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Abstract

The Internet consists of multiple autonomous systems (ASes), each consisting of networks of
devices that are prone to malfunction, misconfiguration, or attack by malicious parties, and
each controlled by profit-seeking businesses with different economic goals. Despite these complex
relationships, the interdomain routing system (that allows ASes to communicate over the global
Internet) currently operates under the assumption that all nodes in the network can trust each
other. The thesis contributes to the body of works that seeks to remedy this, by considering
network protocols that operate correctly even in the presence of adversarial or selfish behavior.

We take a principled approach to analyze the types of security guarantees that are possible
within the engineering and economic constraints of the Internet’s interdomain routing system.
We focus exclusively on protocols that can be used to improve availability in the Internet, i.e., to
increase the likelihood that packets arrive uncorrupted at their correct destination, and analyze
two broad themes:

1. Which part of the system should be secured?

2. What is the right tradeoff between security and efficiency?

To address these questions, we consider securing the following two parts of the system: the
routing protocols, used to set up paths through the Internet, and the data-plane mechanisms,
used to forward packets along the paths set up by the routing protocols.

1. We start with a game-theoretic analysis that shows that even the strongest known secure
routing protocol is not sufficient to prevent selfish ASes from lying about the paths that
data packets take through the network. We then find sufficient conditions that ensure
that ASes will not lie. Unfortunately, these conditions are highly unrealistic, and so we
conclude that ASes may have an incentive to lie about paths, and thus potentially forward
their customer’s traffic via paths that drop or corrupt packets.

2. We next consider secure data-plane mechanisms. We use novel cryptographic and data-
streaming approaches to design lightweight protocols that detect packet loss and corruption
on a path through the network, even when some nodes on the path are adversarial. Our
protocols allow a sender and receiver to securely monitor billions of packets using only a
few hundred bytes of storage and a pair of comparably sized control packets.

3. Finally, we take the security guarantees above even further, by considering protocols that
also localize an adversarial node that drops or corrupts packets. We use cryptographic
proof techniques to design new protocols and argue that any secure localization protocol
requires the participation of every node on the path. This requirement is considered severe
in the setting of interdomain routing, where each node is owned by independent economic
entity, with little incentive to participate in the localization protocol.

Our results have implications on the design of high-performance network architectures that can
withstand selfish and adversarial behavior.
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Chapter 1

Introduction

Today’s Internet is a collection of autonomous systems (ASes) (e.g., Princeton’s campus net-
work, AT&T’s global backbone network), each controlled by different profit-seeking businesses,
each consisting of a complex network of routers and other devices. Connectivity on the Internet
requires these competing economic entities to cooperate; communication from a source to a des-
tination can traverse multiple devices inside multiple ASes. Despite these complex relationships,
the Internet was originally designed under the assumption that devices inside the network could
be trusted; security threats were perceived to come from outside the network. Furthermore,
the system is notoriously resistant to change; because the Internet is not controlled by single
centralized entity, it is extremely difficult to convince multiple independently-operated ASes to
upgrade to a new protocol. As such, many protocols used on the Internet today were designed
at a time when it still made sense to assume that all devices in the network can trust each other.

Because the Internet functions in a complex economic environment, its operation is chal-
lenged by the presence of adversarial or selfish parties that choose to deviate from correct
operation of network protocols. For example, a profit-seeking Internet service provider (ISP)
might misrepresent network performance in order to attract more of traffic from its paying cus-
tomers. As another example, a router hacked by a malicious outsider may selectively modify
traffic from a website like cnn.com, perhaps in order to drive up stock prices. Unfortunately,
many of the network protocols used on today’s Internet were not designed to deal with these
types of malicious or strategic behavior. The thesis contributes to the body of works that seeks
to remedy this, by considering the design and analysis of network protocols that operate correctly
even in the presence of adversarial or selfish behavior.

1.1 The interdomain routing system on the Internet

When we purchase an item from Amazon.com, traditional cryptography prevents attackers from
seeing our credit card numbers or impersonating the Amazon website. But how can we ensure
that our request actually arrives at the Amazon.com server, without being dropped or corrupted
along the way? This is exactly the challenge we address in this thesis – improving network
availability, or improving the chances that packets arrive correctly at their destination.

We focus specifically on availability in the interdomain routing system, that enables com-
munication between ASes in the global Internet. We separate the interdomain routing system
into two parts: the control plane, i.e., the routing protocols used to establish paths through
the Internet, and the data plane, i.e., the mechanisms used to forward packets over the paths
set up by the routing protocols. Network protocols and devices handle control-plane (routing)
and data-plane (forwarding) mechanisms in different ways; data-plane mechanisms are designed
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Figure 1.1: A stylized view of the interdomain routing system running BGP.

to be simple and fast, while control-plane mechanisms may be more complex and potentially
slower. This separation exists because paths in the Internet typically change as a result of link
or node failure, which happens on a much smaller timescale then the timescale used for packet
forwarding (c.f., a sensor network, where wireless inference causes paths to change on the same
timescale as packet forwarding).
The control plane. The control-plane protocol used in the Internet today is the Border
Gateway Protocol (BGP) [92]. BGP allows ASes to discover paths to each destination in the
Internet. In BGP, an AS discovers a path to a destination via an announcement message that
it receives from each of its neighboring ASes. Each announcement contains the AS-level path
that the neighbor AS uses to reach that destination. In this thesis, we make the simplifying
assumption that each AS selects a single path for all its traffic to each destination. (In fact,
each individual router inside the AS selects a single path for each destination, but we ignore this
complication in our work.) Path selection is guided by the AS’s routing policies; these routing
policies may depend arbitrarily on commercial, performance, or even security considerations [22].

(In Figure 1.1, we show how BGP announcements allow Comcast, AT&T, Local ISP, and
Princeton to discover paths to destination IBM. Routing policies for Local ISP and Princeton are
shown inside scrolls. Here, Local ISP prefers the path through Comcast over the path through
AT&T, perhaps because Comcast provides service to Local ISP at a lower cost than AT&T. As
such, Local ISP routes all traffic destined for IBM over the path through Comcast. As a result,
Princeton’s most preferred path (Local, AT&T, IBM) is not available, and so Princeton chooses
to send traffic over its second favorite path through AT&T.)
The data plane. Once an AS establishes a path to a destination using BGP, the routers inside
the AS forward packets along these paths. Because each AS uses BGP to choose a single AS-
level path to each destination, it follows that packet forwarding from a source to a destination
on the Internet typically occurs on a single AS-level path. Even so, packet forwarding can be a
non-trivial task; at the core of the Internet, packets must be processed at extremely high speeds
(about 2 nsec per packet). To ensure that packet-processing is extremely fast, the data-plane
was designed to be quite simple; for instance, it was not designed to guarantee that packets will
arrive unmodified at their correct destination. As packets travel through the network, congestion
at links or nodes can cause packets to be dropped before they arrive at their destination; there



3

is no mechanism that detects or prevents packet loss1 . Furthermore, packet modification may
occur as a result of device malfunction, link failure, or even malicious attack; because packets in
the Internet are usually not authenticated cryptographically, the data-plane does not guarantee
that packet modification is always detected and/or prevented.

1.1.1 Protocols for improving availability

This thesis studies protocols that can be used to improve availability on the Internet; namely,
to improve the chances that the network delivers packets correctly. In this work, we will use the
term “secure” to mean that a protocol operates correctly even in the presence of certain misbe-
haviors by parties on the network. We emphasize that our focus is exclusively on protocols that
can be used to improve availability; we do not concern ourselves with protecting confidentiality,
privacy, or any other issues traditionally associated with “security”.

Ultimately, one of our goals will be to understand whether improved guarantees on avail-
ability should be architected into the control-plane, the data-plane, or both. As such, we start
by surveying a small sampling of security research proposals that deal with availability on the
control-plane and the data-plane.
Securing the control plane. BGP was designed under the assumption that all nodes in the
network can trust each other. As such, BGP does not have any mechanisms to validate that a
path announced by an AS in BGP is actually used for forwarding traffic, or even exists in the
Internet topology! The networking research community has put together a number of research
proposals to remedy this (see [21] for a comprehensive survey).

The most important of these research proposals is “Secure BGP” (S-BGP) [66]. S-BGP
guarantees that ASes can only announce paths that actually exist in the Internet by using
digital signatures to cryptographically authenticate each BGP announcement message. This
ensures that no AS can announce a path to its neighbors unless that path was announced to
it by one of its own neighbors. While S-BGP provides the strongest control-plane security
guarantees known to date [21], there are still many hurdles that must be overcome before the
protocol can be deployed in the Internet. The most significant of these is probably the fact the
security properties of the protocol only take effect after it has been adopted by a large number
of autonomous systems; however, independently operated ASes will only undertake a costly
upgrade to S-BGP once its security benefits have taken effect. In spite of this, practitioners are
currently working towards a large-scale deployment of S-BGP [2].

Even though S-BGP defends against announcement of paths that do not exist in the Internet
topology, S-BGP does not guarantee that a path that appears in a BGP announcement message
(i.e., in the control plane) is actually being used for forwarding traffic (in the data plane)! To
see how, consider Local ISP in Figure 1.1. Because Local ISP learns two different paths from
its two neighbors, AT&T and Comcast, Local ISP can easily send an S-BGP announcement to
Princeton containing the AT&T path , while actually forwarding all its traffic over the Comcast
path!
Securing the data plane. While most of the security efforts of the networking community
have focused on the control plane, earlier studies of routing security focused instead on the
data-plane mechanisms. These early works (e.g., Radia Perlman’s thesis [89] and the work on
Secure Message Transmission [32]) focused on designing protocols that prevent packet loss and
corruption, even in the presence of adversarial nodes in a network. To do this, these protocols
encode and transmit message over multiple paths, such that only a some subset of these paths is

1Detecting and preventing packet loss is handled by the transport and application layers; this thesis focuses
on the network layer.
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controlled by the adversary. However, because these protocols require a source and destination
to communicate over multiple paths, they are unsuitable for today’s interdomain routing system
where the source and destination communicate over only a single path.

When a source and destination may communicate over only a single path, data-plane mech-
anisms alone cannot guarantee that packets arrive correctly at their destination. (To see why,
suppose that an adversary on the path decides to drop all traffic from the source. Then, the
source has no way of guaranteeing that his traffic arrives at the destination, unless the source
switches to a different path. However, here we shall consider path-switching mechanisms to
be part of the control-plane, not the data-plane. We make this distinction because we think
of data-plane mechanisms as operating at the level of individual packets; path-switching mech-
anisms typically operate on an aggregate stream of packets, rather than on individual pack-
ets themselves.) For this reason, instead of attempting to prevent packet loss, many recent
works [28,12,33,59,60,95,96,82,33,76,99,86,13,11,81,10] have focused on developing techniques
for detecting when packet loss occurs on a path. Some works [11,13,86,109,81,10] take this one
step further by also localizing the link that is responsible for packet loss. These protocols can
then be used to mitigate packet loss if they are used in conjunction with modern control-plane
protocols [55,105] that react to packet loss (and other performance issues) by switching to better
paths through the network.

1.2 Our Goals

In this thesis, we take a principled approach to analyze the types of security guarantees that are
possible within the engineering and economic constraints of the Internet’s interdomain routing
system. Our ultimate goal is to inform and advance practitioners’ efforts to deploy new security
protocols in the system. We do this by analyzing two broad themes:

1. Which part of the system should be secured? Should we be designing secure pro-
tocols for the control plane, the data plane or both?

2. What is the right tradeoff between security and efficiency? Ideally, we would like
to design protocols that operate correctly even in the presence of very strong adversarial
behavior. However, protocols with strong security guarantees can sometimes come with a
cost that makes them impractical for real deployment in the interdomain routing system.
As in most traditional settings, one important cost that we consider in this work is system
overhead ; namely, the increase in computation, storage and communication incurred by
a network device running the security protocol. A less traditional issue that is extremely
important in our setting, is the cost of participation; namely, the number of parties in
the system that must deploy and participate in a protocol before its security guarantee
can take effect. Because the Internet lacks a centralized authority that can force ASes
on the Internet to adopt a new security protocol, deploying new protocols in the network
requires each AS to independently decide upgrade to the protocol. Thus, we a protocol
that requires participation from multiple parties comes at a higher cost than one that
requires participation from only a small number parties.

1.2.1 Security guarantees and threat models

We formally characterize the types of security guarantees that can be achieved by different parts
of the interdomain routing system. We focus exclusively on protocols that can be used to improve
availability in the Internet. We shall consider control-plane protocols separately from data-plane
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Figure 1.2: Misbehaviors considered in this thesis.

protocols, in order to understand the types of security guarantees that can be built into each
part of the system. For a given security guarantee, we shall study the conditions (e.g., system
overhead, participation, etc.) that are necessary in order to achieve that security guarantee. In
many cases, we shall also design new protocols that achieve the security guarantee.

When we say that a protocol provides a certain “security guarantee”, we really mean that
protocol should function correctly in the face of certain behaviors or threats in the system. We
consider well-defined security guarantees: for each, we will specify the notion of correctness
(e.g., “detect if more than 1% of all traffic on a path is being dropped”), and clearly define the
behaviors of the parties that participate in the protocol (e.g., “the sender and receiver are honest,
and there is a single adversarial party on the path between them that can add/drop/modify
packets at will”). At this point, we defer explicit statements of each of the security guarantee
to individual chapters in this thesis. Instead, we overview, below and in Table 1.2, the general
“threat models” or misbehaviors considered in this thesis.

Because the inventors of the Internet assumed that devices inside the network can be trusted,
Internet protocols are typically designed to deal with for honest parties and benign failures:

Honest behavior. An honest party always correctly follows the protocol.

Benign failure. We will use benign failure as an umbrella terms for “average-case”
deviation from the correct behavior of a protocol. Benign failures can include random
link cuts or node failures that case parties to stop responding to protocols. Another
example of benign failure is when a router randomly drops packets as a result of
congestion. Benign failures are caused by parties that are not strategic or malicious.

Because the Internet is now a federated system consisting of multiple ASes owned by independent
profit-seeking businesses, there is a high potential for parties to act selfishly/strategically in order
to maximize profits or derive benefits for themselves:

Rational (selfish) behavior. A rational party will strategically deviate from a
network protocol in order to derive some well-defined benefit for itself. When we
think of rational parties, we first define their utility function. Then, we assume that
these parties will attempt to maximize their utility, potentially at the expense of de-
viating for the correct behavior prescribed by a network protocol. In this thesis, we
will use emerging game-theoretic techniques, namely, distributed algorithmic mech-
anism design, to analyze protocol correctness in the presence of rational behavior
(see Chapter 2).

Devices on the Internet are also subject to misconfiguration, or malfunction; they can be com-
mandeered by malicious outsiders or be subverted by disgruntled network operators. The most
general way to model these types of misbehaviors is to assume that the device is controlled by
a malicious adversary.

Adversarial (malicious) behavior. Unlike the rational party, the adversarial
party is not characterized by a utility function. This is models of worst-case behavior;
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adversarial parties do anything in their power to break the correct operation of the
protocol.2 In this thesis, we will leverage techniques from cryptography to analyze
protocol correctness in the presence of adversarial behavior.

The reader might wonder why we bother with the rational model of behavior, when the more
general adversarial models are available. We do this for two reasons:

1. While we always prefer protocols that operate correctly even in the presence of very strong
adversaries, these protocols often incur unacceptably high costs (e.g., system overhead,
participation). Thus, it sometimes makes sense to design protocols that operate correctly
in the presence of realistic models of rational behavior, even if we know that these protocols
fail in the presence of adversarial behavior.

2. In this work, we shall prove statements of the form: “Security guarantee X is impossible
without (system overhead or participation) cost Y”. These statements are actually more
convincing if we prove them under the assumption that parties in the network are rational,
rather than adversarial! To see why, notice that arbitrarily malicious behavior is a superset
of rational behavior. As such, if a security guarantee X requires some (system overhead
or participation) cost Y even when parties are rational, then cost Y is also required when
parties are arbitrarily malicious.

1.3 Our Contributions

Each chapter of this thesis is completely self-contained, with its own introduction, motivation,
notation, and conclusion. We now overview the contents and connections between these chapters,
and discuss how they relate to the goals of this thesis, as discussed in Section 1.2.

1.3.1 Securing the control plane (Chapter 2)

Our goal is to study network security protocols that can be used improve availability on the
Internet’s interdomain routing system. With this goal in mind, there are many reasons why
it is natural to consider the security of the control-plane protocols (i.e., BGP) that are used
to establish paths through the network. Firstly, recall that in BGP, ASes announce the (AS-
level) paths that they use to reach each destination in the Internet. Thus, the design of BGP
seems to encourage ASes to rely on path announcements as an accurate indication of the paths
that packets take through the network. If BGP announcements did indeed accurately reflect
the paths that packets take in the data plane, then an AS could rely on BGP announcements
to choose a high-performance AS path for its traffic, or to avoid ASes that it perceives to be
unreliable or adversarial. Secondly, as we discussed in Section 1.1.1, control-plane protocols
operate at a much smaller timescale than data-plane protocols. As such, the system overhead
(i.e., communication, computation, storage) incurred by control-plane protocols is typically less
costly than that incurred by data-plane protocols.

Thus, in Chapter 2 we explicitly focus on control-plane protocols, and consider the security
requirement of ensuring that the paths announced in the control plane protocol (i.e., BGP,
S-BGP, etc.) match the AS-level forwarding paths that are used in the data plane. Because
this security requirement is quite strong, we investigate whether it can be met in a weaker, but
still realistic, ‘threat model’ where all ASes in the network are assumed to be rational, rather

2Of course, in order to formally model adversarial parties, we must define their adversarial powers. See
Section 3.2 for one example.
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than arbitrarily malicious (see Section 1.2.1). Assuming that ASes are rational allows us to
use game-theoretic tools to reason about when ASes have an incentive to send BGP messages
that deliberately misrepresent the AS-level paths that their traffic takes through the Internet.
We use tools from distributed algorithmic mechanism design (DAMD) to look for conditions
under which we could prove that ASes have no incentive to send BGP announcements that
misrepresent the forwarding paths they use in the data-plane. Earlier attempts within the
DAMD framework [39, 73, 35, 36, 37, 38, 84, 87]assumed that the utility of an AS is completely
determined by the outgoing path its traffic takes to the destination. However, this model of
utility fails to capture the fact that many ASes are paid by their customers to carry incoming
traffic (e.g., In Figure 1.1, Princeton pays AT&T to carry its traffic.) Thus, for the first time,
our work considers ASes with utility functions that also depend on the incoming traffic that
they attract to their networks.

Our analysis yields some surprising results. We first show that even if we assume that ASes
are rational, and even if they all use S-BGP, the strongest known secure routing protocol (Section
1.1.1), then some ASes may still benefit from sending BGP messages that misrepresent the paths
that they use for forwarding traffic. We then prove that there do exist certain conditions under
which ASes have no incentive to misrepresent their about forwarding paths; however, these
conditions require unrealistically strong assumptions on the routing policies of every AS in the
Internet.

Thus, the results in Chapter 2 suggest that ASes should not rely on traditional secure routing
protocols (like S-BGP [66]) to improve availability by choosing high-performance/trusted paths
for their traffic.

1.3.2 Data-plane path-quality monitoring (PQM) (Chapters 3-4)

In Chapters 3-4, we move away from control-plane mechanisms, and focus instead on data-
plane mechanisms that can be used to improve availability. Here, instead of taking the more
traditional approach of preventing packet loss by sending traffic over multiple paths, we instead
focus on the more realistic single path setting. (Recall that with BGP, routers chose a single
path for all their traffic to a destination.) We study path-quality monitoring (PQM) protocols
that run in the data-plane and monitor packet loss and corruption on a single path through
the Internet. Then, packet loss and corruption can be prevented by combining these PQM
protocols with control-plane techniques (e.g., intelligent route control, source routing, overlay
routing [55]) that give source networks greater flexibility when selecting a path to a destination;
if the monitoring protocol indicates that packet loss or corruption on a path is too high, the
source can switch to another (better) path. Because we want path-quality monitoring protocols
that can be used to inform routing decisions, our goal is to design protocols that can run in
high-speed routers. Furthermore, we require these protocols to return correct information, even
when adversarial nodes on the path interfere with the monitoring process.

Because our goal is to design PQM protocols that run in the data-plane of high-speed In-
ternet routers, our protocols need to be able to keep up with the high packet-processing speeds
and traffic volumes at the core of the Internet. Thus, the question of security v.s., efficiency
becomes paramount. Indeed, we argue (informally) that if data-plane monitoring protocols are
required to return correct information even when adversarial nodes on the path try to bias mon-
itoring results, then these protocols incur high overheads, related to the amount of traffic sent
in the data-plane. To see why, notice that if traffic pertaining to the monitoring protocol can be
distinguished from regular data-plane traffic, then the adversary can bias the outcome of mon-
itoring protocol by selectively dropping the regular traffic, while providing good performance
for the monitoring traffic. Thus, ensuring that the outputs of the protocol cannot be biased
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requires us to make PQM-related traffic indistinguishable from regular traffic send on the path.
Providing this indistinguishablity introduces system overheads that are roughly proportional to
the amount of traffic sent in the data plane.

In Chapter 3 we consider protocols that can detect high rates of packet loss/corruption,
even in the presence of adversaries. In Chapter 4, we take this security requirement one step
further by considering protocols that can also localize the (possibly adversarial) link responsible
for dropped/corrupted packets. Our major objectives in each of these chapters is to understand
the cost (in terms of system overhead and participation, see Section 1.2) of each type of security
requirement. Along the way, we also design some interesting detection and localization protocols.

Detecting the adversary.

In Chapter 3 we consider protocols that allow a source to detect high rates of packet loss and
corruption on data-plane path.

We start by using simple cryptographic proof techniques (i.e., reductions [50]) to prove that
any protocol that robustly detects high rates of packet loss and corruption in the presence of
adversaries requires that the sender and receiver share secret keys and perform cryptographic
operations. We then use cryptographic and data-streaming approaches to design a number of
highly-efficient detection protocols. One of our protocols, the “secure sketch”, can monitor up to
a billion packets without marking normal data-plane traffic, and using only two control messages
and 200-600 bytes of storage at the source and destination only. (Asymptotically, monitoring T
packets requires O(log T )-storage, and two control messages.) We prove that all our protocols
satisfy a precise definition of security, and derive analytic expressions for the tradeoff between
statistical (measurement) accuracy and storage overhead for each protocol.

The results of Chapter 3 are encouraging; by focusing on the modest security requirement
of detecting packet loss/corruption, we are able to design highly-efficient protocols that can
withstand very strong adversaries. Furthermore, all of our protocols require the participation
of the source and destination only; no other node on the path is required to participate.

Localizing the adversary.

While it is useful to enable sources to detect packet loss and corruption on path, it is even
more useful to be able to localize the adversarial node responsible for tampering with packets.
Thus, in Chapter 4, we use a similar adversarial model to study a stronger security requirement;
namely that a source can localize the link that is responsible for high packet loss or corruption.

We start by developing a formal cryptographic model of security for the localization problem,
and use this formal model to find security vulnerabilities in previously published works [86,13,10].
We then present a number of localization protocols. One of our protocols can monitor T packets
using O(log T )-storage per node, two additional control messages, and shared keys between
the source node and every other node on the path. While the detection protocols of Chapter
3 require participation from the source and destination only, all known localization protocols
e.g., [11,13,86,109,81,10], including the ones we design in Chapter 4, require participation from
every node on the path. It is natural to ask if these high levels of participation are necessary.
We answer this question in the affirmative by leveraging cryptographic proof techniques (black
box separations [62]) to argue that any protocol that correctly localizes links responsible for
packet loss and corruption in the presence of adversaries, requires every node on the path to
share secret keys with the source, and perform cryptographic operations.

Thus, the results of Chapter 4 suggest that security requirement of localizing links responsible
for packet loss/corruption might be too ambitious for the interdomain routing system; we may be
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better off with the more efficient protocols that only detect packet loss/corruption, as designed
in Chapter 3.

1.4 Conclusions, Implications and Future Directions

In Section 1.2, we mentioned that the goals of this work are to understand which parts of the
interdomain routing system should be secured, and to study the tradeoffs between security and
efficiency. We now discuss how our results and several new research directions can begin to
address these goals. We also overview the implications of our work on the design of network
architectures that guarantee availability in the presence of selfish or adversarial behavior.

1.4.1 Which part of the system should be secured?

Should we be designing secure protocols for the control plane, the data plane, or both?
Securing the control plane is not a panacea. Our results in Chapter 2 suggest that
availability will still be a challenge even if the strongest known secure routing protocol (S-BGP)
is fully deployed in the Internet. We showed that, even if we assume that all ASes in the network
use S-BGP, and are rational (rather than adversarial), ASes still have an incentive to announce
AS-level paths in the control plane that do not match the paths actually used in the data-plane.
Thus, our analysis shows that it is unreasonable to assume that an AS can rely on BGP messages
to choose paths that circumvent routing traffic through untrusted or adversarial ASes.

It is interesting to note that our analysis in Chapter 2 is a worst-case analysis. We show
that if ASes are rational and use S-BGP, then there exist network topologies where at least one
AS has an incentive to send a BGP announcement that misrepresents the path he uses in the
data plane. To better understand the practical relevance of the results in Chapter 2, we would
also like to answer the following questions: Firstly, how often do such network topologies (where
ASes have an incentive to lie) appear in practice – do they only exist in the obscure corners of
the Internet, or are they extremely prevalent? Secondly, how effective is S-BGP in reducing the
number of ASes with an incentive to misrepresent their paths – how many more ASes can get
away with lying if we assume that ASes use plain BGP, as compared to S-BGP or some other
secure routing protocol [21]?

We are in the process of conducting an empirical study of the Internet’s topology that seeks
to answer some of these questions. Preliminary results suggest that even if all ASes in the
Internet use S-BGP, many ASes will still have an incentive to lie in their BGP announcements.
Strong security guarantees are possible in the data-plane. Our results suggest that it
is feasible to design secure protocols that are efficient enough to run in the data-plane of high
speed routers, especially if we consider protocols that only require the participation of a source
and destination. Indeed, we were able to design highly efficient path-quality monitoring (PQM)
protocols that operate correctly even in the presence of a very strong adversary that knows the
details of the monitoring protocol and can add/drop/modify traffic at will.

While this thesis focused on PQM protocols that monitor packet loss and corruption, there
are many other metrics that can determine path quality, including traffic latency (delay), jitter
(delay variance), and packet lag (the number of packets that arrive out-of-order at the desti-
nation). We believe that designing efficient and secure PQM protocols for these metrics is a
worthwhile direction for future work.
Hop-by-hop protocols vs. end-to-end protocols. On one hand, we can design ‘end-
to-end’ security protocols do not require knowledge of the identities of the nodes on the path
between the source and destination, like the detection protocols of Chapter 3. On the other
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hand, we can design ‘hop-by-hop’ protocols that require the sender to know the identities of the
nodes on a path, like the localization protocols of Chapter 4. However, our results indicate that
(a) control-plane protocols like BGP and S-BGP do not always accurately return information
about the identities of the ASes on a data-plane path, and (b) data-plane protocols that localize
an adversary are expensive, because each node on the path has to participate. Taken together,
these results suggest that hop-by-hop protocols are impractical; indeed, such protocols are likely
useful only in limited settings where the need for security is so strong that it overwhelms such
practical concerns.

We believe that promising direction for future research is to analyze other security func-
tionalities that can be realized in an end-to-end manner. For instance, certain control-plane
path-switching protocols (e.g., multipath routing, overlay routing [55]) can be realized in an
end-to-end manner. However, more work is required to characterize the security guarantees
that can be achieved by these path-switching protocols, especially when they are combined with
end-to-end PQM protocols as discussed in Chapter 3.

1.4.2 Security versus efficiency

As we discussed in Section 1.2.1, our notion of a “security guarantee” for a protocol has two
parts: a notion of “correctness”, and a “threat model”. We would like our protocol to operate
correctly even in the presence of parties that behave (and misbehave) in the ways specified
by the threat model. Ideally, we would like to design protocols that provide strong security
guarantees; however, these protocols often come at high cost, either in the form of system
overhead (e.g., computation, storage, communication resources) or participation (i.e., many
nodes in the network must deploy the protocol, so that deploying these protocols in the Internet
becomes a challenge, see Section 1.2). In order to understand which security guarantees are
feasible within the engineering and economic constraints of the Internet’s routing system, we
studied ways to tradeoff between strong security guarantees and protocol cost. One way to do
this is to consider weaker notions of protocol correctness; another is to consider weaker threat
models. Indeed, this thesis takes both of these approaches:
Weaker notions of correctness. Our study of path-quality monitoring in both Chapters 3-4
considered the following ‘threat model’: a source and destination trust each other, while an
adversary that drops and corrupts traffic occupies any subset of the nodes on the path between
them. The ideal notion of correctness in this setting would be to empower the source to localize
the adversarial nodes; however, in Chapter 4 we show that achieving this notion of correctness
comes at the unacceptably high cost of requiring all the nodes on the path to participate in the
protocol. Thus, in Chapter 3 we show that a weaker notion of correctness, i.e., empowering the
source to detect when packets are lost/corrupted, comes at a much more reasonable cost, i.e.,
participation by the source and destination only.

Indeed, we believe that analyzing a spectrum of notions of correctness is a useful exercise,
especially when architecting networks with practical and useful security guarantees. We believe
that a number of other problems in network security could benefit from this approach.
Weaker threat models. Now consider the following notion of correctness: ensuring that
ASes send BGP messages that accurately reflect that AS-level paths that they use in the data
plane. Viewing our results in Chapter 2 in the broader context of the work on distributed
algorithmic mechanism design and BGP, we see that this notion of correctness has been studied
for a variety of different ‘threat models’. For instance, Levin, Schapira and Zohar [73] show
that full deployment of S-BGP is a sufficient condition for this notion of correctness, as long
as ASes are modeled as rational with utility that depends only on the outgoing path that they
use for their traffic. However, once we consider a stronger threat model, where ASes’ utility
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also depends the incoming traffic routed through their network, our results in Chapter 2 show
that S-BGP alone is no longer sufficient; we also need to (unrealistically) constrain the set of
allowable routing policies. Finally, if we assume ASes are adversarial, even constraining the set
of allowed routing protocols and requiring nodes to use S-BGP is insufficient for this notion of
correctness.

While it is not surprising that this notion of correctness becomes increasingly difficult to
achieve as the threat model becomes stronger, it is interesting to note that these results are
extremely sensitive to the strength of threat model. This observation suggests that we must
be very careful in extrapolating from positive results obtained in a weak threat model (i.e.,
statements of the form: condition X guarantees Y notion of correctness for threat model Z) to
the real world. Indeed, this is likely one of the reasons for the success of strong cryptographic
threat models, in which parties are assumed to be arbitrarily malicious. On the other hand,
we do view weak threat models as a useful tool for proving very convincing negative results
(i.e., statements of the form: notion of correctness Y for threat model Z cannot be achieved
without condition X). For instance, our results in Chapter 2 show that S-BGP is not sufficient
for matching the control- and data-plane even if ASes obey a realistic, well-defined notion of
rationality ; it immediately follows that S-BGP will not guarantee that the control- and data-
plane match when ASes are adversarial.

1.4.3 Implications on network architecture

To summarize our discussion, we discuss the implications of our work on the design of networks
that can withstand selfish or adversarial behavior, and present a number of other open questions.

Firstly, we believe that any solution that purports to improve availability must include some
data-plane security component; indeed, our results in Chapter 2 suggest that even if we assume
ASes are rational, control-plane security protocols are not sufficient to ensure ASes do not
misbehave in the data plane.

Secondly, we believe that the most promising direction for improving availability in the
setting of interdomain routing is focus on protocols that take an end-to-end view of the network;
in particular, we advocate for combining intelligent route control protocols [55,105] with the end-
to-end PQM protocols proposed in this thesis.

Thirdly, while this thesis suggests that securing the control plane is not a panacea, we
do believe that control-plane security protocols have an important role to play in making the
interdomain routing system more predictable and robust. However, it is unclear which of the
many of proposed control-plane security protocols [21] are ‘right’ for the interdomain. As such,
we believe that it would be valuable to have further studies comparing the deployability and
security guarantees provided by each of these protocols.

Finally, another interesting direction (that we did not investigate here) is the question of
accountability and contracts in the Internet. Because ASes are controlled by profit-seeking
businesses, it may be possible to enforce ‘good behavior’ in the interdomain routing system
by designing a system of contracts that penalizes ASes that perform poorly, e.g., by dropping
or corrupting packets. While there have been a number of interesting works in this direction
[10, 69, 74, 40, 26], many of these results assume that the existence of hop-by-hop secure PQM
protocols that we showed to be impractical (Chapter 4). As such, we believe that the question of
designing a practical accountability system for the Internet, that uses only end-to-end security
protocols, remains open for future research.



Chapter 2

Incentives for Honest Path
Announcements in BGP

2.1 Introduction

Interdomain routing on the Internet consists of a control plane, where Autonomous Systems
(ASes) discover and establish paths, and a data plane, where they actually forward packets
along these paths. The control-plane protocol used in the Internet today is the Border Gateway
Protocol (BGP) [92]. BGP is a path-vector protocol in which ASes discover paths through the
Internet via announcements from neighboring ASes. In BGP, each AS has routing policies that
may depend arbitrarily on commercial, performance, or other considerations. These policies
guide the AS’s behavior as it learns paths from its neighbors, chooses which (if any) neighbor it
will forward traffic to in the data plane, and announces path information to its neighbors. The
design of BGP seems to encourage ASes to rely on path announcement as an accurate indication
for the paths that data-plane traffic follows. However, BGP does not include any mechanism to
enforce that these announcements match actual forwarding paths in the data plane.

Traditional work on securing interdomain routing (e.g., Secure BGP (S-BGP) [66] and the
like [106, 52, 21]) has focused on the control plane, with the loosely-stated goal of ensuring
“correct operation of BGP” [66]. However, addressing the control plane in isolation ignores the
important issue of how packets are actually forwarded in the data plane. Here, we explicitly
focus on the security goal of ensuring that the paths announced in the control plane match
the AS-level forwarding paths that are used in the data plane; this has been implicit in many
previous works (on securing BGP [66,106,52] and incentives and BGP [36,38,35,37,39,87,73]).
This way, an AS can rely on BGP messages, e.g., to choose a high-performance AS path for its
traffic or to avoid ASes that it perceives to be unreliable or adversarial [14, 91,57].

This goal has recently received some attention by works [99,107,74,10] that suggest auxiliary
enforcement protocols that operate in the data plane. However, because such solutions typically
incur a high overhead (see Section 2.1.1), here we consider solutions that operate in the control
plane alone. Furthermore, most works on BGP security assume ASes can be arbitrarily mali-
cious. Here, we instead follow a different line of research where ASes are modeled as rational,
i.e., act in a self-interested manner. In our work, we define this to mean that ASes both (1)
try to obtain the best possible outgoing path for their traffic, while (2) also attracting incoming
traffic (see Section 2.1.3). We look for conditions under which rational ASes have no incentive
to lie about their forwarding paths in their BGP path announcements. We find that protocols
like S-BGP [66] are generally not sufficient to prove that ASes have no incentive to lie about
forwarding paths; we also require unrealistically strong assumptions on the routing policies of
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every AS in the network. Our results emphasize the high cost of ensuring that control- and
data-plane paths match, even if we assume that ASes are rational (self-interested), rather than
arbitrarily malicious.1

In the rest of this section, we motivate our approach, discuss related work, outline our results
and discuss their implications. The model we use is defined in Sections 2.2–2.3, and our results
are detailed in Sections 2.4–2.6. Related work is discussed further in Section 2.7. Proofs and
additional discussion can be found in the appendices.

2.1.1 Matching the control and data planes.

One way to enforce honest path announcements in BGP is to deploy AS-path measurement
and enforcement protocols that run in the data plane. However, determining AS-level paths
in the data plane is a nontrivial task even in the absence of adversarial behavior (e.g., [77]
discusses the difficulty of determining AS-level paths from traceroute data). When dealing with
ASes that may have incentives to announce misleading paths in the control plane, we need
AS-path enforcement protocols that cannot be “gamed” (e.g., by ASes that send measurement
packets over the path advertised in the control plane, while sending regular traffic over a different
path). Thus, data-plane enforcement protocols [74, 107, 86, 10] must ensure that measurement
packets are indistinguishable from regular traffic, resulting in high overheads that are usually
proportional to the amount of traffic sent in the data plane. Also, while secure end-to-end data-
plane protocols can robustly monitor performance and reachability, e.g., [12,49], these protocols
do not trace the identities of the ASes on a data-plane path; securely tracing AS paths requires
participation of every AS on the path [74,10,86,107].

Alternatively, one could hope to ensure that control- and data-plane paths match by ubiq-
uitously deploying S-BGP [66] and the like [21]. This provides a property called path verifica-
tion [73], which ensures that no AS can announce a path to its neighbors unless that path was
announced to it by one of its neighbors. While path verification defends against announcement
of paths that do not exist in the Internet topology [66], it does not, by itself, ensure that control-
and data-plane paths match. For example, an AS a with two different paths announced by two
different neighbors can easily lie in its path announcements—announcing one path in the control
plane, while sending traffic over the other path in the data plane.

While it is tempting to argue that ASes are unlikely to lie about their forwarding paths
because they either fear getting caught or creating routing loops, this argument fails in many
situations. The hierarchy in the Internet topology itself often prevents routing loops from
forming, e.g., if the lie is told to a stub AS, or see also [15]. Furthermore, empirical results
indicate that catching lies can be difficult, because even tracing AS-level paths that packets
traverse in the data plane is prone to error [77]. Finally, to minimize the likelihood of getting
caught, an AS could lie only when it has a good idea about where its announcements will
propagate.

2.1.2 The game-theoretic approach.

In this work we explore the extent to which we can use only control-plane mechanisms, in con-
junction with assumptions on AS policies, to motivate ASes to honestly announce data-plane
paths in their BGP messages. Our exploration is carried out within the context of distributed

1We do not consider situations when the control and data plane do not match due to malfunction or misconfig-
uration; we consider this irrational behavior. We also do not consider control- and data-plane mismatches caused
by path aggregation [77], since typically only last hop of the (data-plane) AS-path is omitted from the BGP path
announcement.
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Model of AS utility
Increase volume Attract customer traffic Generic traffic

Control-plane of incoming traffic via direct link attraction
verification No traffic attraction (Section 2.4) (Section 2.6) (Section 2.5)

None No known restrictions suffice
Policy consistency Next-hop policy Policy consistency

Loop Consistent export [39,37] All-or-nothing export Gao-Rexford conditions Next-hop policy
Policy consistency Next-hop at attractees All-or-nothing export

Path Arbitrary [73] Consistent export Consistent export

Table 2.1: For each utility model and type of control-plane verification, the additional restrictions
that ensure that ASes in a network with no dispute wheel have no incentive to dishonestly
announce paths.

algorithmic mechanism design [84, 36], which is rooted in game theory. This paradigm asserts
that ASes are rational players that they participate in interdomain routing because they derive
utility from establishing paths and forwarding packets; ASes will do whatever they can to maxi-
mize their own utility. The task of mechanism design is to ensure that the incentives of rational
players are aligned with accomplishing the task at hand, so players have no incentive to deviate
from the prescribed behavior.

The paradigm of algorithmic mechanism design in the context of routing was first suggested
by Nisan and Ronen [84]. Feigenbaum et al. [36] brought distributed algorithmic mechanism
design to the study of incentives in routing and shifted the focus to interdomain routing and
BGP in particular. Rather than a centralized mechanism that sets up paths, the model in [36]
postulates that paths are set up in a distributed fashion by the economically interested ASes
themselves. The model was further developed in a sequence of works [36,87,35,39,37,38,73,30].
Our model builds upon the work of Levin, Schapira, and Zohar [73], who brought a fully formal
game-theoretic and distributed-computational model to this line of research (Section 2.2 and
Appendix A.1). When the prescribed behavior includes the requirement that ASes honestly
announcing forwarding paths to their neighbors (as is the case in all prior work), and when
every AS follows this behavior, then the control plane and the data plane will match. In this
sense, all work within this paradigm implicitly addressed matching the control and data planes.
In this work, we highlight this matching (which is strictly weaker than the goal in prior work)
as a stand-alone security property that should be addressed on its own.

2.1.3 Modeling utility with traffic attraction.

Recent work of Levin et al. [73] shows that if ASes are rational, then path verification (e.g.,
S-BGP) is sufficient for honest path announcements, even when ASes have arbitrary routing
policies. This encouraging result improved on earlier work [36, 37, 35, 38, 39] that explored
restricted classes of routing policies. For example, Feigenbaum et al. [37, 39] found that it is
sufficient to require policy consistency, a generalization of shortest-path routing and next-hop
policy that requires that the preferences of neighboring ASes regarding different paths always
agree. However, these results [36, 87, 35, 39, 37, 38, 73] were obtained under the assumption that
the utility an AS derives from interdomain routing is entirely determined by the outgoing path
that traffic takes to the destination. In reality, however, the utility of an AS is likely to be
influenced by many other factors. For example, the utility of a commercial ISP may increase
when it carries more traffic from its customers [58], or a nefarious AS might want to attract
traffic so it can eavesdrop, degrade performance, or tamper with packets [91,57,14].

Here, we use a more realistic utility model (see Section 2.2.3), focusing in particular on the
effect of traffic attraction, where the utility of one AS increases when it transits incoming traffic
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from another AS. We consider three models of traffic attraction. In our first model, traffic-volume
attractions, utility depends only the origin of the incoming traffic, but not on the path that it
takes. This captures the notion that an AS may be interested in increasing the volume of its
incoming traffic or that a nefarious AS might want to attract traffic from a victim AS, in order
to, say, perform traffic analysis. Our second model, generic attractions, encompasses all forms of
traffic attraction; the utility of an AS may depend on the path incoming traffic takes. Our third
model, customer attractions, is more restrictive. This model assumes that utility increases only
if an AS attracts traffic from a neighboring customer AS that routes on the direct link between
them; this models the fact that service contracts in the Internet are typically made between
pairs of neighboring ASes [58] (Section 2.3.3).

2.1.4 Overview of our results.

In this work, we want to argue that under some set of conditions, any utility that an AS can
obtain by lying in BGP announcements could also be obtained with honest announcements.
Unfortunately, we find that conditions from previous work do not suffice when we consider
traffic attraction: neither path verification [73] nor policy consistency [39,37] alone is sufficient.
(See Figures 2.2, 2.3, and 2.5 for examples.) These disappointing results motivate our search
for new combinations of conditions (on control-plane verification, routing policy and export rules)
that ensure that ASes have an incentive to honestly announce paths.

In addition to path verification (e.g., S-BGP), we introduce a weaker form of control-plane
verification called loop verification (Section 2.5.3), which roughly captures the setting in which
an AS is caught and punished if it falsely announces a routing loop. Loop verification can be
thought of as a formalization of “the fear of getting caught,” and it may be easier to deploy
than path verification.

In addition to policy consistency, we also consider the more restrictive next-hop policy, which
roughly requires ASes to select paths to a destination based only on the immediate neigh-
bor that advertises the path (Section 2.3.2). We also consider the Gao-Rexford conditions [42]
(Section 2.3.3). These conditions, which are believed to reflect the economic landscape of the
Internet [58], assume routing policies are restricted by business relationships between neighbor-
ing ASes, i.e., by customer-provider relationships (the customer pays the provider for service)
and peer-to-peer relationships (peer ASes transit each other’s traffic for free).

Finally, we consider several classes of export rules (Section 2.3.4) that dictate whether or
not an AS announces paths to its neighbors. An all-or-nothing export rule requires that, for each
neighbor, an AS either announces every path or no paths. We also consider a more realistic
consistent export rule [37] that roughly requires that ASes’ export rules agree with their routing
policies.

For many combinations of the conditions discussed above, we can still find examples in which
ASes have an incentive to lie about their data-plane paths. However, for some combinations we
obtain positive results, as sketched in Table 2.1. (These results all assume a network condition
called “no dispute wheel” [53]; see Section 2.3.1.) Furthermore, our results are “tight”, in that
for every combination of the considered conditions, either one of our positive results applies or
one of our negative examples does (as summarized in Tables 2.2–2.4).

Our positive results show that, for every network satisfying some combination of conditions,
any utility an AS gains by lying can equivalently be obtained if that AS had instead honestly
announced paths to only an subset of its neighbors and announced no paths to all other neighbors.
That is, we show the existence of an export rule for which each AS obtains its optimal utility. As
in previous work [73,39,37], our positive results for traffic-volume attractions (Section 2.4) and
customer attractions (Section 2.6.2) also explicitly define an optimal export rule. Our positive
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result for generic attractions (Section 2.5.4) shows that an optimal export exists, but does not
explicitly state what it is (Section 2.5.5). We discuss the notions used for our positive results
further in Appendix A.1.

2.1.5 Implications of our results.

Our results suggest that even with control-plane enforcement mechanisms, ASes may have in-
centive to lie in their BGP announcements, unless very strong restrictions are imposed on their
policies. As sketched in Table 2.1, from the set of conditions we considered, we always need
every AS in the network to obey (1) unrealistic restrictions on its preferences (such as next-hop
policy) and (2) explicit restrictions on export rules. Most of our results also require (3) full
deployment of either path or loop verification. Thus, our results point to a negative answer to
the question that we set out to investigate—practically speaking, it is unlikely that we could
use only control-plane mechanisms to remove the incentives for ASes to announce false paths in
BGP.

This suggests a choice. We can either employ expensive data-plane path enforcement tech-
niques [10, 74, 86, 107] when it is absolutely necessary to ensure that packets are forwarded on
AS-level paths that match an AS’s routing policies, or dismiss this idea altogether and instead
content ourselves with some weaker set of goals for interdomain routing. It is certainly possible
to formulate weaker but meaningful security goals and show that certain control-plane mech-
anisms or data-plane protocols meet these goals. However, doing this invites the question: if
we are not interested in ensuring that AS paths announced in BGP are really used in the data
plane, then why use a path-vector protocol at all?

2.2 Modeling Incentives and BGP

We now present the formal model in support of our results in Sections 2.4–2.6. The model builds
on the literature [53, 36, 73] and extends prior work by explicitly considering traffic attraction.
(We also make more explicit distinctions between control- and data-plane actions.)

2.2.1 The AS graph.

An interdomain-routing system is modeled as a labeled, undirected graph called an AS graph
(see Figure 2.1). For simplicity, each AS is modeled as a single node, and edges represent direct
(physical) communication links between ASes. Adjacent nodes are called neighbors. We denote
nodes by lowercase letters, typically a, b, c, d, m, and n. We follow [53] and assume the AS-graph
topology does not change during execution of the protocol.

Because, in practice, BGP computes paths to each destination separately, we follow the
literature [53] and assume that there is a unique destination node d to which all other nodes
attempt to establish a path. (Thus, like most previous work, we ignore the issue of route
aggregation [77].) We denote paths by uppercase letters, typically P , Q, and R.

2.2.2 The interdomain-routing game.

We extend the model of Levin et al. [73] that describes interdomain routing as an infinite-round
game in which the nodes of the AS graph are the strategic players. In each round, one node in
the graph processes the most recent path announcements (if any) from its neighbors and then
performs two actions: (1) it decides on an outgoing link (if any) to use in the data plane; and
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Figure 2.1: AS graph with traffic attraction.

(2) decides on paths (if any) to announce to its neighbors.2 Note that, just as in [73], nodes
have the opportunity to announce their true data-plane path choice, but they are not forced to
do so. The order in which nodes act is called the schedule.

