that vari-
able. The näıve encoding, which is to update a cor-
responding flag bit on every action in the program,
is similarly prohibitive. In existing programmable
switches, these approaches only work for encoding
the small and simple input programs, and do not

scale e�ciently to larger real-world programs such as
fabric-bng.p4 and switch.p4. Thus, we believe our
multi-variable encoding overhead, and its di↵erence
from optimal, is not considerable given its significant
benefits in terms of number of stages and action com-
plexity and as the amount of per-packet meta-data on
existing switches is a few thousand bits.

6 Usecases: Detecting and Localizing

Bugs

We have so far described and evaluated an e↵ecient
system to implement path profiling for P4 programs
which will work on hardware targets overcoming the
numerous restrictions.

Even without any further instrumentation in place,
the multi-variable Ball-Larus path encoding could
prove a useless tool to P4 developers. Every packet
that it processed by the encoded program will be
tagged with the path it took, akin to debugging
print statements used for control flows in conven-
tional code. In addition, in creating the encoded pro-
gram, we provide the user with the expected CFG for
their code and can enumerate over all possible paths.
P4 programs are dense with conditional executions
due to being dominated by match action units, mak-
ing it possible to lose track of the control flow while
coding. For a novice P4 developer, the path encoding
instrumentation would serve as a sanity check where
they can verify if the expected paths in the P4 code
allign with the vision they had for the program.

As discussed, knowing the set of Ball-Larus vari-
able values output for a packet as well as the CFG
of the P4 program will be enough to recreate the
path those variables represent. This is just the set of
hit match-action units and conditionals. Note that
our technique will only tell which units were hit, not
the specific order they were processed in the hard-
ware. A compiler bug occurs when the observed path
during run-time for a set of packets is not equal to
the expected path on the annoted CFG. If there is a
mismatch, we can conclude that the compiler intro-
duced a bug when mapping resources to the hardware
pipeline, which manifests as unexpected behavior for
some subset of packets. Thus, we will need some
mechanism in place to compare the expected paths

8

versus observed paths for packets to easily determine
if any mismatches occur.
In the following section, we discuss the benefits and

limitations of three approaches to detect mismatches,
which would allow the user to localize bugs.

• Expected path in data-plane lookup table (Full
coverage)

• Run time path assertion checks (Static coverage)

• Sample and check paths o✏ine (Best attempt
coverage)

Including ground truth in data-plane. If the
expected program execution path for packets is lo-
cated in the data plane, we can compare a packet’s
evaluated execution path in the pipeline vs the ex-
pected path. Doing this check for every packet that
traverses the switch e↵ectively treats every incoming
packet as a test packet. This allows the user to ei-
ther be confident that all production tra�c is being
properly handled, or at least able to identify which
parts of the execution path are corrupted, providing
full debugging coverage over all possible paths in the
program.
Packets are typically processed in a switch via

header transformations. In a stateless program, two
packets sharing identical header fields will follow the
same execution path in a program. Thus, we can
introduce a ”ground truth” table to the pipeline of
augmented programs, wherein the look-up keys are
the pertinent header fields, and the values are the
expected program execution path, calculted before-
hand. Unfortunately, certain hardware limitations
can make calculating and maintaining the ground
truth table prohibitively costly for complex pro-
grams.
An intuitive process to calculate the expected ex-

ecution paths is through symbolic execution, which
discovers the output corresponding to every input to
the program. We can utilize symbolic execution of P4
programs to create a set of ”packet classes”, consist-
ing of ranges of the headers field values that influence
the execution path. Members of the same packet class
are expected to take the same execution path.
One of the limitations of this approach is the time

