
Integrating Network Management For

Cloud Computing Services

Peng Sun

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Professor Jennifer Rexford

June 2015

c© Copyright by Peng Sun, 2015.

All rights reserved.

Abstract

Cloud computing is known to lower costs of corporate IT. Thus enterprises are eager

to move IT applications into public or private cloud. Because of this trend, networks

connecting enterprises and cloud providers now play a critical role in delivering high-

quality cloud applications.

Simply buying better devices is not viable for improving network quality, due to

high capital costs. A more attractive approach is to better utilize network resources

with proper network management. However, there are two problems with current

network management: separately managing network components along the end-to-

end path, and heavily relying on vendor-specific interfaces with devices.

This dissertation takes a practical approach driven by operational experiences of

cloud services to tackle the two problems. With knowledge of real-world challenges,

we have designed proper abstractions for low-level device interactions, and have built

efficient and scalable systems to integrate the management of various network com-

ponents. With commercial deployment, our operational experiences feed back into

revision of the abstraction and system design.

In this dissertation, we make three major contributions. We first propose to

consolidate the traffic and infrastructure management in datacenters. Our system,

called Statesman, simplifies management solutions by providing a uniform abstraction

to interact with various aspects of devices. Statesman then allows multiple solutions

to run together, resolves their conflicts, and prevents network-wide failures caused

by their collective actions. Statesman has been operational worldwide in Microsoft’s

public cloud offering since October 2013.

The second contribution consists of joining end hosts with networks for cooperative

traffic management. Our Hone system brings in the fine-grained knowledge of cloud

applications in the hosts, and offers an expressive programming framework with a

iii

uniform view of both host and network data. Hone has been integrated into Verizon

Business Cloud.

The final contribution consists of bridging enterprises and Internet service

providers (ISPs) for fine-grained control of inbound traffic from cloud applications.

Our Sprite system enables enterprises to directly decide how traffic enters the enter-

prise networks via which ISPs, offering expressive interface and scalable execution.

In collaboration with Princeton’s Office of Information Technology, Sprite was tested

with campus-network data and live Internet experiments.

iv

Acknowledgments

I am very grateful to have had Jennifer Rexford as my advisor through the ups and

downs in my PhD journey. Jen has been a great advisor on computer-networking

research. Her solid expertise and sharp intellect have guided me through the chal-

lenges of research, e.g., brainstorming new ideas, clarifying research problems, delving

into technical solutions, improving paper writing, making engaging presentation, etc.

Also being a mentor for me, Jen encouraged me to explore different career paths, and

help me discover and start the best one for my career development. Thanks to her

best imaginable supports, I spent significant portion of my time on industrial research

projects seeking both academic and production impacts, and I built my confidence

and passion in practically applying technologies from cutting-edge research. I have al-

ways been inspired by her thoughtfulness, humility, and kindness to everyone around

her, which make her my role model for years to come. My five years at Princeton were

one of the best times in my life because of the fortune of working with and learning

from Jen.

I am also very fortunate to have worked with Lihua Yuan and Dave Maltz. As

mentors of my two-year internship in Microsoft Azure, they put enormous trust on

me to drive a complete roadmap of applying my research: from architecting solu-

tions, securing resources from the management layer, to developing and delivering

the product. Their rigorous attitude and expert skills in solving practical problems

set a great example for my career.

I would like to thank David Walker, Nick Feamster, Margaret Martonosi, and Kai

Li for serving on my thesis committee, and giving me valuable feedback on my works.

I also want to thank my colleagues for the papers we co-authored: Ming Zhang,

Ratul Mahajan, Ahsan Arefin, David Walker, Minlan Yu, Michael Freedman, and

Laurent Vanbever. The major chapters of this dissertation would not be possible

without their invaluable helps and contributions. Our collaboration has been a truly

v

inspiring and rewarding experience. I also would like to thank Chuanxiong Guo,

Guohan Lu, Randy Kern, Albert Greenberg, Walter Willinger, and many others for

their valuable feedback to my research.

My research at Princeton was supported by the National Science Foundation [34,

52], Intel [33], DARPA [35], and the Office of Naval Research [101]. My research at

Microsoft was supported by Microsoft Azure and Microsoft Research. Many thanks

to them for making my works possible.