We assume that path announcements sent between neighbors on direct links cannot be
tampered with (by a node not on the direct link). This can be enforced via the BGP TTL
Security Hack [44] or via a pairwise security association between nodes using the TCP MD5
security options [56]. We further assume that each node has the opportunity to act infinitely
often—i.e., the schedule is fair.
Game outcome and stability. The state of a node n at some round in the game consists
of a data-plane component (the outgoing link most recently chosen by n) and a control-plane
component (the announcements most recently sent by n). This state is transient if it occurs
only finitely many times and it is persistent otherwise. There could be many possible sequences
of states; the sequence depends on both the schedule and the actions of nodes while playing the
game. When we ask whether or not there is an incentive to lie, we are interested in the more
precise question: Is there a fair schedule in which a node may have an incentive, in some round,
to announce a route in the control plane that is not its data-plane choice?

The global state at some round is the collection of all node states at that round. A global
outcome of a game is a global state that does not contain any transient node states.We note
that there could be more than one such global state; in particular, a persistent control-plane
oscillation among nodes is a sequence that infinitely transitions among non-transient node states,
even for a fixed schedule. Our results in this work hold regardless of which of these is taken to
be the global outcome.

If the state of a node is constant after some round then this state is locally stable. A global
outcome is globally stable if all node states in it are locally stable. (This definition of stability
is compatible with the original definition in [53].) We typically denote global outcomes by T
or M . We may use “outcome” informally to mean the control-plane or data-plane component
of the outcome when the component is clear from the context.

2.2.3 Utility, valuation, and attraction.

A strategy is a procedure used by a node to determine its actions in the game. In principle, a
node can make decisions in any way that it wants, but here we assume that nodes are rational.
In particular, each node b has a utility function ub(·) mapping outcomes to integers (or −∞); b
tries to act to obtain an outcome T that maximizes ub(T ).

2A node can also decide not to route on any link in the data plane, or not to announce anything to its neighbors.
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We assume that every node b in the graph has a utility function of the form

ub(T ) = vb(T ) + αb(T ) (2.1)

where vb(T ) is the valuation function that depends only on the simple data-plane path from b to d
in T , and αb(T ) is the attraction function that depends only on the simple data-plane paths from
other nodes to b in T . (We write the utility function as a sum of the valuation and attraction
functions; in fact, our results require only that utility increases monotonically with each of the
valuation and attraction functions.) In this work, utility depends on the data-plane component
of outcome alone (because the control-plane component may not correspond to actual traffic
flow in the network).
The valuation function vb(·) is the same as was considered in previous work on incentives
and BGP [39,73,35,36,37,38,87,30]. It is meant to capture the intrinsic value of each outgoing
path (e.g., as related to the cost of sending traffic on this path, its reliability, the presence of
undesirable ASes on it, etc.). We assume that nodes dislike disconnection, so that if node b has
no data-plane path to the destination in outcome T , then vb(T ) = −∞. (The implications of
this are discussed further in Section 2.2.7.)
The attraction function αb(T ) is the new component of utility that we add in this work.
Because we are interested in situations where nodes may want to attract traffic (and not deflect
it), our most general form of the attraction function only requires that αb(·) does not increase
when edges leading to b are removed from the data-plane outcome. Formally, for an outcome T
and node b, let T (b) be the set of edges along simple paths from other nodes to b in the data-plane
component of T (e.g., if T ’s data-plane links form a routing tree, then T (b) is the subtree rooted
at b). We assume that for every two outcomes T and T ′ and every node b, if T ′(b) ⊆ T (b), then
αb(T ′) ≤ αb(T ). This general condition covers many forms of traffic attraction; e.g., attraction
can depend on which links are traversed by incoming traffic at a node, and not just the nodes
from which that traffic originates.

We also consider two specific forms of traffic attraction. First, traffic-volume attraction re-
quires that αb(T ) depends only the origin of the incoming traffic, but not on the path that it
takes. More formally, if T (b) and T ′(b) include the same nodes then αb(T ) = αb(T ′). This
also captures the idea of nefarious ASes who want to attract traffic for eavesdropping on or
tampering with traffic (but see also Section 2.2.7).

Another specific form of attraction is customer attraction, in which the AS graph is assumed
to have underlying business relationships, and αb(T ) depends only on customer nodes a that
route through b on the direct a-b link between them. We further discuss this form of attraction
and customer-provider relationships in Section 2.3.3.

We say that there is an attraction relationship between a and b if the attractor b increases its
utility when the attractee a routes traffic through it (e.g., as in Figure 2.1). In Figure 2.1, we
depict the utility function of each node next to that node: say that the attraction function of b
is such that it earns 100 points of utility when it attracts traffic from a, and that the valuation
function of b is such that it earns 10 points of utility when using the path bQd and only 1 point
of utility when using the path bRd. Then, following Equation 2.1, the use of data-plane path
abRd earns b 101 points of utility.

2.2.4 BGP-compliant strategies.

Recall that we are interested in ensuring that the interdomain-routing control and data planes
match. When all nodes follow the rules prescribed by the BGP RFC [92] in their execution
of the protocol, this is achieved. We call a strategy that obeys these rules a BGP-compliant
strategy, as formalized below.
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Definition 2.2.1. A BGP-compliant strategy for node n depends on two functions: A ranking
function rn(·) mapping each path to an integer or −∞; and, an export rule en(·) that maps each
path P to the set of neighbors to which n is willing to announce the path P . A path P is admitted
at n if rn(P ) > −∞. Paths that include routing loops or that do not reach the destination are
not admitted at any node. We require that, for any two paths P and Q admitted at n that
begin with different next hops, it holds that rn(P ) 6= rn(Q). (Note that rn(·) and en(·) act only
on path announcements, rather than game outcomes (e.g., data-plane paths).)

The strategy of node n is BGP-compliant, with rn(·) and en(·) as defined above, if n does
the following in each round in which it participates. Node n first chooses the path P such that
(a) P has highest rank of all the most recently announced paths received from neighbors, and
(b) the first node a of P is the neighbor that announced P to n. Then, n performs the following
two actions: (1) n chooses the outgoing link to a in the data plane; and (2) n announces the
path nP to all neighbors in en(P ).

This definition explicitly assumes that the all traffic to the destination is routed over a
single next-hop. (We do not address here the question of modeling multipath routing.) Also,
we assume that, if n does not receive any announcements with an admitted path, then n does
not route on any outgoing link or announce any paths to its neighbors. (Notice that we model
ingress filtering using the concept of admitted paths and egress filtering using the concept of an
export rule.)

Control-plane announcements from a node executing a BGP-compliant strategy match its
next-hop choices in the data-plane. Thus, if all nodes in the network use BGP-compliant
strategies, then the control and data planes will match. (We may informally call a node executing
a BGP-compliant strategy a BGP-compliant node, or sometimes an honest node.) In the positive
results from previous work [37,39,73] included in Table 2.1, the prescribed strategies are examples
of BGP-compliant strategies in the sense of Definition 2.2.1. Thus, those results also achieved
agreement between the control and data planes, but contrary to the current work, they do not
consider traffic attraction.

We stress that Definition 2.2.1 gives BGP-compliant nodes the leeway to choose their ranking
and export functions in any way they want, in order to try to achieve a utility-maximizing
outcome in the game. In the next subsection, we discuss the relationship between utility and the
ranking and export functions in a way that encompasses earlier work (without traffic attraction)
and the results in this work (with traffic attraction).

2.2.5 From utility to ranking and export.

To map between our model and real-world implementation of BGP [92], we can think of the
actions of the game described in Definition 2.2.1 (i.e., (1) selection of next-hop, and (2) an-
nouncements to neighbors) as being executed by nodes, in practice, through setting parameters
in the ranking and export functions. In previous work [39, 73], the ranking function was set
equal to the valuation function (we denote this as rn(·) ≡ vn(·))3: the larger the valuation of
a path, the higher its rank. This follows from the fact that in previous work, the utility of
an AS was defined to be its valuation function,4 and thus the directly determined the ranking
function. However, the direct translation from valuation to ranking does not always hold in our
setting of traffic attraction: announcing an outgoing path with low valuation could be preferred
because it brings incoming traffic from attractees. For example, in Figure 2.1, node b’s valuation

3This is a slight abuse of notation, because r is formally defined on paths and v on outcomes. We ignore this
formality from now on.

4Some previous work [36, 87, 35, 38, 37] allowed utilities that depend on monetary transfers, which we do not
consider here.
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function ranks path bQd over path bRd; but, b has higher utility when it claims that it routes
on bRd because it then attracts traffic from node a.

Although this direct translation does not always hold, we do assume that BGP-compliant
ASes are able to “compile” their utility functions (which depend on both valuation and attraction
as in Equation 2.1) into ranking and export functions that then consistently determine their
actions in the game, i.e., their behavior during the BGP protocol. This compilation might be
viewed as transforming utilities into functions that act on path announcements by, e.g., setting
BGP local preference. We think of the compilation process as being done “once and for all,”
and we analyze the network with respect to fixed ranking and export functions. We note that
this is not entirely realistic: the “compilation” can, in principle, model an ongoing process in
which an AS reacts to changes in network conditions, contractual agreements, new information
that ASes learn about each other, etc., to better attempt to maximize its utility. However, the
time scale for compilation is usually much longer than the time scale for BGP itself (say, hours
versus seconds); so, a once-and-for-all modeling may still be reasonable. (See also Section 2.7.)

There are many conceivable ways of compiling the utility into ranking and export rules.
In many cases, it makes sense to use the simple compilation rb(·) ≡ vb(·) by default, and to
use a different compilation only when this is advantageous in terms of traffic attraction; e.g.,
if there is a service-level agreement that obliges b to carry a’s traffic via path bRd in return
for monetary compensation α, then b might decide to set rb(bRd) = vb(bRd) + α. In general,
we mostly sidestep the question of how to compile the utility into ranking and export policy.
However, our counterexamples work for any ranking function “reasonably compiled” from the
utility function, and our positive results all hold for the setting rb(·) ≡ vb(·).

2.2.6 Incentives to lie.

Because nodes are rational (i.e., acting to maximize their utility in the global outcome), they may
have an incentive to follow a strategy that is not BGP-compliant. As discussed in Section 2.1.1,
although an AS knows the outgoing link on which it forwards traffic (and the next AS at the
end of that link), it may not know the AS-path that the traffic takes further downstream. For
example, in Figure 2.1, node b could deviate from BGP-compliance by announcing the path bRd
in order to attract traffic from node a, while actually sending traffic over the path bQd; as a
result the control and data planes would not match, unbeknownst to a.

Hence, in this work, as in [87, 73, 39, 37], we address the following high-level question: Are
there sufficient conditions on the network that ensure that all nodes are honest (i.e., use BGP-
compliant strategies)? The earlier work studied this question using the game-theoretic notion of
“incentive compatibility.” In contrast to some uses of this notion in earlier work (e.g., Thm. 3.2
in [73]), our positive results give nodes some additional flexibility in choosing their strategies,
as long as these strategies are BGP-compliant. (We discuss this difference in some detail in
Appendix A.1.)

Ideally, we would like conditions that ensure that nodes have no incentive to be dishonest, no
matter what the other nodes do. Unfortunately, it is extremely difficult to find such conditions;
see [87, 73, 39, 37]. Instead, we look for conditions that ensure that a node has no incentive to
be dishonest if it knows that everyone else is honest. That is, we try to ensure that no node has
an incentive to unilaterally deviate from using BGP-compliant strategies.

We discuss our technical formalizations after each of our positive results (Theorems 2.4.1,
2.5.1, and 2.6.1).
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2.2.7 Additional remarks.

Modeling nefarious ASes. Our modeling assumes that vb(T ) = −∞ implies ub(T ) = −∞, so
that nodes cannot derive any utility from outcomes in which they cannot reach the destination.
Our negative examples do not depend on this assumption, but our positive results do. This
means that our positive results do not hold if a manipulating node wants to attract traffic
for nefarious purposes, like tampering or eavesdropping, when it does not have a path to the
destination.
Single outgoing link. While we assume that all BGP-compliant ASes choose a single outgoing
link for all their traffic, a misbehaving node m might send its outgoing traffic on more than one
outgoing link. In this case, we assume that if m uses more than one path to d in T , then the
valuation vm(T ) is at most as high as the most valuable simple m-to-d path in the outcome T .
This assumption was implicitly used in prior work, and it ensures that even for a manipulator m
“the optimal strategy” is to send its outgoing traffic over a single link. This is because the
valuation of the path cannot decrease if it uses only the “best outgoing link” instead of using a
few of them, and the attraction function does not depend on the outgoing links that m uses.
Utility and outcomes. In this work we defined the utility function to depend on the data-
plane component of outcome alone, because the control-plane component may not correspond
to actual traffic flow in the network. However, this also means that an AS may be unaware of
its actual utility (i.e., when its data-plane forwarding path differs from the control-plane path).
An alternative approach would be to define the attraction function on the data-plane outcome
and the valuation component on the control-plane outcome.

We note, however, that because in this work we consider only unilateral deviations (i.e.,
the all nodes are honest except for a single manipulator), our results in this work hold just the
same under this alternative approach. Since we suppose only one node can potentially deviate
from honest behavior, we are assured that the data-plane forwarding path of the manipulator
matches its control-plane path (since all the nodes on the manipulator’s outgoing path must be
honest), and so the manipulator utility can depend on either the control-plane or data-plane
outcome.

2.3 Definitions: Policy and Export

2.3.1 No dispute wheel.

Griffin, Shepherd, and Wilfong [53] described a global condition on the routing policies in the
AS graph, called “no dispute wheel,” that ensures that BGP always converges to a unique
stable outcome. Roughly, a dispute wheel is a set of nodes, each of which prefers to route
through the others rather than directly to the destination. More formally, there is a dispute
wheel in the valuations if there exist nodes n1, . . . , nt such that, for each node ni, there exists
a simple path Qi from ni to the destination d and a simple path Ri from ni to ni+1 for which
vni(RiQi+1) > vni(Qi).

5 (The index i is taken modulo t.) A dispute-wheel in the ranking
functions (for BGP-compliant nodes) is defined similarly with rni replacing vni . Following the
literature [39, 73], we always consider networks with no dispute wheels in the valuations. The
result of [53] in our terminology states that, if all nodes use BGP-compliant strategies with
rn(·) ≡ vn(·) and there is no dispute wheel in the valuations, then the game’s outcome is unique
and globally stable.

5For readability, we somewhat abuse notation and use vn(P ) to mean n’s valuation of any outcome T in which
its traffic uses the data-plane path P .
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2.3.2 Policy consistency and next-hop policy.

Node a is policy consistent [37,39] in valuations with one of its neighbors b if, whenever b prefers
some path bPd over bRd (and neither path goes through a), then a prefers abPd over abRd.
Formally, for any two simple paths abPd and abRd, if vb(bPd) ≥ vb(bRd), then va(abPd) ≥
va(abRd). We say that policy consistency holds for the problem instance if every node is policy
consistent with each of its neighbors. (Policy consistency is a generalization of next-hop routing
and shortest-path routing; see [37,39].)

Next-hop policy requires that a node only care about the neighbor through which its traffic is
routed and nothing else. This class of routing policies is more restrictive than policy consistency
(e.g., node c in Figure 2.3 is policy consistent but does not use next-hop policy with node m).
Formally, a uses next-hop policy with b if for every two simple paths abPd and abRd it holds
that va(abPd) = va(abRd). Notice that if a uses next-hop policy with b then it must either
admit all simple paths through b or (ingress) filter all of them (c.f., discussion in [101,34]).

Similar definitions apply also to the ranking functions.

2.3.3 Gao-Rexford & customer attractions.

Gao and Rexford [42] described a set of conditions that are induced by business relationships
between ASes [58]. In Gao-Rexford networks there are two kinds of edges: customer-provider
edges (where typically the customer pays the provider for connectivity) and peer-to-peer edges
(where two nodes agree to transit each other’s traffic for free). A Gao-Rexford network obeys
the following three conditions (GR1–GR3):
GR1. Topology. There are no customer-provider cycles in the AS graph, i.e., no node is its
own indirect customer.
GR2. Export. A node b only exports to node a paths through node c if at least one of nodes
a and c are customers of node b.
GR3. Preferences. Nodes prefer outgoing paths where the next hop is a customer over
outgoing paths where the next hop is a peer or a provider, and prefer peer links over provider
links.6

GR3 always applies to the valuation functions of each node in a Gao-Rexford network, and
can also apply to the ranking functions.
We also model customer attractions within the Gao-Rexford setting. Namely, we consider a
fourth condition (AT4) that models the fact that service contracts in the Internet are made
between pairs of neighboring nodes, where a customer pays its provider when it sends traffic
over their shared link [58]. AT4 restricts the set of traffic attraction relationships that we allow
in the AS graph, and thus does not model settings where, e.g., an AS wants to attract traffic
from ASes that are a few hops away.
AT4. Attractions. A node b may only have attraction relationships with its own customers.
Furthermore, b only increases its utility if its attractee-customer a sends traffic over the direct
a-b link.

When we draw Gao-Rexford networks, we represent a customer-provider relationship by a
directed edge from customer to provider, and a peer-to-peer relationship by an undirected edge.
We represent an AT4 attraction relationship with a bold arrow from attractee to attractor (e.g.,
see Figure 2.2).

6The original version [42] of the Gao-Rexford conditions does not require nodes to prefer peer links over
provider links. To make our results as general as possible, we use this weaker version of GR3 in all our theorems,
while our counterexamples do satisfy the stronger version of GR3.
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Verification? Policy Export Incentive to Lie? Result

? No restriction ? Yes Inconsistent Policy

None / Loop Consistent ? Yes Nonexistent Path

Path / Loop Next-hop Inconsistent Yes Inconsistent Export

Path Consistent Consistent No Theorem 2.4.1

? Next-hop All-or-nothing No Theorem 2.4.1

Table 2.2: Summary of our results for traffic-volume attractions. We also require no dispute
wheel.

2.3.4 Export rules.

Our results about BGP-compliant strategies that achieve matching control and data planes in
the setting of traffic attraction involve several types of export rules. The export-all rule (used,
e.g., in Thm. 3.2 of [73]) requires that a node exports all its admitted paths to all its neighbors.
An all-or-nothing rule for a node n means that, for each neighbor a of n, either n exports all
admitted paths to a or none at all. The consistent export rule [37] means that, if n exports to
a neighbor a some path R, then it must also export every other path that is ranked at least as
high as R; i.e., if rn(Q) ≥ rn(R) and n exports R to a, then n must also export Q to a. Finally,
in Gao-Rexford networks, the export rules used by BGP-compliant nodes satisfy GR2.

The export-all rule implies the all-or-nothing export rule, which in turn implies the consistent
export rule. We emphasize that both the export-all and the all-or-nothing rules are often
incompatible with the Gao-Rexford export condition GR2. As one example, the export-all rule
may require an AS to export a path through one of its peers or providers to another one of its
peers or providers, a violation of GR2.

2.3.5 Dispute wheels in Gao-Rexford networks.

As we discussed in Section 2.3.1, in this work we always consider AS-graphs with no dispute
wheel in the valuation functions, even if they obey the Gao-Rexford conditions. Since in our
model, export policy is part of the strategy from which nodes may deviate, we do not rely on
GR2 to exclude paths from the valuation functions that may have caused dispute wheels; the
valuation functions are only subject to GR1 and GR3. This is in contrast to other works on BGP
convergence, e.g., [42,41], which relied on GR2 to remove dispute wheels, because they assumed
that every node honestly follows the GR2 export rule. More generally, in the setting where
nodes may deviate from (prescribed) BGP-compliant strategies in order to better their own
utility, we cannot say that the Gao-Rexford conditions imply that the BGP protocol converges,
as in [42,41]. For example, it is possible to show a network in which a node unilaterally deviates
from GR2 and thus causes the BGP protocol to oscillate forever. We discuss this further in
Section 2.6.5.

2.4 Results: Volume Attractions

We start with some results for traffic-volume attractions, as defined in Section 2.2.3. We stress
that this is a rather restricted form of traffic attraction, as it excludes the possibility of the
utility depending on the path along which incoming traffic arrives. We begin with a series
of counterexamples, demonstrating that even for this very restricted form of traffic attraction,
ensuring that nodes have no incentive to lie is far from easy. (Most of our counterexamples



24

m

Attract c
m1d
md m

Attract c
m1d
md

c1
cmd
cd
cm1d

1d c1
cmd
cd
cm1d

1d

d d

Attract c
m1d

Attract c
m1d

Customer            Provider

m

1
cmd
cd

m1d
md m

1
cmd
cd

m1d
md

c
d

cd
cm1d

c

1
d

cd
cm1d

Figure 2.2: Inconsistent Policy

are Gao-Rexford networks that obey GR1–GR3 and sometimes also AT4 from Section 2.3.3.)
We then present a positive result (Section 2.4.3), showing two sets of conditions, each of which
suffices to ensure that a node honestly announces paths. The results from this section are
summarized in Table 2.2.

2.4.1 Path verification is not enough.

Path Verification is the focus of most traditional work on securing BGP [21]; roughly, it
ensures that nodes cannot announce paths that are not in the network. More formally, path
verification is a control-plane mechanism that ensures that every node a only announces a path
abP to its neighbors if its neighbor b announced the path bP to a. Path verification can be
guaranteed when S-BGP [66] or IRV [52] is fully deployed in the network. (We note, however,
that soBGP [106] does not provide path verification; soBGP only provides information about
AS-graph topology, and not about path announcements.)

For the setting of no traffic attraction, a recent result of Levin et al. [73] shows that, in a
network with path verification and no dispute wheel, no node has an incentive to unilaterally
deviate from a BGP-compliant strategy with rn(·) ≡ vn(·) and an export-all rule. They also
show (in [72]) that the same is true in Gao-Rexford networks, but with an export rule that
exports all paths except those that would violate GR2. However, we show that when there are
traffic-volume attractions, a node can have an incentive to make a dishonest announcement,
even when the network has path verification:
Figure 2.2: Inconsistent Policy demonstrates that a policy inconsistency between a
manipulator m and its customer c can give m an incentive to dishonestly announce its forwarding
path in order to attract traffic from c. On the left we show the outcome T that results when
each node n uses a BGP-compliant strategy with rn(·) ≡ vn(·), exporting all paths except those
that would violate GR2. On the right, we show the manipulated outcome M , in which only a
single manipulator node m does not use a BGP-compliant strategy. Here, m has an incentive
to announce the path md to node c, while actually using path m1d, in order to attract c’s
traffic. Notice that this announcement can be made even with path verification, because node
1 announced 1d to m. In the outcome M , node m gains not only a traffic-volume attraction
(because c routes through m in M but not in T ), but also an AT4 attraction (because c is
a customer that routes on the direct c-m link in M). Note that Inconsistent Policy is a
Gao-Rexford network with no dispute wheel that obeys AT4.

We remark that the situation in Inconsistent Policy could arise quite naturally in prac-
tice. As an example, while c is a customer of both m and d, the service contracts of c with m
and d are such that usage-based billing on the m-c link is lower than billing on the d-c link.
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Then, c could prefer a path through m over the direct path to d as long as this path only
increases AS-path length by a single hop. On the other hand, m could prefer to send traffic via
1 because 1 is, say, geographically closer to m than d.

2.4.2 Policy consistency alone is not enough.

Notice that, in Inconsistent Policy, node c is not policy consistent with node m (Sec-
tion 2.3.2). It is natural to ask if requiring policy consistency is sufficient to ensure that there
is no incentive to lie. Indeed, for the setting of no traffic attraction, Feigenbaum et al. [39, 37]
proved that in a network with policy consistency and no dispute wheel, then no node has an in-
centive to unilaterally deviate from a BGP-compliant strategy with rn(·) ≡ vn(·) and consistent
export. Perhaps surprisingly, it turns out that policy consistency is not sufficient to ensure that
nodes have no incentive to lie when we consider traffic-volume attractions:
Figure 2.3: Nonexistent Path demonstrates that, even in a policy consistent network,
a manipulator m can have an incentive to announce a nonexistent path in order to attract
traffic from its customer c. The outcome T , shown on the left, results when each node uses a
BGP-compliant strategy with rn(·) ≡ vn(·), where node d’s export rule obeys consistent export
but exports nothing to node m, and all other nodes export all paths allowed by GR2 (which
implies consistent export). On the right, we show the manipulated outcome M , where only
the manipulator m deviates from the BGP-compliant strategies described above. Here, the
manipulator m has an incentive to announce to node c a false path “md” that is not available to
m (because d does not export this path to m) in order to attract c’s traffic. Again, node m gains
both a traffic-volume attraction and an AT4 attraction in M that it could not have obtained
by using a BGP-compliant strategy. Note that Nonexistent Path is a policy-consistent Gao-
Rexford network with no dispute wheel that obeys AT4.

Notice that c has the same preferences in both Nonexistent Path and Inconsistent
Policy. However, in Nonexistent Path, c is policy consistent with m; both prefer the
nonexistent shorter path through md over the longer path through m1d.

2.4.3 But adding path verification or next-hop policy is enough!

In Nonexistent Path, the manipulator m announces a path “md” was that was not announced
to it by d (which would not be possible if the network had path verification), and that announce-
ment matters because node c does not use a next-hop policy with m. It turns out that requiring
either path verification (on top of policy consistency) or next-hop policies is sufficient to ensure
honesty in any network with only traffic-volume attraction functions. In these settings, if each
node sets its ranking equal to its valuation and honestly exports all paths to all neighbors, then
no node has an incentive to unilaterally deviate from this behavior.
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Theorem 2.4.1. Consider an AS graph with no dispute wheel in the valuations. Suppose that all
nodes, except a single manipulator node m, use BGP-compliant strategies and set their ranking
equal to their valuations (rn(·) ≡ vn(·) for every node n). Suppose further that m has a traffic-
volume attraction function, and that at least one of the following two conditions hold:

a. The valuations function of all nodes are next-hop and the export functions of all the nodes
but m obey all-or-nothing export; or

b. The valuations function of all nodes are policy consistent, the export functions of all the
nodes but m obey consistent export, and the network has path verification.

Then there is a BGP-compliant strategy for m that sets rm(·) ≡ vm(·) and obeys all-or-
nothing export (and therefore also consistent export), such that this strategy is optimal (utility-
maximizing) for m. In particular, using the export-all rule is one such optimal strategy.

Notice that Theorem 2.4.1 not only establishes the existence of an optimal consistent export
rule form, but also asserts that export-all is one such optimal rule. Hence it actually establishes a
single strategy from which no node has an incentive to deviate. This notion of a single strategy is
the same notion used in prior works including [39,37,73,87]. In the mechanism-design literature,
this is called incentive-compatibility in ex-post Nash equilibrium; see [87] and Appendix A.1. We
also comment that in a setting with path verification, the result is slightly stronger since it only
requires that honest nodes use consistent export. (We do not know if consistent export suffices
for the next-hop result.) The proof of Theorem 2.4.1 is presented in Appendix A.3, and makes
heavy use of the result of Feigenbaum et al. [39, 37].

2.4.4 Our results need consistent export.

Theorems 2.4.1 required a consistent export rule. We now show that we cannot drop this
requirement, by presenting a counterexample that obeys all the conditions in Theorem 2.4.1
(policy consistency, next-hop policy, path verification) except consistent export, where node m
still has an incentive to lie about its forwarding path in order to gain a traffic-volume attraction:
Figure 2.4: Inconsistent Export demonstrates that m can have an incentive to lie about its
forwarding path in order to attract indirect traffic from node c, by taking advantage of the fact
that some other node (n) does not use consistent export. Suppose that all nodes except for n use
export-all rule (which implies consistent export). Now suppose that node n uses an inconsistent
export rule; it exports the path nm1d to node c, but not the more preferred path nmd. On
the left we show the outcome T that results when all nodes use a BGP-compliant strategy with
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Verification? Policy Export Incentive to Lie? Result

None ? ? Yes False Loop

? Consistent ? Yes Bowtie

? Next-Hop Consistent Yes Grandma

Path / Loop Next-Hop All-or-Nothing No Theorem 2.5.1

Table 2.3: Summary of our results for generic attractions. We also require no dispute wheel.

rn(·) ≡ vn(·) and the export rules described above. In T , nodes m and n use the path nmd, but
because n does not export this path to c, c routes directly to d. The manipulated outcome M is
shown on the right, where only node m deviates from the BGP-compliant strategies described
above. By announcing the false path “m1d”, m manages to attract traffic from c, since now n is
willing to export the path “nm1d” to node c. Notice that this false path can be announced even if
the network has path verification, since node 1 announced “1d” to m. (Note that Inconsistent
Export is a Gao-Rexford network that does not obey AT4, where there is no dispute wheel and
all nodes use next-hop policy.)

The reader might object to the fact that in Inconsistent Export, node c prefers the long
path cnm1d over the short path cd. We note that this counterexample holds even we lengthen
the cd path (say by replacing the c-d link by a path through four additional nodes). On the
other hand, we agree that the inconsistent export rule used by node n is somewhat bizarre.
Indeed, we believe that it is reasonable to require consistent export in a network that is already
policy consistent.

2.5 Results: Generic Attractions

We now consider our most general notion of traffic attraction, in which the utility that nodes
derive from attracting traffic can depend arbitrarily on the path that incoming traffic takes (see
Section 2.2.3). For this general case, we show in Section 2.5.4 that nodes have no incentive
to lie when all nodes use next-hop policy and all-or-nothing export and the network has path
verification. (In fact, we show that a weaker enforcement mechanism called loop verification
is also sufficient; see Section 2.5.3.) These conditions are extremely strong, but we show via a
sequence of counterexamples that we cannot drop any one of these conditions without allowing an
incentive to lie. The theorems and counterexamples in this section are summarized in Table 2.3.

2.5.1 Policy consistency & path verification is not enough.

In networks with only traffic-volume attraction, we were able to show that adding path verifi-
cation to a policy-consistent AS graph is sufficient to ensure that nodes have no incentive to lie
(Section 2.4.3). Unfortunately, this is not the case when we consider more general attraction
relationships:
Figure 2.5: Bowtie demonstrates that, even in a network that is policy consistent and has
path verification, a manipulator m can have an incentive to lie about its forwarding path in
order attract traffic from a customer c on the direct m-c link. Suppose node m has an attraction
function such that (1) m has an AT4 attraction relationship with its customer c, and (2) m has a
traffic-volume attraction with its provider n. The outcome T that results when every node uses
a BGP-compliant strategy with rn(·) ≡ vn(·) and exports all paths allowed by GR2, is shown
on the left. The manipulated outcome M is shown on the right, where only node m deviates
from the BGP-compliant strategy we described above.

Here, m has an incentive to dishonestly announce the path “m1d” to all of its neighbors
in order to attract traffic from the attractee c on the direct c-m link. Node m can make
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this announcement, even with path verification, because node 1 announced the path 1d to m.
Moreover, there is no BGP-compliant strategy for m that allows it to attract traffic from both
c and n while maintaining its preferred data-plane forwarding path md. Note that Bowtie is a
policy-consistent, Gao-Rexford network with path verification that does not obey AT4 and has
no dispute wheel in the valuations.

We remark that even though c’s traffic is routed via m in both T and M (i.e., m does not gain
a traffic-volume attraction), the manipulation in Bowtie is quite reasonable in practice. For
example, m might prefer the outcome in M over the outcome in T for load-balancing purposes,
because incoming traffic from c and n is spread over two links in M . As another example, m
might prefer the outcome M because it has a usage-based billing contract with c on the m-c
link, whereas node m is not able to bill its provider n for carrying c’s traffic (which occurs in
outcome T ).

2.5.2 Next-hop policy alone is not enough.

From Bowtie, we learn that policy consistency is not sufficient to ensure honest announcements
(even when using path verification). So we throw up our hands and ask if it suffices to require
that every node uses next-hop policy. With next-hop policy, it is tempting to conclude that lying
about an outgoing path will not help an attractor convince an attractee to ‘change its mind’ and
route through it in a manipulated outcome. (Notice that the manipulations in Inconsistent
Policy, Nonexistent Path and Bowtie were of this form.) Furthermore, next-hop policy is
sufficient when considering only traffic-volume attractions (Section 2.4.3).

Quite surprisingly, this intuition fails. We now present our most important counterexample,
which shows that if the network does not have path verification, then even requiring next-hop
policy is not sufficient:
Figure 2.6: False Loop demonstrates that, even in a network where all nodes use next-hop
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policies, a manipulator m can gain traffic from its customer c by falsely announcing a path
through c to m’s other neighbors. Suppose that m announces no paths to neighbor n and all
paths to everyone else, and that all other nodes export all paths allowed by GR2. On the left
is the outcome T , where each node compiles rn(·) ≡ vn(·) and uses the BGP-compliant strategy
with the export rules described above. The manipulated outcome M is on the right, where only
m deviates from the BGP-compliant strategy above. In M , the manipulator m has an incentive
to announce a false outgoing path “mcd” to n in order to attract traffic from its attractee c
(on the direct c-m link). Notice that the outcome M results whenever there is no control-plane
verification mechanism such as path verification, since the ‘false loop’ “nmcd” will either cause
node n not to announce any path to node c, or instead cause node c to ignore the announcement.
Also, m has no BGP-compliant strategy that allows it to gain an AT4 attraction from c, since c
would have sent his traffic on the c-n link if m had either (a) honestly announced some path to
n, or (b) announced no path to n (as in outcome T ). Note that False Loop is a Gao-Rexford
network with no dispute wheel that obeys AT4, in which all nodes use next-hop policies.

2.5.3 Introducing loop verification.

To deal with the manipulation in False Loop, we introduce loop verification, a new control-plane
mechanism that deals with detecting and preventing “false loops.”

BGP allows two different approaches for detecting and preventing routing loops. One is
sender-side loop detection, where a node a will not announce path aRd to node b if b happens to
be on the path R. The other is receiver-side loop detection where a will announce the path aRd
to b, so that b will detect the loop and discard that announcement. Receiver-side loop detection
has the advantage of allowing a node b to hear announcements that falsely include a path that
b did not announce. Notice that for b to detect a “false loop,” b need only perform a local check
to see if the path it receives matches the one that b actually announced. (This local check is less
onerous than the one that is required for path verification, which requires participation from all
ASes on the path.)

Loop verification encourages ASes to avoid lying in BGP announcements because they should
fear getting caught. We define loop verification as the use of receiver-side loop detection by all
nodes in a network, with the additional requirement that when node b receives an announcement
of a path P = QbRd, such that b did not announce the path bRd to its neighbors, then b “raises
an alarm.” Then, the first node who announced a path that includes bRd will be punished with
utility reduced to −∞. This punishment process models the idea that b can catch and shame
the node that announced the false loop, e.g., via the NANOG list.

The properties of loop verification are strictly weaker than those of path verification. Namely,
if a network has path verification, then no node will raise an alarm in loop verification. This
follows from the fact no node can announce a path that includes bRd unless b announces the
path bRd.

2.5.4 Next-hop policies & loop verification is enough!

Now that we defined loop verification, we are ready to present the main result of this section.
If we add loop verification to a next-hop network with no dispute wheel, we can eliminate the
manipulation performed by m in False Loop. We also require all nodes to use an all-or-nothing
export rule. The following holds even if the network does not obey the Gao-Rexford conditions:

Theorem 2.5.1. Consider an AS graph where the valuation functions are next-hop and con-
tain no dispute wheel. Suppose that all nodes, except a single manipulator node m, use BGP-
compliant strategies where they set their ranking equal to their valuations (rn(·) ≡ vn(·) for
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Figure 2.7: Access Denied.

every node n), and obey all-or-nothing export. Suppose further that the network uses either loop
verification or path verification. Then there exists a BGP compliant strategy for m that uses
rm(·) ≡ vm(·) and obeys all-or-nothing export, which obtains the best possible stable outcome in
terms of the utility function of m.

On an intuitive level, Theorem 2.5.1 proves that any gains a manipulator gets from lying
can be obtained by using a clever export rule.7 That is, Theorem 2.5.1 shows the existence of
an optimal all-or-nothing export rule for the manipulator; however, this optimal export rule for
m depends on the export rules chosen by the other nodes in the network. Furthermore, unlike
prior work or the result from Section 2.4, this result does not explicitly describe this optimal
export rule.

The proof of Theorem 2.5.1 is quite technically involved, so we present it in Appendix A.4.
Roughly, the proof amounts to showing that when all nodes use next-hop policy with their
neighbors, the only strategically useful lie available to the manipulator is to announce a false
loop. Then, we show that if the network has loop verification, some node detects the false loop
and punishes the manipulator for its lie; since the utility of the manipulator drops down to −∞
when it gets caught, it no longer has an incentive to announce a false loop, and the theorem
follows.

2.5.5 Export-all is not always optimal.

Theorem 2.5.1 unfortunately does not explicitly describe the optimal export rule for the ma-
nipulator. We now show that the export-all rule (which was shown to be optimal in e.g.,
Theorem 2.4.1 and [73]) is not necessarily optimal in this setting:
Figure 2.7: Access Denied demonstrates that m can attract traffic from its customer c over
the direct m-c link by denying export to some of m’s other neighbors. Here, the network has
path and loop verification, next-hop policies at every node, and m is interested in attracting
traffic only from c (but not from n) in an AT4 attraction. Suppose that all nodes, including m,
honestly announce paths. On the left we present the outcome when every node, including m,
uses export-all. On the right, we illustrate the outcome when m uses a different all-or-nothing
export rule: in particular, m announces all paths (honestly) to c, and no paths to n. As a result,
m attracts traffic from c on the direct c-m link. If m had announced paths to n, then c would
not have sent its traffic on the c-m link, as in the outcome on the left. Thus, we see that the
export-all rule is not optimal for m. Note that Access Denied is a network that obeys GR1,
GR3, and AT4, and has no dispute wheel.

7We remark that this result only rules out the possibility of obtaining a better stable outcome by lying, it does
not rule out the possibility of m gaining utility by inducing a non-stable outcome. See Section 2.2.2.
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We pause here to observe that in the outcome on the right, n has no path to the destination
if node c only exports the paths allowed by GR2. We discuss this issue in Section 2.6.4.

2.5.6 Theorem 2.5.1 needs all-or-nothing export.

The requirement that all nodes use an all-or-nothing export policy in Theorem 2.5.1 is ex-
tremely strong, especially because most networks that obey the Gao-Rexford conditions (in
particular GR2) violate this export rule. We now present our most devastating (and compli-
cated) counterexample that shows Theorem 2.5.1 does not hold with a more realistic export rule
like consistent export:
Figure 2.8: Grandma demonstrates that a manipulator m can have an incentive to lie in
order to attract traffic from a customer c if some other node a does not use an all-or-nothing
export policy. Furthermore, Grandma shows that this is possible even when all nodes use path
verification and next-hop policies.

In Grandma, m has an AT4 attraction relationship with its customer c, a traffic-volume
attraction relationship with its provider b, and no other attractions. Suppose now that all nodes
export all paths allowed by GR2; thus, a does not export paths through its peer 1 to its peer c.
While a uses a consistent export rule (since a filters only its lowest ranked path through 1), a
does not use all-or-nothing export rule. On the left is the outcome T that results when all nodes
act honestly, i.e., use BGP-compliant strategies with rn(·) ≡ vn(·) and the export rules above.
The manipulated outcome M is shown on the right, where only the manipulator m deviates
from the BGP-compliant strategies above.

In M , the manipulator m dishonestly announces the path “ma1d” while actually routing on
md. To arrive at the outcome M on the right, node m sits quietly until node a exports “a1d”
to it. Then m announces “ma1d” to all nodes, while routing on md in the data plane. Node a
cannot route through m (because it thinks that m routes through it); so, a continues to route
on a1d. Next, because a does not export paths through 1 to its peer node c, node c has no
choice but to route through node m. Meanwhile, m’s machinations have no effect on b, who
routes through m regardless. Notice that loop or path verification would not help, since node
a is indeed routing along “a1d”. Furthermore, m manages to retain in M its traffic-volume
attraction with b and gain an AT4 attraction with customer c. Also, m has no BGP-compliant
strategy that obtains as large a utility as it obtains from M . Note that Grandma is a Gao-
Rexford network with no dispute wheel that does not obey AT4, where all nodes use next-hop
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AT4 Verification Policy Next-hop policy Export Incentive Result
Consist. to Lie?

No ? ? ? Consist. Yes Grandma

Yes None ? ? ? Yes False Loop

Yes ? None All nodes w. peers & providers ? Yes Orion

Yes None / Loop All nodes None ? Yes Nonexistent Path

Yes Loop / Path All nodes Attractees w. peers & providers Consist. No Theorem 2.6.1

Table 2.4: Summary of our results for Gao-Rexford networks (obeying GR1-GR3) with no
dispute wheel.

policy with all their neighbors.

2.5.7 The need for ubiquitous participation.

Bowtie and Grandma highlight another important point; namely, that even if one node follows
the conditions specified in our theorems, e.g., next-hop policy, it is still possible for that node
to learn a false path, if some other node in the network fails to follow the specified conditions.
For example, in Bowtie (Figure 2.5), even though attractee node n uses next-hop policy, n still
learns a false path because node c does not. Thus, we emphasize that all the theorems in this
paper only hold if every node in the network follows the specified set of conditions.

2.6 Results: Customer Attractions in Gao-Rexford Networks

We now focus on Gao-Rexford networks (see Section 2.3.3). In Section 2.5, we used Grandma
(Figure 2.8) to show that Theorem 2.5.1 does not hold with consistent export in place of the
unrealistic all-or-nothing export rule (which is usually not compatible with GR2). Fortunately,
Grandma did not obey the AT4 attraction condition. Thus, we now weaken the assumption
of all-or-nothing export by focusing on the AT4 setting, in which an attractor can increase its
utility only if a customer routes on the direct link between them. It turns out that AT4 also
allows us to weaken the next-hop-policy restrictions required in Theorem 2.5.1. Our results
are summarized in Table 2.4, which also shows how dropping any one of the conditions in our
positive result (Section 2.6.2) may create an incentive to lie.

2.6.1 It’s not sufficient to restrict policy at attractees only.

The requirement in Theorem 2.5.1 that every node in the network uses a next-hop policy with all
of its neighbors is very strong indeed. Ideally, we would have preferred to require only attractees
to use next-hop policy with their attractors. Unfortunately, even requiring every attractee to
use next-hop policy with all its neighbors may not remove the incentive to lie:
Figure 2.9: Orion is a Gao-Rexford network with no dispute wheel that obeys AT4. In
Orion, only the attractee (node c) uses next-hop policy with all its neighbors (nodes m,n).
Every other node uses next-hop policy with its peers and providers, but not necessarily with
its customers. Notice that node a is not policy consistent with its customer m: node m prefers
path m1d to path md (say, because it is cheaper to route directly to 1), while node a prefers the
path amd to the path am1d (say, because it prefers shorter paths).

On the left is the outcome T that results when each node uses a BGP-compliant strategy with
rn(·) ≡ vn(·), exporting all paths allowed by GR2. The manipulated outcome M is shown on the
right, where the manipulator m deviates from this BGP-compliant strategy. In the manipulated
outcome M , m dishonestly announces the outgoing path “md” to all of its neighbors so that
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node a decides to route through m on the amd path. However, node n does not admit the path
amd and thus is left with no path to the destination d. The attractee c has no choice but to
route through m, increasing m’s utility. Observe that m has no BGP-compliant strategy that
obtains as large a utility as it obtains from M .

Notice that n uses a “forbidden-set policy” [35], in which it prefers using no path at all over
using a path through m. Such preferences could arise in practice if node n does not trust node
m to carry its traffic (say, because it perceives node m to be adversarial).

2.6.2 Policy consistency everywhere with next-hop policy at attractees is
enough!

Earlier, we saw that, even in the Gao-Rexford setting with AT4, dropping either path or loop
verification may create an incentive to lie (as in False Loop in Figure 2.6). Furthermore, from
Orion above, we learn that policy restrictions only on attractees can leave an incentive to lie.
The manipulation in Orion is possible because node a is not policy consistent with node m; we
now show that requiring policy consistency, along with other conditions satisfied by Orion, is
enough to ensure no incentive to lie.

Theorem 2.6.1. Consider a policy-consistent, Gao-Rexford network that obeys AT4, in which
there is no dispute wheel in the valuations and all attractees use next-hop policies with their
providers and peers. Suppose that all nodes, except a single manipulator node m, uses a BGP-
compliant strategy with rn(·) ≡ vn(·) and a consistent export rule that satisfies GR2. Suppose
further that the network has path or loop verification.

Then there exists a BGP-compliant strategy for m with rm(·) ≡ vm(·) and a consistent export
rule obeying GR2 that obtains the best possible stable outcome in terms of the utility function
of m. In particular, exporting all paths to customers and no paths to providers and peers is one
such optimal strategy.

The proof, in Appendix A.5, consists of a series of technical arguments that use the Gao-Rexford
conditions (GR1-GR3) and AT4 to show that if m can increase its utility in the manipulated
outcome, then the network must have a customer-provider loop.
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2.6.3 Our result needs next-hop at attractees.

We note that we cannot drop the requirement in Theorem 2.6.1 that all attractees use next-hop
policy with all their peers and providers. To see why, recall that a manipulation is possible
in Nonexistent Path (Figure 2.3), which satisfies all the conditions of Theorem 2.6.1 (loop
verification, policy consistency at all nodes, Gao-Rexford, AT4, no dispute wheel, consistent
export) except that the attractee node c does not use next hop policy with its provider m.
However, the manipulation in Nonexistent Path would not be possible with path verification
(instead of loop verification). Thus, in this work we have not ruled out the possibility that we
can drop the requirement for attractees to use next-hop policy if we replace loop verification
with path verification.

2.6.4 It’s best to export only to your customers.

Observe that Theorem 2.6.1 not only shows the existence of an optimal export rule for the
manipulator, but also explicitly describes one such export rule. It therefore provides a specific
strategy from which no node has an incentive to unilaterally deviate.8 However, this strategy
requires that m never announces any paths to its peers and providers. While this export rule
obeys consistent export and GR2, a network in which every node uses this “export-nothing-to-
non-customers” rule would be a very sorry network indeed: Peer paths would not exist, and
nodes would never transit traffic from their providers, even if that traffic is destined for their
customers!

Unfortunately, there are cases in which the optimal export rule for the manipulator is to
“export nothing to non-customers.” For example, consider Access Denied in Figure 2.7 and
observe that m’s optimal strategy is to announce no paths to n (which means that when c’s
export rule obeys GR2, node n has no path to the destination). Furthermore, this network
obeys the strongest conditions considered in this work (next-hop policy at all nodes and path
verification). Hence, within the conditions considered here, we cannot hope to get a result where
m’s optimal export policy necessarily allows it to announce paths to peers and providers.

This suggests that AT4 may not be a reasonable model for attraction relationships; e.g., a
node could improve its utility by attracting traffic from a provider or peer if it delivers this traffic
to a customer. Finding a more appropriate model for attraction relationships in Gao-Rexford
networks remains open for future research.

2.6.5 Our result needs no dispute wheel.

Notice that in addition to obeying the Gao-Rexford conditions, Theorem 2.6.1 also requires that
the valuation functions have no dispute wheel. As we discussed in Section 2.3.3, this means
that in addition to obeying GR1 and GR3, the valuation functions must contain no dispute
wheel even without excluding paths that are removed by the GR2 export rule. This is a very
strong requirement indeed, since GR2 often excludes paths from the network that would have
created dispute wheels. Ideally, we would like to drop this requirement from Theorem 2.6.1.
Unfortunately, this is not possible:
Figure 2.10: Disputed Path demonstrates that, if a network has a dispute wheel, a ma-
nipulator m can have an incentive to falsely announce paths in order to attract traffic from
a customer c. Furthermore, Disputed Path shows that this is possible even if there is path

8However, as in Theorem 2.5.1, we add the disclaimer that this result only applies to stable manipulated
outcomes.
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verification, all nodes are policy consistent, and every attractee (nodes c, a) use next-hop policy
with all their neighbors (nodes m,n).