required for symbolic execution. Symbolic execution

is an exhaustive process that tests all possible exe-
cution paths, which will not scale to large programs
such as switch.p4. Previous work on symbolic exe-
cution in P4, such as in p4pktgen [10], show that it
takes greater than 30 mins to perform on switch.p4.
In addition, the resulting packet class information
may be to too large to fit into the data plane. As
switch.p4 has ⇠1034 paths, we expect there to be
at least as many packet classes, and it is improbable
that a table of that size can fit on modern switches.
For simple programs however, it may be the case that
the ground truth table created by symbolic execution
can be inserted into the pipeline and matched with
during run-time.
One solution to ensure that the ground truth table

does not contain too many entries is to populate it
reactively during run-time. In this case, the ground
truth table in the pipeline contains a subset of all
the expected execution paths. When a packet en-
ters and does not match with the table, we send the
packet, along with its evaluated execution path, to
the controller to perform symbolic execution on. The
packet’s packet class and expected execution path can
then be installed onto the table by the controller.
Another limitation to the aproach via symbolic ex-

ecution is that is does not take any table rules into
account. During compilation of a P4 program, we
only know which keys are matched upon in any given
table, as well as all the possible P4 actions that can
be taken from this table after matching. We know
that some action will happen dependant on the ta-
ble’s keys, but we do not know which action will be
selected just yet. The user installs rules into tables af-
ter the fact, which determine the specific action that
specific key values take. This implies that a reactive
solution may be necessary, as the controller will need
to populate the ground truth table as rules change.
A final limitation to symbolic execution is that the

number of keys needed to identify a packet class may
become too large. This becomes a problem when we
preform the lookup in the ground truth table. In the
naive case, a single packet class will need to represent
every header field that is matched by any table in the
program, as all these fields will jointly determine the
execution path. Similar to the previous argument, it
is unlikely this will scale to hardware for large pro-

9

grams. The key space for the ground truth table
could be at least as long as packets’ header space.
In addition, this makes the problem much harder to
solve for packet’s with header stacks.
Run time path assertions. In many cases, a

network operator may know that paths must be mal-
formed through packet analysis, although it may be
di�cult to identify exactly how this manifested in the
hardware. For situations such as this, we could use
run time assertion checks on the path variables to
ensure that only valid packets are on specific paths.
This approach requires you to statically specifcy some
path suspected of contiaining a bug to be checked in
the data plane. This can be thought of as a smaller
scale version of the full coverage mechanism disuc-
ssed in the previous subsection, wherein the ground
truth packet class for the specified path will be com-
puted using symbolic execution. Then, we would
know what set of headers should result in packets
to take that path (i.e. the packet class). We can
perform two di↵erent kinds of assertion checks with
this information during run time. One would be to
ensure that every packet part of the computed packet
class takes the desired path, as seen in the path vari-
ables at the end of the pipeline. The other would be
to ensure that only packets part of the packet class
take the path we wish to verify. Any mismatch will
be flagged. The user can then compute the expected
path o✏ine, which will provide explicit information of
how the the suspected path is malformed, and which
set of packets may trigger the bug.
For example, consider a P4 program containing an

ACL table. The rule for the ACL table may be to
deny non-IPv4 packets, by performing the drop ac-
tion. Packets are classified as IPv4 through a field
in the header. An operator may notice that non-
IPv4 packets are incorrectly making it through the
switch without being denied. A run time path asser-
tion for this problem would be to check the path of
non-IPv4 packets at the end of the pipeline, and send
any which do not take the ACL deny action to the
controller. Due to the nature of the Ball-Larus edge
increments, this can be performed as a simple range
check on our Ball-Larus variables. This will allow the
user to build a set of buggy packets and determine
their expected packets, which will provide valuable

debugging insight.
Sample and check paths o✏ine. For large pro-

grams, obtaining a full coverage solution strictly in
the data plane is di�cult. A solution to this would
be to verify the evaluated paths outside of the data-
plane, and provide a best attempt at coverage us-
ing a sampling mechanism, to avoid excessive com-
putational costs from exhaustive sampling. Instead
of treating every packet as a test packet for mis-
matches, we use a smaller subset. Then we would
be able to sample packets and check against the ex-
pected path independent of run time at the collector,
where the observed path could be verified for cor-
rectness using a software model of the program. An
ideal sampling strategy would have near full coverage
in verifying paths, while limiting the number of un-
necessary checks performed at the collector. In this
way, we would build a set of buggy paths at the col-
lector, identifying the sampled packets that have a
mismatch between observed path and expected path.
Di↵erent sampling mechanisms have di↵erent