My Princeton experience would have been incomplete without my friends. I bene-

fited a lot from the candid conversations and the fun social activities with the members

of our Cabernet group. Minlan Yu, Eric Keller, and Rob Harrison helped me boot the

graduate student career in my first year on both research and life. In the same class

with me, Srinivas Narayana gave me kindhearted supports in many joys and struggles

that we shared in the graduate school. I would also like to thank Xin Jin, Naga Katta,

Nanxi Kang, Mojgan Ghasemi, Arpit Gupta, Theophilus Benson, Laurent Vanbever,

and Joshua Reich for the fun discussions on my work and life in Princeton.

I also want to thank my friends in the rest of the Computer Science Department

for making me feel like home: Jude Nelson, Matt Zoufly, Jeff Terrace, Wyatt Lloyd,

David Shue, Erik Nordstrom, Xiaozhou Li, Tianqiang Liu, Yiming Liu, Jingwan Lu,

Xiaobai Chen, Tianlong Wang, Sapan Bhatia, Andy Bavier, Christopher Tengi, Yida

Wang, Cole Schlesinger, Christopher Monsanto, and many others. I also owe a special

thank you to Melissa Lawson, our retired graduate coordinator, for her kind helps

on making my extended internship possible. I thank Brian Kernighan for helping me

improve the communication and teaching skills.

I also thank my friends in other departments in Princeton (Zhuo Zhang, Zhikai Xu,

Shaowei Ke, Xiaochen Feng, Haoshu Tian, Liechao Huang, Pingmei Xu), in Microsoft

(George Chen, Huoping Chen, Murat Acikgoz, Kamil Cudnik, Jiaxin Cao, Shikhar

vi

Suri, Dong Xiang, Chao Zhang, Varugis Kurien, Hongqiang Liu, Yibo Zhu), and too

many others to mention for making my life in Princeton and Seattle much more fun.

I thank my parents, Shufang Ma and Shusen Sun, for their enduring love and

belief, without which I would not have finished the journey.

Above all, I want to thank my fiancée, Jiaxuan Li, for her love and unwavering

faith in me. It is the happiness and optimism from her that drives me through the

five years of PhD. I dedicate this dissertation to her.

vii

To my fiancée and my parents.