On the left is the outcome T that results when each node uses a BGP-compliant strategy
with rn(·) ≡ vn(·) and exports all paths that do not violate the GR2 export condition. The
manipulated outcome M is shown on the right, where only node m deviates from this strategy.
In the manipulated outcome M , m announces a false outgoing path “m1d” to all of its neighbors.
This is possible even with path verification since 1 announced the path 1d to m. Notice that
while node n is policy consistent with all his neighbors, he does not admit the path nm1d.
Furthermore, since c obeys GR2, he does not export any paths to n. As a result, n is left
with no path to the destination, and c routes through his attractor m instead. However, the
other attractee node a continues to route through m even when m announces this false path.
Furthermore, m has no export rule for which he can achieve the same utility that obtained in
M . Note that Dispute Path is a Gao-Rexford network where all nodes are policy consistent,
every attractee use next-hop policy with all neighbors, and there is path verification. Disputed
Path has a dispute wheel between nodes c, n; n prefers paths through its customer c over paths
through its provider a, but c prefers paths through its provider n over paths through its provider
m.

One way to get rid of the requirement for no dispute wheel is to change our interpretation
of the Gao-Rexford conditions. Namely, we could assume instead that paths that are usually
excluded by the GR2 export rule are also not admitted by the valuation function of all nodes.
This means that paths that violate GR2 are filtered on ingress, (rather that filtered on egress,
as per Section 2.3.3). This approach is discussed in [73]. (However, we emphasize here that
Theorem 2.6.1 does not hold under this alternate interpretation of the Gao-Rexford conditions.)
While this interpretation may lead to better positive results, it may be unrealistic; for instance,
in Disputed Path, node c has no reason to announce the path cnm1d to node n, since both m
and n are providers of c and c only stands to lose money by transiting traffic from one provider to
another. Thus, it seems reasonable to expect c to refuse to export this path. Meanwhile, n has
no reason not to admit the path ncm1d, since this path is through his customer c. Furthermore,
in practice, business relationships between ASes are often kept private. Thus, it is not clear how
n would learn that node m is c’s provider, and therefore that node n should not admit the path
ncm1d.
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2.7 Related work

We discussed some related work in Sections 2.1–2.2. Further discussion is below. Griffin, Shep-
herd, and Wilfong [53] developed a formal model of BGP which assumes ASes choose paths
based on an arbitrary preference function that ranks outgoing paths. They used this model
to initiate a study of sufficient conditions to ensure that BGP converges to a unique outcome
(Section 2.3.1). This study was continued by many subsequent works; most relevant here are
the results of Gao and Rexford [42] who considered constraints that arise due to business rela-
tionships between ASes (Section 2.3.3), and those of Feamster, Johari, and Balakrishnan [34]
who studied the effect of filtering (Section 2.3.4).

In contrast to the works on BGP convergence, the game theoretic studies of BGP [39,73,35,
36, 37, 38, 87, 30], discussed in Section 2.1.2 and throughout this paper, looked for mechanisms
that induce incentives to comply with the protocol (which, in particular, means that ASes would
have no incentive to lie). These works interpret the preference function in Griffin et al. [53] as a
measure of utility for each AS, and model ASes as rational agents who act selfishly to maximize
utility. This is equivalent to assuming that utility is uniquely determined by outgoing paths. To
our knowledge, our work is the first to model the effect of incoming traffic on the incentive to
lie in BGP announcements. Earlier versions of our work appeared as [45] and [65].

Recently, the literature on BGP convergence has begun to model the effect of incoming traffic
on BGP dynamics. These works [43, 102, 103] focus on the context of traffic engineering, and
assume that ASes honestly announce paths; they do not consider ASes that lie. Gao, Dovrolis
and Zegura [43] and Wang et al. [102] study algorithms for traffic attraction and deflection
using AS-path prepending. (Our work does not model prepending.) Wang et al. [103] study
oscillations that can occur if the BGP decision process depends on incoming traffic as well as
outgoing paths. In contrast, our work allows utility to depend on incoming traffic (Section 2.2.3)
but assumes that the BGP dynamics are based on ranking functions (Section 2.2.2) that depend
only on outgoing paths. The ranking functions are derived from a “compilation” of the utility
function (Section 2.2.5). Thus, in some sense, Wang et al. study the oscillations that can result
as ASes continuously adjust their compilation. Indeed, Figure 2 of [103] shows conditions under
which Inconsistent Policy in our Figure 2.2 could experience such oscillations.

2.8 Conclusions

In this work, we considered control-plane mechanisms that provide incentives for rational ASes
to announce their true data-plane paths in BGP messages. We find that conditions previously
shown to be sufficient for honesty no longer suffice if we assume that ASes can benefit by
attracting incoming traffic from other ASes. We demonstrated that, within the control-plane
mechanisms we considered here, ensuring honesty in the face of traffic attraction requires very
strong restrictions on routing policy (at the very least, policy consistency everywhere, and
sometimes also next-hop policy at certain ASes), as well as control-plane verification (loop-
verification or path-verification protocols like Secure BGP [66]). Thus, our results suggest that
in practice, it will be difficult to achieve honesty without resorting to expensive data-plane
protocols that verify and enforce AS-level paths. By highlighting the difficulty of matching the
control and data planes, even under the assumption that ASes are rational (and not arbitrarily
malicious), our results can also help inform decisions about whether security protocols should
be deployed in the control plane, in the data plane, or in both.



Chapter 3

Path-Quality Monitoring:
Failure Detection

3.1 Introduction

Path-quality monitoring is a crucial component of flexible routing techniques (e.g., intelligent
route control, source routing, and overlay routing) that give edge networks greater control over
path selection. Monitoring is also necessary to verify that service providers deliver the perfor-
mance specified in Service-Level Agreements (SLAs). In both applications, edge networks need
to determine when path quality degrades beyond some threshold, in order to switch from one
path to another or report an SLA violation. The problem is complicated by the presence of
nodes along the path who try to interfere with the measurement process, out of greed, malice,
or just misconfiguration. In this chapter, we design and analyze light-weight path-quality mon-
itoring (PQM) protocols that detect when packet loss or delay exceeds a threshold, even when
adversaries try to bias monitoring results. Our solutions are efficient enough to run at line rate
on the high-speed routers connecting edge networks to the Internet.

3.1.1 The presence of adversaries

Today, path-quality monitoring relies on active measurement techniques, like ping and tracer-
oute, that inject special “probe” packets into the network. In addition to imparting extra load
on the network, active measurements are vulnerable to adversaries that try to bias the results
by treating probe packets preferentially. Instead, we want to design protocols that provide ac-
curate information even when intermediate nodes may adversarially delay, drop, modify, inject
or preferentially treat packets in order to confound measurement. Our motivations for studying
this adversarial threat model are threefold:
1. It covers active attacks. Our strong threat model covers a broad class of malicious be-
havior. Malicious adversaries can easily launch routing-protocol attacks that draw packets to
(or through) a node of their choosing [14], or compromise one of the routers along an exist-
ing path through the Internet [57, pg. 14]. Biasing path-quality measurements allows the
adversaries to evade detection, while continuing to degrade performance or impersonate the
legitimate destination at will. In addition, ISPs have both the economic incentive and the tech-
nical means to preferentially handle probe packets, to hide discrimination against unwanted
traffic like Skype [85] or BitTorrent [1], and evade detection of SLA violations. (In fact, com-
mercial monitoring services, like Keynote, claim to employ “anti-gaming” techniques to prevent
providers from biasing measurement results [3].) Finally, adversaries controlling arbitrary end
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hosts (such as botnets) can add “spoofed” packets to the stream of traffic from one edge network
to another, to confound simplistic measurement techniques (e.g., such as maintaining a counter
of received packets).
2. It covers all possible benign failures. By studying the adversarial setting, we avoid making
ad hoc assumptions about the nature of failures caused by normal congestion, malfunction or
misconfiguration. Even benign modification of packets may take place in a seemingly adversarial
manner. For example, an MTU (Maximum Transmission Unit) mismatch may cause a router to
drop large packets while continuing to forward the small probe packets sent by ping or tracer-
oute [75]. As another example, link-level CRC checks are surprisingly ineffective at detecting
the kinds of errors that corrupt IP packets [98]. Since the adversarial model is the strongest
possible model, any protocol that is robust in this setting is automatically robust to all other
kind of failures.
3. It is challenging to satisfy in high-speed routers. We choose to work in a difficult space,
where we assume the strongest possible adversarial model, and yet design solutions for high-
speed routers on multi-Gbit/sec links, where computation and storage resources are extremely
limited. We view it as an important research goal to understand what can and cannot be done
in this setting, to inform practical decisions about what level of threats future networks should
be designed to withstand. Furthermore, designing protocols for this adversarial setting is not
simply a matter of adding standard cryptographic tools to existing non-adversarial measurement
protocols. Indeed, naive ways of combining such protocols with cryptographic tools may be either
insecure or very inefficient (e.g., encrypting and authenticating all traffic).

Despite the strong threat model we consider in this chapter, we are still able to design
secure PQM protocols that can be implemented in the constrained environment of high-speed
routers. Our protocols are competitive, in terms of efficiency, with solutions designed for the
non-adversarial setting [33, 59] and for weaker threat models. As such, we believe that our
protocols are strong candidates for deployment in future networks, even where our strong security
guarantees may not be essential.

3.1.2 Our results

We say that a packet delivery failure (failure for short) has occurred on a path if a packet sent
by the source was dropped, modified, or delayed beyond a certain timeout period, regardless
of whether the drop is due to congestion, malfunction or adversarial behavior. The goal of a
PQM protocol is to detect when the fraction of failures on a path rises above a certain fraction
β (say β = 0.01) of all packets sent. We emphasize that a PQM protocol does not prevent
failures. A secure PQM protocol achieves its goal even when there is an intermediate node on
the path between source and destination that can adversarially drop, modify, or inject both
data and protocol-related packets to the path in order to bias the measurement results. Most
existing PQM protocols, such as ping, traceroute, and counter-based solutions [99] completely
break down in this setting (we show why in Section 3.2.2).

To have efficient solutions that can run on high-speed routers, we design secure PQM pro-
tocols based on two main classes of data-reduction techniques:
Secure sketch. In Section 3.5, we present a protocol for monitoring packet-loss rates that
makes extremely efficient use of communication and storage resources. Our secure sketch pro-
tocol uses `2-norm estimation sketches [7,5,24,100] to aggregate information about the failures
that occur during an interval, in which T packets are sent, into a sketch of size O(log T ) bits; the
communication overhead is just a single report packet per time interval. Assuming that about
107 packets are sent during an 100ms interval, our protocol requires between 250–600 bytes of
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storage at the source and destination, and a report can easily fit into a single IP packet. In the
course of analyzing this protocol, we provide an improved formal analysis of the performance
of [24]’s sketching scheme that may be of independent interest.
Secure sampling. In certain settings, an edge-network may require accurate round-trip delay
measurements in addition to monitoring if the failure rate rises above a threshold. Section 3.4
describes a secure PQM protocol that achieves this by measuring performance for a sample
of the traffic that is obtained using a cryptographic hash function. For PQM with threshold
β, this sampling-based protocol requires O(n/β) bits of storage at the source, where n is the
output length of the hash function. We present two variants: (1) Symmetric Secure Sampling is
designed for the setting where source and destination can devote an equal amount of resources to
the running of the protocol, and (2) Asymmetric Secure Sampling, which is designed for a client-
server setting where the client contributes the bulk of the resources, and the server participates
in path-quality monitoring with many clients simultaneously.
Precise definition of security. Evaluating the security of a protocol is challenging in practice.
In many problem domains, e.g., intrusion detection, the only viable approach is to enumerate a
set of possible attacks, and then show how the protocol defends against these specific attacks.
One way to do this is to evaluate the protocol on, say, packet traces of real-world attacks.
However, there is always a risk that an adversary might devise a new attack that we have not
considered or that was not expressed in the trace. Fortunately, in our problem domain, a more
comprehensive security evaluation is possible. Namely, instead of enumerating ways the protocol
can break down (i.e., attacks), we can instead give a precise definition of the functionality we
require from the protocol, and then guarantee that the protocol can carry out these functions
even in the face of all possible attacks by an adversary with a specific set of capabilities.

To do this, in Section 3.2 we precisely define our requirements for a secure PQM protocol
and the powers that we give to the adversary. Then, to evaluate the security of our protocols,
we use formal analysis to prove that our protocols achieve this functionality no matter what the
adversary does, short of breaking the security of the basic cryptographic primitives (e.g., digital
signatures and hash functions) from which the protocol is constructed. In Section 3.6 we prove
that any secure PQM protocol (as per Definition 3.2.1) would need to employ the same basic
security machinery—secret keys and cryptographic operations—used by our secure sketching
and sampling protocols.
Evaluating performance. The performance and cost of any particular implementation
of our protocols would depend on memory speed and the particular choice of cryptographic
primitives. As such, we count separately the different resources—computation, storage and
communication—used by our protocols, bound the resource utilization using formal analysis,
and also show somewhat better bounds through numerical experiments. Our protocols use
cryptographic hash functions in an online setting, where an adversary has very limited time to
break the security before the hash parameters are refreshed; this allows us to use fast imple-
mentations of these hash functions (details in Appendix B.1). We emphasize that all except one
of our protocols do not modify data packets in any way, and so they may be implemented off
the critical packet-processing path in the router. Not marking packets also makes our protocols
backwards compatible with IP while minimizing latency at the router, allows the parties to turn
on/off PQM protocols without the need to coordinate with each other, and avoids problems with
increasing packet size and possibly exceeding the MTU. For efficiency reasons, we specifically
avoid solutions that require encryption and authentication of all the traffic sent on the path, as
in IPsec. We further discuss and compare the performance trade-offs for our sketch and sampling
protocols with known solutions like IPsec in Section 3.7.
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3.2 The statistical security model

In our model, a source Alice sends packets to a destination Bob over a path through the Internet.
Fix a set of T consecutive packets sent by Alice, which we call an interval, we define a packet
delivery failure to be any instance where a packet that was sent by Alice during the interval fails
to arrive unmodified at Bob (before the last packet of interval arrives at Bob). An adversary
Eve can sit anywhere on the path between Alice and Bob, and we empower Eve to drop, modify,
or delay every packet or add her own packets. A path quality monitoring (PQM) protocol is a
protocol that Alice and Bob run to detect whether the number of failures during the interval
exceeds a certain fraction of total packets transmitted.

Definition 3.2.1. Given parameters 0 < α < β < 1 and 0 < δ < 1, we say a protocol is a
(α, β, δ) secure PQM protocol if, letting T be the number of packets sent during the interval:

1. (Few false negatives.) If more than βT packet delivery failures occur then the protocol
raises an alarm with probability at least 1− δ, no matter what Eve does.

2. (Few false positives.) If no intermediate node behaves adversarially (i.e., no packets are
added or modified on the path, but packets may be reordered or dropped due to congestion)
and at most αT failures occur then the protocol raises an alarm with probability at most
δ.

We assume that the T packets sent during an interval are distinct, because of natural variation in
packet contents, and the fact that even successive packets sent by the same host have different ID
fields in the IP header [33] (note that even retransmissions of the same TCP segment correspond
to distinct IP packets, because of the IP ID field).

3.2.1 Properties of our security definition

Our definition is strongly motivated by our intended application of enabling routing decisions or
SLA violation detection. The most important security guarantee it provides is that no matter
what Eve does she cannot prevent Alice from raising an alarm when the failure rate for packets
that Alice sent to Bob exceeds β. As such, our definition encompasses attacks by nodes on the
data path that include (but of course are not limited to): colluding nodes that work together in
order to hide packet loss, an adversarial node that intelligently injects packets based on timing
observations or deep packet inspection, a node that preferentially treats packets that it knows
are part of the PQM protocol, and a node that masks packet loss by injecting an equal number
of nonsense packets onto the data path. We emphasize that we never make any assumptions on
the distribution of packet loss on the path; our model allows for any possible ‘failure model’,
including one where, say, packet loss is correlated across different packets.

On the other hand, as a routing-decision enabling tool, we do not require PQM protocols to
prevent packet delivery failures but rather only detect them. Second, rather than determining
exactly how many failures occurred, the protocol is only required to detect if the number of
failures exceeds a certain threshold. (While solutions that exactly count failures certainly exist,
e.g., see discussion on IPsec in Section 3.7, they typically require cryptographically authenticat-
ing and/or encrypting all traffic and hence are more expensive to operate in high-speed routers.)
Third, we do not require our protocols to distinguish between packet failures occurring due to
adversarial tampering or due to “benign” congestion or malfunction.

Next, while our security definition requires that our protocols do not raise a (false) alarm
when the one-way failure rate is less than α for the benign setting, we do allow for the possibility
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of raising an alarm due to adversarial tampering even when fewer than an α fraction of failures
occur. This is because an adversarial node has the power to arbitrarily tamper not just with
data packets, but also with any packets that are sent as part of the PQM protocol; thus Eve can
always make a path look worse by selectively dropping all acknowledgment or report messages
that Bob sends to Alice, even if all the original packets that Alice sent to Bob were actually
delivered. (In this chapter,we will assume that any acknowledgment or report messages that Bob
sends to Alice are sent repeatedly to ensure that, with high probability, they are not dropped
due to normal congestion.) When this happens, it may very well make sense for the protocol to
raise an alarm, and the router to look for a different path.

While we allow adversarial nodes to add an arbitrary number of packets to the path, we ignore
denial of service (DoS) attacks in which an adversary exhausts the computational capacity of
Alice or Bob by flooding the path with packets. That is, we will assume that the adversary
cannot exhaust the computational capacities of Alice and Bob; in practice, there are standard
techniques, e.g., rate limiting, that deal with these sorts of DoS attacks. See also the discussion
of monotonicity in Section 3.7.1.

Finally, while in principle α, β can be chosen arbitrarily, there are a number of practical
issues involved in the choice of these parameters. Firstly, we shall show in Sections 3.4-3.5 that
the (communication, and storage) overhead of our protocols is related to the ratio α

β ; a smaller
ratio leads to less overhead. Furthermore, the absolute value of α is sometimes constrained by
interval synchronization; we discuss these issues further in Appendix B.2.

3.2.2 Related works

The literature on path-quality monitoring typically deals only with the benign setting; most
approaches either have the destination return a count of the number packets he receives from
the source, or are based on active probing (ping, traceroute, [60, 95, 96] and others). However,
both approaches fail to satisfy our security definition. The counter approach is vulnerable
to attack by an adversary who hides packet loss by adding new, nonsense packets to the data
path. Active probing fails when an adversary preferentially treats probe packets while degrading
performance for regular traffic, or when an adversary sends forged reports or acknowledgments to
mask packet loss. Even known passive measurement techniques, where normal data packets are
marked as probes, either explicitly as in IPPM [60] and Orchid [82] or implicitly as in Trajectory
Sampling [33] and PSAMP [59], are vulnerable to the same attacks as active probing techniques
if the adversary can distinguish the probe packets from the non-probe packets (e.g., see [47] for
attacks on PSAMP).

To obtain path-quality monitoring protocols that work in the adversarial setting, we have
developed protocols that are more closely related to those used for traffic characterization. For
example, our secure sampling protocol uses passive measurement techniques similar to those
of [33,59], that are designed for characterizing traffic mix. Similarly, our secure sketch protocol
draws on `2-norm estimation schemes [7, 5, 24, 100] that are typically uses to characterize data
streams. (See e.g., [108] for a survey of data streaming algorithms used in networking.) Be-
cause our protocols are designed for the adversarial setting, they require the use of keys and
cryptographic hash functions (see sections 3.3 and 3.6) in order to prevent an adversary from
selectively adding and dropping packets in a manner that skews the estimate returned from the
sketch. On the other hand, we can use the special structure of the path-quality monitoring set-
ting to prove new analytical bounds which result in provably lower communication and storage
requirements than those typically needed in traffic characterization applications. Also, at the
end of Section 3.5.4 we discuss how the new result of [80] for sketching adversarially-chosen sets
could be applied to our setting.
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Our results are also related to works in the cryptography and security literature. In the
security literature, traditional works on providing availability typically give guarantees on a per-
packet basis, resulting in schemes with very high overhead, see e.g., [32] [89] and later works.
While statistical PQM protocols have been considered in the security literature [81,99,12], ours
is the first work in this area to provide a formal security definition and to prove the security of
our protocols within this model. We argue that such a model is crucial to understanding the
security guarantees provided by a protocol. Indeed, one of Fatih’s [81] PQM approaches is based
on a simple counter (and is therefore vulnerable to the attack described above), while Listen [99]
is a protocol that does not use cryptographic operations, and is thus vulnerable to attack by
an intermediate node that injects false acknowledgments onto the path. Finally, while Stealth
Probing [12] is secure in our model, it incurs the extra overhead of encrypting and authenticating
all traffic.

3.3 Cryptographic primitives

Our PQM protocols use several cryptographic primitives, with different security properties and
performance. We describe the security properties of these primitives below:
Keys. Each of our protocols require some sort of key infrastructure; the secure sketch (Sec-
tion 3.5) and symmetric secure sampling (Section 3.4.1) protocols require parties to share a
pairwise secret key, while the asymmetric secure sampling protocol (Section 3.4.2) require public-
keys. Notice that the requirement for pairwise secret keys, does not imply that we must maintain
an infrastructure of pairwise keys for the Internet. All of our protocols require participation of
only two parties. Parties can derive pairwise keys via, e.g., authenticated Diffie-Hellman key
exchange (as used in TLS/SSL [31]) using Public Key Infrastructure such as DNSSEC or some
out-of-band secure channel. Furthermore, an organization owning multiple routers running PQM
might have an incentive to assign pairwise secret keys. Our protocols require two types of keys:
master keys, and interval keys. Master keys are strong keys that are set up when the protocol
initializes, and must remain secure for the lifetime of the protocol. Interval keys are ephemeral
keys that are derived at the beginning of each interval, and must remain secret only while packets
belonging to that interval are in flight on the path between Alice and Bob.
Collision-Resistant Hash (CRH) function is a function H for which it is infeasible (for any
computationally-bounded algorithm) to find a collision, i.e., m 6= m′ fulfilling H(m) = H(m′).
(This informal definition suffices for the purposes of this chapter. For a more precise definition
of CRH see [93].) Typical choices of H are SHA-1 and (truncated) SHA-256. The output of
H(x) is called the digest of x, and we assume it is 160 bits long.
PseudoRandom Function (PRF) [50] is a keyed function hk(·) that maps an arbitrary length
string to an n-bit string using a key k; in our case, n = 64 or 96 usually suffice. If the key k is
chosen at random, then to an adversary with no knowledge of k the function hk(·) looks totally
unpredictable and cannot be distinguished (except with an insignificant probability) from a truly
random function (where each input is mapped independently to a uniformly random output).
Hence, in our analysis we may treat hk as if it is truly random. Our protocols use PRFs in two
ways.

• A PRF h is used to derive interval keys from the pairwise shared master key and the
interval number. To derive interval key ku for interval u from master key k, each party
need only compute ku = hk(u). Notice that as long as parties have synchronized their
interval numbers u, they can use their knowledge of the master key k to independently
compute ku (without requiring a key-agreement protocol or a handshake).
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Because the PRF h is used only once per interval, and also needs to be resilient against
many queries, we will let h be traditional conservative pseudorandom function. The most
common way to (heuristically) realize pseudorandom hash functions (PRFs) is using a full-
fledged cryptographic hash functions such as SHA-1 in HMAC mode [67], or with a block
cipher like AES in a MAC mode of operation. Their typical performance in a software
implementation is 10–20 cycles per input byte, which suffices for many applications.

• All our protocols require a hash computation on the entire contents of every sent packet,1

and all subsequent processing of the packet relies only on this hash value. For packet
hashing, we will use a PRF keyed with the interval key ku. The ku is used only for the
duration of single interval (typically about 100ms); once the interval ends, the key no
longer needs to be kept secret. It follows that the security requirement on this PRF is
weaker than is typically required for most applications. Thus, our packet-hashing PRF
should be (a) fast enough to keep up with multi-Gbit/sec packet streams, (b) remain
secure after T = 107 applications and/or for about 100ms. While designing PRFs that
are especially suited to this purpose remains an interesting area for future research, in
Appendix B.1 we discuss some realizations of our packet-hashing PRF in both hardware
and software based on known cryptographic hash functions.

Universal hash functions are keyed hash functions similar to PRFs, but have a weaker
security requirement; PRFs are indistinguishable from functions that map every input to an
random independent outputs, while universal hash functions only require independence between
some small number of outputs [23]. In Sections 3.5.4 and 3.5.4, we shall show that packet hashing
can sometimes be performed using these weaker hash functions, instead of PRFs.

In this work, we consider two types of universal hash functions.

• εg-almost universal hash function g producing n-bit outputs guarantees that for any
pair of distinct inputs x, x′, then

Pr
[
gku(x) = gku(x′)

]
≤ ε (3.1)

where the probability is over the choice of ku used to key g. There are many possible
realizations of such hash functions, see for example [18] for a survey. In this work, we
sometimes use GHASH [78] to compute sample parameters for our constructions. GHASH
is an εg-almost universal hash function that produces n bit outputs. GHASH hashes
variable-length packets by breaking the packet into blocks of length m and iteratively
hashing each block. For a packet of length `, GHASH has εg = `

m2−n.

• 4-wise independent hash function g producing n-bit outputs guarantees that for any
four distinct inputs x1, x2, x3, x4 and (not necessarily) distinct outputs y1, y2, y3, y4, then

Pr [gku(xi) = y,∀i = 1...4] =
(

1
2n

)4 (3.2)

where the probability is over the choice of ku used to key g. We shall use 4-wise independent
hash functions to realize (theoretically)-faster packet hashing in our ‘secure sketch’ proto-
col. To realize a 4-wise independent hash function, we use polynomials of degree 3 [23], for
example, to compute gku(x) set key ku = (a0, a1, a2, a3) and output a3x

3 +a2x
2 +a1x+a0.

This computation can be done in three multiplications using Horner’s rule.
1For convenience, we abuse notation and say that whenever the PRF is applied to a packet, the non-invariant

fields of the packet header are discarded from the input. In the case of IPv4, this means excluding the ToS, TTL
and IP checksum (see [33, Section II.A]).
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Notice that a PRF provides a strictly stronger theoretical guarantees that a universal hash
function (since every PRF is also a universal hash function). However, in practice a PRF could be
faster than a 4-wise independent function! While this certainly seems counterintuitive, it follows
because in practice we typically realize 4-wise independent functions based on constructions that
come with rigorous proofs of correctness (e.g., polynomials of degree 3 [23]), while we use PRFs
that come with only heuristic guarantees of correctness (e.g., GHASH-AES [78] is a PRF under
the heuristic assumption that AES is a fixed-input-length PRF, see Appendix B.1). However,
even fast (heuristic) constructions of PRFs are typically based on εg-almost universal hash
functions (see Appendix B.1), and as such, we can safely assume that εg-almost universal hash
functions are always faster than PRFs.
Message Authentication Code (MAC) is a basic cryptographic primitive that can be
realized using a PRF: using a shared key k, for a message m, one party will send (m,hk(m)) and
the other party can verify that a pair (m, t) satisfies t = hk(m). The value hk(m), called the
tag, cannot be feasibly forged by an adversary that does not know k. We denote MACk(m) =
(m,hk(m)). We shall assume that the MAC tag (i.e., PRF output) is n = 96 bits.
Digital signatures provide authenticity in the public-key setting. Here a private key SK
is used to sign a message m and obtain a signature σ; we denote this with σ = SignSK(m).
A public key PK is known to all parties and is used to verify the signature; the VerifyPK(σ)
operation outputs a message m for valid signatures and aborts otherwise. Digital signatures are
more computationally expensive than MACs, so we use them only for infrequent synchronization
data.

3.4 Secure sampling PQM

In a sampling-based protocol, Alice and Bob agree on a small set of packets (the probes) for
which Alice expects acknowledgments from Bob. Then, Alice can detect when the path quality
is unacceptable when too many probes are unacknowledged. These protocols limit the storage
and communication overhead because only a small fraction of traffic is monitored, and also allow
Alice to measure round-trip delay by monitoring arrival time of acks.

However, such protocols are inherently vulnerable to adversaries that preferentially allow
probes to travel unharmed, but drop, delay, or modify other packets. Since most packets are not
probes, such an adversary can disrupt traffic without Alice realizing that something went wrong.
To prevent such attacks, in our secure sampling protocols Alice and Bob use a shared PRF to
coordinate their sampling. The cryptographic properties of the PRF, discussed in Section 3.3,
prevent an adversary from distinguishing probes from non-probes.2 Use of a PRF in our setting
is necessary for security; in Appendix B.3 we show an example of why a non-cryptographic hash
function (e.g., CRC) is insufficient.

We present three protocols. The Symmetric Secure Sampling protocol is designed for the
setting where Alice and Bob share pairwise secret keys. The two Asymmetric Secure Sampling
protocols (one for senders and one for receivers) use a variant of delayed-exposure techniques
(c.f., TESLA [90] [17,20,25] and the references therein) to eliminate the need for pairwise keys,
at the cost of some increased storage at Alice or Bob. The asymmetric protocols are especially
advantageous when one of the parties is a server that needs to engage in simultaneous PQM
sessions with many clients. These protocols also have some nice scaling properties (Section 3.4.2).

2We stress that probes are ordinary data packets that are part of the data stream and are not explicitly marked.
Marking/modifying ordinary packets is undesirable for several reasons: (a) it must be undone by the receiver prior
to processing or forwarding, (b) it may cause backward-compatibility problems by introducing packet formats that
is are unrecognized by devices along the path, (c) it may run into MTU limitations, etc.
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Figure 3.1: Secure Sampling.

3.4.1 Symmetric Secure Sampling

We assume Alice and Bob share a secret (master) key k. They also know a parameter p, called
the probe frequency. During each interval, our symmetric secure sampling protocol operates as
follows:

1. Alice and Bob derive an interval-specific secret key by applying a PRF keyed with the
master key k to the interval number u, i.e., (k1, k2) = h′k(u). In Appendix B.2, we give
a detailed treatment of techniques that can be used to achieve interval synchronization
between Alice and Bob.

2. After transmitting each packet d, Alice decides whether d is a probe. Specifically, she
uses k1 and the probe frequency p to run a Probe function that is implemented using a
(packet-hashing) PRF h keyed with k1 and outputting an integer in {0, . . . , 2n − 1}, as
follows:

Probek1(d) =

{
Yes, if hk1 (d)

2n < p;
No, else.

(3.3)

If Probek1(d) outputs Yes then Alice stores the tag z = hk2(d) in a table.3

3. Bob receives d′ and computes Probek1(d′). If it outputs No then do nothing; if it outputs
Yes then transmit the tag z′ = hk2(d′) back to Alice.

4. Alice receives the acknowledgment z′ and removes it from her table if it is present in her
table. If the acknowledgement is invalidly MAC’d or not present in her table, Alice ignores
it.

At the end of an interval, Alice raises an alarm if and only if her table contains more than
pT
√
αβ remaining entries.4 Otherwise she does not raise an alarm.

Theorem 3.4.1. The symmetric secure sampling protocol is an (α, β, δ)-secure PQM protocol
for α < β ≤ 4α as per Definition 3.2.1, whenever the probe frequency p and number of packets
per interval T satisfy

pT > ln(1
δ ) 3

(
√
β−
√
α)2

. (3.4)

3When h uses a modified Wegman-Carter construction (see Appendix B.1),the computation of hk2(d′) can
reuse the universal hash already computed for hk1(d′), and thus amounts to a single AES or DES invocation.

4To obtain this threshold, we could have used the mid point between pαT and pβT . However to get much
better parameters for our protocols, we can apply maximum likelihood estimation to obtain the threshold above,
since (from proof of Theorem 3.4.1) V , or the number of unacknowledged probes in Alice’s table, is a binomial
random variable. We obtain the threshold above using maximum likelihood estimation as (µασβ+µβσα)/(σα+σβ)
where µα = pαT is the mean of V when the loss rate is αT and σ2

α = (1− p)pαT is the variance of V when the

loss rate is αT , and σβ and µβ are defined analogously. Then, we get the threshold pT β
√
α+α

√
β√

α+
√
β

= pT
√
αβ.
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When α = β/2 we can use [6, Thm. 19] to obtain a slightly better bound pT > ln(1
δ ) 2 ln 2

(
√
β−
√
α)2

,
so that when δ = 1%, we require pT > 75/β.

Proof of Theorem 3.4.1. First, we observe that regardless of any strategy Eve adopts, and inde-
pendently of all other packets, the probability each dropped/modified packet is a probe is p.
Suppose that hk1(·) in Probe were replaced by an independent truly random function (for each
choice of k1). We claim that every sent packet would be a probe independently with probability
p. To see why, first consider a single interval. Recall that within a single interval, we assumed
that packets sent by Alice are unique. Furthermore, Eve cannot use her observations of past
packets and acks to determine if a given packet is a probe. Next, recall that the interval key is
refreshed at the end of an interval; it follows that the packets selected as probes in a given inter-
val are independent of the packets selected as probes in all other intervals (even if packets are
not unique across intervals). Next, notice that the above must hold for the real implementation
of Probe using hk1 , since otherwise Eve could distinguish between the PRF and a truly random
function, contradicting the security of the PRF. Notice also that if Eve wants to use Bob to test
if a given packet is a non-probe (and thus may be dropped), she must first send (a test copy)
of that packet to Bob. However, once the packet is received by Bob, Eve cannot do any more
damage; since we assume that sent packets are unique, it follows that Bob has already received
a copy of the packet, and Eve gains nothing by dropping it. Recall also that, here, we do not
consider denial of service attacks in which Eve exhausts the computational resources of Alice or
Bob by flooding the link with packets.

For the false positives condition of Definition 3.2.1, suppose the failure rate is less than
α. Notice also the false positives condition of Definition 3.2.1 is conditioned on the fact that
no node behaves adversarially, i.e., maliciously drops Acks (or synchronization messages, see
Section B.2). Thus, the probability of misdetection is the probability that a larger than

√
αβ-

fraction of the samples are dropped. Let V be the number of remaining (unacknowledged)
entries in Alice’s table. When each packet is independently sampled with probability p, then if
β < 4α we can find the false positive probability

PFN = Pr[ V > pT
√
αβ | failure rate = α ]

= Pr[ V > pαT (1 +
√
β−
√
α√

α
)| E[V ] = pαT ]

≤ e−
(
√
β−
√
α)2

3
pT (3.5)

where the equality follows from the fact that when the failure rate is α, we expect that the
estimator V to be a p-fraction of the number of dropped packets, αT . The inequality follows
from the fact that V is a binomial random variable B(αT, p), and the Chernoff bound5of [9, Fact
4], which holds when 0 <

√
β−
√
α√

α
< 1 or α < β < 4α. By our observation above, this inequality

still holds (up to a negligible additive factor) when we sample probes using a pseudorandom
function.

5We use the following Chernoff bounds. Let Xi be i.i.d indicator variables with mean µ, and let

Pr

[
n∑
i=1

Xi ≤ (1− γ)Nµ

]
≤ e−γ

2Nµ/C1 (3.6)

Pr

[
n∑
i=1

Xi ≥ (1 + γ)Nµ

]
≤ e−γ

2Nµ/C2 (3.7)

If 0 < γ < 1 then [9, Fact 4] gives C1 = 2 and C2 = 3. If 0 < γ < 1
2

then [6, Thm. 19] gives C1 = C2 = 2 ln 2.
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Next, consider the false negatives condition of Definition 3.2.1. First note that Eve cannot
forge a valid Ack to a packet that was not received by Bob, since she only sees the output of
the PRF hk2 on packets that Bob receives, and cannot predict its value on any other input.
Therefore all that Eve can do is to bias the measurement by preferentially dropping non-probes.
Using [9, Fact 4]again, if probes are sampled independently with probability p then

PFP = Pr[ V > pT
√
αβ | failure rate > β ]

= Pr[ V > pβT (1−
√
β−
√
α√

β
)| E[V ] = pβT ]

≤ e−
(
√
β−
√
α)2

2
pT (3.8)

where the equality follows from simple algebra and the fact that when the drop rate is β, V is
a binomial random variable B(βT, p), and the inequality again follows from the Chernoff bound
of [9, Fact 4], which holds when 0 <

√
β−
√
α√

β
< 1 or when α < β. As observed above, (3.8) still,

holds up to a negligible factor, when the probes are sampled using a PRF. Notice that dropping
Acks (or synchronization messages, see Section B.2) cannot help Eve, as it only makes the
source more likely to raise an alarm. It follows from equations (3.5), (3.8) and Definition 3.2.1
that, given α, β and δ, such that β < 4α, the protocol is secure whenever (3.4) holds.

3.4.2 Asymmetric Secure Sampling

This section describes variants of the above protocol for the case where a single router (the
server) deals with a large number of other routers (the clients). Our protocols support server
scalability by minimizing the per-client cost of the server. In particular, the server will not
need to establish a separate key for every client. We will, however, assume that the clients can
dedicate more resources to the PQM protocol. We provide two different protocols, depending on
whether the server is receiving from, or sending to, its clients (of course, the two PQM protocols
can be applied jointly to monitor both directions).

We again divide time into intervals, and the idea is that the server performs his operations
(as either sender or receiver) with private keys, which we call the salt, unknown to anyone except
himself until the end of the interval, at which time he releases the salt to all interested clients.
The point is that by the time the server releases the salt it is too late to cheat; note that even
dishonest clients cannot cheat honest clients because no one except the server knows the salt
until the end of the interval.

Instead of using symmetric keys between each pair of parties, here we assume that the server
has a public/private key pair (PK,SK) where the public key PK is known to all parties (e.g.,
through a Public Key Infrastructure). To ensure that the computationally-expensive public-key
operations are used infrequently, we will use cryptographic delayed-exposure techniques (c.f.,
TESLA [90] [17,20,25] and the references therein) that require secure clock synchronization. We
assume that each client securely synchronizes her clock so that it lags behind the server’s clock
by at most τ seconds, where τ is a constant known to all parties. In Appendix B.2.2 we present
a simple secure protocol for achieving this synchronization.

Receiving-Server Secure Sampling (RSSS)

We first consider the case where a single server (Bob) is receiving traffic from multiple clients
(each playing the role of Alice). The following protocol allows every client to monitor the path
quality for traffic that it sends to the server, while the server requires no storage and can use
the same key to engage in PQM with every client. During the u-th interval, the RSSS protocol
operates as follows:
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Figure 3.2: Timing for Asymmetric Secure Sampling.

1. (Interval Setup.) Bob, the receiver, randomly chooses a pair of salt values (s1(u), s2(u))
that he keeps secret until the very end of the interval.

2. (Packet Transmission.) Packet transmission during the interval proceeds as follows:

• For each packet d Alice wishes to send, she stores the digest H(d) (computed using
a collision-resistant hash) in her table. Suppose Alice sends T packets in the inter-
val. (This means Alice stores T digests. In Section 3.4.3 we discuss how Alice can
independently subsample packets to reduce her storage requirements.)

• Upon receiving each packet d′, Bob computes its digest z′ = H(d′). He then evaluates
Probes1(u)(z′); if No then he does nothing, and if Yes then he transmits an Ack of
the form MACs2(u)(z′, u) back to Alice.

• Each sender (Alice) stores all the Acks received which included the current interval
u.

3. (Salt Release.) Bob maintains the secrecy of the salt until τ seconds after interval u ends.
At that time he reveals the salt (s1(u), s2(u)) to all clients by sending a SaltRelease
packet containing SignSK(u, s1(u), s2(u))(see Figure 3.4.2).

4. (Security check.) If Alice fails to receive a SaltRelease containing a signature σ within
1 RTT after the interval u ends, or if VerifyPK(σ) doesn’t return a tuple (u, s1(u), s2(u)),
then Alice raises an alarm. Otherwise, she uses salt s1(u) to run the Probe function on
the packet digests in her table, and salt s2(u) to verify the Acks in her table. Then Alice
counts the number of packets for which Probes1(u)(z) = Yes and no valid Ack is stored
in her table; call this count V . Finally, Alice raises an alarm if V > pT

√
αβ. Notice that

this step of the protocol can be computed offline.

Notice that our protocol does not require Bob to send out the salt immediately at the end of
the interval. However, we observe from Step 5 above, that there is a tradeoff between frequency
of salt release messages and storage at Alice; the longer Bob delays sending out the salt, the
longer Alice has to wait before she can clear her table.

Assume for now that all parties’ clocks are perfectly synchronized. Then Eve cannot cheat
within any single interval:

Theorem 3.4.2. The RSSS protocol is an (α, β, δ)-secure PQM protocol for α < β ≤ 4α as per
Definition 3.2.1, whenever the probe frequency p and number of packets per interval T satisfy

pT > ln(1
δ ) 3

(
√
β−
√
α)2

. (3.9)
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packet digest Ack Probe
z1 = H(d1) Yes
z2 = H(d2) MACs2(u)(B, z2, u, ) Yes
z3 = H(d3) No
z4 = H(d4) No
z5 = H(d5) No
z6 = H(d6) No
z7 = H(d7) No
z8 = H(d8) MACs2(u)(B, z8, u) Yes
z9 = H(d9) No
z10 = H(d10) No
z11 = H(d11) MACs2(u)(B, z11, u) Yes
z12 = H(d12) Yes
z13 = H(d13) No

Figure 3.3: Alice’s table after at the end of interval u. Here Alice observes packet-delivery
failures for packets 1, 12.

When β = 2α we can use a tighter bound of [6, Thm. 19](instead of (3.9)) to find that when
δ = 1%, we require pT > 75/β.

When clocks are perfectly synchronized, we omit the proof, since it is almost identical to that
of Theorem 3.4.1 (because the salt is kept secret until the end of the interval). Furthermore,
notice that even dishonest senders cannot bias an honest sender’s measurements, since they
learn nothing about the salt until the interval is over. Now suppose that Alice’s clock lags Bob’s
clock by at most τ seconds. It follows that there will be period of time of length < τ where
Alice is operating in interval u − 1 while Bob has already moved into interval u. To deal with
this, during the first τ seconds of each interval, Bob uses both the salt of the current interval
s(u) and the salt from the previous interval s(u − 1) in order to create his Acks. While most
Internet routers are able to maintain a clock with accuracy of 21ms or less [79], secure clock
synchronization is a non-trivial problem. In Appendix B.2.2 we show a simple stateless protocol
that allows Alice and Bob synchronize their clocks to within 1.5 round trip times.

Transmitting-Server Secure Sampling (TSSS)

We now turn our attention to the case where a single server is sending to multiple clients, and
each client wants to monitor the traffic it receives from the server while imposing minimal cost
on the server. Note that the server is now Alice and the client is Bob. Here the server keeps a
single counter per client, and modifies the packets it sends by appending a short MAC tag, that
is keyed with same key for each client.

The TSSS protocol proceeds as follows. As before, the server picks random salt values
(s1(u), s2(u)) at the beginning of the interval, and releases them at the end of the interval. Here,
however, the server will keep, for each client B, a count TA(B) of the number of packets it
sends to B during the interval. The server also authenticates all traffic that she sends using the
(client-independent) salt: for a packet d, the server will compute a packet digest z = H(d) and
then appends the tag hk2(u, z) to the packet that he sends the client.

The client will randomly sample a p-fraction of the packets received. For each such packet d′,
he stores the corresponding digests z′ = H(d′) and the received tag. At the end of the interval,
the server reveals the salt as above, and also sends SignSK(TA(B)) to B. Each client B verifies
the electronic signature and checks all its stored packet digests and tags using this salt. Let TB

be the number of valid packets thus found by B; then B estimates the number of failures as
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V = pTA(B)−TB. As before, the client raises an alarm if V > pTA(B)
√
αβ. Using an argument

similar to Theorem 3.4.1, the protocol is secure if β < 4α and

pTA(B) > ln(1
δ ) 3

(
√
β−
√
α)2

. (3.10)

A note on the scalability of RSSS

Our Receiving-Server Secure Sampling protocol has useful scaling properties, that make it at-
tractive even outside the client-server setting. Consider a network with M routers, where each
router would like to run a pairwise PQM protocol (acting as both a sender and receiver) with
all other routers. Then, while the Receiving-Server Secure Sampling protocol requires that each
router to store the M − 1 public-keys, the storage and online computation overhead at each
router is independent of the number of routers M ! To see why, first notice from Section 3.4.2
that when the router acts as a receiver, its incurs no storage overhead, while its computa-
tion/communication overhead depends only on the total volume of traffic it receives, and not
on the number of senders M − 1. Next, when the router acts as a sender, it only needs to
keep a table of digests of the packets it sends (see e.g., Figure 3.3) that additionally specifies
the receiver the each packet stored in table was sent to. The size of this table depends on the
volume of sent traffic, but is independent of M . Furthermore, it is computed (using a collision
resistant hash) independently of the keys of any of the M − 1 receivers. Indeed, receiver-specific
computations are only required during the offline ‘security check’ step of the protocol.

3.4.3 Some sample parameters

Suppose α = 1
2β and β = 1%. We assume a fully utilized 5 Gbps link with an average packet of

3000 bits and an average round trip time (RTT) of 100 msec. Then about T = 107 packets are
sent during an RTT.
Symmetric Secure Sampling. Using the improved bound from [6, Thm. 19] in Theorem 3.4.1
our symmetric sampling protocol is secure when the probe frequency is p > 75

βT = 7.5 × 10−4.
This p is also the communication overhead, i.e., the amount of added Ack packets as a fraction
of the data traffic. Using 96-bit packet digests (see Section 3.3), Alice needs about pT ∼ 90
KB of storage during a single round trip time. The amount of storage required for Alice can be
reduced without compromising security by noting that (3.4) gives a tradeoff p and T . Alice can
decrease her sampling rate to p′ if she is willing to use a longer interval T ′ = Tp/p′. Since almost
every probe packet tag will be deleted after 1 RTT, this nominally reduces Alice’s storage to
p/p′ · 90 KB. This comes at the cost of reduced PQM temporal resolution, due to the longer
intervals. (Notice that Alice can arbitrarily decrease her sampling rate without coordinating
with Bob simply by changing the parameter p in her Probe function.)
RSSS. As described above, the Receiving-Server Secure Sampling protocol requires the sending
client to store information about every packet she sends to Bob for the duration of a interval
(which may last from a few milliseconds to a few RTTs depending on synchronization quality).
In case the intervals last an RTT or more, it is not practical to expect the sender to keep digests
of over 107 packets in her storage, and so we apply subsampling here to reduce the fraction of
packets stored: each sender only stores a q fraction of the packets she sent, where each packet
is stored independently with probability q. In term of monitoring this is essentially the same
as reducing the packet stream by a factor of q, so when β = 2α from the improved version of
(3.9) we can see that pqT > 75

β suffices, giving a tradeoff between storage at Alice qT , and probe
frequency and communication overhead p. For example, suppose that the probe frequency is
p = 0.2. Then, by (3.9), Alice should store qT ≈ 75

pβ = 75
0.2 · 0.01 = 3.75× 104 packet digests (160
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bits each), and about p times as many corresponding Ack tags (96 bits each). Overall, this
takes 3.75 × 104 · (160 + 0.2 · 96)/8 ≈ 840 KB of storage. Thus, if intervals last for 1 RTT, so
that T ≈ 107, then the subsampling rate must be at least q = 3.7× 10−3.
TSSS. Here, the sending server stores one 32-bit counter per client, and attaches a 96-bit tag to
each message. Following (3.10), and using same parameters as above, the client needs to store
qT ≈ 75

β = 7.5× 103 digests and tags, for a total storage of 7.5× 103 · (160 + 96)/8 ≈ 240 KB.

3.5 Secure sketch PQM

In our secure sketch PQM protocol, Alice and Bob aggregate all traffic Alice sends to Bob into
a short data structure called a sketch. (The difference between a sketch and a sample is that
a sketch, although short, usually provides approximate information about the aggregate stream
of packets, while a sample provides exact information about a single packet in the stream.) At
the end of the interval, Bob sends his sketch to Alice and she compares the sketches to decide
whether the failure rate exceeded β.