tradeo↵s. At the simplest level, the strategy could
be to utilize a simple probability with which we wish
to sample packets randomly. Unfortunately, this
method is unlikely to find any bugs present in ”mice”
paths, which do not trigger often. Instead, we would
do frequent checks for packets that take heavy hitter
paths. Resampling from heavy hitter paths is usu-
ally a waste of resources, as we would have already
verified that path using a previously sampled packet.
To remedy this, we can use a smart data structure

to keep track of the heavy hitter paths during run
time. Then, we would only choose to sample pack-
ets from paths that are not already present in the
heavy hitter structure. To this end, we can utilize
a hash-based cache or bloom filters to ensure that
our observed paths are not oversampled from. The
index to these hash structures will be dependant on
the observed path variables as well as the IP flow tu-
ple of the packet to be sampled. These values will
be hashed together to uniquely idenitfy individual IP
flows taking a unique path in the program. As a
packet finishes the pipeline of the switch, it performs
a lookup in our sampling data structure to check if
the same path/tuple combination was recently sam-
pled. Packets that were not recently sampled will be

10

sent to collector to be verified against the software
model.

Two limitations for this approach appear in the
form of false positives and false negatives. False
positives occur due to oversampling paths previously
checked to be correct, and are considered a waste of
resources. False negatives occur when we do not sam-
ple an incorrect, buggy path. If an expected path
pe is buggy, it would manifest as some packet hav-
ing an incorrect observed execution path during run
time, say po. The packet would then be indexed with
po in the sample data structure, and would only be
sampled in relation to the presence of packets in the
incorrect path. There will be no knowledge of the
exepected path pe in the data plane. Thus if a path
bug causes the path id to become an incorrect, yet
recently sampled path, the bug would be missed. In
the same regard, careful care must be taken to tuning
the refresh rate as well as size of our sampling struc-
ture in relation to the number of overall paths, as
this impacts the rate of hash collisions, which can be
another source for false negatives causing incorrectly
evaluated path could collide with a recently sampled
path.

7 Related Work

Data-Plane Post-Cards. Previous work has ex-
plored collecting information about a packet into a
“post-card” as it traverses the switch and sending
relevant post-cards to a controller to help debug net-
work problems. NetSight’s post-card [6] includes the
packet header, its outgoing port, and the version
number for the rules installed on the switch that pro-
cessed the packet but does not track which tables and
actions have been hit by the packet. KeySight [18]
copies every packet field that is read and written to
in each match-action table into the post-card, but at
the cost of using ⇠32K bits of meta-data for large
programs such as switch.p4. In our approach, on
the other hand, the “post-card” contains the unique
identifier for the path the packet has taken through
the program and uses only a few hundred bits for
switch.p4.

Test Packet Generation. Previous work such as
ATPG [17] and P4pktgen [10] study automatic gen-

eration of test packets from specifications of network
devices. Test packets cannot exercise every packet
processing scenarios for specifications of real-world
switches such as switch.p4. Our approach is comple-
mentary to these e↵orts since, by enabling operators
to trace packet’s execution path on the data plane at
run time, it enables them to detect and localize bugs
on execution paths not exercised during testing.
Verification. Recent work [14, 8, 5, 9] explores

automatic verification of various properties about P4
programs using techniques such as static analysis or
symbolic execution. However, not all properties can
yet be verified by existing tools and these tools still
operate at the level of the P4 program. That is, they
can verify if the software logic is bug free for a spe-
cific set of bugs. However, the hardware mapping for
the program may have been incorrectly performed by
the compiler during compilation. Thus, these tools
cannot be used to find compiler bugs, especially for
compilers that are not open-source. As a result, our
approach can complement these works by enabling
the detection and localization of bugs in the P4 pro-
grams that are missed by the verification tools, or
bugs in the compiler or the controller installing rules
on the data plane.