viii

Contents

Abstract . iii

Acknowledgments . v

List of Tables . xiii

List of Figures . xiv

1 Introduction 1

1.1 Problems of Current Network Management 4

1.2 Research Approach . 7

1.3 Contributions . 8

1.3.1 Safe Datacenter Traffic/Infrastructure Management 9

1.3.2 End-host/Network Cooperative Traffic Management 10

1.3.3 Direct Control of Entrant ISP for Enterprise Traffic 10

2 Statesman: Integrating Network Infrastructure Management 12

2.1 Introduction . 12

2.2 Network State Abstraction . 17

2.2.1 Three Views of Network State 17

2.2.2 Dependency Model of State Variables 18

2.2.3 Application Workflow . 19

2.3 System Overview . 20

2.4 Managing Network State . 23

ix

2.4.1 The State Dependency Model 23

2.4.2 Using and Extending the Dependency Model 25

2.5 Checking Network State . 27

2.5.1 Resolving Conflicts . 27

2.5.2 Choosing and Checking Invariants 29

2.5.3 Partitioning by Impact Group 31

2.6 System Design and Implementation 32

2.6.1 Globally Available and Distributed Storage Service 32

2.6.2 Stateless Update on Heterogeneous Devices 34

2.6.3 Network Monitors . 36

2.6.4 Read-Write APIs . 36

2.7 Operational Experiences . 37

2.7.1 Deployment in Microsoft Azure 38

2.7.2 Maintaining Network-wide Invariants 39

2.7.3 Resolving Conflicts of Management Solutions 41

2.7.4 Handling Operational Failures 43

2.8 System Evaluation . 45

2.9 Related Work . 49

2.10 Conclusion . 50

3 Hone: Combining End Host and Network for Traffic Management 51

3.1 Introduction . 51

3.2 Hone Programming Framework . 55

3.2.1 Measurement: Query on Global Tables 56

3.2.2 Analysis: Data-Parallel Operators 59

3.2.3 Control: Uniform and Dynamic Policy 62

3.2.4 All Three Stages Together . 64

3.3 Efficient and Scalable Execution . 64

x

3.3.1 Distributed Directory Service 65

3.3.2 Lazily Materialized Tables . 66

3.3.3 Host-Controller Partitioning 67

3.3.4 Hierarchical Data Aggregation 68

3.4 Performance Evaluation . 70

3.4.1 Performance of Host-Based Measurement 71

3.4.2 Performance of Management Solutions 73

3.4.3 Effects of Lazy Materialization 75

3.4.4 Evaluation of Scalability in Hone 76

3.5 Case Studies . 80

3.5.1 Elephant Flow Scheduling . 80

3.5.2 Distributed Rate Limiting . 81

3.6 Related Work . 83

3.7 Conclusion . 84

4 Sprite: Bridging Enterprise and ISP for Inbound Traffic Control 86

4.1 Introduction . 86

4.2 Inbound TE Using Source NAT . 89

4.3 Scalable Sprite Architecture . 90

4.3.1 Data Plane: Edge Switches Near Hosts 91

4.3.2 Control Plane: Local Agents Near Switches 93

4.4 Dynamic Policy Adaptation . 94

4.4.1 High-level Traffic Engineering Objectives 94

4.4.2 Computing Network Policy . 95

4.5 Implementation . 98

4.5.1 Design for Fault Tolerance . 98

4.5.2 How Components Communicate 99

4.5.3 Routing Control for Returning Packets 100

xi

4.5.4 BGP Stability . 101

4.6 Evaluation . 102

4.6.1 Princeton Campus Network Data 102

4.6.2 Multi-ISP Deployment Setup 104

4.6.3 Inbound-ISP Performance Variance 105

4.6.4 Effects of Dynamic Balancing 106

4.7 Related Work . 107

4.8 Conclusion . 108

5 Conclusion 109

5.1 Summary of Contributions . 110

5.2 Open Issues and Future Works . 111

5.2.1 Combining Statesman and Hone in Datacenters 111

5.2.2 Supporting Transactional Semantics in Statesman 112

5.2.3 Hone for Multi-tenant Cloud Environment 112

5.3 Concluding Remarks . 113

Bibliography 114

xii

List of Tables

2.1 Input and Output of Each Component in Statesman 22

2.2 Examples of Network State Variables 25

2.3 Read-Write APIs of Statesman . 37

3.1 Global Tables Supported in Hone Prototype 57

3.2 Measurement Query Language Syntax 59

3.3 Control Policy in Hone Prototype . 63

3.4 Average CPU and Memory Usage of Execution 75

3.5 Average CPU/Memory Usage with Hierarchical Aggregation 80

3.6 Hone-based Traffic Management Solutions 81

4.1 Syntax of High-level Objective . 95

4.2 Total Inbound Volume Distribution among ISPs 103

xiii

List of Figures

1.1 End-to-end Structure of Cloud-based Software Services 2

1.2 Practical and Iterative Research Approach 7

1.3 Scope of Integration for Projects in the Dissertation 9

2.1 Example of Conflicts between Management Solutions 14

2.2 Example of Safety Violation by Collective Actions 15

2.3 Statesman Architecture Overview . 21

2.4 Network State Dependency Model . 23

2.5 Flow of The Checker’s Operation . 28

2.6 Statesman System Design . 33

2.7 Network Topology for The Scenario in §2.7.2 39

2.8 Device Upgrade Process while Statesman Maintains Safety 40

2.9 WAN Topology for The Scenario in §2.7.3 42

2.10 Conflict-Free TE and Device Upgrade with Statesman 43

2.11 Time Series of Firmware Upgrade at Scale 44

2.12 External-Force Failure in Device Upgrade 45

2.13 End-to-end Latency Breakdown . 46

2.14 Network State Scale & Checker Performance 47

2.15 Read-write Micro-benchmark Performance 48

3.1 Overview of the Hone System . 54

xiv

3.2 Three Stages of Traffic Management 56

3.3 Partitioned Execution Plan of Elephant-Flow Solution 68

3.4 Aggregation Tree: 8 Hosts with Branching of 2 70

3.5 Overhead of Collecting Connection Statistics 72

3.6 Latency of One Round of Execution of Management Solutions 75

3.7 Breakdown of Execution Latency . 76

3.8 Effects of Lazy Materialization . 77

3.9 Buffering Delay of Merging Data from Hosts on Controller 78

3.10 End-to-end Execution Latency with Hierarchical Aggregation 79

3.11 Time Series of Application Throughput 83

4.1 Example of How Sprite Works . 90

4.2 Three Levels of Abstraction in Sprite 91

4.3 Sprite System Components . 92

4.4 Workflow of Network Policy Adaptation 96

4.5 Network Policy Adaptation for Dynamic Perf-driven Balancing 97