We can apply several sketching techniques [7, 5, 100, 24] for second moment estimation (or
`2-norm estimation) into our framework to give secure PQM protocols. While sketches have
been used before in the networking community (to estimate properties of data streams that are
too long to be stored in their entirety; c.f. [100, 24] and the references in [108]), to the best of
our knowledge this is the first time that they have been applied to the problem of path-quality
monitoring. Furthermore, the special structure in the PQM problem allows us to obtain new
and improved analytical bounds on the performance of these schemes. Also, it turns out that
the path-quality setting has particular properties that enable us to achieve better performance
for some of these schemes; indeed, we prove a new bound on the performance of [24]’s scheme
that may be of independent interest.

In this section we start by explaining the relationship between moment estimation and path-
quality monitoring, and then present our PQM protocol and discuss its security. We then show
how the protocol works with several known moment estimation sketches and give settings of
parameters based on both analytical guarantees and numerical experiments. Our results show
that the secure sketch protocol is almost as lightweight, in terms of storage and communication,
as the trivial (but insecure) idea of keeping counters of the number of packets sent and received.

3.5.1 PQM as moment estimation

We now show how why pth-moment estimation (for p ≥ 1) is sufficient to realize PQM. Later
on, we will use this argument to how show second-moment estimation (for which a number of
highly efficient and simple schemes are known [7,5, 24,100]) can be used to realize PQM.
Preliminaries. Recall that Alice sends a stream of T packets to Bob during an interval
and let U be the “universe” of all possible packets (e.g., if packets are 1500 bytes long then
|U | ≈ 21500·8). We define the characteristic vector of a stream to be a U -dimensional vector
that has c in the position corresponding to packet x if packet x appears in the stream c times
(e.g., for the stream 1,2,4,2,2 of packets drawn from universe U = [4] the characteristic vector
is [1 3 0 4].) In our setting, a characteristic vector is too long (21500·8) to be represented
explicitly; we will use it only for the purpose of explaining our protocols. Also, recall that pth-
moment of a vector v is ‖v‖p

p
=

∑
i(vi)

p. (Note that the `p-norm is just the pth root of pth

moment of the vector.)
Relationship between PQM and the pth moment for p ≥ 1. Let vA be the characteristic
vector for the stream of packets sent by Alice, and let vB be the characteristic vector for the
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stream of packets received by Bob. Now consider the characteristic vector x = vB − vA. We
can decompose any x into two vectors x = d + a. The vector d is the characteristic vector of
packets dropped on the path from Alice to Bob, and contains the non-negative components of x.
The vector a is the characteristic vector of packets added on the path from Alice to Bob, and
contains the non-positive components of x. Also notice that the non-zero coordinates of d and
a are disjoint.

Now let D be the number of packets dropped on the path from Alice to Bob during the
interval, and let A be the number of packets added during the interval. (We count a single
packet that was modified on the path from Alice to Bob as a single dropped packet plus a single
added packet.) Thus, we have the following simple, but very useful identity:

‖x‖p
p

= ‖d‖p
p

+ ‖a‖p
p

= D + ‖a‖p
p
≥ D +A (3.11)

The first equality follows because the non-zero coordinates of d and a are disjoint. The second
equality follows because every packet that Alice send is unique so that that d is a {0, 1}-vector
for every i ∈ [K + 1]. Finally, the last inequality follows because a is an integer vector, so that
for any p ≥ 1, it follows that ‖a‖p

p
≥ |a|1 = A with equality when p = 1.

Now, recall Definition 3.2.1. To satisfy the “few false positives” condition we need to consider
the benign case in which at most D ≤ αT packets are dropped during the interval, and no
packets are added so that ‖a‖p

p
= 0. From (3.11) it follows that satisfying the “few false

positives” condition (in the benign case), just requires that Alice should not raise an alarm if
‖x‖p

p
= D + 0 ≤ αT .

To satisfy the “few false negatives” condition we need to consider the malicious case in
which Eve drops D ≥ βT packets, and adds an arbitrary number of (potentially non-unique)
packets A ≥ 0. (We think of a packet modification as a dropped packet plus an added packet.)
From (3.11) it follows that satisfying the “few false positives” condition (in the malicious case),
requires that Alice raise an alarm if ‖x‖p

p
≥ βT .

The discussion above suggests the following ridiculous PQM protocol: Have Bob and Alice
maintain vA and vB, and have Bob send Alice vB at the end of the interval. Then define a decision
threshold Γ ∈ [αT, βT ], and have Alice raise an alarm if the first moment ‖vA−vB‖pp > Γ. Notice
that, in the malicious case, adding packets doesn’t help Eve; whenever Eve adds packets, she
simply increases ‖vA − vB‖p , and makes Alice more likely to raise an alarm.
Sketches. Of course, the PQM protocol described above are completely ridiculous because the
vA,vB vectors are much too large to be stored or transmitted explicitly. This is where sketching
comes in. A pth-moment estimation sketch is a set of probabilistic algorithms that allows us
to estimate the pth-moment of a vector v of length |U | from a shorter sketch w of length N ;
typically, the length of the sketch is depends only on the number of packets in the stream, and
not on the size of the universe U .

We will concern ourselves with moment estimation schemes where the sketch may be derived
from v via a random linear map, i.e., w = Rv where R is a random N ×|U | matrix drawn from
some distribution S. Then an estimator V for pth moment of v is computed from w; in the all
schemes we consider here, the estimator will simply be ‖w‖p

p
.

Of course, since R is also as long as |U |, in our setting R is too large to store explicitly.
However, notice that ‘sketching’ a packet x is exactly equivalent to adding the xth column of R
to the sketch w. This suggests the following efficient approach to sketching: initialize w = 0,
and for every packet x in the stream, generate the xth column of R by hashing the packet with
h and adding the hash value h(x) to the sketch w. As long h can generate length N -vectors
that are distributed identically to the column vectors of matrices drawn from S, these is exactly
equivalent to computing the sketch via an explicit random linear map w = Rv.
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Thus, we now have a practical PQM protocol based on pth-moment estimation for p ≥ 1:
Alice and Bob share a hash function h and compute wA = RvA and wB = RvB on their streams
using the hashing approach described above. Bob then securely transmits wB to Alice. Since
‖wA − wB‖p = ‖R(vA − vB)‖p ; thus, if the sketches accurately estimate the first moment, it
suffices to raise an alarm if ‖wA −wB‖pp > Γ for Γ ∈ [αT, βT ].
Dealing with adversaries. However, our work is not complete. Recall that we would like
our PQM protocol to operate correctly in the presence of adversaries on the path. Thus, we
still need to discuss what we mean by the terms secure transmission and accurate estimation in
protocol we described above.

Recall that Eve occupies the path between Alice and Bob, and consider the practical PQM
protocol that we described above. In the malicious case, there are a number of ways that Eve
could attempt to bias the results of this protocol.

• Eve could try to convince Alice than βT packet drops occurred by altering the sketch wB

that Bob sends to Alice. Preventing this attack is simple; we shall require that Bob send
his sketch wB to Alice in a message that is authenticated with a MAC.

• Next, observe that because Eve occupies the path between Alice and Bob, she has the
power to choose which packets Bob receives in his stream. Thus, if the adversary can
predict the outputs of the hash function h used to map packets to the sketch, she can
choose to add and drop packets to Bob’s stream in a way that cannot be detected by
Alice! For instance, Eve could drop some set of packets and replace them with a different
set of packets that map to the sketch in an identical way.

Typically, the correctness of pth-moment estimation schemes relies on the fact that the
randomness used for sketching (i.e., to choose the hash function h) is chosen independently
of the stream to be sketched. However, in our setting, this is not necessarily the case; if
the hash function h is public, then adversary choice of Bob’s stream vB can depend on the
randomness used for sketching, h. (This observation was independently made by Mironov,
Naor, and Segev [80].) For this reason, we replace the public hash function h used for
sketching with a keyed hash function hku , keyed with a secret key ku is shared between
Alice and Bob, and is refreshed every interval.

3.5.2 The secure sketch protocol

We are finally ready to describe our secure sketch PQM protocol. Our protocol works in intervals.
We assume Alice and Bob share a secret (master) key (k1, k2), and derive an interval key ku for
each interval u (see Section 3.3). In Appendix B.2, we provide a detailed treatment of techniques
that Alice and Bob can use to synchronize their intervals. Within interval u, our secure sketch
protocol operates as follows:

1. (Sketch.) Alice runs a sketching algorithm, using a keyed hash hku(·) keyed with secret
interval key ku to incrementally compute a sketch wA of the vector vA induced by the
packet it sends. Bob similarly uses hku(·) to compute sketch wB of the vector vB induced
by the packets he receives.

2. (Interval End.) After sending the T th packet in the interval, Alice sends an ‘Interval End’
message to Bob, authenticated with the master key k1, and containing her sketch wA and
the next interval number u + 1. She then refreshes her sketch (i.e., sets wB = 0 ) and
refreshes the interval key (i.e., computes ku+1 using a PRF keyed with the master key k2

as described in Section 3.3).
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3. (Report.) Upon receiving the ‘Interval End’ message and verifying the correctness of its
MAC, Bob computes the ‘difference sketch’ wA − wB, and sends a ‘Report’ message to
Alice, authenticated with the master key k1, containing the ‘difference sketch’ wA −wB,
and the current interval number u. Bob then refreshes his sketch and computes the interval
key for the next interval u+ 1.

4. (Security Check.) Upon verifying the MAC on the ’Report Message’, Alice uses the dif-
ference sketch wA −wB to compute an estimate V of ‖vA − vB‖22 and raises an alarm if
and only if V > Γ = 2αβT/(β + α) or if the report is missing or has an invalid MAC.

Our protocol has a number of attractive properties. First, notice the we require the transmis-
sion of only two control messages (‘Interval End’, and ‘Report’), and no packet modifications.
Second, notice that the ‘Security Check’ phase can be computed offline. Finally, notice that
Alice and Bob need only store single sketch at any given time; at the end of each interval, Alice
and Bob immediate transmit their sketches as control messages, refresh their sketches, and begin
monitoring a new interval.

3.5.3 Security of the secure sketch protocol

We formalize the intuition of Section 3.5.1 with the following theorem.

Theorem 3.5.1. Suppose that the sketch algorithm guarantees, that if the hash function used
for sketching is chosen randomly and independently of v, then with probability at least 1 − δ,
the estimate of the pth-moment ‖v‖p

p
for p ≥ 1 is within (1± ε) for ε = β−α

β+α . Then, the secure
sketch protocol is a (α, β, δ)-secure PQM protocol as per Definition 3.2.1.

Proof of Theorem 3.5.1. Consider the malicious case. First observe that Eve cannot forge the
‘Interval End’ or ‘Report’ control messages, since the control messages are authenticated using
a secure MAC (and dropping the report will only cause Alice to raise an alarm). Thus, we
shall assume that for both the benign and malicious case, Alice gets a consistent version of the
difference sketch wA −wB at the end of the every interval.

Now, observe that (a) no effect of the hash function hku is visible to Eve until after the interval
ends, and (b) ku is kept secret from Eve and thus chosen (pseudo)randomly and independently
of vA and vB. It follows that the sketching algorithm generates a (1 ± ε)-estimate of V of
‖vA − vB‖2 with probability 1− δ. Thus, letting x = vA − vB, we have:

1. No false positives: if D ≤ αT and A = 0, then as discussed in Section 3.5.1 it follows that
‖x‖p

p
= ‖d‖p

p
= D ≤ αT . Now, with probability 1− δ we have that the estimate

V ≤ (1 + ε)‖x‖p
p

≤ (1 + β−α
β+α)αT

= 2βα
β+αT = Γ

2. No false negatives: if D > βT , then as discussed in Section 3.5.1 it follows that ‖x‖p
p

=
‖d‖p

p
+ ‖a‖p

p
> ‖d‖p

p
> βT . Similarly, with probability 1− δ, it follows that the estimate

V is greater than is (1− β−α
β+α)βT = 2βα

β+αT = Γ.

1. and 2. guarantee that with probability 1− δ Alice can use the decision threshold Γ to decide
between cases where D < αT and D > βT .
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Recall that d ∈ {0, 1}U because Alice sends unique packets. A closer look at the proof shows
it suffices if the sketch guarantees that (a) the estimate is at most (1 + ε)αT for vectors that
have all entries in {0, 1} and with norm ‖v‖p

p
≤ αT , and (b) the estimate is at least (1− ε)r for

vectors v that have at least r ≥ βT entries in +1 (and possibly other nonzero entries as well).
It turns out this observation is crucial for obtaining improved parameters for our protocol; see
Theorem 3.5.2 below.
Turning the protocol on and off. In order to reduce resource consumption, it sometimes
makes sense for a router to ‘turn off’ the secure sketching protocol. However, an adversary could
take advantage of the fact the protocol is ‘off’ for certain intervals in order to bias monitoring
results, selectively dropping packets when the protocol is ‘off’, and behaving itself while the pro-
tocol is ‘on’. Thus, it is crucial to ensure that intervals when the protocol is ‘on’ indistinguishable
from intervals when the protocol is ‘off’.

Notice that from Eve’s perspective, the only indication that the protocol is ‘on’ are the
two control messages (‘Interval End’ and ‘Report’). Thus, while in an ‘off’ interval, Alice and
Bob need not compute hashes over packet contents or to maintain sketches (so that there are
significant savings in storage and computation), we still require the appropriate control messages
to be sent. In an ‘off’ interval, we require (a) Alice to count the number of packets she sends to
Bob and send a dummy ‘Interval End’ message each time the counter reaches T , and (b) Bob to
respond with a dummy ‘Report’ packet. To make the dummy control messages indistinguishable
from real control messages, we will also require (c) that all information fields in the control
messages sent by the protocol are encrypted and padded to a fixed length (and subsequently
authenticated).

With this approach, a sender with the resources to run only K instances of the ‘secure sketch’
protocol, can engage in PQM with M > K receivers by choosing a (pseudo)random set of K of
M receivers for which the protocol should be ‘on’ in a given interval. Note that that selection
of ‘on’ intervals should be random, in order to prevent an adversary from selectively attacking
the ‘off’ intervals by using side-channel information (e.g., observing if the sender switches to a
new path) to distinguish between which intervals that ‘on’ or ‘off’.

3.5.4 Plugging in sketching schemes

In this section we show how to instantiate our PQM protocol with known pth-moment estimation
sketching schemes, such that the schemes satisfy the requirements of Theorem 3.5.1. We will
focus on two highly efficient schemes for estimating the second -moment: the ‘classic’ sketching
technique [7,5] based on the Johnson-Lindenstrauss lemma, and the more efficient ‘CCF’ sketch
of Charikar, Chen and Farach-Colton [24].

In each scheme, packet hashing can be done with either 4-wise independent hash function
or PRF. We consider both cases. While 4-wise independent hash functions are theoretically
faster than PRFs (see also the discussion in Section 3.3),using these weaker hash function comes
at the cost of worse sketch parameters N . Both schemes operate by taking a single pass over
the data stream to compute the sketch w, and compute the estimator as V = ‖w‖2

2
. When

packet-hashing is done with either a 4-wise independent hash function or a PRF [7,5,100], both
schemes have estimators V with expectation ‖v‖2

2
and variance 2

N−1

(
‖v‖4

2
− ‖v‖4

4

)
.

We next describe each scheme, and show how they compare in terms of update time per
incoming packet and storage requirements (i.e., the number of bins in the sketch, N , and the
size of each bin). We also derive new bounds for the storage requirements of these schemes.
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Classic Second-Moment Estimation Sketches

Alon, Matias, and Szegedy [7] suggest the following approach to sketching: when receiving a
packet d map it to a vector b ∈ {− 1

N ,
1
N }

N and add b to the sketch w. Thus, the update time
per incoming packet is exactly N , the number of bins in the sketch.
Packet hashing with a 4-wise independent hash. Alon et. al [7] require a hash function
such that each entry of b in 4-wise independent, and every entry of b is completely independent
of all other entries of b. They then show how to estimate v within (1 ± ε) with probability δ
using a sketch with N ≥ 2

ε2δ
bins.

Packet hashing with a PRF. Achlioptas [5] obtained a bound on N by requiring each entry
of b to be computed using an (independent) PRF producing either + 1

N or − 1
N with probability

1
2 . Achlioptas showed that obtaining an (ε, δ)-approximation of the second moment requires

N > 12
ε2

1
3−2ε ln 1

δ (3.12)

bins in the sketch. Notice the that PRF approach requires O(log 1
δ/δ) less storage then the

4-wise independent hashing approach.
Sizing each bin in the sketch. To prevent overflow, we can take each bin in the sketch

to hold integers in [−K,+K] where K =
√

2T ln(200N
δ ), so that each bin requires 1 + log2K

bits of storage. To see why, suppose that when we store the sketch, we drop the 1
N factor.

We now find K such that the probability that each bin overflows is at most δ
N

1
100 . If Xi is

an indicator variable that equals 1 with probability 1
2 and −1 otherwise, then the count in

each bin is the random variable X =
∑T

i=1Xi. Then, from the Chernoff bound we have that

Pr [ |X| ≥ K ] ≤ 2 exp(−K2

2T ) ≤ δ
100N . Finally, we get K =

√
2T ln(200N

δ ). (We can also
change the protocol to raise an alarm if any bin overflows, since this will happen with low
probability in the benign case.)

CCF second-moment estimation sketch.

The sketch of Charikar, Chen, and Farach-Colton [24] can be adapted [100] to give a second-
moment estimation algorithm with a faster update time; instead of updating all N bins each
time a new packet arrives as in the classic sketch, the CCF scheme only updates a single bin.
In our context, the CCF update algorithm requires that each incoming packet d is hashed to a
pair (i, b) where i ∈ [N ] and b ∈ {±1}, and b is added to the ith bin in the sketch w. To prevent

overflow in each bin, we take each bin to hold integers in [−K,+K] where K = 2
√

T
N ln(200N

δ ).
Thus, we require

1 + 1
2 log2

(
4 TN ln(200N

δ )
)

bits / bin (3.13)

To obtain (3.13), we find K such that the probability that each bin overflows is at most δ
N

1
100 . If

Xi is a random variable that equals 1 with probability 1
2N , −1 with probability 1

2N , and 0 other-
wise, then the count in each bin is the random variable X =

∑T
i=1Xi. Then, adapting the Cher-

noff bound that appears in Levchenko [71], we have that Pr [ |X| ≥ K ] ≤ 2 exp(− K2

4TVAR[Xi]
) ≤ δ

100N .

Finally, we get K = 2
√

T
N ln(200N

δ ) since VAR[Xi] = 1/N .

Packet-hashing with 4-wise independent hashes. In Appendix B.5.1 we show that if the
incoming packet d is hashed with two independent 4-wise independent hash functions, (where i
is computed using a 4-wise independent hash with output domain [N ] and b is computed using
a 4-wise independent hash with output domain {−1, 1}), then we require at N ≥ 2

ε2δ
bins in our

sketch.
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Packet-hashing with a PRF. In the general case, the faster update time of CCF comes at
the cost of increased storage. More precisely, in order to get a (1± ε) accuracy with probability
1− δ, the CCF schemes require a larger N = Θ( 1

δε2
), rather than N = Θ

(
log(1/δ)

ε2

)
of the classic

scheme. Unfortunately, this increased storages is generally required even if hashing is performed
with a truly random function!6 To see why, consider the following counterexample: consider
the vector v = 1010ex+1010ex′ where ex is the vector with 1 in coordinate x and zero elsewhere,
and x 6= x′. Then ‖v‖2

2
= 2 · 1020, but with probability 1/2N a sketch of v will be 0.

Fortunately, our setting has special properties that allow the CCF scheme to avoid incuring
the cost of increased storage! We now prove that in our setting the CCF scheme we can have
N = O

(
1
ε2

log 1
δ

)
. This follows because (a) we assume that Alice sends unique packets, and (b)

we only care about deciding whether ‖v‖2
2

lies above or below a threshold, rather than getting
an accurate estimate of ‖v‖2

2
. (See also the discussion after Theorem 3.5.1.)

Our theorem supposes that packet hashing is performed using an two independent random
function: one to chose i ∈ [N ] and another to choose b ∈ {−1, 1}. When the CCF algorithm uses
a random function for hashing, we can think of the sketch w as computed from the characteristic
vector v via a random linear map, i.e., w = Rv, where R is chosen uniformly at random from
set SCCF. For the CCF algorithm, SCCF is the set of N × |U | matrices where each column has
±1 in some row and zeros everywhere else. Hence, we have the following theorem:

Theorem 3.5.2. For any vector v ∈ ZU , choose the N ×U matrix S uniformly from SCCF and

set w = Sv. Then, for all ε ∈ [0, 1) and η such that
(

1−η
1+η

)2
= max

(
1+

ε
2

1+ε ,
1−3ε

4
1− ε2

)
, choosing

N ≥ 24
ε2

ln 2
δ (3.14)

q, r ≥ 3N
η2 ln 4N

δ (3.15)

ensures that the following two items occur with probability at least 1− δ:

1. If v ∈ {−1, 0, 1}U , and ‖v‖2
2
≤ q, then ‖w‖2

2
< (1 + ε)q.

2. The number of non-zero entries in v is r, then ‖w‖2
2
> (1− ε)r.

See Appendix B.5.2 for Theorem B.5.4 a tighter and more precise statement of Theorem 3.5.2,
as well as its proof. The theorem bounds the number of bins in the sketch, N , as well as both
the number of non-zero elements in v. The fact that the number of bins in the sketch, N ,
must be large is not so surprising. However, our proof also needs v to have many non-zero
elements because CCF does not work as well when very sparse vectors v cause high variance
in the number of entries in the bins of w (see for instance the counterexample we discussed
above). This condition on v holds in our setting because the number of bins in the sketch is
much smaller than the total number of packets. Similar conditions apply in many other sketch
applications; thus, we believe that this theorem may be of independent interest.
Applying Theorem 3.5.2. To apply the theorem into our setting, assume that the PRF
used for packet hashing is indistinguishable from a random function. Then, set ε = β−α

β+α , set
x = vA−vB, and set q = αT . The false positive condition is satisfied because we have x ∈ {0, 1}U
and ‖x‖2

2
= |x|1 = D ≤ αT , so with probability 1− δ,

V = ‖w‖2
2
< (1 + ε)‖x‖2

2
≤ (1 + ε)αT = 2αβ

α+βT

6CCF’s [24] sketch can attain better success probability (even with 4-wise independent hashing) by using the
median of estimates obtained from M independent sketches, for some number M . However, this increases the
storage and update time by a factor of M .
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Scheme Packet Hashing N , Bins in Sketch Bits/bin
Classic 4-wise independent 2

ε2δ
1 + 1

2 log2

(
2T ln(200N

δ )
)

PRF 12
ε2

1
3−2ε ln 1

δ

CCF 4-wise independent 2
ε2δ

1 + 1
2 log2

(
4 TN ln(200N

δ )
)

PRF7 24
ε2

ln 2
δ

Table 3.1: (Analytically-derived) parameters for secure sketch PQM.
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Figure 3.4: Theorem B.5.4 is used to obtain bounds on sketch size, N for a given choice of Tmin,
the minimum number of packets per interval. Here δ = β = 2α = 1%.

The false negative condition is satisfied because we have the number of drops is r > βT . So,
with probability 1− δ, we get that

V = ‖w‖2
2
> (1− ε)r ≥ (1− ε)βT = 2αβ

α+βT

where the first inequality comes from the fact that x = ‖d‖p
p

+ ‖a‖p
p

and ‖d‖p
p

is a {0, 1}-vector
with r entries that are +1.

Some sample parameters and experiments

In the following, we use the following sample parameters: We suppose the detection threshold
is β = 0.01, the false alarm threshold is α = β/2 and about T = 107 packets are sent during an
interval. We will require a confidence of 1− δ = 99%.
Comparing analytic results. Combining these sample parameters with the analytic results
summarized in Table 3.3, we see that when 4-wise independent hashing is used, both classic
and CCF sketching require N = 1800 bins in the sketch. However since CCF requires only
10 bits/bin compared to the 16 bits/bin required for classic sketching, we see that the CCF

7This analytic bound on N also requires that αT > 3N
η2

ln 4N
δ

for η such that
(

1−η
1+η

)2

= max

(
1+

ε
2

1+ε
,

1− 3ε
4

1− ε
2

)
.

See Theorem 3.5.2.
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Figure 3.5: Histogram of estimator for the (a) classic, and (b) CCF schemes, each using packet-
hashing with a PRF and with N = 300, T = 106, β = 2α = 1% and threshold Γ = 6667.
Histogram computed via numerical experiments.

Bins in Sketch Sketch Size
β/α N T = 104 T = 105 T = 106 T = 107 T = 108

2 128 128B 144B 176B 208B 208B
4 64 64B 88B 88B 104B 104B
8 32 36B 48B 48B 52B 52B
16 32 36B 48B 48B 52B 52B
32 32 36B 48B 48B 52B 52B
64 32 36B 48B 48B 52B 52B

Table 3.2: Minimum N bins per sketch, when N is taken as a power of 2, computed via numerical
experiments for PQM using CCF with a PRF for packet hashing. Sketch size is computed by
multiplying experimentally-obtained value for N with the value obtained from equation (3.13).
We fix β = δ = 1%.
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requires smaller sketches (3.6KB sketch for classic, 2.25KB for CCF sketching). Storage become
noticeably smaller when we use a PRF. From Table 3.3, when a PRF is used we find that the
classic scheme requires N = 214 bins with 15 bits/bin for a sketch of size 400B. For the CCF
scheme, we can apply the refined version of Theorem 3.5.2 in Appendix B.5.2 to obtain bounds
on N , the number of bins in the sketch, for different values of Tmin, the minimum number of
packets per interval. We did this in Figure 3.5.4 for β = δ = 2α = 1%, and we found that if
there are at least Tmin = 1.2 × 1010 packets in the interval, we can use N = 300 with counters
of b = 14 bits if we take intervals containing at least T = 109 packets.

Our Theorem 3.5.2 for CCF with a PRF introduces an awkward bound on Tmin, the minimum
number of packets that must be sent per interval. However, we believe that this bound is an
artifact of our proof technique. As we discuss below, our numerical experiments for CCF with
a PRF indicate (though do not conclusively prove) that even N = 300 bins suffices even if we
use much shorter interval lengths, for instance T = 104.
Numerical experiments: histograms. Figure 3.5 is a histogram of the classic and CCF
estimators V for (from left to right) the benign case where D = αT (here we want the estimator
to be below the threshold Γ so that Alice does not raise an alarm), and for three cases where
D = βT so we want Alice to raise an alarm: a case where Eve does not add any packets, a case
where Eve adds (β − α)T distinct packets, and a case where Eve adds (β − α)T total packets
where each packet is duplicated twice. Notice that the threshold Γ clearly distinguishes between
cases where D = βT and the benign cases where D = αT . Also, notice if Eve adds packets to
the link, she only increases the probability that Alice raises an alarm, as predicted by equation
(3.11). Figure 3.5 also suggests that taking N = 300 suffices for CCF even if we have shorter
interval lengths of T = 106.
Numerical experiments: CCF with a PRF. We further studied the CCF with PRF
approach by performing a number of numerical experiments to determine N , the number of bins
in the sketch. In every experiment, we chose N as a power of 2.8C code for these experiments
is available by request. Our results are presented in Figure 3.2. Firstly, from Figure 3.2 we see
that N varies with the ratio β/α, which confirms the analytic results summarize in Figure 3.5.4.
However, our numerical experiments suggest that as long as there are T > 1/α packets/interval,
the choice of T does not really impact the value of N ; for a given β/α ratio, the minimum choice
of N as power of 2 was the same for any value of T ranging from 104 to 108. Next, Figure 3.2
indicates that sketch size grows with T ; this growth is logarithmic in T (as expressed by the
equation for the number of bits / bin for CCF in equation (3.13)).

Reducing computation with pre-hashing

In our setting, hash function computation can be expensive because we need to compute a PRF
(or 4-wise independent) hash over up to the entire packet, which may be up to 1500 Bytes long.
While Appendix B.1 discusses generic techniques for fast per-packet PRF computation based
on efficient εg-almost universal hash functions, it turns out that we can have even faster hashing
constructions for our sketching protocols.

To do this, we again use εg-almost universal hash functions. We reduce the cost of PRF
computation by first mapping packets from U to a short n1-bit string using the efficient εg-
almost universal hash function, and then using a PRF (or 4-wise independent) hash to map
from n1-bits to the sketch. Thus, if n1 is sufficiently small, this means that our PRF can

8We take N to be a power of two because this makes packet hashing in the CCF sketch more convenient. That
is, if N = 2η and we use PRF that produces η (pseudo)random bits, then the binary representation of these η
bits uniformly choose an element of [N ]. However if N is not a power of 2, a more complicated mapping of these
η bits is required to uniformly choose an element of [N ].
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be constructed using a single invocation of a block cipher like AES. (Similarly, our 4-wise
independent hash need only operate on small number of inputs, making it possible to realize
using only e.g., three n1 bit multiplications.). In Appendix B.4, we adapt the analysis in [100]
to show that an (α, β, δ)-secure PQM protocol requires a εg-almost universal hash function with

εg ≤ δ
103T

β−α
β+α (3.16)

Sample parameters using GHASH. Consider using GHASH [78] as our εg-almost 2-wise
independent hash function. Suppose GHASH produces outputs of length n1, and each packet
is at most 1500B long, and block lengths are m, where m is taken as a power of two. Since
εg = 1500·8

m 2−n, for T = 107 packets/interval, and δ = β = 2α = 1%, applying (3.16) we find that
it suffices to choose GHASH with n = m = 64 bits. This choice of n1 is quite short! (For most
other applications, GHASH requires block lengths of m = 128 bits. Indeed, in Appendix B.1
we found that we needed m = 128 bits blocks when we analyze it as part of the PRF.) Thus, it
follows that (a) hardware implementations of GHASH will be fast, and (b) PRF computation
(to map n1-bit strings to the sketch) amounts to a single invocation of AES.

Other sketches.

TZ Sketch. Thorup and Zhang [100] gave a variant of the CCF scheme where, instead of
updating a bin in the sketch with a randomly chosen element in {±1}, the bin is always updated
with a +1. (While the update algorithm in TZ is as in the Count-Min sketch [27], the analysis
there is different.) However, their second-moment estimation scheme requires a larger bin size
(roughly twice the number of bits/bin) than CCF, so we don’t consider this scheme any further.
Other pth-moment estimation schemes. As discussed in Section 3.5.1, any pth-moment
estimation protocol, for p ≥ 1, can be plugged into our protocol to achieve PQM. However,
it turns out that the algorithms for second-moment estimation are preferable in our setting
because they have the simplest packet-hashing algorithms. For instance, for the classic and
CCF sketches, the packet-hashing algorithm amounts to choosing integers in {−1, 1} and thus
can be efficiently implemented in high speed routers. c.f., with first moment estimation protocols
that require choosing real numbers from a Cauchy distribution [63].
Relationship to the adversarial sketch model. In concurrent work, Mironov et.al. [80]
considering a setting which Alice and Bob are required to sketch adversarially-chosen sets,
and then compute metrics on their sets after exchanging sketches over a secure channel; their
model maps directly to our PQM model, where Alice and Bob’s sets (i.e., packet streams) may
be chosen adversarially, and then sketches are exchanged via an authenticated channel. Our
work deals with the fact that streams are chosen adversarially by requiring Alice and Bob to
compute their sketches using shared secret keys. However, Mironov et.al require that sketching
is performed without any shared randomness.9 Their approach has significant advantages,
including reduced key-management overhead, and extensions to the client-server setting. For
instance, a server can engage in a sketching protocol with multiple clients without using a shared
key for each, and then uses a report authenticated using a public key as in the asymmetric
protocol of Section 3.4.2. Indeed, following the discussion in Section 3.5.1, any protocol for
pth-moment estimation (where p ≥ 1) in the adversarial sketch gives an PQM protocol (for the
client-server setting) as well. However, the lack of shared randomness in the model of Mironov

9In Section 3.6, we argue that PQM protocols require shared randomness; the existence of Mironov et.al’s
protocol does not contradict this. As discussed in Section 3.6, if we used Mironov et.al. sketching results in
a PQM protocol, we would require shared randomness to cryptographically authenticate the report messages
(containing the sketches) sent from Bob to Alice.
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et al.comes at a significant cost; they show that any moment estimation protocol for sets of
size T requires at least Ω(

√
T ) storage at Alice and Bob. Thus, these protocols are much less

efficient than the O(log T )-storage keyed sketches that we considered here.

Summary

For large interval lengths T , our analytic results show the most efficient (in terms of storage and
update time) instantiation of our secure sketch protocol uses CCF’s second-moment estimation
scheme [24] with a PRF for packet hashing. Furthermore, our numerical experiments suggest
that this is the case even for smaller values of T . While in theory, using a PRF instead of 4-wise
independent hash is more computationally expensive, in practice, this not usually the case (see
discussion in Section 3.3). Furthermore, we also showed how to reduce the computational cost
of computing a PRF on each packet by pre-hashing packets with an εg-almost universal hash
function, and then applying a single invocation of a fast PRF.

3.6 Necessity of cryptography

All of our protocols require keys between participating nodes, and cryptographic computations.
We now show that this overhead is inherent by arguing that any PQM protocol satisfying Defi-
nition 3.2.1 requires a key infrastructure and the invocation of cryptographic operations. These
results also immediately imply that any PQM protocol that does not use keys or cryptography,
e.g., Listen [99], is insecure according to Definition 3.2.1.

3.6.1 Keys are necessary

We argue that there must be some form of shared secret information between Alice and Bob.
To see that keys are necessary, we argue in the contrapositive: suppose Bob has no secrets from
Eve. Then, since Eve occupies a node on the path between Alice and Bob, she receives the
same information that Bob receives and can compute the same responses. It follows that Eve
can simply run the PQM protocol on her own (responding to Alice with the appropriate acks
or reports), and then drop all the packets going to Bob. This breaks security because Alice has
no way to know that anything went wrong. Notice further that this suggests that Alice needs
Bob’s participation in order to run a secure PQM protocol.

We emphasize that this argument only proves that one of the parties (Alice or Bob) has
some secret, while the other party holds some information that depends on that secret. For
instance, Alice and Bob could share symmetric keys, or Bob might have a public-private key
pair (PK,SK) while Alice has the public key PK,

We further remark that the necessity of keys holds only if Eve has the power to add packets.
However, we believe that it is unrealistic to assume that the adversary cannot add even a single
packet; indeed, the security of some protocols (e.g., our secure sketch protocol) can be broken
if the adversary successfully forges (i.e., adds) a single ‘Report’ packet!

3.6.2 Cryptography is necessary

We now argue that the keys must be used in a “cryptographically-strong” manner. Note that
our previous result that keys are necessary does not imply that cryptography is necessary;
for example [33] uses secret keys in a non-cryptographic way and obtains a protocol that is not
secure by our definitions. To show that cryptography is necessary, we show that any secure PQM
protocol is at least as complex as a secure keyed identification scheme (KIS), which is known
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to be equivalent to many cryptographic tasks like encryption and message authentication [61].
Intuitively, our result follows from the fact that in order for Alice to believe Bob, she must be
assured that all the information she is getting indeed came from Bob in a way that Eve cannot
impersonate.

A Keyed Identification Scheme (KIS) is a challenge-response protocol in which the two parties
share a secret key, and Alice wants to verify Bob’s identity. To do this, Alice typically sends
Bob a challenge, that Bob must respond to using his secret key. A KIS is secure if Percy, an
impersonator who eavesdrops on the interactions between Alice and Bob but does not know the
secret key, cannot impersonate Bob by coming up with a correct response to the challenge (with
probability better than just randomly guessing the response).

We use a reduction to prove that any PQM scheme that is secure according to Definition 3.2.1
is at least as complex as KIS. First, we show that given any secure PQM protocol, we can
construct a secure KIS. The construction is simple: the challenge in the KIS are the T packets
that Alice sends to Bob during an interval of the PQM protocol. The correct response in
the KIS is the acks/reports that Bob sends to Alice during an interval of the PQM protocol.
Next, we show that if the PQM scheme used in the above construction is secure according to
Definition 3.2.1, then our KIS construction is also secure. We do this in contrapositive, by
showing that if there existed an efficient adversary Percy that breaks the security of this KIS
construction, then Percy can be used to construct an adversary Eve that breaks the security of
the PQM protocol. To do this, we show how Eve can break the security of the PQM protocol if
she is given access to Percy: First, whenever Percy wants to eavesdrop an interaction between
Alice and Bob, Eve lets Percy observe an interval of the PQM protocol. Next, when Percy is
ready to impersonate Bob, Eve gives the T packets that Alice sends to Bob to Percy as his KIS
challenge, but now, instead of forwarding Alice’s packets on to Bob, Eve drops T packets and
instead responds to Alice with Percy’s KIS response. The proof follows from the fact that Alice
will not raise an alarm (and therefore Eve breaks the security of the PQM protocol) whenever
Percy produces a successful response the challenge in the KIS (and therefore breaks the security
of the KIS).
Remark. One could hope for the stronger statement that some kind of cryptographic operation
is necessary for every packet sent by Alice. However, this is false. Indeed, consider a secure sketch
PQM protocol that uses the first-moment estimation protocol of Mironov et al. [80], as discussed
in Section 3.5.4. Then, we have a PQM protocol that uses no cryptographic computations for
packet hashing, and only uses a two cryptographic operations per interval, i.e., computing the
MACs on the ‘Interval End’ and ‘Report’ packets sent the end of the interval. We suspect that
proving a statement of this form (i.e., a cryptographic operation is required for each packet
sent) would also restrictions on the storage at Alice and Bob.

3.7 Comparison of Protocols

Because we want PQM protocols that can be deployed in high-speed routers, we have focused
on efficiency considerations; namely, we evaluated our protocols’ efficiency in (a) communication
overhead, (b) computation of cryptographic operations, and (c) use of dedicated storage in the
router. We now explore a wider space of design objectives for evaluating our PQM protocols,
discuss how our three protocols perform under these objectives, and compare them with two
existing solutions for PQM: Stealth Probing [12] and IPsec. We argue that obtaining PQM
protocols that perform well for one particular objective often involves trading off some other
objective.
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3.7.1 A broader space of design objectives

Marking packets. We prefer protocols that do not modify any packets sent by the source edge-
network, e.g., by packet marking or encryption. This approach has the advantage of allowing
the PQM protocol to be backwards compatible with IP, not increasing packet size, minimizing
latency in the router, and allowing the source to turn the PQM protocol on and off without
having to coordinate with the destination. Furthermore, avoiding packet marking also means
we can implement the PQM protocol in a monitor located off the critical packet-processing path
in the router.
Estimating delay. We prefer protocols that allow Alice to estimate round-trip delay, without
making assumptions about the clock synchronization between Alice and Bob.
Feedback latency. We prefer protocols that perform well for small interval lengths, so that
Alice need only send a small number of packets before she has sufficient information to decide
whether or not to raise an alarm. In general, due the high variance in network conditions, it
is better to avoid making routing decisions using measurement made over short timescales [94].
However, an PQM protocol that provides fast feedback empowers the edge network to react
quickly when situations are particularly dire (i.e., when a path fails completely). Furthermore,
fast feedback can be used to detect transient faulty conditions, and can be used when enforcing
SLAs to ensure that repeated, short periods of poor performance are not detected because the
PQM protocol uses large interval lengths.
Client-server v.s., peers. We consider both (a) the peer setting, where the source and
destination can devote equivalent computational resources to the protocol, (e.g., a corporation
that wants to ensure availability between a pair of sites in geographically-disparate locations),
and (b) the client-server setting, where one party can devote more resources to the protocol
(e.g., a client wanting to ensure that his packets are correctly delivered at a web server).
Symmetric vs. public keys. Per our negative results in Section 3.6, all of our protocols require
some sort of cryptographic key infrastructure. However, there are many settings, (e.g., when a
client has only a very short connection with a web server), where we prefer to design protocols
that do not require a handshake protocol between each source-destination pair in order to
generate a symmetric key. Furthermore, when one edge network runs PQM protocols with
multiple other edge networks, it is extremely useful to have protocols that allow an end-point
run concurrent PQM protocols using a single key (e.g., a public key). This way, the edge network
need not lookup a key each time he sends/receives a packet. Such protocols are also particularly
useful for multicast communications.
Detecting traffic discrimination. Recently, there have been cases of ISPs that degrade perfor-
mance for certain classes of unwanted traffic like Skype [85] or BitTorrent [1]. Thus, we prefer
protocols that can be adapted to determine if a path is selectively dropping specific classes of
traffic.
Symmetric vs asymmetric paths. Our PQM protocols are designed to ensure that Alice raises
an alarm when the performance of the forward path (from Alice to Bob) degrades unacceptably.
However, consider a situation where the performance of the forward path is acceptable, but
Alice still raises an alarm because the adversary was tampering with messages sent on the
reverse path (from Bob back to Alice). Our protocols do not protect against such situations;
indeed, to design PQM protocols that give this guarantee, we would either need to assume that
source and destination have an out-of-band communication channel that cannot be attacked
by the adversary, or consider running PQM protocols over multiple alternate paths. Notice
that when the forward path and reverse paths are identical, i.e., symmetric paths, Eve has no
incentive to drop acknowledgments and reports; doing this simply makes the path she occupies
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look worse. In contrast, with asymmetric paths, an adversary occupying only the reverse path
may have an incentive to drop acknowledgments and reports, perhaps to confuse the source into
thinking that the forward path is faulty.

However, some of our PQM protocols contain clues that Alice can often use to distinguish
between situations where the forward path is actually faulty, and when an adversary on the
reverse path is simply dropping reports.
Monotonicity. We say that that a protocol is monotone if Helen cannot trick the source
into detecting faults on the data path simply by adding packets to the path. To see why this
important, consider an adversary, Helen, that does not occupy a node on the data path and thus
cannot drop or delay packets, but can inject packets onto the data path. Helen might have an
incentive to trick Alice into raising an alarm this in order to force the Alice to switch her traffic
to a different path. In practice, no protocol is completely monotone, since Helen can always
cause a denial-of-service attack by flooding the path with nonsense packets and exhausting the
computational resources of Alice or Bob. However, we typically want to avoid protocols where
Helen can trick the source into detecting a failure (when all packets were delivered) because of
additional packet injections.

3.7.2 Evaluating the tradeoffs

We now discuss how each of our three protocols fits into the tradeoff space we described above.
This discussion is summarized in Table 3.3.
Secure sketching. Our secure sketch protocol makes extremely efficient use of storage and
communication. Furthermore, these requirements are (roughly) independent of the threshold
chosen, and so can be used even to detect very small degradations in path performance. On the
other hand, the secure sketch protocol does not allow us to easily measure round trip time, since
packets are aggregated into one sketch. It requires both the sender and the receiver to maintain
keys and (small) storage, which might be a problem in the client/server setting where a server
is communicating with many clients, and does not want to maintain per-client storage for the
purposes of running PQM protocols. Finally, the sketch protocol is not monotone: it will raise
an alarm if many packets are added into the path, even if no packet is actually dropped. This
could be an issue if an adversary that does not sit on the path is able to inject packets into the
path.
Secure sampling. Our secure sampling protocols are best suited for situations where Alice
needs immediate feedback and accurate measurements of round-trip delay (which she can easily
obtain, even in the absence of synchronized clocks, by timing the arrival of acks). Furthermore,
the protocols are monotone in the sense that if an adversary adds packets to the path or spoofs
acks, Alice can simply ignore all the acks that do not correspond to the packets that she sent.
Symmetric Secure Sampling is best suited when Alice and Bob are peers that have equal resources
to devote to the protocol. Furthermore, the protocol is best when we do not want to make any
clock synchronization assumptions, or when we want fast feedback (which can be obtained by
adjusting the probe frequency p appropriately, see Section 3.4.3). Asymmetric Secure Sampling
is best suited for the client-server setting, where the server wants to run PQM protocols with
many clients without using dedicated storage and using only a single key for all clients.

However, the sampling protocols (save for the TSSS protocol of Section 3.4.2) have a disad-
vantage in the asymmetric path setting— when the forward (Alice to Bob) path is not the same
as the reverse (Bob to Alice) path. The reason is that since only a p-fraction of sent packets are
acknowledged, each dropped ack looks like 1

p dropped packets. Thus, in the asymmetric path
setting, an adversary on the reverse path can arbitrarily increase the source’s estimate of the
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Secure Sampling Secure
Sym Asym Sketching

Storage/Communication10 90KB 240–840KB 0.2–2.3KB
Peer setting X X
Client-server setting X
No clock sync X coarse X
Estimates delay X X
Fast feedback X
Monotonicity X X

Table 3.3: Tradeoff space for our protocols.

failure rate on the forward path by dropping acks. In contrast, in the secure sketch protocol only
a single authenticated report packet is sent on the reverse path, and so if it does not arrive Alice
can deduce that the problem is in the reverse rather than the forward path (unless the forward
path is completely blocked and Bob is not even aware of Alice’s existence). This issue also means
that the sketch protocol is better suited for SLA-compliance monitoring applications, especially
in the asymmetric paths setting (where the report packet could even be sent out-of-band). When
PQM is used to inform routing decisions in the asymmetric setting, Alice and Bob can always
coordinate switching their forward and reverse paths once an alarm is raised.
IPsec. IPsec is a standard for symmetric-key encryption and authentication of packets at the
network layer. However, it requires invoking a cryptographic operation, modifying, and adding
tags to every packet sent on the path, which could be quite expensive when operating at multi
Gbit/sec rates. Also, IPsec currently does not include a standard for providing authenticated
acknowledgments and so needs additional machinery, like Stealth Probing [12], in order to provide
secure PQM at the network layer. On the other hand, if we perform PQM at a higher layer,
we can use TCP over IPsec (so that we have authenticated acknowledgments for every single
packet sent) or even SSL. These protocols provide very strong security guarantees; they not
only provide confidentiality, but also allow a source to detect if a failure occurs for every single
packet it sends. But given the high cost associated with these guarantees, these protocols are
arguably, more appropriate when confidentiality and integrity are necessary for other reasons,
or when PQM functionality is required at the end-host, rather than in the high-speed routing
setting that we focus on here.
Stealth Probing. Stealth Probing [12] is a network layer protocol that provides statistically-
secure path-quality monitoring (satisfying Definition 3.2.1) by designating specific packets as
‘probes’ that must be ack’d by the destination, and then masking the choice of probe by en-
crypting and authenticating all traffic using IPsec. This protocol shares many of the traits of
our symmetric secure sampling protocol. However, it incurs the extra overhead of encrypting
all traffic, and is probably best suited when confidentiality is required in addition to PQM in
the peer setting.

Note that all our protocols can be tuned to measure the performance on a particular subset of
the traffic, for the purposes of detecting whether some intermediate nodes treat certain packets
(such as Skype [85] or BitTorrent [1]) differently than others. The same is true for IPsec based
solutions such as Stealth probing. In fact, the latter solutions make selective (mis)treatment of
packets by the adversary much harder, as they encrypt all traffic.11

10Storage and communication are given for an interval of T = 107 packets with β = 0.01, α = β/2, and
1− δ = 99%.

11Of course, if packets are encrypted but not padded to a fix constant length, an adversary can still selectively
mistreat certain packets based on their length. Furthermore, encryption does not prevent the adversary from
using timing attacks to discriminate between packets, see e.g., [97].
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Application layer protocols. Here we did not consider protocols that detect packet loss at
the application layer by using the semantics of packet contents (e.g., the fact that a webpage
does not display correctly). We only considered protocols that operate at the application layer,
and assume nothing about packet contents (apart from the fact that packets are unique in a
given interval). While protocols that leverage packet semantics are more appropriate for certain
settings, we do not consider them here because we would like to design general-purpose protocols
that operate inside high-speed routers to inform routing decisions or provide fast feedback about
SLA violations.