8 Conclusion

We propose a useful data-plane primitive for detect-
ing and localizing bugs as they occur in real time:
tracking each packet’s execution path through the P4
program, i.e., the sequence of tables hit and the ac-
tions applied, directly in the data plane. In our on-
going work, we plan to design, implement, and eval-
uate end-to-end monitoring and debugging systems,
both in the data plane and control plane, that use
the path information to detect and localize bugs in
P4 programs, the compiler, and the controller.

References

[1] P4 Tutorials. https://github.com/p4lang/
tutorials/. Accessed: November 2019.

[2] T. Ball and J. R. Larus. E�cient Path Profil-
ing. In International Symposium on Microarchi-

tecture, 1996.

11

[3] M. Canini, D. Venzano, P. Pereš́ıni, D. Kostić,
and J. Rexford. A NICE Way to Test OpenFlow
Applications. In NSDI, 2012.

[4] Cisco Catalyst 9300 Programmable Switches.
https://www.cisco.com/c/en/us/products/
switches/catalyst-9300-series-switches/
index.html. Accessed: May November.

[5] L. Freire, M. Neves, L. Leal, K. Levchenko,
A. Schae↵er-Filho, and M. Barcellos. Uncover-
ing Bugs in P4 Programs with Assertion-Based
Verification. In SOSR, 2018.

[6] N. Handigol, B. Heller, V. Jeyakumar,
D. Mazières, and N. McKeown. I Know
What Your Packet Did Last Hop: Using Packet
Histories to Troubleshoot Networks. In NSDI,
2014.

[7] EX9200 Programmable Switches. https://www.
juniper.net/us/en/products-services/
switching/ex-series/ex9200/. Accessed:
November 2019.

[8] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif,
J. Lee, R. Soulé, H. Wang, C. Caşcaval, N. McK-
eown, and N. Foster. P4V: Practical Verification
for Programmable Data Planes. In SIGCOMM,
2018.

[9] N. Lopes, N. Bjørner, N. McKeown, A. Ry-
balchenko, D. Talayco, and G. Varghese. Au-
tomatically Verifying Reachability and Well-
Formedness in P4 Networks. MSR Technical Re-

port, MSR-TR-2016-65, 2016.

[10] A. Nötzli, J. Khan, A. Fingerhut, C. Barrett,
and P. Athanas. P4pktgen: Automated Test
Case Generation for P4 Programs. In SOSR,
2018.

[11] Advanced Programmable Switch. https://www.
stordis.com/products/. Accessed: November
2019.

[12] P4 Language Consortium. https://p4.org/.
Accessed: November 2019.

[13] P4 16 Reference Compiler. https://github.
com/p4lang/p4c. Accessed: November 2019.

[14] R. Stoenescu, D. Dumitrescu, M. Popovici,
L. Negreanu, and C. Raiciu. Debugging P4 Pro-
grams with Vera. In SIGCOMM, 2018.

[15] P4 16 Reference Compiler: switch.p4.
https://github.com/p4lang/switch/tree/
master/p4src. Accessed: November 2019.

[16] Tofino, World’s Fastest P4-Programmable
Ethernet Switch ASICs. https:
//www.barefootnetworks.com/products/
brief-tofino/. Accessed: November 2019.

[17] H. Zeng, P. Kazemian, G. Varghese, and
N. McKeown. Automatic Test Packet Genera-
tion. In CONext, 2012.

[18] Y. Zhou, J. Bi, T. Yang, K. Gao, C. Zhang,
J. Cao, and Y. Wang. KeySight: Troubleshoot-
ing Programmable Switches via Scalable High-
Coverage Behavior Tracking. In International

Conference on Network Protocols (ICNP), 2018.

12