4.6 System Architecture of Sprite Implementation 99

4.7 Stacked Chart of Inbound and Outbound Traffic Volume 103

4.8 Stacked Chart of Inbound Traffic via Three ISPs 104

4.9 Setup of the Multihomed Testbed on AWS VPC 105

4.10 Histogram of Video Quality via Two ISPs 106

4.11 Time Series of Average Per-User Throughput of YouTube 107

xv

Chapter 1

Introduction

Cloud computing is reshaping the Information Technology (IT) industry. It offers

utility computing by delivering the applications as services over the Internet and pro-

viding these services with well-organized hardware and software in datacenters. The

utility computing model eliminates the large capital barrier of purchasing hardware

for enterprises, and it also lowers the IT operational costs by allowing enterprises to

pay for what they actually use. These benefits motivate an ongoing effort of enter-

prises to move their IT applications into the public cloud and/or build their private

cloud [1, 15, 23].

The delivery of the promise of cloud computing depends on the quality of the

end-to-end network. As shown in Figure 1.1, the Internet now plays a critical role

in carrying the traffic of IT applications between enterprises and datacenters of pub-

lic/private cloud providers. The performance of cloud-based IT applications depends

on not only the application software in the cloud, but also the reliability, efficiency,

and performance of the networks in the middle.

Improving the network quality could be achieved by deploying more network de-

vices with higher bandwidth. However, this brute-force approach no longer works

due to the high capital costs and the rapidly growing traffic demands [7]. A more

1

Servers

Applica'on	

OS	

Network Devices

Rou'ng	

Hardware	

Datacenter of Public/Private Cloud Provider

Enterprise
Network

ISP ISP ISP ISP … …

ISP ISP

ISP
Internet

Figure 1.1: End-to-end Structure of Cloud-based Software Services

attractive approach is to build proper network management solutions to better uti-

lize the existing network resources. Yet the current practice of network management

has two main problems which have become the main bottlenecks in adopting cloud

computing. The two problems of network management solutions are:

• Disjoint management of the end-to-end components:

Providing an efficient network involves multiple components on the end-to-end

path: from the network stack of the datacenter servers’ operating systems, the

hardware configuration and the routing control of network devices in datacenters,

the traffic exchange of Internet service providers (ISPs), to the setup of enterprise

networks. Each component can affect the quality of the networks. Yet these com-

ponents (e.g., servers, network device hardware, and traffic routing) are managed

separately with different systems, since traditionally these components are spread

across multiple places. In the cloud era, these components become much more

2

concentrated in the datacenters than before, and the lack of integration among

management systems limits the quality improvement of the networks.

• Low-level interfaces for interacting with network devices:

Network devices are heterogeneous with different models from various vendors of

varying ages. Interacting with the devices is complicated since the configuration

APIs with devices are usually low-level and vendor-specific. Human network op-

erators have to heavily use these low-level APIs in day-to-day operations, and it

has been an error-prone process to configure the devices to run the right protocols

with the right parameters using the right APIs. Using these APIs also tightly

binds the solutions to specific device features by vendors, making it difficult to

adapt the solutions to evolving business objectives. In datacenters, the heavy re-

liance on low-level device interfaces becomes one of the major sources of failures

in network operations, especially when the datacenter network is growing in scale

and adopting more commodity hardware from multiple vendors [8, 27, 28].

The programmability of management solutions has received much attention in the

research community [64]. The concept of Software-Defined Networking (SDN) aims

at providing a better way to program traffic management solutions. The literature on

SDN, especially the ones surrounding the OpenFlow technology [45, 74, 97], promise

to automate managing the traffic routing in networks with high-level programming

paradigms [66, 67, 99, 128]. With existing literature focusing on programming traffic

management on network devices, two other problems are much less explored beyond

just traffic management: disjoint management of network components (e.g., server,

device hardware), and low-level device interaction limiting a broader scope of network

management (e.g., infrastructure management).

This dissertation focuses on solving these two problems. Rather than proposing

clean-slate solutions, the dissertation takes a practical approach driven by operational

experiences of cloud services. We identify the real-world opportunities and challenges

3

of integrating the management of different network components on the end-to-end

path, and then propose proper abstractions to unify and hide the low-level component

interactions. Guided by the abstractions, we design and build systems of integrated

management platforms for cloud providers and enterprises that are simple to use, and

safe, efficient, and scalable in day-to-day operations [120, 123]. Having deployed the

systems in major cloud providers [17, 26], we leverage the operational experiences as

feedback to revisit the abstraction and system design.