3.8 Conclusion

In this chapter, we have designed and analyzed efficient path-quality monitoring protocols that
give accurate estimates of path quality in a challenging environment where adversaries may drop,
delay, modify, or inject packets. Our protocols have reasonable overhead, even when compared to
previous solutions designed for the non-adversarial settings, and all except TSSS do not modify
data packets in any way. In fact, one possible deployment scenario for our protocols is to start by
deploying protocols that use hash functions with publicly-known keys, to monitor path quality
in manner that is robust to non-adversarial failures such as congestion, misconfiguration, and
malfunctions. Then, the same router support could be leveraged, using secret keys, to operate
in an adversarial setting as needed. Another possibility is to use our protocols with publicly
known keys, but combine them with IPsec for paths where protection against adversarial nodes
is required; this will be secure, albeit at a higher overhead than using our protocols on their own.
We believe that our PQM protocols, and our associated models of their properties, are valuable
building blocks for designing future networks with predictable security and performance.



Chapter 4

Path-Quality Monitoring:
Failure Localization

4.1 Introduction

The Internet is an indispensable part of our society, and yet its basic foundations remain vulner-
able to attack. Secure routing protocols seek to remedy this by not only providing guarantees
on the correct setup of paths from sender to receiver through a network (e.g., Secure BGP [66]),
but also by verifying that data packets are actually delivered correctly along these paths. Packet
delivery is surprisingly susceptible to simple attacks; in the current Internet, packets are typi-
cally sent along a single path from sender to receiver, and so a malicious node along the data
path can easily drop or modify packets before they reach their destination. While small amounts
of random packet loss are considered to be a natural part of the Internet’s operation, there are
many situations in which a sender would like to detect and respond to unusually high rates of
packet loss or corruption along a path. To this end, the networking community has recently
been studying monitoring and measurement protocols that return information about packet loss
events on a data path (e.g., [28, 33, 76, 99, 86, 13, 11, 81, 10]). The motivation for these protocols
is twofold. First, they provide the sender with information that he can use during path setup to
select a single, high-performance path to the receiver from the multiple available paths through
the network [55]. Second, since Internet service is a contractual business, where senders pay
nodes along the data path to carry their packets, information from Internet measurement pro-
tocols is highly valuable for enforcing contractual obligations between nodes. Indeed, a number
of works [69,26,10] argue that quality of service on the Internet will could degrade unacceptably
that if there is a lack of accountability, i.e., mechanisms that empower senders to detect and
respond to degraded performance on a data path that violate contractual obligations. Note
also that if Internet measurement protocols are used to enforce contracts, nodes may have an
economic incentive to bias the information obtained from these protocols.

In this work we provide a rigorous cryptographic examination of secure monitoring protocols
that are robust even in the presence of malicious nodes on the data path. In particular, we study
techniques that allow a sender to localize the specific links along the data path where packets
were dropped or modified— a task that we call failure-localization path-quality monitoring. While
some protocols for this task are deployed in the Internet today (e.g., traceroute [4]), they are
not robust to nodes that behave adversarially in order to bias measurements.

68
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4.1.1 Our results

We make the following contributions to the study of secure failure-localization path-quality
monitoring protocols (in the rest of the paper we call these simply failure localization or FL
protocols). Throughout the paper, we use the word “packet” to denote data that the sender
wishes to transmit, and “message” to refer to both data packets and FL-protocol-related control
messages.
Definition. In Section 4.2, we give the first formal definition of security for failure localization
protocols. We note that some of the previous FL protocols suggested in the literature, such
as [86,13,10], do not satisfy our definition. (We sketch attacks in Appendix C.1.)

We give two variants of the definition— per-packet security requires localizing a link each
time a packet is not delivered, while statistical security only requires this when a noticeable
fraction of packets fail to arrive. An important feature of our definition is that it accounts
for the fact that messages can be dropped in the Internet for benign reasons like congestion.
We note that care must be taken to design protocols that are simultaneously robust to both
adversarial behavior and benign congestion. We discuss the effect of this assumption on some
previous work [13] in Appendix C.1.
Protocols. We present three simple protocols satisfying our per-packet (Section 4.3.1) and
statistical (Section 4.3.2) security definitions. All of these protocols do not modify the packets
sent on the path; instead, they add additional messages. Thus our protocols have the important
advantage of allowing backwards compatibility with the current techniques for processing packets
in a router, minimizing latency in the router, and not increasing packet size.

Because routers are highly-resource constrained devices that are designed to communicate
large amounts of information while storing very little, the most important measure of efficiency
for our protocols is storage overhead (i.e., the amount of state each router needs to keep as part
of the protocol). We are also concerned with communication overhead (i.e., the number and
size of messages added by the protocols), and the computational overhead (i.e., the complexity
of the computation that each router needs to perform per packet that it processes).

Our per-packet protocol requires each router to store an O(n)-length tag for each packet
that it sends, and adds a single O(n)-length message to every packet sent (n is the security
parameter), and one O(Kn)-length messages when a failure occurs. (Typically in the Internet,
the path length K is less than 20, when nodes represent individual routers, and when nodes
represent Internet Service Providers (ISPs) then there are on average K ≈ 4, and no more
10 nodes on a typical path [66].) However, the communication and storage overhead of the
protocol is considered severe, so we present this mostly for pedagogical purposes and move on
to our statistical FL protocols.

Our first statistical protocol is based on sampling, and needs to store and communicate
O(pT ) tags of length O(n) each when the sampling rate is p and T packets are sent. For clarity
and correctness, we present a version of the protocol based on the Symmetric Secure Sampling
protocol from Chapter 3 ; this version of the protocol requires each intermediate node to share
symmetric cryptographic keys with Alice and Bob. However, we emphasize that is possible to
construct an analogous statistical PQM protocol for the public-key setting as well, based on the
Asymmetric Secure Sampling protocols in Chapter 3 . Such a protocol would require each node
to perform a similar amount of symmetric cryptographic operations on a per-packet basis, and
require only a single public-key cryptographic operation for each T packets sent.

Next, we present much more efficient statistical FL protocol based on the secure sketching
protocol from Chapter 3 . This protocol requires the each node to share a symmetric key with
Alice only, and requires each node to store a single O(K2 log T )-sized array of counters, called a
sketch. The communication overhead of the protocol is only two additional messages of length
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O(K3 log T + Kn) for every T packets sent, and we do not require any modifications to the
packets sent by Alice. However, unlike our sampling-based protocols, this protocol cannot be
generalized to public-key setting.
Lower bounds. Like many of the protocols in the literature [11,13,86,109,81,10], both of our
protocols require cryptographic keys and computations at each node. These requirements are
considered severe in the networking literature; setting up a key infrastructure and agreeing on
cryptographic primitives is challenging in the distributed world of the Internet, where each node
is owned by a different entity with sometimes incompatible incentives. However, in Section 4.4
we show that these requirements are to some degree inherent by:

1. Proving that every secure (per-packet or statistical) FL protocol requires a key infrastruc-
ture, or more precisely, that intermediate nodes and Alice and Bob must all share some
secret information between each other. This shared secret information can be pairwise
symmetric keys, or public-private key pairs.

2. Proving that a one-way function can be constructed from any secure FL protocol.

3. Giving evidence that any practical per-packet secure FL protocol must use these keys in a
cryptographic way at every node (e.g., , it does not suffice to use the secret information with
some simple, non-cryptographic, hash functions as in [33]). We show that in every black-
box construction of such a protocol from a random oracle, where at most O(log n) protocol
messages are added per packet, then every intermediate node must query the random
oracle. We note that practical protocols designed for Internet routers typically avoid using
non-black-box constructions or adding more than a constant number of protocol messages
per packet. We also show that for statistically-secure FL, or FL protocols adding ω(log n)
messages per packet, the necessity of cryptography depends on subtle variations in the
security definition.

Implications of our results. Our lower bounds raise questions about the practicality of
deploying FL protocols. In small highly-secure networks or for certain classes of traffic, the
high key-management and cryptographic overhead required for FL protocols may be tolerable.
However, FL protocols may be impractical for widespread deployment in the Internet; firstly
because intermediate nodes are owned by competing business entities that may have little incen-
tive to set up a key infrastructure and agree on cryptographic protocols, and secondly because
cryptographic computations are expensive in the core of the Internet, where packets must be
processed at extremely high speeds (about 2 ns per packet). Thus, our work can be seen as
a motivation for finding security functionalities for the Internet that are more practical than
failure localization.

4.1.2 Related work

Some of this work (in particular, the results of Section 4.3 and a weaker version of Theorem 4.4.3)
appeared in our earlier technical report [48]. We built on [48] in [49], where, together with
Jennifer Rexford and Eran Tromer, we gave formal definitions, constructions, and lower bounds
for the simpler task of path-quality monitoring (PQM). In a PQM protocol the sender only
wishes to detect if a failure occurred, rather than localize the specific faulty link along the
path. We use the results from Chapter 3 in Section 4.3.2 to show how a PQM protocol can be
composed to obtain a statistical FL protocol, and in Section 4.4.2 to argue that FL protocols
need cryptographic computations.
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RA (Alice) � R1 � R2 � . . .� RK � RB (Bob)

Figure 4.1: A path from Alice to Bob via K intermediate nodes.

In addition to the FL protocols from the networking literature [11,13,86,81,10,107], our work
is also related to the work on secure message transmission (SMT) begun by Dolev, Dwork, Waart,
and Yung in [32]. In SMT, a sender and receiver are connected by a multiple parallel wires, any
of which can be corrupted by an adversary. Here, we consider a single path with a series of nodes
that can be corrupted by an adversary, instead of multiple parallel paths. Furthermore, while
multiple parallel paths allow SMT protocols to prevent failures, in our single path setting, an
adversarial intermediate node can always block the communication between sender and receiver.
As such, here we only consider techniques for detecting and localizing failures.

Subsequent to the publication of this work in [16], Zhang et al. [109] considered FL protocols
that are similar to our per-packet FL and our sampling-based statistical FL protocols. Further-
more, Amir, Bunn, and Ostrovsky [8] consider FL in the setting of multiple paths, as in the
SMT framework.

4.2 Our model

In a failure localization (FL) protocol, a sender Alice wants to know whether the packets she
sends to receiver Bob arrive unmodified, and if not, to find the link along the path where the
failure occurred (see Figure 4.1). We say a failure or fault occurs when a data packet that was
sent by Alice fails to arrive unmodified at Bob. Following the literature, we make the somewhat
strong assumption that Alice knows the identities of all the nodes of the data path. While this
assumption only strengthens our lower bounds, it does limit the practicality of our protocols
in settings where Alice is not sure about the paths her packets take. For more discussion on
this assumption, see Chapter 1. We work in the setting where all traffic travels on symmetric
paths (i.e., intermediate nodes have bi-directional communication links with their neighbors,
and messages that sender Alice sends to receiver Bob traverse the same path as the messages
that Bob sends back to Alice). We say that messages travelling towards Alice are going upstream,
and messages travelling towards Bob are going downstream. An adversary Eve can occupy any
set of nodes on the path between Alice and Bob, and can add, drop, or modify messages sent
on the links adjacent to any of the nodes she controls. She can also use timing information to
attack the protocol.
Localizing links, not nodes. It is well known that an FL protocol can only pinpoint a link
where a failure occurred, rather than the node responsible for the failure. To see why, refer to
Figure 4.1, and suppose that (a) Eve controlling node R2 becomes unresponsive by ignoring all
the messages she receives from R1. Now suppose that (b) Eve controls node R1 and pretends
that R2 is unresponsive by dropping all communication to and from R2. Because cases (a) and
(b) are completely indistinguishable from Alice’s point of view, at best Alice can localize the
failure to link (1, 2).
Congestion. Congestion-related packet loss is widespread on the current Internet, caused
by protocols like TCP [64] that naturally drive the network into a state of congestion. Our
definition accounts for congestion by assuming links can drop each message independently with
some probability. One could come up with other models for congestion (e.g., allowing Eve to
specify the distribution of congestion-related packet loss), and for some plausible choices our
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positive results will still hold. However, we use independent drops for the sake of simplicity.
Furthermore, assuming that congestion is not controlled by the adversary only strengthens our
lower bounds and makes our model more realistic.

4.2.1 Security definition

Let n be the security parameter. A failure localization protocol consists of an efficient initial-
ization algorithm Init taking n uniformly random bits and generating keys for each node, and
efficient node algorithms Alice,Bob, R1, . . . , RK which take in a key and communicate with each
other as in Figure 4.1. We always fix K = O(1) independent of n. The Alice algorithm takes in
a packet that she wants to send to Bob. If communication is successful, then the Bob algorithm
outputs the packet that Alice sent. Our security definitions are game-based:

Definition 4.2.1 (Security game for FL). The game begins when Eve chooses a subset of nodes
E ⊆ {1, . . . ,K} that she will occupy for the duration of the game. The Init algorithm is then used
to generate keys for each node, and Eve is given the keys for the nodes i ∈ E that she controls.
We define an oracle Source that generates data packets d for the Alice algorithm to send. We
allow Eve to choose the packets that the Source oracle generates, subject to the condition that
she may not choose the same packet more than once during the game.1

We allow Eve to add, drop, or modify any of the messages sent on the links adjacent to the
nodes she occupies. We include congestion in our model by requiring that, for each message sent
on each link on the path, the link goes down or drops the message with some constant probability
ρ > 0. Notice that this means that a failure can happen at links not adjacent to a node occupied
by Eve.

We introduce the notion of time into our model by assuming that the game proceeds in
discrete time steps; in each time step, a node can take in an input and produce an output, and
each link can transmit a single message. (Thus, each time step represents an event occurring
on the network.) Because it is expensive to have securely synchronized clocks in a distributed
system like the Internet,2 we do not allow the honest algorithms to take timing information as
an input. However, to model timing attacks, we assume that Eve knows which time step that the
game is in.

Then, our per-packet security definition uses the game defined in Definition 4.2.1:

Definition 4.2.2 (Per-packet security for FL). In the per-packet security game, Eve gets to
interact with the Source oracle and the “honest” node algorithms as in Definition 4.2.1, until
she decides to stop. For each packet sent, Alice must output either

√
( i.e., not raise an alarm) or

a link ` ( i.e., raise an alarm and localize a failure to `). We assume that the game is sequential:
Alice must output a decision for each data packet before starting to transmit the next data packet
(see remarks below). We say that an FL protocol is per-packet secure if the following hold:

1. ( Secure localization). For every packet d sent by the Source oracle that is not successfully
output by Bob, then Alice outputs a link ` such that either (a) link ` is adjacent to a
node occupied by Eve, or (b) link ` went down due to congestion for one of the messages
(including FL protocol messages) associated with sending packet d from Alice to Bob.

1We make this assumption because there is natural entropy in packet contents, due to TCP sequence numbers
and IP ID fields [33]. One way to enforce this assumption in practice, is to require the use of ephemeral ‘interval
keys’ which are refreshed at the end an interval, and to assume that the natural entropy in packet contents
enforces the uniqueness of packets over an interval (see the further discussion in Chapter 3 ).

2Indeed, the NTP protocol used for clock synchronization on the Internet is not secure [79], and thus should
not be used as an input to a secure FL protocol.
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2. ( No false positives). For every packet d sent by the Source oracle that is successfully output
by Bob, for which there was no congestion, and for which Eve does not deviate from the
protocol, Alice outputs

√
.

We need to introduce a few new concepts for our statistical security definition. First, we define
an interval as a sequence of T packets (and associated FL protocol messages) that Alice sends to
Bob.3 Next, we use the following parameters: a false alarm threshold α, a detection threshold
for the path β (where 0 < α < β < 1) and an error parameter δ ∈ {0, 1}. Usually, we will set
α such that congestion alone almost never causes the failure rate on a path to exceed the false
alarm threshold.

Definition 4.2.3 ((α, β, δ)-Statistical security for FL). In the statistical security game, Eve is
allowed to choose the number of intervals for which she wants to interact with the Source oracle
and the honest nodes as in Definition 4.2.1. The number of packets per interval T may grow
with n, but is always at least some minimum number depending α, β, δ,K. At the end of each
interval, Alice needs to output either

√
( i.e., not raise an alarm) or a link ` ( i.e., raise an alarm

and localize a link). The game is sequential; Alice must output a decision for each interval before
starting the next interval. Then, an FL protocol is statistically secure if the following hold:

1. ( Secure localization). For any interval in the security game where Eve causes the failure
rate on the path to exceed the detection threshold β, then with probability 1− δ Alice raises
alarm for a link ` that is adjacent to Eve, or a link ` whose failure rate exceeds α

K+1 .

2. ( Few false positives). For any interval in the security game where Eve does not deviate
from the correct algorithm Ri of any of the nodes i ∈ E that she controls and the failure
rate on each link is below the (per-link) false alarm threshold α

K+1 , then the probability that
Alice outputs

√
is at least 1− δ.

We now discuss some properties of our security definition.
Benign and malicious failures. Our security definitions require Alice to accurately localize
failures, but these failures may be caused by Eve, or may be the result of benign causes, such
as congestion. We do not require Alice to distinguish between benign or malicious (i.e., due to
Eve) failures, because Eve can always drop packets in a way that “looks like” congestion.
Sequential games. For simplicity, in our per-packet security game we required Alice to make
FL decisions before she sends a new data packet. This is to capture the fact that such protocols
should provide “real-time” information about the quality of the paths she uses, and so we did
not allow Alice in the per-packet case to make decisions only after sending many packets (as
is done in the statistical security case). We note that while our lower bounds (i.e., attacks)
are sequential, our positive results (i.e., , protocols) do not use the assumption of sequential
execution in any way, and are secure in a more general setting where Eve can choose, at each
point in time, which of the previously sent packets “time-out”, and then Alice needs to output
FL decisions for these packets. We emphasize that the sequential assumption does not prevent
Alice from keeping state and using information from past packets in order to make FL decisions.
(Though none of our positive results require that Alice does this.)
Movements of the adversary. Our model does not allow Eve to move from node to node
in a single security game. This assumption, which only strengthens our lower bounds, does
not significantly limit the practicality of our protocols for a number of reasons. Firstly, when
Eve models a Internet service provider that tries to bias the results of FL protocol for business

3We can think of an interval as all the packets sent in some time period (e.g., approximately 107 packets are
sent 100 msec over a 5 Gbps Internet path).
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reasons, it is reasonable to assume that she may only occupy nodes owned by her business entity.
Furthermore, when Eve is an external attacker or virus that compromises a router, “leaving”
a router means that the legitimate owner of the router removed the attacker from the router,
e.g., by refreshing its keys. We model this key refresh process as a re-start of the security
game. Furthermore, in practice “movements” to a new router happen infrequently, since an
external attacker typically needs a different strategy each time it compromises a router owned
by a different business entity.
Generalizations. All our results generalize to the setting where congestion rates, false
alarm thresholds, and detection thresholds are different per link; we set them all equal here for
simplicity. Our lower bounds also hold for the weaker adversary model where Eve can occupy
only one node and the Source oracle generates independent (efficiently-samplable) packets from
a distribution that is not controlled by Eve.

4.3 Protocols

We now present protocols for secure per-packet and statistical FL. Our protocols are related,
though not identical to those of [10, 11, 13]. (In Appendix C.1 we show that the protocols
in [10,13] do not satisfy our security definitions.)

We use the notation [m]k to denote a message m authenticated by a key k using a message
authentication code (MAC); such schemes can be constructed from any one-way function [51,54].
We’ll often use the well-known notion of an onion report : if every node Ri wants to transmit a
report τi to Alice in an authenticated way, then we define inductively θK+1 = [(K + 1, τBob)]kBob

and for 1 ≤ i ≤ K, θi = [(i, τi, θi+1)]ki . That is, each Ri’s report is appended with its downstream
neighbors’ reports before being authenticated and passed upstream. Onion reports prevent Eve
from selectively dropping reports — if Eve occupies Rj and wants to drop the report τj of Ri
for some i > j then, under the assumption that Eve cannot forge MACs, Alice will discover that
Rj tampered with the onion report. We also note that every time we send or store a packet d
in acknowledgments and reports, we could save space by replacing d with an O(n)-length hash
of d via some collision-resistant hash function, where n is the security parameter.

4.3.1 Optimistic Per-Packet FL Protocol

We assume that each node Ri shares a symmetric key ki with Alice. For each packet that Alice
sends, the protocol proceeds in two phases:
The detect phase. Alice stores each packet d that she sends to Bob. When Bob receives
the packet d, he responds with an ack of the form a = [d]kB . Alice removes the packet d from
storage when she receives a validly MAC’d corresponding ack, and raises an alarm if a valid
ack is not received.4 We also require each intermediate node to store each data packet and
corresponding ack.
The localize phase. This phase is run only if Alice raises an alarm for a packet d. Alice sends
an onion report request q = (report, d) downstream towards Bob. To respond to the request,
each node Ri checks if he stored data packet d; if he did, Ri sets τi = (q, i, d, a) where a is the
ack he saw corresponding to packet d, and substituting the symbol ⊥ for d and/or a if he failed
to receive that packet or an ack. Ri then creates an onion report θi using τi as described above.

4In practice, each packet d should be stored along with a local timeout at Alice. If the ack does not arrive
before the timeout expires, then Alice should raise an alarm.
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In the onion report, Ri can substitute the symbol θi+1 = ⊥ if he fails to receive a θi+1 from
Ri+1. 5

To localize the failure, Alice classifies the onion reports that she received in response to
her onion report request q. An onion report θi = [q′, i′, d′, a′, θi+1]ki is “consistent” if it is
present, i.e., θi 6= ⊥, and all of the following four conditions hold. Otherwise, an onion report
is “inconsistent”.

1. q′ = q sent out by Alice.

2. The MAC on θi is valid.

3. d′ = d, where d is the packet queried in q.

4. a′ is not a valid ack for packet d.

Alice localizes then localizes the upstream-most link (i, i+ 1) where the onion reports transition
from consistent to inconsistent.

Theorem 4.3.1. The optimistic FL protocol is per-packet secure.

Proof. Eve can win the security game by causing a failure and either (a) convincing Alice that
no failure occurred, or (b) causes Alice to localize a node that is not adjacent to Eve. We show
that both (a) and (b) happen with negligible probability:

Consider (a) first. Recall that the packets d Alice sends in the security game are unique, and
that each ack for a packet d contains the packet d. It follows that if Eve creates a valid ack to a
packet d that was dropped before it arrived at Bob, she needs to forge the MAC on a message
(B, d). From the security of the MAC, she can do this with only negligible probability.

Next, consider (b). Let Ri be the upstream-most node where Eve either caused a failure or
tampered with an ack. We have two cases:

• Suppose all the nodes upstream of Eve’s node Ri do not deviate from the correct algorithm.
Let Rj be the first honest node that is downstream of node Ri (we know such a node exists
because Eve cannot occupy Bob’s node). Since Ri−1 and Rj are honest, they correctly
generate their onion reports θi−1, θj , and these reports must have different entries in their
“data” fields (if Eve tampered with the packet at node Ri), and/or different entries in their
“ack” fields (if Eve tampered with the ack at Ri). Now, since all the nodes upstream of
Ri−1 behave honestly, their onion reports are all be consistent. Also, conditioned on Eve
not forging Rj ’s MAC on the onion report, we know that Rj ’s onion report is inconsistent.
It follows that the upstream most transition from consistent to inconsistent reports must
occur on some link between Ri−1 and Rj and Alice will output a link adjacent to Eve.

• Suppose one of the nodes upstream of Eve’s node Ri does deviate from the correct algo-
rithm. Call the upstream-most such node Re, and observe that it must be occupied by
Eve. By the way we chose Ri, we know that Re did not cause a failure or tamper with
an ack. It follows that Re must have tampered with an onion report request or an onion
report. Let Rj be the first honest node downstream of Re. Conditioned on not forging the
MAC of an honest node in the onion report, it follows that Eve at Re must have caused
a consistent/inconsistent transition at some link between Re−1 and Rj , and so that Alice
will output a link adjacent to Eve.

5 When each node originally receives the onion report request q from Alice, each node sets an local time-out
that determines how long he should wait for his downstream neighbor to send their onion report. If the onion
time-out expires, the node reports a missing onion report by setting θi+1 = ⊥ and then proceeding to construct
his own onion report as before.
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Combining these two cases, we see that from the security of the MAC, (b) happens with negligible
probability.

Efficiency. We remark that the detect phase of this protocol incurs a high storage and
communication overhead at each node on the path; we require the addition of at least one new
O(n)-length message for each data packet sent, and even more egregiously, each node must store
(an O(n)-length digest of) each packet it sends until it receives an ack or onion report request.
This high overhead makes this protocol highly impractical for regular Internet traffic; however,
it might be useful for specialized highly-secure networks, or for certain classes of low-volume
traffic e.g., network management traffic.

4.3.2 A Composition Technique for Statistical FL

We now consider statistical security protocols, that apply results from our previous work on
statistical PQM Chapter 3 to obtain statistical FL protocols with much lower overhead. In a
statistical PQM protocol, Alice detects whenever the average failure rate exceeds a threshold β
(but she need not localize a link).

Here we show how to compose the lightweight PQM protocols we presented in Chapter 3 to
obtain statistical FL protocols. While it is possible to give a very general composition theorem,
for clarity and concreteness, we first describe how to compose the simpler symmetric secure
sampling (SSS) protocol of Chapter 3 to obtain a protocol with storage and communication
overhead that linear in (i.e., a small fraction of) the number of sent packets in the interval, T .
The protocol we present here requires each node to share pairwise keys with Alice and Bob.
However, we can extend this result to the public-key setting by composing instances of the
asymmetric secure sampling protocols of Chapter 3 , to obtain a protocol that requires only a
single public-key cryptographic operation per interval of T sent packets. For brevity, we omit
any further discussion of this protocol here.

Finally, we show how to compose the secure sketch protocol of Chapter 3 to obtain a more
efficient FL protocol with about O(K2 log T + n) storage overhead at each node and only two
additional control messages.

A composition with that uses Secure Sampling PQM.

Symmetric Secure Sampling (SSS), a statistical PQM protocol from Chapter 3 .
SSS requires Alice and Bob to securely designate a random p fraction of the data packets that
Alice sends to Bob as “probes”, and require that Bob send MAC’d acknowledgments for all the
probes. We call p the probe frequency. To do this, Alice and Bob share a secret k = (k1, k2). For
each packet d that Alice sends to Bob, they use k1 to compute a function Probe that determines
whether or not a packet d is a probe and should therefore be stored, and acknowledged. To
acknowledge a probe, Bob sends Alice an ack [d]k2 that is MAC’d using k2. The Probe function
is implemented using a pseudorandom function (PRF) f keyed with k1, that we think of as
mapping strings to integers in [0, 2n−1]; We define

Probek1(d) = Yes if fk1 (d)

2n < p,
Probek1(d) = No otherwise.

(4.1)

For each interval, Alice stores each probe packet (i.e., each packet d such that Probek1(d) =Yes).
At the end of the interval, after T packets are sent, Alice computes V , a count of the number
of stored (probe) packets for which she failed to receive a valid ack. She computes the average
failure rate as V

pT .
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Figure 4.2: On the left an insecure composition, on the right our secure composition.

A composition that does not work. Perhaps the most natural approach to construct a
statistical FL protocol is to have Alice run K simultaneous PQM protocols with each of the
intermediate nodes, and use the statistics from each protocol to infer behavior at each link
(similar to [86, 13, 107]). However, we now show that this composition is vulnerable to the
following timing attack : Suppose a packet d that Alice sends to Bob is ack’d by innocent node
Rj with message a. Then, if Eve occupies node Ri for i < j − 1, she can determine that Rj
originated the ack a by counting the time steps that elapsed between the time step in which she
saw d and time step in which she saw a. Then, Eve can implicate Rj by selectively dropping every
ack that originates at Rj . Notice that this attack results from the structure of this composition,
and cannot be prevented even when acks are encrypted.6 In practice, this attack can be launched
when isolated burst of packets triggers a separate burst of acks at each intermediate node.
Composing PQM to statistical FL. We require that every node Ri shares pairwise keys
kAi , k

B
i with Alice and Bob respectively. Using kBi , each intermediate node runs a statistical

PQM protocol with Bob with the following modification: whenever Bob decides to send an ack
for a packet d to an intermediate node Ri, Bob will (1) always address the ack to Alice and
(2) MAC the ack in onion fashion, starting with kBAlice (on the inside of the onion) and ending
with kBK (on the outside of the onion). Each node forwards all acks upstream, and processes
only the ack he expects. At the end of the interval u, Alice will send an onion report request
q = (report, u) to all the intermediate nodes. Each intermediate node produces a MAC’d onion
report θi = [q, i, Vi, θi+1]kAi where Vi is his estimate of the average failure rate on the path
between himself and Bob. Letting α, β be the false alarm and detection thresholds, when Alice
receives the final onion report θ1, she computes F` = Vi − Vi+1 for each link ` = (i, i + 1), and
outputs ` if F` >

α+β
2(K+1) , or if ` = (i, i + 1) is the upstream-most link when the onion report

θi+1 refers to the wrong interval, is missing, or is invalidly MAC’d.
We prove that this scheme is secure provided that the interval length T is long enough and the
congestion rate ρ is small enough.

Theorem 4.3.2. The composition of SSS described above with probe frequency p satisfies (α, β, δ)-
strong statistical security when each interval contains at least
T = O( K2

p(β−α)2
ln K

δ ) packets and the congestion rate satisfies β − α� Kρ.

Proof. First, observe that the probability that any efficient adversary Eve successfully forges
an ack for a dropped packet by forging a MAC used in SSS is negligible. As in the Optimistic
Protocol, the probability that any efficient adversary Eve successfully forges the onion report of
an honest node (by forging the MAC on the onion report) is negligible as well. Hence, for the
rest of this proof assume that Eve does not forge an ack to a dropped packet or validly forge
the onion report of an honest node. Moreover, we can assume that Eve does not tamper with
the onion report, or else she will implicate a link adjacent to one of the nodes she controls. We
now work within a single interval:

• Let Vi be Ri’s estimate of the failure rate between Ri and Bob.
6In [107], the authors suggest randomizing the sending time of acks.
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• Let Di be a count of the number of packets that were dropped or modified on the path
between Ri and Bob.

• Let Ci be the number of acks intended for any node that were dropped or modified on the
path between Bob and Ri.

• Let p′ = p
1−(1−p)K+1 be the probability that a node Ri expects an ack to a packet d (i.e.,

ProbekBi
(d) = Yes) conditioned on there being at least one node expecting an ack to packet

d (i.e., ∃j ∈ {0, . . . ,K}, ProbekBj
(d) = Yes).7

Note that when Ri estimates the average failure rate on the path from Ri to Bob, she is unable
to distinguish between dropped packets and dropped acks. Also, it is possible that Di > Di+1

or Ci > Ci+1 for two adjacent uncorrupted nodes because of congestion. In the absence of
adversarial behavior at Ri, the expectation of the estimator Vi that Alice receives in the onion
report is 1

T (Di + p′

p Ci). Finally, notice that the average failure rate on link (i, i+ 1) is 1
T (Di −

Di+1).
Set γ = β−α

2(K+1) . If T = O( K2

p(β−α)2
ln K

δ ) then we have the following lemmata:

Lemma 4.3.3 (Deviation of the estimator Vi). For each i /∈ E where E is the set of nodes
corrupted by Eve it holds (up to negligible error) that

Pr
[∣∣∣Vi − 1

T (Di + p′

p Ci)
∣∣∣ > 1

4γ
]
< δ

4(K+1)

Lemma 4.3.4 (Acks dropped due to congestion). For each i, i+1 /∈ E, it holds (up to negligible
error) that

Pr
[
p′

p
Ci−Ci+1

T > γ
2

]
< δ

2(K+1)

The proofs of these lemmata are technical, but not difficult. We defer them to Appendix C.2.1.
Both proofs are applications of the Chernoff bound under the assumption that the Probe function
is implemented with a truly random function; the negligible error refers the difference between a
PRF and a truly random function. The proof of Lemma 4.3.3 relies on the fact that Eve cannot
bias node Ri’s estimate of Ci by selectively dropping acks because (1) acks destined for different
nodes look identical, and they all originate at Bob (so that an adversary cannot use timing to
distinguish between them), and (2) acks are onion MAC’d, so the adversary cannot selectively
tamper with an ack intended for an upstream node. The proof of Lemma 4.3.4 also relies on
the fact that β − α� Kρ.
Few false positives: To prove this, we consider an interval where all the nodes on the path
behave honestly, and show that, with probability at least 1 − δ, Alice will not raise an alarm
during this “honest interval”.

Consider link ` = (i, i+1) where the average failure rate is less than the false alarm threshold
so 1

T (Di − Di+1) < α
K+1 . We now show that Alice will not raise an alarm for this link ` by

proving that Alice’s estimate of the failure rate for `, i.e., Vi − Vi+1, does not exceed her alarm
decision threshold, i.e., α+β

2(K+1) . We do this by proving that

Pr
[∣∣(Vi − Vi+1)− 1

T (Di −Di+1)
∣∣ > α+β

2(K+1) −
α

K+1 = γ
]
< δ

K+1 (4.2)

Notice that “Few false positives” condition follows from (4.2) by a union bound over all K + 1
links.

7This quantity is the probability that a node Ri samples an ack that was dropped between Ri and RB , since
at least one node must have sampled the corresponding packet in order for the ack to be transmitted at all.
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To prove (4.2), we start with the expression below, and apply the triangle inequality, and
then Lemma 4.3.3:

Pr[|(Vi − Vi+1)− (Di−Di+1

T + p′

p
Ci−Ci+1

T )| > γ/2]

≤ Pr[|Vi − 1
T (Di + p′

p Ci)| > γ/4] + Pr[|Vi+1 − 1
T (Di+1 + p′

p Ci+1)| > γ/4]

≤ δ
2(K+1) (4.3)

Next, from Lemma 4.3.4 we know that Pr[p
′

p
Ci−Ci+1

T > γ/2] ≤ δ
2(K+1) , and so a union bound

over this expression and (4.3) proves (4.2).
Secure localization: We now show that if Eve drops more than a β fraction of packets in
any interval, then Alice will catch her with probability at least 1 − δ. Since the actual failure
rate on the path is 1

TDA > β, we start by applying Lemma 4.3.3 to find that Alice’s estimate
of the failure rate is VA > β − γ

4 with probability at least 1− δ
4(K+1) . We now use an averaging

argument to claim that there exists some link ` = (i, i + 1) such that Vi − Vi+1 >
α+β

2(K+1) . To

see why, suppose for the sake of contradiction that for all i we had Vi − Vi+1 ≤ α+β
2(K+1) . Then,

it follows that

VA =
K∑
i=0

(Vi − Vi+1) ≤
∑
`

α+β
2(K+1) = α+β

2 < β − γ
4

where VK+1 = 0 (Bob’s estimate of drops to himself is 0). But this contradicts our condition
that VA > β− γ

4 , so there is at least one link ` = (i, i+ 1) with Vi− Vi+1 >
α+β

2(K+1) so that Alice
raises an alarm.

Next, recall that we assume that for any link where the true failure rate due to congestion less
than α

K+1 , we have from our proof of the “Few false positives” condition that with probability
δ

K+1 , Alice does not raise an alarm for link ` between two honest nodes. Then, Alice must have
raised the alarm for a link adjacent to Eve with probability at least 1 − δ (by a union bound)
or a link with actual failure rate larger than α

K+1 , and secure localization follows.

Efficiency. We remark that this protocol requires Alice and each intermediate node to store
tags of length O(n) for a p-fraction of the packets that they send. The communication overhead
of the protocols is similarly a p-fraction of O(n)-length tags. Notice that, under the assumption
that the interval T is long enough, we can take p to be arbitrarily small.

A composition that uses Secure Sketch PQM

Secure Sketch, a statistical PQM protocol from Chapter 3 . In Secure Sketch PQM,
Alice and Bob to securely aggregate information about all the traffic that Alice sends to Bob
in short hash-based data-structure called a sketch. At the end of the interval, Alice and Bob
exchange their sketches using in MAC’d control messages, and use the sketches to estimate the
failure rate on the path. To do this, Alice and Bob share a secret k = (k1, k2). The key k1 is
used to key a PRF that is used to at the beginning of interval u by both parties to derive the
interval key ku as ku = fk1(u). For each data packet d, Alice and Bob use the interval key ku to
compute a hash fk1(d) of the packet. The output of the hash function is a length N -vector that
added to a vector of N counters, each of length b, called the sketch. After T packets are sent
and the interval ends, Alice sends Bob control message that contains her sketch and the next
interval number, and is MAC’d with k2. Bob responds by subtracting Alice’s sketch from his
own, and replying with a MAC’d control message containing the interval number and difference
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between the two sketches. Alice then obtains an estimate of the failure rate V by computing
some function g on the difference between the two sketches.
The security of secure sketch PQM. Briefly, the secure sketch protocol works because it
correctly estimates the pth-moment of a packet stream (for some p ≥ 1). That is, consider the
stream of T packets that Alice sends to Bob during the interval, where each packet is chosen from
a universe U (e.g., if packets are 1500bytes, then |U | ≈ 21500·8). Let vA be the characteristic
vector of this stream, a U -dimensional vector that has c in the position corresponding to packet
x if packet x was sent c times during the interval. Similarly, let vB be the characteristic vector of
the stream of packets received by Bob. Then, the sketches allow Alice to estimate ‖vA−vB‖p . In
particular, we say that a sketching protocol (ε, δ)-estimates the pth-moment of the characteristic
vector vA − vB if

Pr
[∣∣V − ‖vA − vB‖p

∣∣ ≤ ε‖vA − vB‖p
]
< 1− δ (4.4)

where the probability is taken over the randomly chosen key ku used to key the packet-hash
function f . In Chapter 3 , we discuss exactly how to choose the hash function f , and how this
choice affects p, the norm estimated by the sketch, and N × b , the size of the sketch. For our
purposes we shall simply note that if the hash function f is an appropriately-chosen PRF, then
we can use sketch of size N × b where N = O( 1

ε2
log(1

δ )) and b = O(log(T )).
We no longer have timing attacks. In secure sketch PQM, Alice and Bob exchange only
a pair of control messages at the end of the interval; no other communication between them is
required. Because the timing of these control messages do not leak any information, the timing
attack we mentioned in Section 4.3.2 is no longer an issue. Our composition of secure sketch
PQM to statistical FL will have Alice run K simultaneous PQM protocols with each of the
intermediate nodes as in Figure 4.2, and use the statistics from each protocol to infer behavior
at each link.
A simpler composition. We require that every node Ri shares pairwise keys ki with Alice
only (c.f., with our SSS-based composition, where nodes need to share keys with Bob as well).
Using ki, each intermediate node runs a secure sketch PQM protocol with Alice, so that Alice
will keep a sketch wA

i for every i ∈ [K] and every other node Ri will keep a single sketch wi.
However, instead of sending individual control messages to each node at the end of interval u,
Alice will now send a single onion-MAC’d interval-end message containing all her sketches as

q = [(u,wA
1 )[(u,wA

2 )...[(u,wA
B)]kB ...]k2 ]k1

to all the intermediate nodes. Upon receiving a validly-MAC’d interval-end message, intermedi-
ate node Ri extracts the sketch wAi , and passes the interval-end message to Ri+1. (Ri drops the
interval-end message if the MAC is invalid.) Finally, as in the usual composition, each node Ri
produces a MAC’d onion report θi = [u, i, Vi, θi+1]ki . Here, Vi is node Ri’s estimate of ‖vi−vA‖p ,
which is computed by applying the function g to the difference sketch wi−wA

i . (Recall that vA
is the characteristic vector of the stream of packets that Alice sends, and vi is the characteristic
vector of the stream of packets that Ri receives.) Letting α, β be the false alarm and detection
thresholds, when Alice receives the final onion report θ1, computes F` = Vi − Vi+1 for each link
` = (i, i+1), and outputs ` if ` = (i, i+1) is the upstream-most link where F` > T

K+1
β(2α+β)
α+2β = Γ,

or the onion report θi+1 refers to the wrong interval, is missing, or is invalidly MAC’d. If there
is no such link, she outputs

√
.

Limiting the number of nodes occupied by Eve. To prove that this scheme is secure,
we need to assume that interval length T is long enough, the sketches are big enough, and the
congestion rate ρ is small enough. Our proof also relies on limiting the number of links occupied
by Eve to ≈

√
K. However, we conjecture that it may be possible to weaken this assumption,
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as we have not been able to find any attacks on the protocol when Eve occupies more than
√
K

links. For more discussion, see the remarks in Appendix C.2.4.

Theorem 4.3.5. The composition of secure sketch PQM described above satisfies (α, β, δ)-
statistical security if the congestion rate satisfies ρK2 ≤ β, Eve occupies M ≤

√
(K + 1)(1− ρ

βK
2)

links, each interval contains at least T > K+1
α packets, and for each i ∈ [K], sketches wi,wA

i

have size

Ni × b = O

(
i2
(

2β+α
β−α

)2
log(Kδ )

)
×O(log T ) (4.5)

Proof. First, the probability that any efficient adversary Eve successfully forges the interval end
message or the onion report of an honest node (by forging the MAC) is negligible. Hence, for
the rest of this proof assume that Eve does not validly forge the onion report of an honest node.
Moreover, we can assume that Eve does not tamper with the interval-end message of the onion
report, or else she will implicate a link adjacent to one of the nodes she controls. We now work
within a single interval, and use the following definitions:

• Let vA is the characteristic vector of the stream of packets that Alice sends and vi for
i ∈ [K + 1] to be the characteristic vector of the stream of data packets that Ri receives.

• Let xi = vi − vA. We can decompose any xi into two vectors xi = di + ai. The vector di
is the characteristic vector of packets dropped on the path from Alice to Ri, and contains
the non-negative components of xi. The vector a is the characteristic vector of packets
added on the path from Alice to Ri, and contains the non-positive components of xi. Also
notice that the non-zero coordinates of d and a are disjoint.

• Let Vi be Ri’s estimate of ‖xi‖pp .

• Let Di be a count of the number of failures that occurred on the path between Alice and
Ri.

Our proof also makes use of the following identity

‖xi‖pp = ‖di‖pp + ‖ai‖pp = Di + ‖ai‖pp (4.6)

The first equality follows because the non-zero coordinates of d and a are disjoint. The second
equality follows because every packet that Alice send is unique so that that d is a {0, 1}-vector
for every i ∈ [K + 1]. In Chapter 3 we show that if interval key is refreshed at the end of
each interval, then if each sketch has Ni × b = O( 1

εi
log 1

δ′ ) then it follows that each estimate
Vi (εi, δ′)-approximates ‖xi‖pp as per (4.4). Also, we will require that α

K+1T > 1 (which gives
us the bound on T , the number of packets in the interval), and prove the following lemma in
Appendix C.2.3:

Lemma 4.3.6. Let Γ = T
K+1

β(2α+β)
α+2β and εi = 1

2i
β−α
2β+α . For every i ∈ [K], assume that Ri

computes an estimate Vi that (εi, δ′)-estimates ‖xi‖pp. Suppose also that ‖xi‖pp ≤
βi
K+1 . Then

with probability at least 1− 2δ′ it follows that:

1. If “link (i, i+ 1) is good” so that ‖xi+1‖pp − ‖xi‖
p
p
≤ α

K+1T then Vi+1 − Vi ≤ Γ.

2. If “link (i, i+ 1) is bad” so that ‖xi+1‖pp − ‖xi‖
p
p
≥ β

K+1T then Vi+1 − Vi ≥ Γ.
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We use Lemma 4.3.6 to prove the “few false positives” and “secure localization” conditions.
Few false positives: To prove this, we consider an interval where all the nodes on the path
behave honestly. During this interval, we know that no packets were added anywhere on the
path (so that ‖ai‖pp = 0 for each i ∈ [K + 1]) and less than α

K+1 packets were dropped at each
link. We can apply identity (4.6) to find that for each link (i, i+ 1) we have

‖xi+1‖pp − ‖xi‖
p
p

= Di+1 −Di + 0 + 0 ≤ α
K+1 (4.7)

and the telescoping nature of (4.7) gives us that

‖xi‖pp = (‖xi‖pp − ‖xi−1‖pp) + ...+ (‖x2‖pp − ‖x1‖pp) + ‖x1‖pp ≤
αi
K+1 (4.8)

We can now apply Lemma 4.3.6 to show that, with probability at least 1 − 2δ′ we have that
Vi+1 − Vi ≤ Γ so that Alice will not output link (i, i+ 1). A union bound over the K + 1 links
gives us that Alice will output

√
during this interval with probability at least 1− 2(K + 1)δi.

Secure localization: We now show that if Eve causes more than a β fraction of failures in
the interval, then with probability at least 1 − δ, Alice will either catch Eve or output a link
with more than α

K+1 failures. Recall that Alice outputs the upstream-most link ` = (i, i+ 1) for
which there is an “alarm”, i.e., where Vi+1− Vi ≥ Γ. We need the following simple observation:

Lemma 4.3.7. Define event Ei as the event that ‖xi‖pp ≤
βi
K+1 .For each i ∈ [K + 1], if Alice

does not raise an alarm for any link upstream of link i, then Ei holds with probability 1− 2iδ′.

Proof. Suppose that Alice does not raise an alarm for all the links upstream of node Ri. It
follows from Lemma 4.3.6 that ‖xj+1‖pp − ‖xj‖

p
p
≤ β

K+1 with probability 1 − 2δ′, for each link
(j, j + 1) where j ∈ [i− 1]. The lemma follows by taking a union bound over all these links and
using a telescoping sum as in (4.8).

First we show that the with high probability Alice will not output an honest link. Let link
(i, i + 1) is be “honest”, i.e., have a fewer than α

K+1 failures, and assume that Alice does not
raise alarm for any links upstream of Ri. Now, Lemma 4.3.6 shows that, conditioned on Ei, Alice
will not raise an alarm for link (i, i + 1) with probability at least 1 − 2δ′. Since Alice does not
alarm for any links upstream of Ri, we can apply Lemma 4.3.7 to remove the conditioning on Ei.
It follows that Alice will not output honest link (i, i+ 1) with probability at least 1− 2(i+ 1)δ′.
Taking a union bound over all honest links gives that Alice will not alarm for any honest link
with probability at least 1− 2(K + 1)2δ′.

Next, we need to show that Alice either will raise an alarm for a link adjacent to Eve or link
with more than α

K+1 failures. The most interesting part of this proof is the following technical
lemma, which we prove in Appendix C.2.4:

Lemma 4.3.8. If Eve occupies M ≤
√

(K + 1)(1− ρ
βK

2) links and causes a β-fraction of

failures in the interval, then there must be a link (i, i+ 1) that is adjacent to Eve with

‖xi+1‖pp − ‖xi‖
p
p
≥ β

K+1T

Now let link (i, i+1) be the upstream-most link that is adjacent to Eve and has ‖xi+1‖pp−‖xi‖
p
p
≥

β
K+1T . (Lemma 4.3.8 guarantees the existence of such a link.) We have two cases:

• Suppose Alice did not raise an alarm for a link upstream of Ri. Combining Lemma 4.3.7
and Lemma 4.3.6 it follows that Alice will alarm for link (i, i + 1) adjacent to Eve with
probability 1− 2(i+ 1)δ′.
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• Suppose Alice did raise an alarm for a link upstream of Ri. It follows from Lemma 4.3.6
that there is some link (j, j + 1) for j ≤ [i− 1] where, with probability 1− 2δ′,

α
K+1 ≤ ‖xj+1‖pp − ‖xj‖

p
p

= Dj+1 −Dj + ‖aj+1‖pp − ‖aj‖
p
p

where the equality comes from applying identity (4.6). Now if link (j, j + 1) is adjacent
to Eve, it follows that Alice alarms for a link adjacent to Eve, and we are done. Thus,
suppose that link (j, j + 1) is not adjacent to Eve. Then, it follows that no new packets
could have been added to this link, and so we have that ‖aj+1‖pp = ‖aj‖pp . Thus, if link
(j, j + 1) is not adjacent to Eve, then Alice must have raised an alarm for a link with
Dj+1 −Dj ≥ α

K+1 failures, as required.