We first elaborate the problems of network management with examples of man-

agement solutions in §1.1. We then discuss the research approach of this dissertation

in §1.2, and summarize the major contributions of this dissertation in §1.3.

1.1 Problems of Current Network Management

Current practices of network management have two main problems: 1) disjoint man-

agement of the network components, and 2) heavy reliance on the low-level interfaces

with devices. These problems become more severe in the era of cloud computing, and

have become the main limiting factors in building more reliable and more efficient

network management solutions.

Considering the first problem, many components are involved in the end-to-end

path of cloud applications. Applications are running on the servers in datacenters, and

the servers send traffic to other servers or the outside via datacenter networks. A series

of ISPs deliver the application traffic to the enterprise networks, which finally deliver

it to the users. Traditionally, these components are managed as three separate areas:

1) Application and server provisioning for placing the applications and controlling

the servers’ operating environments, 2) network infrastructure for configuring and

operating the device hardware from power control to topology setup, and 3) traffic

engineering for routing the application traffic through the network infrastructure.

4

The status quo results from the traditional division of labor among the entities

of the Internet business in the pre-cloud-computing era. In the past, the entity who

hosts applications has the majority of traffic going directly to users; not among the

application instances inside. Thus it focuses on server provisioning with lower stakes

in network operations. In contrast, the ISPs focus on the networks, separating infras-

tructure management and traffic engineering because the two run at vastly different

paces (e.g., infrastructure changes over years while traffic changes in minutes).

The emergence of the cloud breaks the balance. The datacenters of cloud providers

see a new majority of traffic coming from the server-to-server communication inter-

nally among application instances [41, 83], because more applications are built with

multi-tier architecture as distributed systems [43, 57]. This new traffic pattern moti-

vates big changes of datacenter network architecture with intensive usage of commod-

ity devices [38, 73, 76, 77, 87, 104]. The architectural change significantly increases

the quantity and the evolution speed of network infrastructure in datacenters. As in-

terest in application provisioning, infrastructure management, and traffic engineering

concentrates on the cloud providers, the current separation of management systems

becomes a bottleneck in improving the performance of applications.

Additionally, the cloud-based applications have highly asymmetric traffic patterns

to the enterprises [7]. For instance, our measurements at Princeton University show

that the campus receives an average of eight times more traffic than it sends. Enter-

prises would like to control the incoming traffic, but they lack direct control because

the function of traffic engineering mainly belongs to the ISPs [51].

In fact, there exists a great opportunity to consolidate disjoint management sys-

tems, especially within the scope of cloud providers. For instance, Google [82] and

Microsoft [81] have both built traffic management systems on their wide area networks

that combine the knowledge and functions of servers and networks. The systems col-

lect application traffic demands directly from servers, and combine them with the

5

network statistics to compute a solution to scheduling the traffic. The systems then

enforce the solution with both the rate limiting on servers and the routing control

in networks. These integrated systems have significantly improved the bandwidth

utilization levels of the wide area networks of Google and Microsoft.

Besides the separation problem, network management is also limited by the low-

level interfaces with heterogeneous devices. Each device vendor develops their own

interfaces with their network devices. As device hardware grows more specialized

when vendors differentiate themselves, interfaces become tightly bound with specific

vendors and specific hardware features. As specialized devices are heavily used, the

network operators have to rely on low-level vendor APIs to configure and run the

networks. This makes network operation heavily dependent on the experiences and

manual control of the network operators.

Use of low-level device interfaces by network operators becomes a barrier to au-

tomating management of datacenter networks of cloud providers. Because of the

architectural changes, the number of network devices is much larger in datacenters

of cloud providers than in traditional networks. The management process has to be

automated with software, rather than by manual configurations to be scalable and

sustainable for future growth. Also, datacenters of cloud providers use large amounts

of commodity devices, rather than specialized hardware from specific vendors, to

save the purchase and operational costs for the economy of scale. The difference in

interfaces among vendors and models of hardware actually becomes an obstacle in

developing network management solutions for cloud services.