Combining these cases, we see that with probability at least 1 − 2(K + 1)δ′, Alice will either
raise an alarm for a link that is either (a) adjacent to Eve, or (b) has more than α

K+1 failures.
Sizing the sketches. Finally, to ensure that (α, β, δ)-statistical security holds, it suffices to
take δ′ = δ/4(K+ 1)2. Next, recall that Lemma 4.3.6 requires sketches that (εi, δ′)-estimate the
pth moment with εi = 1

2i
β−α
2β+α . For i ∈ [K + 1] it suffices to take sketches wi, wA

i of size Ni × b
where Ni = O( 1

ε2i
log( 1

δ′ )) and b = O(log(T )). Substituting in the values for εi, δ′ gives us (4.5)
as required.

Efficiency. We remark that, for a given interval of length T , this protocol requires O(K2 log T+
n) storage overhead at Bob and each intermediate node, while the storage overhead at Alice
is O(K3 log T + Kn). The communication overhead of the protocol is two control messages of
length O(K3 log T +Kn) each for every T packets sent.

4.4 Lower bounds

We now argue that in any secure per-packet FL scheme Alice requires shared keys with Bob and
the intermediate nodes, and Alice, Bob and each intermediate node must perform cryptographic
operations. We only argue for intermediate nodes R2, . . . , RK ; R1 is a border case which requires
neither keys nor crypto because we assume Alice is always honest.

4.4.1 Failure Localization Needs Keys at Each Node

Since FL provides strictly stronger security guarantees than path-quality monitoring, it follows
from the results in Chapter 3 that in any secure FL protocol, Alice and Bob must have shared
keys. We also have the following theorem that proves that in any secure FL protocol, each
intermediate node must share keys with some Alice:

Theorem 4.4.1. Suppose Init generates some auxiliary information auxi for each node Ri for
i = 1, ...,K,Alice,Bob. A FL protocol cannot be (per-packet or statistical) secure if there is any
node i ∈ {2, . . . ,K} such that (auxAlice, aux1, . . . , auxi−1) and auxi are independent.

Proof. Suppose Ri has auxi that is independent of (auxAlice, . . . , auxi−1). Then, the following two
cases are indistinguishable from Alice’s view: (a) Node Ri+1is malicious and blocks communica-
tion on link (i, i+ 1), and (b) Eve occupies node Ri−1, and drops packets while simulating case
(a) by picking an independent aux′i and running Ri(aux′i) while pretending as if (i, i+1) is down.
These two cases are indistinguishable because auxi is independent of (auxAlice, . . . , auxi−1), and
so Alice will localize the failure to the same link in both case (a) and (b). But this breaks
security, since Ri+1, Ri−1 do not share a common link.
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4.4.2 Failure Localization Needs Crypto at Each Node

In Chapter 3 , we give a reduction from one-way functions to secure PQM, proving:

Theorem 4.4.2 (From Chapter 3 ). The existence of a per-packet secure PQM protocol implies
the existence of an infinitely-often one-way function (i.o.-OWF).

Since one-way functions are equivalent to many cryptographic primitives (in the sense that these
primitives exist if and only if one-way functions exist [61]), this result can be interpreted to mean
that nodes participating in any secure PQM protocol must perform cryptographic computations.
Since FL gives a strictly stronger security guarantee than PQM, we also have that in any FL
protocol, some node on the data path must perform cryptography. However, Theorem 4.4.2
only implies that the entire system performs cryptography. We want to prove that any secure
FL protocol requires each intermediate node R1, . . . , RK to perform cryptography. Because it
is not clear even how to formalize this in full generality, we instead apply the methodology
of Impagliazzo and Rudich [62] to do this for black-box constructions of FL protocols from a
random oracle RO. We model “performing cryptography” as querying the random oracle, and
show that in such a secure FL protocol each node must query the RO.

In [62], Impagliazzo and Rudich showed that there can be no secure black-box construction
of key agreement (KA) from a random oracle. They argued that if any such KA construction
is secure, then it must also be secure in a relativized world where every party has access to
a random oracle RO, and a PSPACE oracle. (A PSPACE oracle solves any ‘PSPACE-complete
problem, e.g., True Quantified Boolean Formulae (TQBF).) Intuitively, in this (PSPACE,RO)
world, every computation is easy to invert except for those computed by the RO. They obtain
their result by showing, for every possible black-box construction of KA from a random oracle,
that there exists an efficient algorithm (relative to (PSPACE,RO)) that breaks the security of
KA. Using the same reasoning, any secure black-box FL protocol constructed from a RO must
remain secure even relative to a (RO,PSPACE) oracle. Then, to obtain our result, it suffices to
exhibit an efficient algorithm (relative to (PSPACE,RO)) that breaks security of any black-box
FL protocol where one node does not call RO. We do this below.

We will use the notion of an exchange to denote a data packet and all the FL-protocol-
related messages associated with that packet. Because our game is sequential (see Section 4.2),
Alice’s must decide to localize a link ` or output

√
before the next exchange begins. Let

〈Ri−1, Ri〉j denote the distribution of all messages sent and received along link (i− 1, i) during
the j’th exchange. We sometimes refer to these messages as a transcript for the j’th exchange.
Because we allow the nodes to keep state, this distribution may depend on what happened in all
previous exchanges, 〈Ri−1, Ri〉1, . . . , 〈Ri−1, Ri〉j−1. We now prove that a per-packet FL protocol
with 2r = O(log n) messages per exchange must invoke the random oracle at every node. We
assume that the number of messages per exchange is even, and that odd messages go from Ri−1

to Ri and even messages go from Ri to Ri−1.We note that protocols where number of messages
per packet grows with n are impractical and so “practical” protocols should use 2r = O(1)
messages per exchange. (See Remark 4.4.7 below on the possibility of extending this result to
statistical security and/or protocols with ω(log n) messages per exchange.)

Theorem 4.4.3. Fix a fully black-box per-packet FL protocol that uses access to a random oracle
RO, where at least one node Ri for i ∈ {2, . . . , I} never calls the RO and where the maximum
number of messages per exchange is O(log n). Then there exists an efficient algorithm relative
to (PSPACE,RO) that breaks the security of the scheme with non-negligible probability over the
randomness of RO and the internal randomness of the algorithm.

The proof of Theorem 4.4.3 is quite technical and is deferred to Appendix C.3. We sketch
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the proof, which resembles that of Theorem 4.4.1. Eve controls node Ri−1 and impersonates Ri,
but now auxi is secret, so Eve must first learn auxi:

1. Learning to impersonate. Sitting at Ri−1, Eve observes t exchanges (t is polynomial in n),
where Eve asks Source to transmit a uniformly random data packet. She then uses the
learning algorithm of Naor and Rothblum [83] to obtain a pair of impersonator algorithms
A′, B′, whose interaction generates a distribution over transcripts for the t+1’th exchange.
A′ impersonates nodes Alice, R1, . . . , Ri−1 and B′ impersonates nodes Ri, . . . , RK ,Bob.

2. Dropping and impersonating. On the t + 1’th exchange, for each message mj going from
Ri−1 to Ri, Eve computes a response herself mj+1 using algorithm B′ and returns mj+1 to
Ri−1; she does not send any messages to Ri. (More precisely, B′ samples mj+1 according
to the conditional distribution 〈A′, B′〉j+1 | 〈A′, B′〉j = (m1, ...,mj). Here 〈A′, B′〉j denotes
the first j messages of 〈A′, B′〉. Note that this sampling is efficient in the presence of a
PSPACE oracle.)

Now, Eve at Ri−1 will break security if she manages to use B′ to impersonate an honest exchange
during which link (i, i+ 1) is down. (This breaks security since link (i, i+ 1) is not adjacent to
Ri−1.) The crucial observation is that here, Eve need only impersonate node Ri, and that Ri does
not “protect” its secret keys by calling the RO. Intuitively, Eve should be able to impersonate
Ri since any computations that Ri does are easy to invert in the (PSPACE,RO) world. To
prove the theorem, we shall show that with non-negligible probability > (10/ρ)r = 1/poly(n),
the following are 1/100-indistinguishable: (a) Alice’s view when link (i, i + 1) is down and (b)
Alice’s view when Ri−1 drops a packet but impersonates link (i, i+ 1) being down using B′.

In the following, we define the statistical distance between two random variables X,Y as
∆(X,Y ) = 1

2

∑
x∈U |Pr[X = x]− Pr[Y = x]| where U is the union of the supports of X and Y

(for more background on statistical distance, see e.g., [50]).
Recall (Section 4.2) that Alice is allowed to use information from past exchanges to help

her decide how to send messages in new exchanges. Fortunately, the algorithm of Naor and
Rothblum [83] is specifically designed to deal with this, and guarantees the following:

Lemma 4.4.4 (Based on [83]). Relative to a (PSPACE,RO)-oracle, there exists an efficient algo-
rithm that observes at most t = O( n

ε4
) honest exchanges 〈Ri−1, Ri〉1,...,t and then, with probability

> 1 − ε, outputs efficient impersonator algorithms R′0, . . . , R
′
K+1 such that that an imperson-

ated transcript 〈R′i−1, R
′
i〉t+1 (given by simulating the interaction of all the impersonator algo-

rithms) for the exchange t+1 is distributed ε-close in statistical distance to the honest transcript
〈Ri−1, Ri〉t+1 for exchange t+ 1.

Suppose Eve obtained an A′, B′ where we let A′ be the collection of algorithms R′0, . . . , R
′
i−1

and B′ be the collection R′i, . . . , R
′
K+1that satisfy the guarantee above. Our first challenge is

that the Naor-Rothblum algorithm does not guarantee that A′, B′ generates an impersonated
transcript that is statistically close to the “honest” transcript of messages on (i− 1, i) when the
observer has access to the RO. (The “honest” transcript of messages on the link (i − 1, i) is
generated by interactions of honest Alice, R1, ..., RK ,Bob.) Fortunately, with probability ρr all
the messages sent from Ri to Ri−1 are computed without access the RO. This happens when
congestion causes link (i, i + 1) to go down for the duration of an exchange (so that Ri, who
never calls the RO, has to compute all his upstream messages on his own).

Our next challenge is that Eve has no control, or even knowledge, of when congestion causes
this event to occur. Indeed, the distribution generated by A′, B′ is only guaranteed to be close
to the honest transcript overall; there is no guarantee that it is close to the honest transcript
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conditioned on congestion on (i, i + 1).8 Fortunately, we can show that with probability
ρr, A′, B′ will generate a “useful” impersonated transcript that is ε/ρr-statistically close to the
honest transcripts conditioned on the event that link (i, i+ 1) is down. Eve does not necessarily
know when she impersonates a useful transcript; she simply has to hope that she is lucky enough
for this to happen.

The last challenge is that even when Eve is lucky enough to obtain a useful transcript, we
still need a guarantee that (a) conditioned on B′ generating a useful transcript, using B′ to
interact with the honest algorithm Ri−1 results in a transcript that is statistically close to (b)
the transcript between honest algorithms Ri−1 and Ri conditioned on link (i, i+ 1) being down.
Unfortunately, the Naor-Rothblum algorithm does not give any guarantees when an honest
algorithm interacts with an impersonated algorithm for more than 1 round. Thus, we prove
that, with probability at least (ρ/2)r, the impersonator algorithm B′ interacting with honest
Alice, ...Ri−1 still generates a useful transcript such that the statistical distance between (a) and
(b) is at most 1/100. (This assumes we take ε small enough; ε = (ρ/10)4r = 1/poly(n) suffices.)

We address these challenges in the next lemma, which we prove in Appendix C.3. We state
a general version of the lemma here, for which we first need a few definitions:

• Let A,B and A′, B′ be two (different) pairs of algorithms such that the statistical difference
between the transcripts 〈A,B〉 and 〈A′, B′〉 is bounded by ε. We assume a priori that
A,B can share randomness, say by accessing a common random oracle, and so can A′, B′.

• Let (〈A,B〉, viewA(〈A,B〉)) be the joint distribution of transcripts 〈A,B〉 and the internal
randomness of party A, which we call viewA (which includes both randomness that is
shared with B and independent randomness). For a fixed τ , we will let viewA(τ) be the
distribution of the internal randomness of A conditioned on outputting the transcript τ .

• To deal with interaction, we let 〈A,B′〉 = (m1, . . . ,mr) be the distribution over transcripts
where for each message mj sent by A is computed honestly, while each mj sent by B′ is
computed by pretending that the partial transcript so far σi = (m1, . . . ,mj−1) came from
the distribution 〈A′, B′〉 and sampling the next message mj consistent with 〈A′, B′〉; more
formally B′ samples mj according to the conditional distribution (〈A′, B′〉j | 〈A′, B′〉j−1 =
σj−1).9 Here 〈A′, B′〉j denotes the first j messages of 〈A′, B′〉.

We are finally ready for the statement of the Lemma.

Lemma 4.4.5. Suppose that ∆(〈A,B〉, 〈A′, B′〉) ≤ ε, and there exist events E1, . . . , Er over the
internal randomness of A,B such that (1) ∀j, conditioned on Ej, the first j messages from B
to A are independent of A’s internal randomness, and (2) Pr[Ej | Ej−1] ≥ ρ. Set ε = (ρ/10)4r,
Then there exist η ≥ (ρ/2)r, and distributions over the transcripts Y,Z such that 〈A,B′〉 is a
convex combination ηY + (1− η)Z and

∆((Y, viewA(Y )), (〈A,B〉, viewA(〈A,B〉) | Er)) ≤ 1/100

Lemma 4.4.5 tells us that, with probability η, 〈A,B′〉 will generate a “useful” transcript Y that is√
ε(10/ρ)r-statistically close to the honest transcript 〈A,B〉 conditioned on event Er occurring.

(Z is the “not useful” transcript that is generated with probability 1 − η.) We can now apply
Lemma 4.4.5 by setting:

• A to be honest algorithms R0, R1, . . . , Ri−1.
8For this reason, Eve cannot simply use R′i (instead of R′i, ..., R

′
K ,Bob′) to impersonate the honest Ri condi-

tioned on link (i, i+ 1) being down.
9In general this is not efficient, but it is efficient because in our setting Eve has access to a PSPACE oracle.
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• B to be honest algorithms Ri, . . . , RK+1.

• A′ to be the impersonator algorithms R′0, . . . , R
′
i−1 given by Lemma 4.4.5.

• B′ to be the impersonator algorithms R′i . . . , R
′
K+1 given by Lemma 4.4.5.

• Ej to be the event that link (i, i + 1) is congested for the messages 1, . . . , j that are sent
downstream from B to A. (Then, Er is the event that link (i, i+1) is down for the duration
of an exchange of length r = O(log n) messages.)

Now, notice that since Ri does not query the random oracle, conditioned on Ej the first j
messages of B are independent of A because they are computed by Ri only. Next, note that
Pr[Ej | Ej−1] = ρ because each message is lost to congestion independently.

To combine everything, set ε = (ρ/10)4r and apply Lemma 4.4.4 to find that with probability
at least ≥ (1 − ε) we get A′, B′ that is ε-close to 〈A,B〉 (notice that Eve is efficient with this
setting of ε). Conditioned on this happening, by Lemma 4.4.5 we get that with probability
(ρ/2)r = 1/poly(n), Eve is lucky enough to generate a useful transcript such that (a) the
view of Alice when Eve drops a packet at Ri−1 and impersonates using R′i, . . . , R

′
K+1 is 1/100-

indistinguishable from the situation (b) where link (i, i+ 1) is completely down for the duration
of an exchange. Since Alice should localize the same link in case (a) and (b) for all but a 1/100
fraction of the time, this breaks security since link (i, i+ 1) is not adjacent to Eve at Ri−1.

Statistical security.

Our lower bounds in the statistical setting are more subtle. First of all, from Chapter 3 the analog
of Theorem 4.4.2 also holds, showing that the entire system needs to “perform cryptography”.

Theorem 4.4.6 (From Chapter 3 ). The existence of a (α, β, δ)-statistically secure failure de-
tection scheme for constants α, β, δ implies the existence of an infinitely-often one-way function
(i.o.-OWF).

However, we run into trouble when we try to show that cryptography is required at each
intermediate node. It turns out that Definition 4.2.3 does not inherently require complexity-
based cryptography at intermediate nodes. We sketch a statistically secure FL protocol where the
intermediate nodes R1, . . . , RK use only information-theoretically secure primitives (although
Alice and Bob still use regular MAC’s). While this protocol is completely impractical in terms
of communication and storage overhead, we present it here to demonstrate the subtleties of
Definition 4.2.3.10

Remark 4.4.7 (Impractical “crypto-free” statistical FL protocol.). The protocol uses one-time
MACs (OTMAC), information-theoretic objects that have the same properties as regular MACs
except that they can only be used a single time. (OTMACs and can be constructed from universal
hash functions [23].) Each node Ri shares pairwise keys with Alice. All the intermediate nodes
and Bob store each packet that Alice sends to Bob. For each packet, Bob replies with an ack signed
using a regular MAC. At the end of the interval, Alice counts the number of acks that she either
fails to receive, or are invalid. The first time this count exceeds a β-fraction, Alice sends a “report
request” message that is signed using a OTMAC to R1, . . . , RK , RK+1. Each node R1, . . . , RK

10In concurrent work, Wong et al. [107] propose a statistical FL scheme where no cryptography is performed
during an interval. Instead, they precompute shared secrets that are appended to packets over the course of an
interval and are used guarantee security. The secrets must refreshed periodically, which requires cryptographic
participation by the intermediate nodes. This contrasts with the impractical scheme we describe here, which truly
never requires any intermediate node to perform crypto.
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responds with a report of every single packet they have witnessed, that is “onion signed” using
the OTMAC (as in Section 4.3.1). Alice uses these reports in the usual way to localize link `
adjacent to Eve. From this point onwards Alice simply counts valid acknowledgments from Bob,
and blames link ` each time the count exceeds a β fraction.

The protocol satisfies Definition 4.2.3 because the probability that the failure rate at any link
exceeds β by congestion alone is negligible. Since we do not allow Eve to move during the
security game, if Alice successfully localizes Eve to link ` once, it means it must have been
Eve’s fault, and so from then on Alice can always blame all failures on link `. As noted above,
similar “impractical” protocols exist for per-packet protocols with ω(log n) additional messages
per packet (since all ω(log n) messages are lost to congestion with only negligible probability),
except that we replace the idea of “exceeding β fraction of failures” with “losing an entire
exchange due to congestion”. We may interpret this as follows:

1. It is unreasonable to assume that the failure rate at a link exceeds β only due to adversarial
behavior (i.e., Eve). For example, occasionally congestion might spike, or a router might
malfunction or go down due maintenance, causing more than a β-fraction of packets to
be dropped. If we assume such events happen with non-negligible probability, we can
adapt the proof of Theorem 4.4.2 to show that cryptography is necessary at intermediate
nodes for statistical security. As a corollary, if Eve can control congestion at links she does
not occupy, then we need cryptography at every intermediate node. Our FL protocols
remain secure even under the strongest such definition, where the failure rate on a link
not occupied by Eve can exceed β.

2. We can take this issue outside of our model. If we say that it is reasonable that Eve
cannot move during the security game, and that the failure rate cannot exceed β on a
link that Eve does not control, then, as we showed above, there exist protocols where
the intermediate nodes do not use complexity-based cryptography. However, we must be
cognizant that in the real world there can be multiple adversaries that we would like to
localize correctly, or the adversary may be able to move from one link to another. If
protocols that do not use cryptography at intermediate nodes are to remain secure after
Eve moves (and learns the key of previous nodes she occupied), then the keys at each node
should be refreshed periodically. This key refresh process would require each intermediate
node to use cryptography.

4.5 Open problems

We gave lower bounds on the key-management and cryptographic overhead of secure FL proto-
cols. While our statistical FL protocol based on sketching requires fairly small storage overhead,
the interesting problem of bounding the storage requirements in an FL protocol is still open.
Furthermore, our results here only apply to FL on single symmetric paths between a single
sender-receiver pair. An interesting question would be to consider FL for asymmetric paths,
where the packets Bob sends back to Alice may take a different path than the packets that
Alice sends to Bob. Another direction is to consider FL in networks where packets can travel
simultaneously on multiple paths, as in the SMT framework [32]. Recently, Amir et al. [8] pre-
sented a protocol for this setting, that optimizes for low communication overhead. Designing
such protocols that optimize for low storage and computational overhead remains an interesting
open question.
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Appendix A

Honest Path Announcements in
BGP

A.1 Formalizing “No Incentive to Lie”

As we mentioned several times in the text, the formal notion of “no incentive to lie” that we
use for some of our positive results is different from “incentive compatibility in ex-post Nash
equilibrium” that was used in prior work; see [87]. Here we explain this difference in more detail.

A.1.1 Ex-Post Nash

The notion of ex-post Nash equilibrium expands upon the usual Nash equilibrium to distributed
settings, where players may not have full information on each other’s preferences. Below we let
θi denote the private information of node i. (In our setting, this consists of the node’s valuation
and attraction functions.)

Let si(θi) be a strategy for node i; which takes as input i’s private information and then
describes the actions that node i takes in each round of the game. (For example, a BGP-
compliant strategy was described in Definition 2.2.1.) A strategy profile s = (s1, s2, . . . , sk) is a
tuple consisting of one strategy si for each node i. Together with the private inputs θ of all nodes
and a particular schedule t, such a strategy profile s determines a particular execution of the
interdomain routing game. Below we denote by gt(s(θ)) the outcome of this execution. (This
notation assumes that the execution converges to a stable outcome; otherwise we arbitrarily
define the outcome as the first non-transient global state in this execution.)

We say that the strategy profile s is an ex-post Nash equilibrium if for each node i, every
possible alternate strategy s′i that i could have, every fair schedule t, and for all possible values
of the private information θ = (θ1 . . . θk), it holds that

ui(gt(s1(θ1), . . . , si(θi), . . . , sk(θk)))
≥ ui(gt(s1(θ1), . . . , s′i(θi), . . . , sk(θk))),

In other words, a strategy profile s is in ex-post Nash equilibrium if, regardless of the un-
derlying private information of all other nodes, each node i obtains at least as great a utility by
executing strategy si contained in s rather than some other strategy s′i. This is much stronger
than a Nash equilibrium, in which nodes are assumed to know the private information of other
nodes, and weaker than a dominant-strategy equilibrium, in which nodes have a single strategy
that is best to execute regardless of the other players’ strategies (and not just their private in-
formation). Dominant-strategy equilibrium appeared in some of the initial work on mechanism
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design and routing [84, 36]. Ex-post Nash equilibrium, as in [37, 39, 73], can be used to capture
rational specification faithfulness. If we let the strategy profile s contain the strategies that nodes
“follow a protocol as specified,” then showing that s is an ex-post Nash equilibrium amounts to
showing that nodes have no incentive to unilaterally deviate from following the protocol.

We note that ex-post Nash equilibrium does not address deviations by more than one node,
although the topic of collusion-proof ex-post Nash equilibrium is addressed in [39,73].

A.1.2 Partially-Specified Strategies

As defined above, ex-post Nash equilibrium requires that all nodes follow a fully-specified strat-
egy profile. In our setting, this means in particular that all the actions of the nodes (including
their filtering policies) must be spelled out in this strategy profile. We stress that this require-
ment goes well beyond requiring that all nodes comply with the BGP specification [92]. In
particular, a BGP-compliant implementation allows node to use arbitrary ingress and egress fil-
tering (as long as the select paths based on their ranking functions), but such arbitrary filtering
is not consistent with the strategies in prior work [37,39,73].

Insisting that all nodes follow a fully-specified strategy-profile may not be realistic in large
distributed systems, where protocols are only partially specified and many options are left for
the individual implementations. (Indeed, avoiding over-specification is crucial for RFCs; see [19,
§6].) We therefore describe BGP-compliance in Definition 2.2.1 as a property of a strategy (or,
equivalently, as a “set of allowed strategies”).

A.1.3 Solution Concepts

Extending the formal treatment to a set of strategy allows one to define a variety of solution
concepts. Below we mention two such concepts that are used in our paper.

Ideally, one would have wanted to augment the notion of ex-post Nash, allowing also part
of the strategy itself (e.g., the export rules) and not just the valuation and attraction functions
to be treated as private inputs. Namely, we would have liked to have a single (fully specified)
strategy profile, such that every node i has an incentive to follow its strategy even when other
nodes do not follow theirs, as long as all nodes follow “allowed strategies”. Hence, this notion lies
somewhere in between ex-post Nash and a dominant-strategy (and in particular it implies the
standard ex-post Nash concept). We note that our positive result for traffic-volume attraction
in Theorem 2.4.1 actually meets this strong solution concept. (The positive result for customer
attraction in Theorem 2.6.1 achieves a similar concept, but that result is significantly weaker
since it only addresses stable outcomes.)

Unfortunately, for the case of “generic attractions” in Theorem 2.5.1 we are not able to
achieve this strong solution concept. In fact, for that case we cannot even show a standard
ex-post Nash result. Instead, we settle for a very weak notion of solution, showing only that for
every node there exists an “allowed strategy” that is optimal. Following Lavi and Nisan [70],
this concept can be called Set ex-post Nash, and is defined thus:

A set profile S = (S1, . . . , Sk) (one set for every player) is Set ex-post Nash equilibrium if for
every node i and every profile of fully specified strategies for the other nodes s1 . . . si−1, si+1 . . . sk
(with sj ∈ Sj for all j), there exists s∗i ∈ Si such that

ui(gt(s1(θ1), . . . , s∗i (θi), . . . , sk(θk)))
≥ ui(gt(s1(θ1), . . . , s′i(θi), . . . , sk(θk))),

for every possible alternate strategy s′i that i could have, every fair schedule t, and for all possible
values of the private information θ = (θ1 . . . θk).
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We emphasize that this solution concept only states that the “optimal” strategy s∗i for node i
exists in Si, without specifying exactly how to find it. Furthermore, this condition does not
necessarily yield a single (fully-specified) strategy profile s that is an ex-post Nash equilibrium,
since the optimal strategy s∗i for node i may change depending of the strategies of the other
players.

A.2 Proofs: Useful Lemmas

Lemma A.2.1 (False path lemma). Consider an execution of the routing protocol where all
the nodes in the AS graph except perhaps a single manipulator node m follow BGP-compliant
strategies, and assume that this execution converges to a persistent outcome M . If any node
n 6= m announces a false path P in M ( i.e., P differs from the data-plane path that n uses in
M), then P must be of the form P = nRmQd where nRm a true path and mQd is a false path.

Proof. Denote the path that n announces by n = arar−1 . . . a1a0 = d. Let ai be the closest
node to n on this path that announces to ai+1 something other than aiai−1P where ai−1P is
the announcement that ai receives from ai−1. Since this is not consistent with a BGP-compliant
strategy, we conclude that necessarily ai = m. Hence m must be on the path that n announces
in this execution. Let i∗ be the last occurrence of m on this path (namely m = ai∗ and m 6= aj
for j > i∗). Then for every j > i∗, aj uses a BGP-compliant strategy so it follows that aj
announces to aj+1 the path ajaj−1 . . . a0, and moreover aj uses aj−1 as its next-hop in the data-
plane path in T . It follows that the data-plane path of n begins with n = arar−1 . . . ai∗ = m.
Thus, denoting R = ar−1 . . . ai∗+1 and Q = ai∗+1 . . . a0, we have that nRm is a true path, and
since by assumption n announces a false path it follows that mQd must therefore be a false
path.

Next, we define a useful concept, called permitted path. Informally, a permitted path is a
path that is not (ingress or egress) filtered by any node on that path.

Definition A.2.2 (Permitted paths). Consider an AS graph where all nodes use BGP compliant
strategies. We say that a path P is permitted if it is admitted at all the nodes in it, and moreover
every node in it exports it to the next node.

Note that if all nodes use BGP compliant strategies then any data-plane path must also be
a permitted path.

Our proofs rely heavily on the following lemma, due to Feigenbaum et al. [39].

Lemma A.2.3 ( [39, Lemma 14.8]). Consider an AS graph where all nodes use BGP-compliant
strategies that obey consistent export, and where the ranking functions of all nodes are policy-
consistent and contain no dispute wheels.

Then there is a unique globally stable outcome T that the protocol must converge to, and
moreover T is locally optimal at all nodes in terms of the ranking functions. Namely: for any
permitted path nSd in the network, the node n is assigned in T a data-plane path nRd such that
rn(nRd) ≥ rn(nSd).

For self-containment, we re-prove this lemma here.

Proof. Since the ranking contain no dispute wheel and all nodes use BGP compliant strategies,
it follows from [53] that there exists a unique globally stable outcome T to which the protocol
converges. It remains to show that T is locally optimal at all nodes.
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Figure A.1: Case 2 of the induction step in the proof of Lemma A.2.3.

Let ar → ar−1 → . . . a0 = d be any permitted path in the graph, and for every node ai on
this path we denote by Si the sub-path ai → . . . a0. We will prove by induction over i, that each
node ai is assigned in T a path which is ranked at least as high as Si.

Base case. The case i = 0 is trivially true, because the only path for a0 = d is the empty
one.

Induction step. Assume that for all j < i it holds that the path assigned to aj in T
(which we denote Tj) is ranked at least as high as Sj , namely raj (Tj) ≥ raj (Sj). (This implies
in particular that aj is assigned some path in T .) We now prove for ai.

Note that ai−1 is willing to export Si−1 to ai (since we said that S was permitted), and
therefore it must also announce Ti−1 to ai because of consistent export. We have two cases:
either the path Ti−1 goes through ai, or it does not.

1. If Ti−1 does not go through ai then from policy consistency and rai−i(Ti−1) ≥ rai−i(Si−1)
we get that also

rai(aiTi−1) ≥ rai(aiSi−1) = rai(Si)

Hence ai has an available path that is ranked at least as high as Si, and therefore must
choose one such highly-ranked path in T .

2. Assume now that the path Ti−1 does go through ai. We depict this case in Figure A.1.

Denote the longest common prefix of the paths Ti−1 and Si−1 by Raj = (ai−1 . . . aj+1)aj
(note that R may be empty). Namely, we have Ti−1 = RajQ, Si−1 = RajQ

′, and the
first nodes in Q,Q′ differ. (In other words, the node aj is the first node on the path Si−1

that uses a different next-hop in Si−1 and Ti−1.) Since Ti−1 goes through ai but Si−1

does not, it means that ai must be somewhere on the sub-path Q, so we can re-write
Ti−1 as Ti−1 = RajR

′aiR
′′d, where Tj = ajR

′aiR
′′d is the path assigned to aj in T (and

Ti = aiR
′′d is assigned to ai in T ).

By the induction hypothesis we have that raj (Tj) ≥ raj (Sj), but since aj uses different
next-hops in Tj , Sj then the inequality must be strict. It must therefore be the case that
rai(Ti) ≥ rai(Si), or else we have a (2-pivot) dispute-wheel between ai and aj : ai prefers
Si = ai . . . aj . . . a1d over Ti = aiR

′′d, and aj prefers Tj = ajR
′aiR

′′d over Sj = aj . . . a1d.
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A.3 Proofs: Volume Attractions

We now prove Theorem 2.4.1.
Theorem 2.4.1 Consider an AS graph where the valuation functions contain no dispute

wheels. Suppose that all nodes, except a single manipulator node m, use BGP-compliant strate-
gies and set their ranking equal to their valuations (rn(·) ≡ vn(·) for every node n). Suppose
further that m has a traffic-volume attraction function, and that at least one of the following
two conditions hold:

a. The valuations function of all nodes are next-hop and the export functions of all the nodes
but m obey all-or-nothing export; or

b. The valuations function of all nodes are policy consistent, the export functions of all the
nodes but m obey consistent export, and the network has path verification.

Then there is a BGP compliant strategy for m that sets rm(·) ≡ vm(·) and obeys all-or-nothing
export (and therefore also consistent export), such that this strategy is optimal for m. In partic-
ular setting rm(·) ≡ vm(·) and using export-all rule is one optimal strategy.

Proof. Consider an arbitrary strategy for m and denote by M any persistent outcome of the
protocol (which need not be globally stable, see Section 2.3.1). We assume that um(M) > −∞
(or else any BGP-compliant strategy for m will do).

Now consider a BGP compliant strategy for m where rm(·) ≡ vm(·), and m exports-all on
every edge on which it announces a simple path in M . The rest of m’s export policy can be
arbitrary, as long as it complies with consistent export. Clearly this strategy is BGP compliant
and obeys consistent export, and moreover when m uses this strategy then the ranking functions
of all nodes are policy-consistent and contain no dispute wheels (since they are set equal to the
valuation functions). We can therefore apply Lemma A.2.3 to conclude that there is a unique
globally stable outcome T , which is locally optimal at all nodes with respect to the ranking
functions. We now prove that the utility of m in T is at least as high as in M . A crucial
observation (that we prove in Lemma A.3.1 below), is that for every node n, the data-plane
path of n in T has valuation at least as high as any control-plane announcement that n receives
in M . We can now show that um(T ) ≥ um(M).

• From the crucial observation Lemma A.3.1, we know that the valuation of m in T is at
least as high as in M (since m routes in M on some path that was announced to it). Thus
vm(M) ≤ vm(T ).

• Next we show that every node routing through m in M must also route through it in T ,
and so αm(M) ≤ αm(T ). To do this, fix some path R = (nrnr−1 . . . n0 = d) that does
not go through m in T . We prove by induction on i that each of the nodes ni use the
same path also in M . The base case n0 = d this is trivial. For the induction step, assume
now that every nj with j < i uses the same path in T and M . We prove this is also the
case for ni. Denote the path that ni−1 uses in T and M by Ri−1. Since ni−1 6= m then
we know that ni−1 exports the path Ri−1 to ni also in M . From the crucial observation
Lemma A.3.1, we also know that Ri−1 is at least as good as any path which is announced
to ni in M (since ni is in a persistent state). Further, Ri−1 must be strictly better for ni
than any path that does not have next-hop ni−1. Hence ni will choose the path ni−1Ri−1d
in M as well, and we have completed the induction step.

Thus, since um(·) = vm(·)+αm(·), we have that um(T ) ≥ um(M), and Theorem 2.4.1 follows.
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Figure A.2: The proof of Theorem 2.4.1

Lemma A.3.1 (Crucial Observation). Consider an AS graph where the valuation functions
contain no dispute wheels, where one node m uses an arbitrary strategy and all other nodes use
some BGP-compliant strategies with rn(·) ≡ vn(·). Let M denote an outcome of the routing
protocol in this network and assume that um(M) > −∞ (M is a globally persistent outcome, but
need not be globally stable).

Consider further a BGP-compliant strategy for m where rm(·) ≡ vm(·) and m exports-all
on every edge on which it announces a simple path in M . The rest of m’s export policy can be
arbitrary, as long as it complies with consistent export. Let T denote the unique globally stable
outcome of the protocol in this modified network.

Finally, assume that at least one of the following two conditions hold:

a. The valuations function of all nodes are next-hop and the export functions of all the nodes
but m obey all-or-nothing rule; or

b. The valuations function of all nodes are policy consistent, the export functions of all the
nodes but m obey consistent export, and the network uses path verification.

Then for every node n in the network, vn(T ) is at least as high as the valuation of any path
announcement that n receives in M .

Proof. Let R be a path announcement that a node n receives in M , and assume that vn(nR) >
−∞ (otherwise there is nothing to prove). This means that nR is a simple path that reaches the
destination, so we can denote it by R = nr−1 . . . n1n0 with n0 = d (and we also denote n = nr).
In the rest of this proof, we show that there must exists a path nS which is permitted in the
network where m uses the BGP-compliant strategy above, such that vn(nS) ≥ vn(nR). Then,
if we apply Lemma A.2.3 to the permitted path nS, it follows that the path assigned to n in T
has valuation at least as high as vn(nS) ≥ vn(nR) and Lemma A.3.1 follows.

First, notice that if the manipulator m is not on R then the path nR itself is permitted in
the “BGP compliant network” and we are done. Now assume that m = nj for some j ≤ r − 1.
Since we assumed that um(M) > −∞ then m has some data-plane path to the destination in M ,
and we denote this path by mQ. Note that mQ is a data-plane path that includes only honest
nodes, so it must be permitted in the “BGP compliant network”. We now consider separately
the two cases in the lemma statement.
Case a: next-hop policy and all-or-nothing export. There are two sub-cases: either mQ
goes through n, or it does not.



101

• Suppose mQ does not go through n. Let t be the highest index (j ≤ t < r) such that
the path mQ goes through nt, and denote the portion of mQ from nt and on by ntS.
Thus S is a data-plane path that does not go through nr = n and does not go through
nj = m. (See Figure A.2.) Hence nr . . . ntS is a simple path, and by next-hop policy it
holds that vn(nr . . . ntS) = vn(nr . . . nt . . . n0) = vn(nrR). Thus we have proved that the
path nr . . . ntS is ranked at least as high as nR. It remains to prove that it is permitted.
We have two sub-cases: either m = nt or not.

m = nt. In this case, we have t = j and Q = S. Then all the nodes nj+1 . . . nr−1

must be honest and since nr receives the announcement nr−1 . . . n1n0 then m must have
announced something to nj+1 in M . By construction, m must export all on this link in its
BGP compliant strategy. Also the path mS is admitted at m (since m has ranking more
than −∞), and so mS = nR is a permitted path as required.

m 6= nt. In this case m is not on the path nr . . . ntS. We prove by induction that each
honest node ni admits and exports the path nini−1...S in M .

As a base case, nt uses the data-plane path ntS by construction, and thus ntS must be
permitted. Furthermore, since nt exports a path to nt+1 in M , from all-or-nothing export
we have that nt is willing to export ntS also in M . For the induction step, suppose that
ni−1 admits and exports ni−1...ntS to ni. Since ni uses next-hop policy, we have that
vni+1(nini−1...ntS) = vni+1(nini−1...nt...d). Since ni exported a path to ni−1 in T , from
all-or-nothing export we have that ni is willing to export nini−1...ntS also in M .

Thus our induction has shown that the path nnr−1...ntS in M is permitted (since all the
nodes on that path admit it and are willing to export it), and moreover that nrnr−1...ntS
is ranked at least as high as nrnr−1...n1d = nR as required.

• Suppose mQ does go through n. Then denote mQ as mS′nS. Now nS is permitted since
it is a data-plane path, and nS must have higher ranking than nR since (because n is in a
persistent state) n received the announcement R but is routing in the data-plane over nS.

This concludes the proof for the setting of next-hop policy and all-or-nothing export.
Case b: policy-consistency and path verification. Due to path verification, we know
that the path R is admitted and exported by all the “honest nodes” ni 6= m and therefore these
nodes admit it and export it also in T . Also, by the way that we defined the ranking and export
functions of m we know that IF vm(mnj−1 . . . n0) > −∞ then also m will admit and export this
path in T (and again we have that nR is permitted).

It is left to consider the case that vm(mnj−1 . . . n0) = −∞, namely the case where m an-
nounces in M a path that is not admitted by its valuation function. Again, let t be the highest
index (j ≤ t ≤ r) such that the data-plane path mQ that m uses in M goes through nt, and
denote the portion of mQ from nt and on by ntS (so S does not go through nj = m). (See Fig-
ure A.2.) We now show that the valuation vnt(ntS) must be at least as high as vnt(ntnt−1 . . . n0).

• If nt = nj = m (so mQ and ntS is the same path) then this follows from the fact that
vm(mQ) > −∞ = vm(mnj−1 . . . n1d).

• If m 6= nt then we re-write the path mQ as mS′ntS, and notice that we must have
vnt(ntS) ≥ vnt(nt . . .mnj−1 . . . n0), or else we have a dispute wheel between nt and m
(since vm(mS′ntS) > vm(mnj−1 . . . n0) = −∞).

Now consider the path nrnr−1 . . . ntS. This is a simple path, and we just showed that vnt(ntS) ≥
vnt(ntnt−1 . . . n0). From policy consistency it follows that also for each ni, t+1 ≤ i ≤ r, the path
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ni . . . ntS has ranking at least as high as nini−1 . . . n1 (and therefore also valuation at least as
high), since each ni exports the path nini−1 . . . n1 to ni+1 in T it follows from consistent export
that ni exports ni . . . ntS in M . Hence nrnr−1 . . . ntS is a permitted path with valuation in n
at least as high as nR, as needed. This concludes the proof for the setting of policy consistency
and path verification.

A.4 Proofs: Generic Attractions

Theorem 2.5.1 Consider an AS graph where the valuation functions are next-hop and con-
tain no dispute wheel. Suppose that all nodes, except a single manipulator node m, use BGP-
compliant strategies where they set their ranking equal to their valuations (rn(·) ≡ vn(·) for
every node n), and obey all-or-nothing export. Suppose further that the network uses either loop
verification or path verification. Then there exists a BGP compliant strategy for m that uses
rm(·) ≡ vm(·) and obeys all-or-nothing export, which obtains the best possible globally stable
outcome in terms of the utility function of m.

Proof. Let M be a globally stable outcome that is obtained by an arbitrary (possibly cheating)
strategy for m. We again assume that um(M) > −∞, or else there is nothing to prove. In
particular this implies that m has a data-plane path to d in M . Also, by the discussion in
Section 2.2.3 we can assume without loss of generality that m has a single outgoing link in M .

Consider a BGP compliant strategy for m where rm ≡ vm and m exports-all on every edge
on which it announces a simple path in M , and exports nothing on every other edge. Clearly
this strategy is BGP compliant and obeys all-or-nothing export, and moreover when m uses
this strategy then the ranking functions of all nodes are next-hop (and therefore also policy-
consistent) and contain no dispute wheel (since they are set equal to the valuations). This is
exactly the setting of Case b of the crucial observation Lemma A.3.1, so we know that there is a
unique globally stable outcome T such that for every node n in the network, the path assignment
of n in T has valuation at least as high as any path-announcement that n receives in M . In
particular, it follows that vm(T ) ≥ vm(M) (because m routes in M on some path that was
announced to it). Since um(·) = vm(·) + αm(·), it only remains to show that αm(T ) ≥ αm(M).

Assume to the contrary that we have αm(T ) < αm(M). We prove a sequence of statements
that imply that some other node b must have raised an alarm, because it receives a path an-
nouncement of the form QbR where b did not announce the path R, and where m is on path
Q. This contradicts either path verification (since b receive an announcement containing a path
through b that b did not announce) or loop verification (where the utility of m is set to −∞
when such an alarm is raised).

Claim A.4.1. There is a node c that (1) routes through m in M , (2) uses a different outgoing
edge in M than in T , (3) every node that routes through c in M uses the same outgoing link in
T and M .

Proof. We assumed towards contradiction that m gained an attraction in M , αm(M) > αm(T ),
which implies that the subtree of m in M cannot be contained in the subtree of m in T , namely
M(m) 6⊆ T (m). Hence, there exists some node that routes through m in M and uses a different
next hop in M than in T .

Denoting m = c0, we continue to find nodes ci(i ≥ 1) as follows: For each node ci, if there
are nodes that route through ci in M and use a different next-hop in M than in T , then we let
ci+1 be one such node. We repeat this process until we reach a “last node” c such that every
node that routes through c in M uses the same next-hop in T and in M .
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Figure A.3: The proof of Theorem 2.5.1

Observe that we must reach such “last node” since otherwise we will eventually repeat a node,
say node cr. But since each ci routes through ci−1 then repeating a node means that we have
a routing loop in M , and since all these nodes route through m and all of them (including m)
have just one outgoing link, it follows that m is part of this routing loop, so in particular m
does not have a path to the destination in M and um(M) = −∞.

It follows by definition that this “last node” c satisfies items (1) through (3) in the claim
assertion.

Claim A.4.2. Node c has a data-plane path to d in T .

Proof. We again use the crucial observation Lemma A.3.1 to establish that the path assignment
of c in T is ranked at least as high as any announcement that node received in M . In particular c
is routing through m so it must have received an announcement with rank higher than −∞ in
M , so it must have a path with rank higher than −∞ also in T .

Denote the data-plane path of c to d in T by nr . . . n1n0 (with c = nr, d = n0), and we
distinguish two cases: either nr−1 has a data-plane path to d also in M or it does not.
Case 1: nr−1 has a data-plane path to d in M . Observe that nr−1 does not route through
nr = c in M , since it does not route though c in T , and we chose c such that M(c) ⊆ T (c) (i.e.,
every node that routes through it in M uses the same next-hop in T as in M).

Next we claim that nr−1 announces some simple path to nr in M . Observe that nr−1 exports
some path to nr in T . If nr−1 = m, then by construction it only exports paths in T on edges
on which it announces some simple path in M , so we know that it must have announced some
simple path to nr in M . On the other hand, if nr−1 6= m then it uses all-or-nothing export
rule, and since we assume that it has a path in M and we know that it exports a path in T , it
follows that it must export some path also in M (which must be simple since only simple paths
are announced by BGP-compliant strategies).

Let nr−1Rd be the path that nr−1 announces to nr = c in M . Next, we claim that the path
nrnr−1Rd contains a loop. Suppose it did not. Then by next-hop ranking we would get that
rnr(nrnr−1Rd) = rnr(nrnr−1 . . . n0). But we know that the path nrnr−1 . . . n0 is the T path of
nr = c, so from the crucial observation Lemma A.3.1 we know that nrnr−1Rd must be ranked
at least as high as any announcement that c received in M . By construction c uses a different
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next-hop than nr−1 in M , and thus it follows that the path the that c uses in M is ranked
(strictly) lower than the path nrnr−1Rd. Now, since we assume that c = nr is stable in M , it
follows that c = nr would have chosen to route through nr−1 also in M . This contradicts the
fact that c indeed chose a different next-hop than nr−1 in M , and hence we conclude that the
path nrnr−1Rd contains a loop.

However, we argued above that the path nr−1Rd is simple. Thus, only way that nrnr−1Rd
could contain a loop is if c = nr itself appears somewhere on the path nr−1Rd. But we argued
above that nr−1 does not route through c = nr in T , so the path nr−1Rd is a false path.
By the false-path lemma (Lemma A.2.1) it follows that this announced path has the form
nr−1SmS

′nrS
′′d (since from the false path lemma S is a true path and mS′nrS

′′d is a false
path, and c = nr must appear on the false path).

Next, observe that the S′′ portion of the announced path cannot include m (since m appears
before c = nr and nr−1SmS

′nrS
′′d is a simple path). But c = nr routes through m in M , and

so invoking the false path lemma again implies that c must have announced some path that goes
through m. It follows that c = nr did not announce the path nrS′′d, and so upon obtaining the
announced path mS′nrS

′′d from nr−1, c = nr would detect a false loop and raises an alarm.
Case 2: nr−1 has no path to d in M . Here we denote by ni the node closest to c = nr
on the T path (but not c itself) that does have a data-plane path to d also in M . We know
that such ni exists, since in particular d has the empty path to d in M . By definition of ni, we
have that ni+1 does not have any data-plane path to the destination in M . This implies (1) that
ni+1 6= m (since m has a path to d in M), (2) that ni+1 does not use the same next-hop in M
as it does in T , and (3) that ni does not route through ni+1 in M .

Again, we argue that ni must announce a simple path to ni+1 in M , since it announces some
path to ni+1 in T . The argument is the same as in the previous case: either ni = m where this
follows by construction, or ni 6= m where it follows from the all-or-nothing export and the fact
that ni has a data-plane path in M .

Also, we denote the path that ni announces to ni+1 by niRd, and again argue that although
this is a simple path, the path ni+1niRd must include a loop, or else ni+1 would have chosen
it in M rather than having no data-plane path at all. (This follows because any path with
next-hop ni must be admitted at ni−1 due to next-hop policy, and from the assumption that
ni+1 is stable in M .)

As in the previous case, we conclude that the announcement niRd must include ni+1. How-
ever, we argued above that ni does not route through ni+1 in the data plane. Thus, we have that
niRd is a false path, and so combining this observation with the false-path lemma Lemma A.2.1
tells us that it is of the form niSmS

′ni−1S
′′d. But ni−1 did not announce the path ni−1S

′′d
(since it has no data-plane path in M , and so it does not announce anything in M). Hence,
ni+1 must raise an alarm upon receiving the announcement niRd from ni.

A.5 Proofs: Gao-Rexford Networks

Before we start, we need the following useful concept:
Transitive customers. A node b is a strict transitive customer of node c if b is connected
to c via a path consisting of only customer-provider links as in the right half of Figure A.4. We
also restate here a simple, useful lemma of the Gao-Rexford conditions proved by Gao, Griffin
and Rexford in [41].

Lemma A.5.1 (Transitive customers [41, Theorem VII.4]). If either the path P = abRc or the
path P ′ = cR′ba is permitted, and if node a is not a customer of node b, then node c is a strict
transitive customer of node b over the permitted path.
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We remark that even if not all the nodes in the AS graph use BGP-compliant strategies,
Lemma A.5.1 still holds as long as all the nodes on the permitted path (except perhaps the
last one, closest to the destination) use BGP-compliant strategies that obey the Gao-Rexford
conditions.

We now prove the following helper lemma that we use to derive a contradiction in Theo-
rem 2.6.1:

Lemma A.5.2. Consider an AS graph (that obeys GR1) where all nodes, except perhaps a
single manipulator node m, use BGP-compliant strategies that obey the Gao-Rexford conditions
( i.e., rankings obey GR3, export obeys GR2) Let T be the unique globally stable outcome when
m follows some BGP-compliant strategy that obeys the Gao-Rexford conditions, and let M be a
globally stable outcome that results from some other arbitrary strategy of m.

If there is a node a in the network such that (1) a is a strict transitive customer of the
manipulator m, (2) a uses a different path in M than in T , and (3) the destination d is a strict
transitive customer of a along a’s path in T . Then there is a different node a′ 6= a which is a
strict transitive customer of a, such that a′ also satisfies the conditions (1)-(3).

Proof. Since a is a strict transitive customer of m, and the destination d is a strict transitive
customer of a on a’s T path, then the Topology condition GR1 implies that m cannot be on the
path of a in T . Denote by b the node closest to the destination along ai’s path in T that uses a
different path in M than in T (we know that such a b exists since in particular node a is such a
node), and denote the paths of b in T and M by bQ1d and bQ2d, respectively.

Since all the nodes on the path Q1d are honest and they all use that path in M , it follows
that b must have received an announcement Q1d from the first hop on that path in M , (and
since M is a persistent outcome) and yet it chose a different path in M . We conclude that b’s
ranking has rb(M) > rb(T ). And since b’s next hop in T is a customer, the Preferences condition
GR3 implies that b’s next hop in M must also be a customer. Applying Lemma A.5.1 we get
that (a) node m cannot be on the path bQ2d, or else it would have to be a strict transitive
customer of b and we would have a customer-provider loop; and (b) since m is not on bQ2d then
the destination is a strict transitive customer of b along this path.
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Let node a′ be the node closest to the destination along the path bQ2d that uses a different
path in M than in T (again, we know it exists since b is one such node). Denote the paths of a′

in T and M by a′R1d and a′R2d, respectively. It follows that the path R2d is also in the path
assignment T . Notice that a′ is also a strict transitive customer of the manipulator m, and that
destination d is a strict transitive customer of a′ along the path R2d. Since all the nodes on the
path R2d uses this path also in T , and since a′ received an announcement for this path in M
(because it uses this path in M) then a′ must have received an announcement R2d in T also
(since T is a globally stable outcome). Yet a′ chose a different path in T . We conclude that the
ranking of a′ has ra′(T ) > ra′(M), which also implies that a′ 6= b.

Since ra′(T ) > ra′(M) and since the next hop after a′ on the path a′R2d in M is a customer
of a′, the Preferences condition GR3 implies that the next hop after a′ on the path a′R1d in T
must also be a customer. Then, we can apply Lemma A.5.1 to find that the destination is a
strict transitive customer of a′ along the path a′R1d in T .

We established that a′ satisfies the conditions (1)-(3), and we also know that b is a transitive
customer of a (or a itself), a′ is a strict transitive customer of b, and a′ 6= b. It follows that
a′ 6= a, since otherwise we would have a customer-provider loop in the graph.

We are now ready to prove the main result of this section.
Theorem 2.6.1 Consider an AS graph where the valuations are policy consistent and contain

no dispute wheels, and the valuations and attraction functions of all nodes obey the Gao-Rexford
conditions and AT4, and all attractees use next-hop policy with their providers and peers. Sup-
pose that all nodes, except a single manipulator node m, use BGP-compliant strategies that
obey consistent export and GR2 export, and moreover set their ranking equal to their valuations
(rn(·) ≡ vn(·) for every node n). Suppose further that the network has path or loop verification.

Then there exists a BGP compliant strategy for m that uses rm(·) ≡ vm(·) and obeys GR2
and consistent export, which obtains the best possible globally stable outcome in terms of the
utility function of m. In particular, setting rm(·) ≡ vm(·) and exporting all paths to customers
and no paths to providers and peers is one optimal strategy.

Proof. Let M be a globally stable outcome that results from some arbitrary strategy for m. We
assume M that um(M) > −∞ (or else any BGP compliant strategy for m will do).

Now fix a BGP compliant strategy for m where rm ≡ vm, and where m (i) exports all paths
to every customer that routes through it in M and (ii) exports no paths to nodes that are not
its customers. (Note that this export rule obeys GR2.) The rest of m’s export policy can be
arbitrary, as long as it complies with consistent export and with GR2.

Clearly this strategy is BGP compliant, and when m uses this strategy then the ranking
functions of all nodes contain no dispute wheels (since they are set equal to the valuation
functions). The results of Griffin et al. [53] imply that the protocol converges to a unique
globally stable outcome T . We prove next that the utility of m in T is at least as high as in M .

Our proof is by contradiction. We assume that um(M) > um(T ), and prove a sequence of
claims that together imply that the conditions of Lemma A.5.2 must hold in this graph. We
then repeatedly apply Lemma A.5.2 to show that the graph contains a customer-provider cycle,
and thus violates the Topology condition GR1.

Denote the data-plane paths of m to the destination in T and M by mR1 and mR2, respec-
tively.

Claim A.5.3. The is a node c that is an attractee of m that routes directly through m in M but
not in T .
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Figure A.6: Pictorial representation of the proof of Theorem 2.6.1

Proof. Since the data plane path R2 used by m in M is permitted at all nodes on R2, and since
all these nodes are honest (otherwise mR2 would not be a simple path, and um(M) = −∞)
know that mR2 is permitted also in T . Note that T satisfies all the conditions of Lemma A.2.3,
since all nodes use consistent export and set their ranking equal to their valuations (so the
rankings have no dispute wheel and are policy consistent). So we know that T is locally optimal
everywhere. In particular, since the data-plane path of m in M is permitted also in T (since it
only goes through honest nodes) then vm(T ) ≥ vm(M). But we assumed that um(M) > um(T ),
so we must have αm(M) > αm(T ), which means that m gained AT4 attraction in M that it did
not have in T .

Claim A.5.4. Node c has a data-plane path to the destination in T , and moreover rc(T ) >
rc(M).

(Note that this claim does not follow from Lemma A.2.3, since there could be paths that
are “permitted” in M but not in T : recall that m’s export policy in T dictates that it does
not announce anything to its providers and peers, whereas it is possible that m did announce
something to them in M .)

Proof. Assume toward contradiction that rc(T ) ≤ rc(M). Since c was defined as a node that
uses m as next-hop in M but not in T , then the inequality has to be strict. Since c is an
attractee of m (and therefore its customer), then c must use next-hop policy with m. Since c is
a customer that routes through m in M , then the export policy of m in T includes exporting all
to c. Since m is honest in T , we know that m announces to c the path mR1 that it uses in T .

If mR1 was a simple path, then from next-hop policy we have that rc(cmR1) = rc(cmR2) >
rc(T ), which contradicts the fact that c is stable in T (it should have chosen the better available
path cmR1). So we know that mR1 must have a loop in it, but mR1 is a simple path (being the
data-plane path of m), so it must be that c appears on that path (which in particular implies
that c has a data-plane path in T ). We can re-write the path that m takes in T as R1 = R′1cnQ,
as depicted in Figure A.6(a).

Since c is a customer of m, it follows from the Topology condition GR1 that m cannot
be a strict transitive customer of c along the path mR′1c. Hence there are adjacent nodes
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between m and c on the path R′1 (call them a, b) such that a is not a customer of b. Since
the path mR′1cnQd is permitted (because it is the data plane path in T ) and since all nodes
behave honestly in T , we can apply Lemma A.5.1 to conclude that d is a transitive customer
of b along this path. In particular it means that n is a customer of c. (Notice that this is
true even if n = d.) But this violates the Preferences condition GR3, since we assumed that
rc(M) = rc(cmR2) ≥ rc(cnQd) = rc(T ) where m is a provider of c and n is its customer.

From now on, let us denote the path of c to the destination in T by n0n1 . . . nt (where c = n0

and d = nt), and remember that c uses m as a next-hop in M but not in T , so n1 6= m.
From Claim A.5.4 we can also conclude that n1 6= d: Otherwise (d = n 6= m), the T -path dc

would be available to c also in M , and so c would take it (since we just proved that the T path
is ranked higher than then M path of c) and this would contradict the stability of c in outcome
M . Next we prove that m is not on the T -path of c.

Claim A.5.5. c does not route through m in T .

Proof. For the sake of contradiction, suppose that m is on the T -path of c, namely m = nj for
some 1 ≤ j ≤ t. This means in particular that m = nj exports some path to nj−1 in T , so
nj−1 is a customer of m. (Recall that m only export paths in T to its customers.) Applying
Lemma A.5.1 we find that c is a strict transitive customer of m along c’s path in T . In particular,
c = n0 is a customer of n1 and n1 is a customer of n2. Now since the valuations of n1 obey GR3,
we deduce that vn1(n1n2 . . . d) < vn1(n1c . . . d). However, from Claim A.5.4 and the fact that c
uses next hop policy with all its providers, we have vc(cn1 . . . d) ≥ vc(cm . . . d). Furthermore,
the inequality is strict, since m 6= n1. Hence there is a (2-pivot) dispute wheel between c and n
and we have arrived at a contradiction.

Claim A.5.6. The node n1 uses a different (data-plane) path for its traffic in M than in T .

Proof. Assume toward contradiction that n1 uses the T -path n1n2 . . . nt = d also in M . Below
we also denote this path by n1Q. From Claim A.5.4 we know that rc(cmR2) < rc(cn1Q), so we
know that n1 does not announce n1Q to c = n0 in M (or else c would have used this path).
But we know that n1 exports the path n1Q to c in T , and that n1 is honest, so it would have
exported this path to c in M if it had chosen it. We deduce that n1 had chosen a different path
in the control plane in M (even though it actually routes on n1Q in the data plane). In other
words, n had chosen a false path in M . From the false path lemma (Lemma A.2.1), we have
that both the false-path in the control plane and the data-plane path must include m. But this
is a contradiction, since we assume that n uses the same data-plane path in both M and T , and
from Claim A.5.5 we know that m is not on the data-plane path of n1 in T .

Claim A.5.7. Node n1 announces a path to c = n0 in M .

Proof. For every node ni on the T -path n1 . . . nt−1nt, we denote the control-plane path that
ni chooses in M (if any) by niQi. We now show by backward induction over i = t . . . 2 that
(i) node ni ranks niQi at least as high as nini+1 . . . nt, and (ii) ni announces the path niQi
to ni−1. For the proof below, recall that ni 6= m for all i (due to Claim A.5.5), so all the ni’s
use policy-consistent ranking and consistent export also in M .

The base case nt = d is obvious. For the induction case, assume that the two conditions
above hold for ni+1 and we prove for ni. We have two cases: either ni+1Qi+1 goes through ni
or it does not.
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• If ni+1Qi+1 does not go through ni, then from policy consistency (and since ni+1 prefers
this path to ni+1 . . . nt) we have that also ni must prefer nini+1Qi+1 over nini+1 . . . nt.
Moreover, since the path nini+1Qi+1 is available to ni in M (as we assume that ni+1 an-
nounces it), and since M is a globally stable outcome, then ni must choose a control-plane
path in M that is ranked at least as high. We conclude that rni(niQi) ≥ rni(nini+1Qi+1) ≥
rni(nini+1 . . . nt).

• Suppose that ni+1Qi+1 does go through ni. Then rewrite this path as ni+1Qi+1 =
ni+1Ri+1niQ

′
i. By the induction hypothesis, ni+1 announces this path to ni, and also

prefers it over ni+1 . . . nt. Since ni is honest and the network uses loop verification, it
must be the case that ni actually announces the path niQ

′
i (or else ni would have raised

an alarm, which would have set the utility of m in this outcome to −∞). Hence ni must
have chosen niQ

′
i in the control plane in M , in other words we have Q′i = Qi.

We claim that ni must prefer niQi over nini+1 . . . nt; otherwise we would have a dispute
wheel between ni and ni+1, since ni+1 prefers ni+1Ri+1niQi over ni+1 . . . nt.

In either case, we know that ni prefers niQi over nini+1 . . . nt. Since ni uses consistent export,
and since it announces nini+1 . . . nt to ni−1 in T , then it has to announce also niQi to ni−1

in M .

Claim A.5.8. The node n1 is a strict transitive customer of m, and the destination d is a strict
transitive customer of n1 over the data-plane path of n1 in T .

Proof. Recall that we denote the data-plane path of n1 in T by n1Q. If n1 is a direct customer
of c then the first part of the lemma follows trivially (since c is a customer of m), and the second
part follows by applying Lemma A.5.1 to the permitted path cn1Q in T .

If n1 is not a customer of c, then c must use next hop policy with n1. From Claim A.5.7, we
know that n1 announces a path to c in M . Let n1Q

′ be that path that n1 announces to c in the
manipulated outcome M . If the path n1Q

′ does not go through c, then we have

rc(cn1Q
′) = rc(cn1Q) > rc(cmR2)

where the equality follows from next-hop policy and the inequality is from Claim A.5.4. But
this is impossible, since if this was the case then c would have chosen n1 as its next-hop also
in M . Thus, the path n1Q

′ must go through c.
Next denote by cmR′ the control-plane path that c chooses in M . By loop-verification, it

must be the case that cmR′ is a suffix of n1Q
′ (or else c would have raised an alarm and the utility

of m would be set to −∞). So re-write n1Q
′ as n1Q

′
1cmR

′. The path Q′1 does not include m, or
else n1 wouldn’t have chosen this path since it would contain a routing loop through m. Hence
the partial path n1Q

′
1cm must be the data-plane path that is used in M (and in particular it

must be a permitted path). Since c is a customer of m, then we can apply Lemma A.5.1 to
conclude that n1 is a strict transitive customer of c (and therefore also of m).

Moreover, since n1 is a strict transitive customer of c then the Topology condition GR1 says
that it cannot be a provider of c. We assumed that n1 is also not a customer of c, so they must
be peers. We can now apply Lemma A.5.1 to the permitted T path cn1Q, to conclude that the
destination d is a strict transitive customer of n1 over this path.

Claims A.5.6 and A.5.8 established the existence of a node a0 = n1 which is (1) a strict
transitive customer of the manipulator m, and where (2) a0 uses a different path in M than
in T , and (3) the destination d is a strict transitive customer of a0 along its data-plane path in
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T . Lemma A.5.2 asserts that there must be another node a1 6= a0 which is a strict transitive
customer of a0, where a1 also satisfies the conditions (1)-(3). Repeated applications of this
lemma thus give us a sequence of nodes a1, a2, . . . such that for all i ai 6= ai−1 and ai is a
strict transitive customer of ai−1 (and they all satisfy the same conditions). Since there are a
finite number of nodes in the AS graph, eventually one of the nodes in the sequence will repeat,
resulting in a customer-provider cycle and violating the Topology condition GR1.

We see that our assumption that um(M) > um(T ) leads to a contradiction, thus concluding
the proof of Theorem 2.6.1.



Appendix B

Failure Detection

B.1 Fast cryptographic hashing

We now consider efficient pseudorandom functions (PRFs) for packet hashing. As we discussed
in Section 3.3, the PQM adversary is presented with an online problem: to break security, Eve
must break the secret key within a small time interval until the key is refreshed, based on the
limited number of examples she sees during that interval. (Indeed, in some of our protocols we
voluntarily send the key in plaintext once the interval is over, see Section 3.4.2).

For general hashing of variable-length packets (lengths upto, say 1500B) with a PRF, we
suggest a construction based on εh-almost universal hash functions, as discussed in e.g., [104] [68,
Sec. 2.8.3] [18, 78]. Namely, for an interval key ku = (κ1, κ2) set

hku(x) = Eκ1(gκ2(x)) (B.1)

where E is a block cipher taking n-bit inputs to n bit outputs (e.g., AES), and g is an εg-almost
universal hash function producing n-bit outputs (as defined in equation (3.1) of Section 3.3). See
e.g., [18] for a nice survey of various εh-almost universal hash functions that can be used with
this construction. 1 For long packets (length � n-bits), the performance of this hash function
is dominated by the performance of the universal hash function g, which can extremely fast. For
shorter packets (of lengths ≈ n-bits), performance is limited by the block cipher; fortunately,
this construction amounts to using a single invocation of the block cipher (c.f., with traditional
PRFs like HMAC [67] that require `/n invocations of the block-cipher for packets of length
`-bits.) Performance can be further improved by the replacing full-fledged block-cipher like AES
with a weaker block cipher such as DES or with a small number of rounds of AES [29]; it would
still require enormous resources to break the security of the PRF within the time limit ( 100ms)
imposed in our online setting.

Unfortunately, most of the literature focuses on the construction of fast universal-hash based
MACs, rather than PRFs. Thus, below, we shall show that the PRF construction presented in
(B.1) is a secure PRF as long as the εg universal hash function g used in the construction has

εg ≤ 2−(2 log2 q+k) (B.2)

and the PRF is used no more than q times before the interval key is refreshed. In our setting,
q = O(T ), where T is the number of packets per interval2, and k is the security parameter. In

1The original universal-hash-based MACs require an an extra nonce r which must be unique for each invocation,
and define hk(x, r) = Eκ1(r) + gκ2(m) or hk(x, r) = Eκ1(r)⊕ gκ2(m). Because, in our application, we need only
hash a small number of packets ≈ T = 107 before changing the interval key, this nonce is not required.
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our online setting, k need not be very large. As an example, putting q = 10T and T = 107 and
requiring k > 32, it follows that we require εg ≤ 2−86. Suppose now we use GHASH [78] with
block lengths n as the universal hash function used in the construction. Then for packets of
length upto 1500B bytes, GHASH has εg = 1500/m2−n where m is the block length and n is the
length of the output. Thus, we find it suffices to run GHASH with output length n = 96 and
block lengths of m = 128 bits. (A general rule of thumb is that hashing is faster with smaller
block lengths. Note also that in Section 3.5.4, we show that for the ‘secure sketch’ protocol, it
actually suffices to use GHASH with block lengths of about m = 64 bits!)

We now obtain (B.2). We say that a function h is (q, ε)-secure PRF if an algorithm, given
an oracle for a function F , has advantage at most ε in distinguishing if F is either (1) h keyed
with some randomly chosen secret key ku, or (2) a truly random function with the appropriate
domain and range [50]. To show that the construction in (B.1) is a secure PRF, we prove the
following theorem:

Theorem B.1.1. The function hκ(x) = f(gκ(x)) is a (q, q2εg)-secure PRF if f is a truly
random function and g is an εg-almost universal hash function keyed with randomly-chosen key
κ.

Then the security of the construction follows if we assume that the block cipher E produces
(pseudorandom) outputs that are indistinguishable from the outputs of a truly random function.
Thus, we require q2εg ≤ 2−k, where k is the security parameter for the PRF, and (B.2) follows.

Proof of Theorem B.1.1. The algorithm makes q queries x1, ..., xq to the oracle for F ; without
loss of generality, assume these are all distinct. (If the adversary repeats a query, he can
compute the answer without consulting the oracle.) Let Edistinct be the event that κ was chosen
such that that gκ(x1), ..., gκ(xq) are all distinct. Since f is a truly random function taking in
distinct inputs, it follows that if Edistinct is true, the adversary has no advantage in distinguishing
between h and a truly random function. Thus, the adversary’s distinguishing advantage is at
most Pr[¬Edistinct]. Now, for every distinct x1, ..., xq, we have Pr[¬Edistinct] =

(
q
2

)
εg ≤ q2εg

where εg is the collision probability of g (taken over the choice of κ) as in equation (3.1). The
theorem follows.

B.2 Interval synchronization

B.2.1 Symmetric-key protocols

In our secure sketch (Section 3.5) and symmetric secure sampling protocols (Section 3.4.1), we
assume that Alice and Bob agree on the set of packets belonging to a particular interval, and
process these packets using the same interval key ku (and, in Section 3.5, map the same set of
packets to the same sketch.) For these protocols, the best way to achieve this is to have Alice
send Bob a special ‘Interval End’ message each time she ends an interval and begins a new one.
The ’Interval End’ message should contain the interval number u, and be authenticated with
a MAC keyed with (some portion of) the master secret key. When Bob receive this packet, he
knows he should derive a fresh interval key (and, in Section 3.5, a fresh sketch). This approach

2In the secure sampling protocol, q, the number of queries made to the packet-hashing PRF is the sum of the
number of packets that Alice sends and the number of packets that Bob receives. Notice that an adversary can
exceed the bound of q = O(T ) by adding many packets to path, and potentially use the information it sees (i.e.,
the Acks) to learn how to break the PRF. To avoid such problems, we suggest that Bob counts the number of
packets he receives in an interval, and stops acknowledging them once more than q packets have been received.
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does not make any synchronization assumptions about Alice and Bob’s local clocks; it also works
even if the path between Alice and Bob is subject to variable latency.
The effect of packet reordering on interval synchronization. Of course, in the benign
case, out-of-order arrival could cause packets in an interval u to arrive after the interval marker
packet for u (and thus be interpreted by Bob as part of interval u+1). Fortunately, out-of-order
arrival should not cause any false alarms as long as the number of packets arriving out of order
before the interval marker is a small fraction of αT , where α the false-alarm threshold. (Note
that because we focus on PQM protocols that operate at the network layer, at this layer TCP
retransmissions do not look like out-of-order packets.)

Indeed, out-of-order arrive limits the choice of αT . To see how, consider an ordered stream
of packets transmitted by a sender (e.g., 1,2,3,4,5,6,7,8). Let a “reordered packet” be some
packet that arrives at the receiver later than the packets after it in the ordered stream sent by
the sender (e.g., . in received stream 1,2,4,5,6,7,3,8, packet 3 is the reordered packet). Then,
define the packet lag as the number of packets that were sent by the sender after the reordered
packet, but were received at the receiver earlier than the reordered packet itself (e.g., in received
stream 1,2,4,5,6,7,3,8, packet 3 is the reordered packet and packet lag is 4).

To ensure natural packet reordering on the link does not cause a loss of interval synchro-
nization between the sender and receiver, a good rule of thumb is to ensure that αT ≥ 99th

percentile of packet lag. The packet lag depends on the the class of packets monitored by the
PQM protocol. For instance:

• If the PQM protocol is in setting where no load balancing is used, (i.e., packets sent by
Alice to Bob are sent over a single physical path through the network, rather than split
over multiple paths) then packet lag is typically very small, i.e., about 10’s of packet [88,
Sec. III.A]. Thus, ensuring αT ≥ 100 is sufficient in this case.

• If the PQM protocol is used to monitor a single “layer-3 flow”, i.e., a set of IP packets
with same (Source IP, Destination IP, Source Port, Destination Port, Protocol Numbuer),
then we assume that packet lag is less than 128 packets. (This is the assumption made in
IPSec). Thus, it suffices to take αT > 1280.

• If the PQM protocol simultaneously monitors multiple layer 3 flows, then packet lag can
be quite high. This is because different flows may be routed on different paths through
the network; if there is a significant time delay between the different paths used by the
different flows, then packet lag can be very high. The best way to determine packet lag in
this setting is to measure it directly; however, we conjecture that even if there is a 10ms
difference between the “fast path” used by one group of flows and the “slow path” used
by another group of flows, for 1 Gbps flow of traffic, packet lag should be on the order of
109 bps / 64 bytes/packet * .01 sec = 1.6x105 packets, so we can use αT > 1.6x106 .

Also, if the link has many out-of-order packets even in the benign case, we can enforce interval
synchronization by marking packets with a single bit denoting the parity of the interval number
(note that if the adversary tampers with this mark, she only increases the likelihood that Alice
will raise an alarm)

Finally, notice that if Eve drops or delays the marker packet for interval u, then she only
increases the changes that Alice raises an alarm (since doing is equivalent to adding many packets
to interval u and dropping many packets in interval u+ 1).
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B.2.2 Asymmetric-key protocols

Our asymmetric secure sampling protocols (Section 3.4.2) use a different approach for interval
synchronization. Here, the end of the interval is determined when the server sends out the ‘salt
release message’. Thus, there is no need to have the client send the server an ‘interval marker
packet’. We do, however, require Alice to be coarsely synchronized to Bob’s clock, so that an
adversary cannot replay old salt release messages (and use the old salt to form Acks that trick
the client into accepting an interval for which she should have raised an alarm).

In settings where the sender and receiver do not share a clock, the following simple protocol
can be used to securely synchronize Alice’s clock to Bob’s clock to within 1.5 round trip times
(RTT) (e.g., τ = 150 ms). Notably, this protocol does not require either Alice or Bob to keep
any state beyond their keys and local clocks. The protocol also does not require Alice and Bob
to trust one another, and does not affect Alice’s global clock that is used when interacting with
other parties.
Simple synchronization protocol. Suppose Alice has some local secret key kA (she does
not need to shared this key with anyone).

1. At time tA (on Alice’s clock) Alice sends Bob the message MACkA(tA).

2. Bob receives this message at time tB (on Bob’s clock) and responds with digitally signed
message
ξ = SignSKB (tB,MACkA(tA)).3

3. Alice accepts Bob’s message ξ if VerifyPKB (ξ) returns (tB,MACkA(tA)), the MAC is cor-
rect, and Alice’s current local time t′A fulfills t′A < tA+τ . If Alice accepted Bob’s message,
she computes ∆B = τ − t′A, and from now on, whenever interacting with Bob she offsets
her clock by a factor of ∆B.

If, after many attempts, Alice fails to receive a valid response to her synchronization message,
then she decides to raise an alarm. After Alice accepts, her local clock (after being offset by
∆B) is within τ seconds from Bob’s regardless of Eve’s actions. Indeed, a sufficient condition is
that any accepted message ξ was sent by Bob when his local time was t′B and Alice’s local time
was after t′A. Violating either of these would contradict the security of the digital signature and
MAC schemes.

B.3 Secure sampling needs PRFs

To give an example of why non-cryptographic hash functions are not insufficient in our sampling
protocols, suppose that the Probe function of equation (3.3) was implemented using a CRC keyed
with a secret modulus, as in [33], instead of with a PRF. Approximate the CRC function as
hk(x) = x mod k, and consider the following attack: Eve starts by observing the interactions on
the channel, and records the list of packets that were not acknowledged. Then, whenever she sees
a new packet that is within a small additive distance of old packet that was not acknowledged,
she drops the packet. Thus, Eve can drop non-probe packets with high probability, and she can
bias the estimate V well below the true failure rate.

3While computing and verifying digital signatures typically takes on the order of 3ms, and is thus insignificant
as compared to the 150ms interval consider here. Furthermore, this time delay is constant and known and can
be subtracted from ∆B .
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B.4 Prehashing packets

As discussed in Section 3.5.4, arguably the most expensive part of our sketching protocol is the
computation of the per-packet hash. We now show how to reduce the cost of this computation
by (1) first mapping packets from from U to a short n1-bit string using the efficient εg-almost
universal hash function, and (2) then using a PRF (or 4-wise independent) hash to map from
n1-bit to the sketch. Our approached is based on that of Thorup and Zhang [100].
Preliminaries. Recall that U is the universe of all possible packets, and v is the characteristic
vector of the stream of packets. Let g : U → {0, 1}n1 be an εg-almost universal hash function,
as defined in Section 3.3. The hash function g maps the packet stream containing elements in
U to a new ‘intermediate’ stream of n1-bit strings. Now, we let u be an ‘intermediate vector’
which is the characteristic vector of this new stream of n1-bit strings. And finally, recall that w
is the sketch vector of length N .

Thus, our approach amounts to using the εg-almost universal hash g to hash v the ‘inter-
mediate vector’ u, and then using a a second-moment estimation scheme to hash u down to
the sketch w. Thus, the second-moment estimation scheme estimates the second moment of u,
rather than the real characteristic vector v! We now show that, if εg is sufficiently small, this
does very little damage, since ‖u‖2 ≈ ‖v‖2 .

Theorem B.4.1. Given a vector v ∈ 2|U | and u ∈ R2n1 . Then if g : U → {0, 1}n is an εg-
almost 2-wise independent hash function per equation (3.1), is used to map v to u according to
the algorithm ug(x)+ = vx ( i.e., ∀ x ∈ v the g(x)th counter in u is incremented with value vx)
then

Pr [| ‖u‖2 − ‖v‖2 | > δ1‖v‖2 ] < δ2 (B.3)

as long as

|v|1 >
δ1δ2

εg
(B.4)

Recall that |v|1 = A + D. Returning the proof of Theorem 3.5.1, for (α, β, δ)-secure PQM
we would like (B.3) to hold particularly when D = αT and D = βT , with δ1 � ε = β−α

α+β .
To be more conservative, we will take |v|1 = T , and δ1 = ε

10 . We’ll also set δ2 = δ
100 . Then

(α, β, δ)-secure PQM require the hash function g to have εg as :

εg <
εδ

103T
=

δ

103T

β − α
α+ β

(B.5)

Proof of Theorem B.4.1. Let va be the ath entry of characteristic vector v. Now, start with the
observation that

‖u‖2
2

=
∑

g(a)=g(b)

vavb (B.6)

=
∑
a

v2
a +

∑
a6=b,g(a)=g(b)

vavb (B.7)

= ‖v‖2
2

+
∑
a6=b

vavbYa,b (B.8)

where we define the random variable Ya,b as

Ya,b =
{

1 if g(a) = g(b), a 6= b,
0 else.

(B.9)
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Figure B.1: An example of how to use Theorem B.5.4.

and from (B.8) we take the expectation over the randomness in g and find that

E[ | ‖u‖2
2
− ‖v‖2

2
| ] ≤

∑
a,b

|vavb|E[|Ya,b|] (B.10)

≤
∑
a,b

|vavb| · εg (B.11)

= (|v|2
1
− ‖v‖2

2
) · εg (B.12)

where the first inequality follows from (B.8), the second inequality follows because per equation
(3.1) the collision probability of g is εg.

Now, we would like to ensure that ‖u‖2 provides a good estimate of ‖v‖2 . That is, we would
like to satisfy (B.3). Using Markov’s inequality, we have

Pr
[∣∣‖u‖2

2
− ‖v‖2

2

∣∣ > δ1‖v‖22
]
≤

E[ | ‖u‖2
2
− ‖v‖2

2
| ]

δ‖v2‖2
(B.13)

≤
(|v|2

1
− ‖v‖2

2
)

‖v‖2
2

εg
δ1

(B.14)

≤ |v|1
εg
δ1

(B.15)

And rearranging the last inequality we know that (B.3) holds as long as (B.4) holds, which
completes the proof.

B.5 Second-moment estimation with CCF

We start by restating a result of Thorup and Zhang from [100].
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Theorem B.5.1. For any characteristic vector v ∈ R|U |, if we construct sketch w ∈ ZN
according to the CCF-algorithm with two independent 4-universal hash functions h : U → [N ]
and s : U → {−1, 1} as wh(a)+ = s(a)va then we have

E[‖w‖2
2
] = ‖v‖2

2
(B.16)

VAR[‖w‖2
2
] = 2

N (‖v‖4
2
− ‖v‖4

4
) (B.17)

B.5.1 CCF with 4-wise independent hashes

To show that the number of bins required for CCF with a 4-wise independent hash is N > 2
ε2δ

we prove the following theorem.

Theorem B.5.2. For any vector v ∈ RU sketched according to the CCF-algorithm with a 4-wise
independent hash to obtain w ∈ ZN , then for any ε ∈ (0, 1) we have

• If ‖v‖2
2
≤ αT and αT > 1 then

Pr
[
‖w‖2

2
< (1 + ε)αT

]
≤ 2

Nε2
(1− 1

αT ) (B.18)

• If ‖v‖2
2
≥ βT and βT > 1 then

Pr
[
‖w‖2

2
> (1− ε)βT

]
≤ 2

Nε2
(B.19)

Then, recall that we set our threshold as Γ = (1− ε)βT = (1 + ε)αT for ε = β−α
β+α . Following

the approach in the proof of Theorem 3.5.1, we can show that the scheme is (α, β, δ)-secure
PQM protocol per Definition 3.2.1 if if we take a sketch with at least N > 2

δε2
= 2

δ (β+α
β−α)2 bins.

Proof of Theorem B.5.2. We start with the first item and write:

Pr
[
‖w‖2

2
< (1 + ε)αT

]
≤

VAR[‖w‖2
2
](

(1 + ε)αT − E[‖w‖2
2
]
)2 (B.20)

≤ 2
N

(‖v‖4
2
− ‖v‖4

4
)(

(1 + ε)αT − ‖v‖2
2

)2 (B.21)

≤ 2
N

(‖v‖4
2
− ‖v‖2

2
)(

(1 + ε)αT − ‖v‖2
2

)2 (B.22)

≤ 2
N

(αT )2 − αT
(εαT )2

(B.23)

=
2

Nε2
(1− 1

αT ) (B.24)

where the first inequality follows from the Chebyshev bound, the first equality follows from
applying Theorem B.5.1, and second inequality follows because for any v ∈ ZN we have ‖v‖2

2
≤

‖v‖4
4

(this holds because v has integer valued entries), and the third inequality follows from the
fact that ‖v‖2

2
≤ αT and αT > 1.

Next, consider the second item and write:

Pr
[
‖w‖2

2
< (1− ε)βT

]
≤

VAR[‖w‖2
2
](

E[‖w‖2
2
]− (1− ε)βT

)2 (B.25)

≤ 2
N

(‖v‖4
2
− ‖v‖4

4
)(

E[‖w‖2
2
]− (1− ε)βT

)2 (B.26)

≤ 2
N

‖v‖4
2(

‖v‖2
2
− (1− ε)βT

)2 (B.27)
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where again the first inequality follows from the Chebyshev bound, the first equality follows
from applying Theorem B.5.1, and second inequality follows because ‖v‖4

4
≥ 0 since βT > 1.

To bound (B.27), we use the following claim.

Claim B.5.3. For any a > 0, and function f(x) = x
x−a decreases with x when x > a.

Proof. Follows because df
dx = − a

(x−a)2
< 0 and there are no singularities in f(x) for all 0 < a <

x.

To apply Claim B.5.3, let x = ‖v‖2
2

and a = (1− ε)βT and recall from the statement of the
theorem that x ≥ βT > a. From Claim B.5.3 we note that (B.27) takes on its largest value
when x = βT , so we can write (B.27) as

Pr
[
‖w‖2

2
< (1− ε)βT

]
≤ 2
N

(βT )2

(βT − (1− ε)βT )2 (B.28)

= 2
Nε2

(B.29)

which completes the proof.

B.5.2 CCF with PRFs

First, we prove a precise version of Theorem B.5.4.

Theorem B.5.4. For any vector v ∈ ZU , choosing the N × U matrix S uniformly from SCCF

and setting w = Sv, we have that for all ε ∈ [0, 1) and all q, r > N

1. If v ∈ {−1, 0, 1}U , and ‖v‖2
2
≤ q, then for η ∈ [0, 1

2

√
ε2 + 10ε+ 9 − 1

2(ε + 3)) and
y

.= (1+ε)(1−η)
(1+η)2

− 1 :

Pr
[
‖w‖2

2
> (1 + ε)q

]
≤ 2Ne−

η2q
3N + e−

N
2 (y2/2−y3/3) (B.30)

2. If the number of non-zero entries in v is r, then for η ∈
(

0, 1
2−ε(3− 2ε−

√
5ε2 − 14ε+ 9)

)
and

y
.= (1−η)2

1+η (1− ε
2)− (1− ε) it follows that

Pr
[
‖w‖2

2
< (1− ε)r

]
≤ 2Ne−

η2r
3N + e

−N ε
3(1+η)y (B.31)

For a fixed ε, suppose we want to choose values for q, r,N that ensure that both the first
item and the second item occur with probability at most δ. To use Theorem B.5.4, we need
to choose a value of η (within the appropriate range) and plug it into (B.30)-(B.31) to obtain

q, r and N . This is not as simple as it initially appears: the first term (2Ne−
η2q
3N ) in equations

(B.30)-(B.31), increases in η, which the second term decreases in η. Thus, we must tradeoff
between these two terms in order to find an optimal choice of η, i.e., one that minimizes N
for a given choice of q, r,. This optimization can be messy, and so we do it in MATLAB. For
example, in Figure B.4 we set ε = 1

3 and for q = r we require that both the first item and the
second item occur with probability at most δ = 1

100 . For each value of q, we show the choice of
η that minimizes N for both the first item and the second item in Theorem B.5.4.
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Proof of Theorem B.5.4. The main observation we make is that, with high probability, the ±1
entries of v are distributed evenly among the coordinates of w. Conditioned on this happening,
we can then apply the analysis of Achlioptas [5].
Definitions. We need the following definitions.

• We write vx for the xth element in v.

• Define for i ∈ [N ] the set Qi = {x ∈ U | h(x) = i} where h is the pseudorandom hash
function.

• Define Di as the number of non-zero entries in v that hash to the ith bin the sketch w.
That is Di = |{vx|vx 6= 0, x ∈ Qi}|.

• Define Yx as an unbiased ±1 random variable for each x ∈ U .

Our proof proceeds as follows. We first obtain a bound on Di for each i. When then use the
bounds on Di to prove the first item (B.30), and then use them to prove the second item (B.31).
Bounding Di. Let Ei denote the event that ∃i ∈ [N ] such that Di > (1 + η)q/N or
Di < (1− η)q/N . Then, for η ∈ [0, 1), we have that

Pr[E1] ≤ N
(
Pr[Di > (1 + η) qN ] + Pr[Di < (1− η) qN ]

)
≤ N

(
e−

η2

3
q
N + e−

η2

2
q
N

)
(B.32)

which is a straightforward application of a union bound followed by the Chernoff bound.4

Bounding the first item. Now we condition on ¬E1. Let γ = 1+ε
(1+η)2

and write:

Pr[‖w‖2
2
> (1 + ε)q | ¬E1] = Pr[

N∑
i=1

D2
i

 1
Di

∑
x∈Qi

Yxvx

2

> (1 + ε)q | ¬E1]

= Pr[
N∑
i=1

 1
Di

∑
x∈Qi

Yxvx

2

> γN
2

q | ¬E1]

where first equality comes from expanding w as Sv and then multiplying by Di
Di

, and the second
equality follows from the fact that conditioning on ¬Ei implies that Di ≤ (1 + η)q/N . Next, set
Yi to be the vector of all Yx for each vx ∈ −1, 1, x ∈ Qi. Set ui the vector with entries vx√

Di
for

each vx ∈ {−1, 1}, x ∈ Qi. Notice that both Yi and ui have length Di, and ‖ui‖22 = 1 so ui is a
unit vector. Now we write

= Pr[e
t
∑N
i=1〈

Yi√
Di

,ui〉2
> e

tγ
N2

q | ¬E1]

≤ e−tγ
N2

q

N∏
i=1

E[e
t〈 Yi√

Di
,ui〉2 | ¬E1]

4We use the following Chernoff bounds. Let Xi be i.i.d indicator variables with mean µ, and let

Pr

[
n∑
i=1

Xi ≤ (1− γ)Nµ

]
≤ e−γ

2Nµ/C1 (B.33)

Pr

[
n∑
i=1

Xi ≥ (1 + γ)Nµ

]
≤ e−γ

2Nµ/C2 (B.34)

If 0 < γ < 1 then [9, Fact 4] gives C1 = 2 and C2 = 3. If 0 < γ < 1
2

then [6, Thm. 19] gives C1 = C2 = 2 ln 2.
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where the inequality follows from the Markov bound. Now we are ready to apply the result of
Achlioptas. We restate equation (2) and Lemma 5.2 of [5] here, using our own terminology.

Lemma B.5.5 (From [5]). For t ∈ [0, Di/2], unit vector ui ( i.e., ‖ui‖22 = 1) and Yi chosen
uniformly from {1,−1}Di we have that

E[e
t〈 Yi√

Di
,ui〉2 ] ≤ 1√

1− 2t/Di

(B.35)

E[〈 Yi√
Di
,ui〉2] =

1
Di

(B.36)

E[〈 Yi√
Di
,ui〉4] =

3
D2
i

(B.37)

Now, using Achlioptas’s result in (B.35) we write

Pr[‖w‖2
2
> (1 + ε)q | ¬E1] ≤ e−tγ

N2

q

N∏
i=1

E[e
t〈 Yi√

Di
,ui〉2 | ¬E1]

≤ e−tγ
N2

q

N∏
i=1

1√
1− 2t/Di

≤ e−tγ
N2

q (1− 2t
(1−η)q/N )−

N
2
.= v(t) (B.38)

where the last inequality (B.38) follows from conditioning on ¬Ei which implies that (1 −
η)q/N < Di for all i ∈ [N ]. Note that result of Achlioptas in (B.35) to hold, we must have
0 ≤ t < Di/2 ≤ (1+η)q

2N where the last inequality here follows from the fact that ¬Ei implies that
Di < (1 + η)q/N .
Optimizing and bounding t. Next, we optimize v(t) in (B.38), by finding t such that
dv(t)
dt = 0.
dv(t)
dt = −γN2

q v(t) + (−N
2 )(− 2

(1−η)q/N )(1− 2t
(1−η)q/N )−1v(t) = 0

γN2

q (1− 2t
(1−η)q/N ) = N2

(1−η)q

t = q
2N

(
(1− η)− (1+η)2

1+ε

)
(B.39)

where the last equality uses the fact that γ .= 1+ε
(1+η)2

. Now recall that for Achlioptas’s result in

(B.35) to hold, we need to ensure that 0 ≤ t < (1+η)q
2N . Using (B.39), we write

0 ≤ t

0 ≤ q
2N

(
(1− η)− (1+η)2

1+ε

)
(1+η)2

1+ε ≤ (1− η)
(η2+3η)

1−η ≤ ε (B.40)

and we also need

t < (1+η)q
2N

q
2N

(
(1− η)− (1+η)2

1+ε

)
< (1+η)q

2N

− (1+η)2

1+ε < 2η

−
(

1 + (1+η)2

2η

)
< ε (B.41)
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Now, (B.41) holds for any η ∈ [0, 1). But, we will need to ensure that our choice of η ∈ [0, 1)
satisfies (B.40).

Returning now to (B.38), plug (B.39) into (B.38) to get

Pr[‖w‖2
2
> (1 + ε)q | ¬E1] ≤

(
e−y(1 + y)

)N
2 (B.42)

where we define
y
.=

(1 + ε)(1− η)
(1 + η)2

− 1 (B.43)

and solving inequality (B.40), we find that (B.42) holds as long as η ∈ [0, 1) satisfies

0 < η < 1
2

(√
ε2 + 10ε+ 9− (ε+ 3)

)
(B.44)

Notice from (B.43) that the bound in (B.44) this implies that (B.42) holds for the region y ∈
[0, ε). Now, Achlioptas observes that e−y(1 + y) ≤ e(−y2/2+y3/3) for any y ∈ (0, 1). Since for us
y ∈ (0, ε), and ε < 1 we finally have

Pr[‖w‖2
2
> (1 + ε)q | ¬E1] ≤ e−

N
2 (y2/2−y3/3) (B.45)

which decays exponentially in N .
Bounding the second item. Let r be the number of non-zero entries in v. We will bound
Pr[‖w‖2

2
< (1− ε)r]. Define E1 as before, only this time use r instead of q. Again we condition

on ¬E1.

Pr[‖w‖2
2
< (1− ε)r | ¬E1] = Pr[

N∑
i=1

D2
i

 1
Di

∑
x∈Qi

Yxvx

2

< (1− ε)r | ¬E1]

= Pr[
N∑
i=1

 1
Di

∑
x∈Qi

Yxvx

2

< (1−ε)
(1−η)2

N2

r | ¬E1]

where first equality comes from the expanding ‖w‖2
2
and then multiplying by Di

Di
, and the second

equality follows from the fact that conditioning on ¬Ei implies that (1− η)r/N < Di. Next, we
let c2

i =
∑

x∈Qi
v2x
Di

. Now observe that c2
i = 1

Di

∑
x∈Qi v

2
x ≥ 1

Di
Di = 1 since the entries of v are

integers ( and Di is the number of non-zero entries in v that are in Qi). We now multiply by ci
ci

:

= Pr[
N∑
i=1

c2
i

∑
x∈Qi

Yx
vx
Dici

2

< (1−ε)
(1−η)2

N2

r | ¬E1]

≤ Pr[
N∑
i=1

∑
x∈Qi

Yx
vx
Dici

2

< (1−ε)
(1−η)2

N2

r | ¬E1]
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where the inequality follows from the fact that c2
i ≥ 1. We now set Yi to be the vector of all

Yx for each vx 6= 0, x ∈ Qi. Set ui the vector with entries vx√
Dici

for each vx 6= 0, x ∈ Qi. Notice

that both Yi and ui have length Di, and that ui is a unit vector, since ‖ui‖22 = 1
Dic2i

∑
x∈Qi vx =

c2i
c2i

= 1. We write

= Pr[
N∑
i=1

〈 Yi√
Di
,ui〉2 < (1−ε)

(1−η)2
N2

r | ¬E1]

≤ et
(1−ε)

(1−η)2
N2

r

N∏
i=1

E[e
−t〈 Yi√

Di
,ui〉2 | ¬E1]

where the first inequality follows from the Markov bound, and we require that t > 0. We now
follow that analysis in Achiloptas, and expand out the quantity inside the expectation to obtain:

≤ et
(1−ε)

(1−η)2
N2

r

N∏
i=1

E[1− t〈 Yi√
Di
,ui〉2 + t2

2 〈
Yi√
Di
,ui〉4 | ¬E1]

Now we can apply Achiloptas’s results from (B.36) and (B.37) to obtain:

≤ et
(1−ε)

(1−η)2
N2

r

N∏
i=1

(
1− t

Di
+ t2

2
3
D2
i

)
and conditioning on ¬E1 gives us:

≤ et
(1−ε)

(1−η)2
N2

r
(

1− 1
1+η

tN
r + 3

2(1−η)2
( tNr )2

)N
For convience, we’ll now let τ = tN

r , and rewrite this as

=

(
e

(1−ε)
(1−η)2

τ
(

1− 1
1+η τ + 3

2(1−η)2
τ2
))N

.= ν(τ)N (B.46)

Bounding equation (B.46). We now need to find a choice of τ > 0 that causes (B.46) to
decay with N . It will suffice to find τ that causes ν(τ) to decay exponetially, i.e., we want
ν(τ) ∼ e−χ for some χ > 0. To do this, we start by rewriting ν(τ) in the following way:

ν(τ) =e
(1−ε)

(1−η)2
τ
(

1− 1
1+η τ ·

(
1− 3

2
(1+η)
(1−η)2

· τ
))

Notice that ν(τ) is the product of a polynomial and exponential with postive argument (that
grows). Notice that the only way we can hope to make ν(τ) decay, is if we require the polynomial
to decay. To do this, we need to ensure that the expression (1 − 3

2
(1+η)
(1−η)2

· τ) is positive. Thus,

we shall choose τ = ε
2(3

2
(1+η)
(1−η)2

)−1. Subsituting in the value for τ gives us:

= e
1−ε
1+η

ε
3
(

1− (1−η
1+η )2 ε

3 · (1−
ε
2)
)
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The series expansion of an exponential tell us that for any non-negative x we have the identity
1 − x ≤ e−x. Since the quantity (1−η

1+η )2 ε
3 · (1 −

ε
2) is non-negative for every ε ∈ (0, 1), we can

apply this identity here:

≤ exp
(

1−ε
1+η

ε
3 − (1−η

1+η )2 ε
3 · (1−

ε
2)
)

= e
− ε

3(1+η) exp
(

(1−η)2

1+η (1− ε
2)− (1− ε)

)
(B.47)

It follows from (B.47) that proving that ν(τ) decays exponentially amounts to ensuring that

y(η, ε) .=
(1− η)2

1 + η
(1− ε

2)− (1− ε) ≥ 0 (B.48)

and, recalling that η, ε ∈ (0, 1) some MATHEMATICA magic finds that (B.48) holds as long as
η ∈ (0, c(ε)), where

c(ε) = 1
2−ε(3− 2ε−

√
5ε2 − 14ε+ 9) (B.49)

This bound on η, despite being ugly, makes sense. Notice that when ε = 0, we have that
η = 0, and when ε = 1, we have c(ε) = 1 so that η ∈ (0, 1). Also, we observe that y
monotonically decreases in η, ranging from y(0, ε) = ε to y((c(ε), ε) = 0.5 We also observe that
y monotonically increase in ε, ranging from y(η, 0) = y(0, 0) = 0 (since η = 0 when ε = 0), and
y(η, 1) = 1

2
(1−η)2

1+η (and η ∈ (0, 1) when ε = 1). 6

Putting everything together, we finally have that as long as η ∈ (0, c(ε)) where c(ε) is given
in (B.49), then y as given in (B.48) is such that y > 0. Re-writing (B.46) using (B.47) and
(B.48) as

Pr[‖w‖2
2
< (1− ε)r | ¬E1] ≤ e−N

ε
3(1+η)y (B.50)

we can see that the error decays exponentially in N , as required.

A simpler statement of the theorem

We now prove the version of Theorem B.5.4 that appears in Section 3.5.4.

Theorem B.5.6 (Theorem 3.5.2 restated.). For any vector v ∈ ZU , choose the N × U matrix

S uniformly from SCCF and set w = Sv. Then, for all ε ∈ [0, 1) and η such that
(

1−η
1+η

)2
=

max
(

1+
ε
2

1+ε ,
1−3ε

4
1− ε2

)
, choosing

N ≥ 24
ε2

ln 2
δ (B.51)

q, r ≥ 3N
η2 ln 4N

δ (B.52)

ensures that the following two items occur with probability at least 1− δ:

1. If v ∈ {−1, 0, 1}U , and ‖v‖2
2
≤ q, then ‖w‖2

2
< (1 + ε)q.

5It’s easy to see that when η = 0, then y(0, ε) = ε, and a simple check in MATHEMATICA shows that when
η = c(ε) as in (B.49), then y(c(ε), ε) = 0. By inspection, it’s clear that y decreases in η.

6First consider the case where ε = 0. Now when ε = 0, c(ε) = 0, and the requirement that η ∈ (0, c(ε)) implies
that η = 0. It follows that y = 0. Next consider the case where ε = 1, which means that for η ∈ (0, 1), we have

that y(η, 0) = 1
2

(1−η)2
1+η

. Now, since the derivative dy
dε

= 1+η(4−η)
1+η

> 0 for any η ∈ (0, 1), we know that y grow
monotonically in ε.
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2. The number of non-zero entries in v is r, then ‖w‖2
2
> (1− ε)r.

Proof. We show how to obtain the Theorem 3.5.2 from Theorem B.5.4. To ensure that the error
probability is at most δ in (B.30) it suffices to set

2Ne−
η2q
3N ≤ δ

2 (B.53)

e−
N
2 (y21/2−y31/3) ≤ δ

2 (B.54)

And to ensure that the error probability is at most δ in (B.31) we need to set

2Ne−
η2r
3N ≤ δ

2 (B.55)

e
−N ε

3(1+η)y ≤ δ
2 (B.56)

Bounding N . Referring to (B.54), we need to choose N > Nmin,1 where:

Nmin,1 =
4

y2
1(1− y1/6)

ln 2
δ (B.57)

Where recall that y1
.= (1+ε)(1−η)

(1+η)2
− 1. It’s easy to see that y1 ∈ (0, ε) for any η, ε ∈ (0, 1). To

simplify (B.57), we will now require that y1 ≥ ε/2, which means we can write:

≤ 4
y2

1(1− ε/6)
ln 2

δ

≤ 4
(ε/2)2(1− ε/6)

ln 2
δ

≤ 19.2
ε2

ln 2
δ

where the first inequality follows because y ≤ ε, the second follows from y ≥ ε/2, and the third
follows from ε ≤ 1. Now, instead of using the “ugly” expression for N > Nmin,1 in (B.57) to
bound N , we have “nicer” bound on N that clearly shows the dependence of N on ε, δ as:

N ≥ 19.2
ε2

ln 2
δ (B.58)

Next, refer to (B.56), we need to choose N > Nmin,2 where:

Nmin,2 = 3(1+η)
εy2

ln 2
δ (B.59)

Where recall that y2 = (1−η)2

1+η (1− ε
2)− (1− ε). It’s easy to see that y2 ∈ (0, ε2) for any η ∈ (0, 1).

To simplify (B.57), we will now require that y2 ≥ ε/4 which means we can write:

≤ 12(1+η)
ε2

ln 2
δ

≤ 24
ε2

ln 2
δ

where the first inequality follows from our choice of y2 ≥ ε/4 and the second from η ≤ 1. Now
we again have “nicer” bound on N (showing it’s dependence of N on ε, δ) as:

N ≥ 24
ε2

ln 2
δ (B.60)
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Comparing equations (B.58) and (B.60) we find that it suffices to choose N satisfying (B.60).
Bounding η. These nice bounds on N does not come free. To obtain (B.58), we need to
ensure that y1 > ε/2. We write

ε
2 ≤ y1

.= (1+ε)(1−η)
(1+η)2

− 1 (B.61)

1+
ε
2

1+ε ≤
1−η

(1+η)2
(B.62)

Now since
1+

ε
2

1+ε ≤
(

1−η
1+η

)2
≤ 1−η

(1+η)2
it follows that (B.62) holds if

1+
ε
2

1+ε ≤
(

1−η
1+η

)2
(B.63)

Next, to obtain (B.60) we need ensure that y2 > ε/4, so we write

ε
4 ≤ y2

.= (1−η)2

1+η (1− ε
2)− (1− ε) (B.64)

and a similar argument show that (B.64) holds as long as

1−3ε
4

1− ε2
≤
(

1−η
1+η

)2
(B.65)

Bounding q, r. Referring to (B.53) and (B.55), we observe that is suffices to choose

q, r ≥ 3N
η2 ln 4N

δ (B.66)

Notice that this bound relies on both N , and η. We bounded N in (B.60). To minimize q, r, we
want to chose η as large as possible, subject to the constraints in (B.63) and (B.65). Thus, it
suffices to chose η such that (

1−η
1+η

)2
= max

(
1+

ε
2

1+ε ,
1−3ε

4
1− ε2

)
(B.67)

and this completes our proof Theorem 3.5.2.



Appendix C

Failure Localization

C.1 Vulnerabilities of Other FL Protocols

We sketch why the protocols of [86,13,10] do not satisfy our security definition.
An On-demand Secure Routing Protocol Resilient to Byzantine Failures [13]: Awer-
buch, Holmer, Nita-Rotaru and Rubens present a statistical FL protocol in which Alice and Bob
run a secure failure detection protocol, where Bob sends out authenticated acks for each packet
he receives. Once the number of detected faulty exchanges exceeds some threshold, say β, then
Alice appends a encrypted list of “probed nodes” to each new packet that she sends out. If a
node is included in the list of probed nodes, it is expected to send Alice an ack when it receives
the packet containing the list. The acks are (basically) formed as in our “onion reports”. To
localize failures, Alice chooses probed nodes according to a binary search algorithm, until she
localizes a single link.

Now, consider an adversary Eve that sits at Ri and, for every sent packet where Ri is not
included in the list of probed nodes, Eve happily causes failures. Eve stops causing failures
whenever Ri is included in the list of probed nodes. Alice will never be able to localize such an
Eve to a single link; as long as Eve behaves herself when she is part of the list of probed nodes,
Alice has no way to find her. Our protocols avoid this problem by running their “detection
phases” and “localization phases” on the same set of packets.

Furthermore, care must be taken in implementing this protocol in the presence of both
adversarial behaviour and benign congestion. To see why, suppose that Eve causes the protocol
to enter the localization phase. In [13], the binary search algorithm proceeds by one step each
time failures are detected. It is important to ensure that normal congestion (on a link that is
not adjacent to Eve) cannot cause the binary search algorithm to search for Eve in the wrong
part of the path. To do this, the binary search algorithm should proceed by one step only when
the failure rate exceeds some carefully chosen false alarm threshold (related to loss rate caused
by normal congestion and the length of the portion of path that is currently being searched).
Packet Obituaries [10]: Argyraki, Maniatis, Cheriton, and Shenker propose an FL protocol
that is similar to our Optimistic Protocol of Section 4.3.1. Each node locally stores digests of
the packets they see, and at the end of some time interval, nodes send out reports to Alice
that contain these packet digests. Alice then uses the information from these reports to localize
failures on the path. The designers of this protocol focused on the benign setting, but mentioned
that reports should also be individually authenticated. However, because these reports are not
formed in a onion manner (as in our Optimistic Protocol) an adversarial node can implicate a
innocent downstream node by selectively dropping the innocent node’s reports.
Secure Traceroute [86]: At a very high level, Padmanabhan and Simon’s FL protocol

126



127

uses an approach that is very similar to that of [13]; Alice runs a failure detection protocol
with Bob until she detects that more than a β fraction of her packets have been dropped.
Then, on subsequent (new) sent packets, Alice will run a failure localization protocol, where the
intermediate nodes are required to send out acks that are used to localize failures. However, this
protocol is vulnerable to the same adversary as [13]’s protocol: an Eve that causes failures when
Alice runs failure detection, and then behaves herself once Alice turns on failure localization. The
other issue with this protocol is that acks are individually authenticated, rather than onionized
in the localization phase.

C.2 A Composition Technique for Statistical FL

We prove Lemma 4.3.3, Lemma 4.3.4, Lemma 4.3.6 and Lemma 4.3.8.

C.2.1 Proof of Lemma 4.3.3

Lemma C.2.1 (Restatement of Lemma 4.3.3). As long as T = O( K2

p(β−α)2
ln K

δ ), then the
estimators in the composition of SSS satisfy: for each i /∈ E where E is the set of nodes corrupted
by Eve it holds (up to negligible error) that

Pr
[∣∣∣Vi − 1

T (Di + p′

p Ci)
∣∣∣ > 1

4γ
]
< δ

4(K+1)

where γ = β−α
2(K+1) , Vi is Ri’s estimate of the failure rate between i and K + 1, Di is the number

of data packets dropped between Ri and RK+1, and Ci is the number of acks (destined for any
node) dropped between Ri and RK+1.

Proof. Consider the random variable V ′i which is generated as Vi is generated in SSS, except that
now we assume that instead using a pseudorandom function fk1 to decide if a packet is a probe,
as in equation (4.1), Alice and Bob instead use shared, truly random function φi. Now consider
the statistical FL protocol composed of K instances of this “truly random version of SSS”. In
this statistical FL protocol, it follows that regardless of how Eve (or congestion) behaves,

• Every packet that Eve (or congestion) drops is a probe for each Ri with probability p
independent of Eve’s actions and each other Rj for j 6= i.

• Every ack that Eve (or congestion) drops or tampers with is a probe for each Ri with
probability p′ independent of Eve’s actions and each other Rj for j 6= i. As we argued in
the proof of Theorem 4.3.2, this is because acks intended for different nodes are indistin-
guishable (since they are all identically onion MAC’d, and they all originate at Bob), and
since the acks are onion MAC’d, Eve cannot selectively tamper with the ack intended for
an upstream node.

We will show now that this means V ′i is the average of many independent random variables. Let
SDi , SCi ⊆ [T ] denote the set of exchanges that are data-faulty and ack-faulty, respectively for
node Ri (we can order the exchanges in an arbitrary way), and notice that SDi ∩ SCi = ∅ since
an exchange cannot be both data- and ack-faulty. We now define the random variables Xt for
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t ∈ [T ]. For t /∈ SDi ∪ SCi , the variable Xt is identically 0. Otherwise, Xt is defined as follows:

For t ∈ SDi , Xt =

{
1 w.p. p
0 w.p. 1− p

For t ∈ SCi , Xt =

{
1 w.p. p′

0 w.p. 1− p′

We claim that V ′i = 1
pT

∑T
t=1Xt because each data packet is unique and sampled exchanges are

chosen using a truly random function, each exchange will be sampled by Ri with independent
probability p. Thus each data-faulty exchange in SDi was sampled by Ri with probability p,
while each ack-faulty exchange in SCi was sampled by Ri with probability p′ (because here we
need to condition on the fact that at least one node sampled the ack-faulty exchange (so that
Bob generates an ack for that exchange!)). Thus, it follows that E[V ′i ] = 1

T (Di + p′

p Ci). We now
have

Pr[|V ′i −
1
T

(Di +
p′

p
Ci)| > γ] = Pr[|pV ′i −

1
T

(pDi + p′Ci)| > pγ]

= Pr[
1
T
|
∑
t

Xt − (pDi + p′Ci)| > pγ]

= Pr[| 1
T

∑
t

Xt − µ| >
pγ

µ
µ] (C.1)

where we let µ = 1
T (pDi + p′Ci). At this point, it would be nice if we could say that µ = O(p),

which would allow us to derive the conclusion, but a priori we can only assume that µ = O(p′).
Instead, in the rest of this proof we shall carefully show that the probability that Ci > 2 p

p′T

is at most δ
8(K+1) , and conditioned on Ci ≤ 2 p

p′T then we also have that the probability that

| 1T
∑

tXt − µ| > pγ is bounded by δ
8(K+1) , which gives us an overall bound of δ

4(K+1) .
We start by letting Y denote the number of exchanges in the game that require acks for any

Ri. Notice that E[Y ] = p
p′T and that Ci ≤ Y unconditionally, simply because one can’t tamper

with an ack if it was never sent. Now we split the probability in Equation (C.1) as follows:

Pr[| 1
T

∑
t

Xt − µ| >
pγ

µ
µ] ≤ Pr[| 1

T

∑
t

Xt − µ| >
pγ

µ
µ and Ci > 2

p

p′
T ]

+ Pr[| 1
T

∑
t

Xt − µ| >
pγ

µ
µ and Ci ≤ 2

p

p′
T ]

≤ Pr[Ci > 2
p

p′
T ] + Pr[| 1

T

∑
t

Xt − µ| >
pγ

µ
µ | Ci ≤ 2

p

p′
T ]

≤ Pr[Y > 2
p

p′
T ] + Pr[| 1

T

∑
t

Xt − µ| >
pγ

µ
µ | Ci ≤ 2

p

p′
T ] (C.2)

Now by a Chernoff bound the first probability is much less than δ
8(K+1) for our choice of

T = O( 1
γ2p

ln K
δ ), since Y is the sum of independent p

p′ -biased random variables.
The second probability can now be bounded by a Chernoff bound. Notice that while the

definition of the distribution of the Xt depends on Ci, the actual randomness of the Xt is
independent of Ci. This gives us that the second probability is bounded by

Pr[| 1
T

∑
t

Xt − µ| >
pγ

µ
µ | Ci ≤ 2

p

p′
T ] ≤ 2−Ω( p

2γ2

µ
T ) (C.3)
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In the above, we are interested in the event | 1T
∑

tXt − µ| > pγ
µ µ conditioned on Ci ≤ 2 p

p′T , so
that we can bound

µ =
1
T

(pDi + p′Ci) ≤
1
T

(pDi + 2pT ) ≤ 3p

Plugging this into Inequality (C.3) and recalling from the statement of Theorem 4.3.2 that we
set T = O( 1

pγ2 ln(K/δ)), we get

Pr[| 1
T

∑
t

Xt − µ| >
pγ

µ
µ | Ci ≤ 2pT ] ≤ 2−Ω(pγ2T ) ≤ δ

8(K + 1)

Combining this with the previous bound on Pr[Y > 2 p
p′T ] gives us that Inequality (C.2) becomes

Pr[|V ′i −
1
T

(Di +
1
p
Ci)| > γ] ≤ δ

4(K + 1)

To complete the proof of the lemma, it suffices to observe that if replacing a truly random
function φ with a PRF alters the probability by more than Kεprf , then we can efficiently dis-
tinguish between φ and the PRF f with advantage εprf by using the distinguisher that simply
simulates this entire game, using access to an oracle containing either φ or f to answer calls to
the PRF from the scheme, and then outputting 1 iff the condition |Vi − 1

T (Di + p′

p Ci)| ≤
1
2γ is

violated.1

C.2.2 Proof of Lemma 4.3.4

Lemma C.2.2 (Restatement of Lemma 4.3.4). As long as T = O( K2

p(β−α)2
ln K

δ ), for each i, i+
1 /∈ E where E is the set of nodes corrupted by Eve it holds (up to negligible error) that

Pr
[
p′

p
Ci−Ci+1

T > γ
2

]
< δ

2(K+1)

where γ = β−α
2(K+1) and where Ci is the number of acks (destined for any node) dropped between

Ri and RK+1.

Proof of Lemma 4.3.4. Fix Ci+1. Let M ≤ T be the number of exchanges in the interval for
which a data packet reaches Bob, and a corresponding ack packet returns to Ri+1. Since Ri is
honest, Ci+1 − Ci will just be the number of acks that are dropped due to congestion on link
(i, i+ 1), which occurs with probability ρ. Let Xi be a ρ-biased {0, 1} variable.

Let U = γ
2 (1− (1− p)K)T . We can derive:

Pr[p
′

p
Ci−Ci+1

T > γ
2 ] = Pr[Ci − Ci+1 > U ]

≤ Pr

 M∑
j=1

Xi > U

 = Pr

 1
M

M∑
j=1

Xi − ρ > ( U
ρM − 1)ρ


≤ 2−Ω(ρ(

U
ρM )2M) = 2−Ω(U2/(ρM))

1This distinguisher in fact requires access to K oracles, either all computing either a truly random function or
all computing a PRF. Then we can turn this into a distinguisher for a single oracle using the hybrid argument,
which is why we lose a factor of K in the distinguishing advantage. See e.g., [50] for details about this kind of
argument.
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Because we have γ = β−α
2K � ρ, this implies that

U
ρM ≥

γ
2 (1− (1− p)K)

ρ
= Ω(1)

so Pr[Ci−Ci+1 > U ] ≤ 2−Ω(U) = 2−
γ
2 (1−(1−p)N )T . Substituting our value of T gives us that this

is bounded by less than δ/(2(K + 1)).

C.2.3 Proof of Lemma 4.3.6

Lemma C.2.3 (Restatement of Lemma 4.3.6). Let Γ = T
K+1

β(2α+β)
α+2β and εi = 1

2i
β−α
2β+α . For

every i ∈ [K], assume that Ri computes an estimate Vi that (εi, δi)-estimates ‖xi‖pp. Suppose
also that ‖xi‖pp ≤

βi
K+1 . Then with probability at least 1− 2δ′ it follows that:

1. If “link (i, i+ 1) is good” so that ‖xi+1‖pp − ‖xi‖
p
p
≤ α

K+1T then Vi+1 − Vi ≤ Γ.

2. If “link (i, i+ 1) is bad” so that ‖xi+1‖pp − ‖xi‖
p
p
≥ β

K+1T then Vi+1 − Vi ≥ Γ.

Proof. We prove each case separately.
Link (i, i+ 1) is good. Since Vi (εi, δi)-approximates ‖xi‖pp , we can apply (4.4) to find, that
with probability 1− 2δ′,

Vi+1 − Vi ≤ (1 + εi+1)‖xi+1‖pp + (1− εi)‖xi‖pp
≤ (1 + εi+1)(‖xi+1‖pp − ‖xi‖

p
p
) + (εi+1 + εi)‖xi‖pp

≤ (1 + εi+1) α
K+1T + (εi+1 + εi) iβ

K+1T

= α
K+1T

(
1 + εi+1(1 + β

α i) + εii
β
α

)
≤ α

K+1T
(

1 + (i+ 1)εi+1(1 + β
α) + iεi(1 + β

α)
)

= T
K+1

β(2α+β)
α+2β = Γ (C.4)

where we get the required inequality by putting εi = 1
2i

β−α
2β+α .

Link (i, i+ 1) is bad. Again, we apply (4.4) to find, that with probability 1− 2δ′,

Vi+1 − Vi ≥ (1− εi+1)(‖xi+1‖pp − ‖xi‖
p
p
)− (εi+1 + εi)‖xi‖pp

≥ (1− εi+1) β
K+1T − (εi+1 + εi) iβ

K+1T

= T
K+1

β(2α+β)
α+2β = Γ (C.5)

where we again get the required inequality by putting εi = 1
2i

β−α
2β+α .

C.2.4 Proof of Lemma 4.3.8

Our proof of Lemma 4.3.8 relies on the assumption that Eve occupies less than
√
K links on the

path.
To better understand why we made this assumption, suppose Eve occupies a large number

of links on the path, and let node Re be node occupied by Eve. Suppose Eve adds a small
number ≤ β

K+1 of nonsense packets to each link she occupies that is upstream of node Re. If the
number of added packets at each link is small, then there is a probability greater than δ that
Alice will not raise alarm for these links. Next, at node Re, Eve drops all the packets she added
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before, and additionally causes γ-fraction of failures. As such, we have that Ve will be large
(proportional to the number of nonsense packets added downstream), and Ve+1 will be large as
well (proportional to the γT failures at Re). It follows that there is a probability greater than δ
that Ve+1−Ve will be small enough for Alice not to alarm, and so security fails. To rule out this
attack, we limit the number of nodes occupied by Eve; this forces Eve to add a larger number of
nonsense packets to the links upstream of Re and increases the probability that Alice will raise
an alarm for one of these links.

However, our proof only uses a simple averaging argument to claim that if Eve occupies M
links, there must be a single link where γT ≥ β

M T , and uses this to arrive at the fact that Eve
can only occupy M ≤

√
K links on the path. However, we have not used the fact that Eve must

cause a total of βT failures at all the links she occupies; we conjecture that using this fact could
allow us to arrive at a weaker bound on M . We leave this to future work.

Lemma C.2.4 (Restatement of Lemma 4.3.8). If Eve occupies M ≤
√

(K + 1)(1− ρ
βK

2) links

and causes a β-fraction of failures in the interval, then there must be a link (i, i + 1) that is
adjacent to Eve with

‖xi+1‖pp − ‖xi‖
p
p
≥ β

K+1T

Proof of Lemma 4.3.8. Since Eve occupies M links causes at least a β-fraction failures, it im-
mediately follows that there exists a link (i, i+ 1) adjacent to Eve where at least β

M -fraction of
failures, i.e., Di+1 −Di ≥ β

M . Now if the following holds

‖xi+1‖pp − ‖xi‖
p
p
> β

K+1T (C.6)

we are done, since link (i, i + 1) is adjacent to Eve. Thus, suppose (C.6) do not hold. Then,
applying identity (4.6), we have that

β
K+1T ≥ ‖xi+1‖pp − ‖xi‖

p
p

= Di+1 −Di + ‖ai+1‖pp − ‖ai‖
p
p

rearranging and then using that fact that Di+1 −Di ≥ β
M we get

‖ai‖pp ≥= βT ( 1
M −

1
K+1) (C.7)

Next, consider the next link (j, j+1) that is occupied by Eve and is upstream of link (i, i+1).
Now again, if the following holds

‖xj+1‖pp − ‖xj‖
p
p
> β

K+1T (C.8)

then we are done, since link (j, j + 1) is adjacent to Eve. So, we again suppose (C.8) does
not hold. Since Eve does not occupy any links between Rj+1 and Ri, and only congestion-
related loss could have occurred on the links between Rj+1 and Ri. It follows that ‖xj+1‖pp ≥
‖xi‖pp + ρ(i − j − 1). Since (C.8) does not hold, we can apply identity (4.6) and the fact that
‖xj+1‖pp ≥ ‖xi‖

p
p

+ ρ(i− j − 1) ≥ ‖ai‖pp + ρ(i− j − 1) and the bound on ‖ai‖pp in (C.7) to get

‖xj‖pp > βT
(

1
M −

2
K+1 −

ρ
β (i− j − 1)

)
(C.9)

We continue this argument for all m ≤ M − 1 links that are adjacent to Eve and upstream
of link (i, i+ 1). Finally, arriving at the last such link, which we call link (e, e+ 1), we have

‖xe+1‖pp > βT
(

1
M −

m
K+1 −

ρ
β (i− e− 1)

)
> βT

(
1
M −

M−1
K+1 −

ρ
βK
)

(C.10)



132

where the last inequality follows by putting m ≤M − 1 and i− e ≤ K. Now since by definition
Eve does not occupy any links downstream of link (e, e+1), we immediately have that ‖xe‖pp = 0.
It follows that link (e, e+ 1) has

‖xe+1‖pp − ‖xe‖
p
p
> βT ( 1

M −
M−1
K+1 −

ρ
βK) > β

K+1 (C.11)

where the last inequality follows because we put M ≤
√

(K + 1)(1− ρ
βK

2). This concludes the

proof of this lemma, since link (e, e+ 1) is adjacent to Eve.

C.3 Lower Bounds

After introducing some notation and technical lemmata, we prove Lemma 4.4.4 and Lemma 4.4.5.

C.3.1 Technical Lemmata

Notation. For two random variables, X,Y , we denote their concatenation with either (X,Y )
or with XY .
Statistical distance. Recall that we define the statistical distance between two random
variables X,Y as ∆(X,Y ) = 1

2

∑
x∈U |Pr[X = x] − Pr[Y = x]| where U is the union of the

supports of X and Y (for more background on statistical distance, see e.g., [50]).

Lemma C.3.1. For any random variables X,Y, Z,X ′ satisfying X = ηY + (1 − η)Z and
∆(X,X ′) ≤ ε, there exists random variables Y ′, Z ′ and η′ ∈ [η ± ε] such that X ′ =
η′Y ′ + (1− η′)Z ′ and ∆(Y, Y ′) ≤ 3ε

2η .

Proof. Define a randomized process F acting on the support of X, where for each x ∈ supp(X),
F (x) = 1 with probability p(x) = ηPr[Y=x]

Pr[X=x] and F (x) = 0 with probability 1 − p(x), and say
F (x) = 0 for all x /∈ supp(X). We can check that

Pr[F (X) = 1] = E[F (X)] =
∑

x∈supp(X)

Pr[X = x]ηPr[Y=x]
Pr[X=x] =

∑
x∈supp(X)

ηPr[Y = x] = η

and similarly F (X) = 0 with probability 1−η. Furthermore, we claim that Y = (X | F (X) = 1)
since for every x,

Pr[X = x | F (X) = 1] = Pr[F (X)=1∧X=x]
Pr[F (X)=1] = Pr[F (x)=1] Pr[X=x]

η = ηPr[Y=x]
Pr[X=x]

Pr[X=x]
η Pr[Y = x]

and similarly Z = (X | F (X) = 0).
Since ∆(X,X ′) ≤ ε, this means that Pr[F (X ′) = 1] = η′ for η′ ∈ [η ± ε], and also

∆((F (X), X), (F (X ′), X ′)) ≤ ε. Define Y ′ = (X ′ | F (X ′) = 1) and Z ′ = (X ′ | F (X ′) = 0). We
may derive:

ε ≥ ∆((F (X), X), (F (X ′), X ′))
= ∆(η(1, Y ) + (1− η)(0, Z), η′(1, Y ′) + (1− η′)(0, Z ′))

Viewing the random variables as the characteristic vectors of their distributions, and using the
`1 formulation of statistical distance, we have:

= 1
2‖η(1, Y ) + (1− η)(0, Z)− η′(1, Y ′)− (1− η′)(0, Z ′)‖1
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Since coordinates of the form (1, Y ) are disjoint from coordinates of the form (0, Z), we have
the equality:

= 1
2‖η(1, Y )− η′(1, Y ′)‖1 + 1

2‖(1− η)(0, Z)− (1− η′)(0, Z ′)‖1
≥ 1

2‖η(1, Y )− η′(1, Y ′)‖1
= 1

2‖ηY − η
′Y ′ − (η′ − η)‖1

≥ 1
2η‖Y − Y

′‖1 − 1
2 |η
′ − η|

≥ η∆(Y, Y ′)− ε/2

which, rearranged, gives us that ∆(Y, Y ′) ≤ 3ε
2η .

Lemma C.3.2. Let X,Y,X ′, Y ′ be such that ∆(XY,X ′Y ′) ≤ ε. Say that x ∈ supp(X) ∩ supp(X ′)
is δ-bad if ∆(Y (x), Y ′(x)) > δ, where Y (x) denotes the conditional distribution Y | X = x
and Y ′(x) denotes Y ′ | X ′ = x. Then Pr[X is δ-bad] ≤ 2ε/δ.

Proof. Our proof is by contradiction. Suppose Pr[X is δ-bad] > 2ε/δ. Then, use the triangle
inequality to obtain:

∆(XY,X ′Y ′) ≥ ∆(XY,XY ′(X))−∆(XY ′(X), X ′Y ′)

where the random variable Y (X ′) denotes Y (x) = y | x ←R X
′. By hypothesis, we know that

∆(X,X ′) ≤ ε so we have

≥ ∆(XY,XY ′(X))− ε
= ∆(Y, Y ′(X))− ε
≥ Pr[X is δ-bad]∆(Y | Xbad, Y ′(X) | Xbad)− ε

and since the statistical distance between Y (x) and Y ′(x) when x is δ-bad is at least δ, we have

> (2ε/δ) · δ − ε ≥ ε

which contradicts the hypothesis that ∆(X,X ′) ≤ ε.

Lemma C.3.3. Let X,Y,X ′, Y ′ be random variables where ∆(X,X ′) ≤ ε1. We say that
x ∈ supp(X) ∩ supp(X ′) is ε2-bad if ∆(Y (x), Y ′(x)) ≥ ε2, and suppose Pr[X ε2-bad] ≤ ε3.
Then ∆(XY,X ′Y ′)) ≤ ε1 + ε2 + ε3.

Proof. This follows from the triangle inequality:

∆(XY,X ′Y ′) ≤ ∆(XY,XY ′(X)) + ∆(XY ′(X), X ′Y ′)
≤ ∆(Y, Y ′(X)) + ∆(X,X ′)
≤ ∆(Y, Y ′(X)) + ε1

≤ Pr[X ε2-bad] ·∆(Y | X bad, Y ′(X) | X bad)
+ (1− Pr[X ε2-bad]) ·∆(Y | X not bad, Y ′(X) | X not bad) + ε1

≤ ε3 · 1 + (1− 0) · ε2 + ε1
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C.3.2 Proof of Lemma 4.4.4

First a word about random oracles, which we treat as a function RO : {0, 1}∗ → {0, 1}. We look
at the RO using the “lazy evaluation” methodology: points in RO are not fixed until they have
been queried. When an efficient algorithm executes with a random oracle, it can make only an
efficient number of queries. This means that RO can be viewed as a polynomially long string
representing the responses to the algorithm, rather than as an infinitely large function, and
replacing RO by a different string RO′ (of equal length) amounts to replacing the real random
oracle with a “fake random oracle”. Thus, in the following, when we say that an oracle outputs
a fake random oracle consistent with the output h of an algorithm A, we mean it outputs a
string RO′ ∈ {0, 1}poly(n) such that running A with the responses encoded in RO′ generates h.
Learning Algorithm. We apply Naor and Rothblum’s [83] learning algorithm for adaptively
changing distributions (ACD). The ACD we work with is defined as a pair (Init, D) of random
processes, where Init is a key generation process that takes a uniform string s and generates
secrets −→aux = Init(s), and D is a process that takes the initial state −→aux and a history Hi−1 and
uses them to generate a sample τi of an exchange. The history Hi−1 consists of tuples (rj , τj)
for all j ≤ i− 1, where rj was the random string used to generate the transcript τj . Notice that
the τj are the outputs of the ACD, while the initial state s and the rj remain secret.

Theorem C.3.4 (Naor and Rothblum [83]). There exists a PSPACE algorithm that, for any
ACD (Init, D), observes at most t = O(n/ε4) samples from D and generates with probability
> 1−ε a fake secret state −→aux′ and fake history H ′t such that simulating D with −→aux′, H ′t generates
a sample tau′t+1 that is distributed ε-statistically close to an honest sample generated by D using
−→aux, Ht.

Lemma C.3.5 (Lemma 4.4.4 restated). Relative to a (PSPACE,RO)-oracle, there exists an
efficient algorithm that observes at most t = O( n

ε4
) honest exchanges τj = 〈Ri−1, Ri〉j and then,

with probability > 1−ε, outputs algorithms R′0, . . . , R
′
K+1 such that a fake exchange 〈R′i−1, R

′
i〉t+1

is distributed ε-close to an honest exchange 〈Ri−1, Ri〉t+1.

Proof of Lemma 4.4.4. Apply Theorem C.3.4 where the Init function is our key generation func-
tion, and D is the algorithm that simulates the interaction of all algorithms R0, . . . , RK+1 given
a uniformly random data packet to be sent, including simulating all the congestion along links
between the nodes, and outputs the transcript along link (i − 1, i). To generate the transcript
of the i’th exchange, D takes input −→aux, Hi−1,ROi, ri where ROi are responses to new queries to
the random oracle that D makes in generating the transcript, ri is the fresh internal randomness
used to generate the i + 1’th transcript, and Hi−1 = (τj ,ROj , rj)j≤i−1 is a history of previous
transcripts, responses of the random oracle, and internal randomness. Notice that because D
simulates all the nodes, there is no distinction between how the learning algorithm treats ROi

and ri.
After observing t = O(n/ε4) exchanges, using the learning algorithm of Theorem C.3.4, we

get with probability > 1− ε fake secrets −→aux′, H ′t consistent with the transcripts and such that
generating the t+ 1’th transcript using the fake secrets is ε to generating the t+ 1’th transcript
using the honest secrets. Set R′i to be Ri but with the secrets in −→aux′, H ′t hardwired into the
algorithm.

Efficiency is clear because we allow a PSPACE oracle and because the number of samples is
O(n/ε4).
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C.3.3 Proof of Lemma 4.4.5

Lemma C.3.6 (Lemma 4.4.5 restated). Suppose that ∆(〈A,B〉, 〈A′, B′〉) ≤ ε, and there exist
events E1, . . . , Er over the internal randomness of A,B such that (1) ∀j, conditioned on Ej,
the first j messages from B to A are independent of A’s internal randomness, and (2) Pr[Ej |
Ej−1] ≥ ρ. Set ε = (ρ/10)4r, Then there exist η ≥ (ρ/2)r, and distributions over the transcripts
Y,Z such that 〈A,B′〉 is a convex combination ηY + (1− η)Z and

∆((Y, viewA(Y )), (〈A,B〉, viewA(〈A,B〉) | Er)) ≤ 1/100

Proof. We define σi = 〈A,B〉i, the first i messages in the partial transcript of 〈A,B〉. Notice
that σi is a random variable so it makes sense to condition σi on the event Ei. Similarly define
σ′i = 〈A′, B′〉i and σalt

i = 〈A,B′〉i. We will decompose A,B,A′, B′ into next-message functions
Ai, Bi, A

′
i, B

′
i for 1 ≤ i ≤ r, where we assume that each party takes turns communicating, and 2r

is the maximum number of rounds of communication. Recall from the statement of the lemma
that we think of applying the i’th next message function B′i(τ) to a partial transcript τ of 2i−1
messages as sampling from (〈A′, B′〉2i | 〈A′, B′〉2i−1 = τ).

Recall that viewA(τ) is the distribution of the internal randomness of A conditioned on
outputting the transcript τ .

Now, we define the conditional view condviewA(τ) to be a uniformly sampled view of all the
possible shared and independent internal randomness for A that causes A to output its messages
in τ , such that the shared randomness is consistent with B output its messages in τ . Intuitively,
we think of condviewA(τ) and randomness for A sampled under the assumption that parties
A,B that created τ correctly shared their randomness.

Define alternating view altviewA(τ) to be a uniformly sampled view of the all possible shared
and independent internal randomness for A that causes A to output its messages in τ , even
if the shared randomness would not result in B outputting its messages in τ . We can think of
altviewA(τ) and randomness for A sampled under the assumption that B and A use independent
randomness, i.e., that party B incorrectly shares its randomness with A.

Notice that when the parties that created τ are independent, the condview and altview are
the same. Otherwise, the support of the condview is a subset of the support of the altview. As
such, we can list some properties of condview, altview, view. Before we begin, recall that A,B
share randomness, but B′ impersonates to A, the randomness that B′ is supposed to share with
A is independent of A’s randomness.

1. condviewA(〈A,B〉) = viewA(〈A,B〉) because in this case both parties are correctly sharing
randomness.

2. altviewA(〈A,B′〉) = viewA(〈A,B′〉) because when B′ is impersonating to A, B′ is not
correctly sharing randomness with A. Thus the view of A is independent of the randomness
of B′.

3. condviewA(〈A,B′〉) 6= viewA(〈A,B′〉) because condviewA assumes that A,B′ correctly share
randomness, but when B′ impersonates to A this is not the case.

4. altviewA(〈A,B′〉2i) = altviewA(〈A,B′〉2i−1) since B′ computes the 2i’th message, this does
not affect A’s altview since altviewA is independent of the randomness used by B′.

5. Conditioned on Ei, condviewA(〈A,B〉2i) = condviewA(〈A,B〉2i−1) because Ei tells us that
the 2i’th message (computed by B) is independent of A’s randomness. It follows that the
2i’th message will not affect A’s condview.
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6. Conditioned on Ei, condviewA(〈A,B〉2i) = altviewA(〈A,B〉2i) and condviewA(〈A,B〉2i+1) =
altviewA(〈A,B〉2i+1). This follows because messages 2, 4, ..., 2i are computed by B and
messages 1, 3, ..., 2i + 1 are computed by A, and Ei tells us that all the messages from B
to A are independent of A’s randomness.

The proof of this Lemma 4.4.5 rests on the following claim, which will prove by induction:

Claim C.3.7. Assuming ε = (ρ/10)4r, for each i, 0 ≤ i ≤ r, there exist ηi ≥ ρ/2 and random
variables Yi, Zi such that

σalt
2i =

i∏
j=1

ηjYi + (1−
i∏

j=1

ηj)Zi

and, for δi =
√
ε(10/ρ)i,

∆((σ2i, condviewA(σ2i) | Ei), (Yi, altviewA(Yi))) ≤ δi

Apply this claim for the case of σ2r = 〈A,B〉 and σalt
2r = 〈A,B′〉 to obtain Y = Yr and

η =
∏r
j= η ≥ (ρ/2)r. This implies that we have the decomposition σalt

2r = ηY +(1−η)Z Next,
we argued above (in the first item) that condviewA(σ2r) = viewA(σ2r). We argued above (in the
second item) that altviewA(σalt

2r ) = viewA(σalt
2r ), and the decomposition of σalt

2r = ηY + (1 − η)Z
then gives that that altviewA(Y ) = viewA(Y ). Finally, we can apply the claim to obtain that

∆((Y, viewA(Y )), (σ2r, viewA(σ2r) | Er)) ≤
√
ε(10/ρ)r

which proves the lemma since
√
ε(10/ρ)r = (ρ/10)r ≤ 100.

We now prove Claim C.3.7.

Proof of Claim C.3.7. Our proof is by induction. The base case i = 0 is trivial. The inductive
hypothesis for i− 1 is as follows: There exists ηi−1 ≥ ρ/2, δi =

√
ε(10/ρ)i and random variables

Yi−1, Zi−1 such that

∆((σ2i−2, condviewA(σ2i−2) | Ei−1), (Yi−1, altviewA(Yi−1)) ≤ δi−1 (C.12)

and

σalt
2i−2 =

i−1∏
j=1

ηjYi−1 + (1−
i−1∏
j=1

ηj)Zi−1 (C.13)

Our claim will follow if we show that this is also the case for i.

We are ready to start proving the inductive step. First, we apply Ai to both terms in
Inequality C.12 and update the view to get (because this process is identical in both cases):

∆((σ2i−1, condviewA(σ2i−1) | Ei−1), (ζ2i−1, altviewA(ζ2i−1))) ≤ δi−1 (C.14)

where for compactness we have set ζ2i−1 = Yi−1Ai(Yi−1, altviewA(Yi−1)).
Applying Lemma C.3.2. Suppose that 〈A,B〉, 〈A′, B′〉 that are statistically close, and
consider a partial transcript σ2i−1 generated by A,B. Informally, we would like to show that it
is extremely unlikely that the next message functions of B applied to σ2i−1 generates a transcript
that is statistically far from the transcript generated by the next-message function of B′ applied
σ2i−1. Formally, we do this by applying Lemma C.3.2, with

X = (σ2i−1, condviewA(σ2i−1)), Y = Bi(σ2i−1, condviewA(σ2i−1))
X ′ = (σ′2i−1, condviewA(σ′2i−1)), Y ′ = B′i(σ

′
2i−1)
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Notice that that (σ2i, condviewA(σ2i)) = XY and (σ′2i, condviewA(σ′2i)) = X ′Y ′, and we have ∀i,

∆(XY,X ′Y ′) = ∆((σ2i, condviewA(σ2i)), (σ′2i, condviewA(σ′2i))) ≤ ∆(σ2i, σ
′
2i) ≤ ∆(〈A,B〉, 〈A′, B′〉) ≤ ε

where the last inequality follows from the hypothesis in Lemma 4.4.5. Next, we say that a fixed
transcript and view x = (τ2i−1, condviewA(τ2i−1)) is 2

√
ε-bad if

∆(Y (x), Y ′(x)) = ∆(Bi(τ2i−1, condviewA(τ2i−1)), B′i(τ2i−1)) > 2
√
ε

We can now apply Lemma C.3.2 to find that the probability that (σ2i−1, condviewA(σ2i−1)) is
2
√
ε-bad is at most 2ε

2
√
ε

=
√
ε. Before we move on, also observe that by the hypothesis in

Lemma 4.4.5 we know that Pr[Ei−1] = ρi−1 so that

Pr[(σ2i−1, condviewA(σ2i−1)) is 2
√
ε bad | Ei−1] ≤

√
ε/ρi−1 (C.15)

Applying Lemma C.3.3. Informally, we want to argue that, if (σ2i−1 | Ei−1) and ζ2i−1

along with their views are statistically close (Inequality C.14), and if (σ2i−1 | Ei−1) is rarely bad
(Inequality C.15) it follows that transcripts (σ2i | Ei−1) and ζ2i along with their views are also
statistically close. We will do this using Lemma C.3.3, setting

X = (σ2i−1, condviewA(σ2i−1) | Ei−1), Y = Bi(σ2i−1, condviewA(σ2i−1)) | Ei−1

X ′ = (ζ2i−1, altviewA(ζ2i−1)), Y ′ = B′i(ζ2i−1)

Notice that Inequality C.14 tells us that ∆(X,X ′) ≤ δi−1. Furthermore, we have that

XY = (σ2i, condviewA(σ2i−1) | Ei−1)

and setting ζ2i = ζ2i−1B
′
i(ζ2i−1) we have that

X ′Y ′ = (ζ2i, altviewA(ζ2i−1))

Furthermore, from Inequality C.15 it follows that x = (σ2i−1, condviewA(σ2i−1) | Ei−1) is
2
√
ε-bad (i.e., ∆(Y (x), Y ′(x)) ≥ 2

√
ε) with probability at most

√
ε/ρi−1. Thus, we can apply

Lemma C.3.3 to obtain

∆(XY,X ′Y ′) = ∆((σ2i, condviewA(σ2i−1) | Ei−1), (ζ2i, altviewA(ζ2i−1))) ≤ δi−1 + 2
√
ε+
√
ε/ρi−1

Before moving on, notice that this immediately implies that

∆((σ2i | Ei−1), ζ2i) ≤ δi−1 + 2
√
ε+
√
ε/ρi−1 .= γ (C.16)

Applying Lemma C.3.1: So far, we have been conditioning on Ei−1. We now condition on
Ei. We want to say that because (σ2i | Ei−1) and ζ2i are close, and because (Ei | Ei−1) happens
often, we can decompose ζ2i so that part of it is close to (σ2i | Ei).

We shall do this using Lemma C.3.1. Set X = (σ2i | Ei−1) and let Y = X | Ei while
Z = X | ¬Ei. By hypothesis in Lemma 4.4.5 the conditional event (Ei | Ei−1) occurs with
probability ρ, so that (σ2i | Ei−1) = X = ρY + (1 − ρ)Z. From Inequality C.16 we know that
∆(X, ζ2i) = γ. We can now apply Lemma C.3.1 to find that there exist ηi ∈ [ρ± γ] and random
variables Yi, Zi such that

ζ2i = ηiYi + (1− ηi)Zi (C.17)

and
∆((σ2i | Ei), Yi) ≤ 3γ

2ηi
(C.18)
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Setting δi−1 =
√
ε(10/ρ)i−1 and assuming ε = (ρ/10)4r, since ni ≥ ρ− γ implies that ηi ≥ ρ/2,

and Inequality C.18 is bounded by δi =
√
ε(10/ρ)i. Applying altviewA to both terms in Inequality

C.18 we get

∆((σ2i, altviewA(σ2i) | Ei), (Yi, altviewA(Yi))) ≤
√
ε(10/ρ)i

and then applying the fact that condviewA(σ2i) = altviewA(σ2i) conditioned on Ei, we get

∆((σ2i, condviewA(σ2i) | Ei), (Yi, altviewA(Yi))) ≤
√
ε(10/ρ)i (C.19)

which proves the first equation in our induction step (corresponding to Inequality C.12).
Finally, we finish by proving the part of our induction step corresponding to Equation C.13.

We can derive

σalt
2i = σalt

2i−2Ai−1(σalt
2i−2)B′i−1(σalt

2i−2Ai−1(σalt
2i−2))

and using Equation C.13, we get

=
i−1∏
j=1

ηjYi−1Ai−1(Yi−1)B′i−1(Yi−1Ai−1(Yi−1)) + (1−
i−1∏
j=1

ηj) . . .

=
i−1∏
j=1

ηjζ2i + (1−
i−1∏
j=1

ηj) . . .

now we apply Equation C.17 to get

=
i∏

j=1

ηjYi +
i−1∏
j=1

ηj(1− ηi)Zi + (1−
i−1∏
j=1

ηj) . . .

=
i∏

j=1

ηjYi + (1−
i∏

j=1

ηj)Wi (C.20)

where we used “. . .” to represent the rest of the convex combination of the Yj , Zj ’s which
we finally collected in a new variable Wi

2. Recalling that ηi ≥ ρ/2 for all i, we have that∏i
j=1 ηj ≥ (ρ/2)i = 1/poly(n).

Thus, combining Inequality C.19 with Equation C.20 completes the proof of our induction
step.

2We can do this because Zi is from the decomposition of ζ2i while Wi corresponds to the decomposition of
σalt

2i .
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