Major cloud providers have already started to reduce their reliance on vendor-

specific APIs, and use commodity device features to build their management solutions

with the help of server-based software [68, 107, 132]. For example, load balancing used

to be carried out by specialized devices. However, configuring and maintaining the

hardware load balancers is costly, and is the major source of operation failures. In-

6

Simple	
 and	
 	

high-­‐level	

programming	

abstrac5on	

Efficient	
 and	

scalable	
 system	

for	
 execu5on	

Deployment	
 in	

real	
 world	

Iden5fy	

Opportunity	
 of	

Integra5on	

Figure 1.2: Practical and Iterative Research Approach

stead, Microsoft and Amazon [2] build software-based load balancing systems. These

systems use the basic features of network devices (e.g., ECMP), and run software on

a group of servers to distribute the traffic among application instances. Such systems

greatly improve the stability of the cloud services by reducing operational failures.

1.2 Research Approach

Instead of designing clean-slate solutions, we take a practical approach driven by

operational experience in cloud computing services. Figure 1.2 outlines the iteration

cycle of our approach.

The first step is to identify real-world management scenarios where an integrated

management system could benefit. We work closely with major cloud providers and

enterprises to find problems that they encounter in the network operations. We

then examine these problems, and understand how we can improve the operations by

rethinking the division of labor.

Upon finding an opportunity for improvement, we start the iteration of designing

and building a network management platform for integration. The design starts with

high-level abstraction to unify the differences among the network components or the

management entities, and hide the low-level interactions with device hardware. The

7

design of abstraction aims at a simple-to-use programming interface to build network

management solutions which can utilize the benefits from the integration.

Based on the design of the programming abstraction, we then design the system

part and build the management platform to execute the solutions across the newly

consolidated network components. The goals of our systems are safety, efficiency,

and scalability in the operations of datacenter networks in the cloud providers and

enterprise networks of the cloud-service users.

In the process of building our management platforms, we actively seek deploy-

ment in commercial environments. Collaborating with several cloud providers and

enterprises, we run the platforms to accumulate operational experiences. These ex-

periences and the real-world constraints of deployment are fed back to the design of

abstraction and systems to make our platforms more practical.

This research approach represents our careful balance between the advancement

of research frontier in the area of network management and the engineering efforts in

impacting the commercial operations of the cloud computing services.

1.3 Contributions

In this dissertation, we have designed and built three integrated management plat-

forms to consolidate three areas along the end-to-end path of cloud services. Figure 1.3

shows which network components each platform has consolidated. Our works sim-

plify and improve the traffic and infrastructure management in datacenters of cloud

providers, and provide enterprises with more direct control over incoming traffic from

cloud services. We make three major contributions as illustrated below.

8

OS	

Applica*on	
 Rou*ng	

Hardware	

Enterprises

ISP ISP

Other ISPs

Datacenters

Servers Network Devices

Statesman	

Hone	

Sprite	

Figure 1.3: Scope of Integration for Projects in the Dissertation

1.3.1 Safe Datacenter Traffic/Infrastructure Management

The cloud providers run many automated solutions simultaneously for traffic and

infrastructure management in datacenters. Individually complicated to build and

operate, these solutions can have conflicts which inadvertently affect the operations

of each other, and they can collectively cause unintentional network-wide failures.

We propose a system called Statesman to consolidate the operations of traffic and

infrastructure management solutions, and offer a common layer of interacting with

network devices to resolve conflicts and maintain network-wide safety invariants (e.g.,

maintaining the network connectivity). The core feature of Statesman is the loosely

coupled model of running multiple management solutions with the abstraction of

network state. Network state captures various aspects of the network, such as which

links are alive and how devices are forwarding traffic. Statesman offers three distinct

views of the network state as a pipeline to build and run management solutions.

Working together with Microsoft, we have deployed the Statesman system in the

datacenters of the Azure public cloud service worldwide. Operational since October

9

2013, Statesman becomes the fundamental layer for Microsoft Azure networking. The

work is published in ACM SIGCOMM 2014 [120].

1.3.2 End-host/Network Cooperative Traffic Management

The providers of cloud services and cloud-based applications carefully manage their

traffic through the underlying networks for various performance objectives. These

traffic management solutions are confined in the scope of network devices. In ad-

dition to the limited CPU and memory resources, network devices cannot provide

knowledge in layers higher than the network layer, limiting the solutions’ insights

into the application-traffic behaviors.

We propose to join the end hosts with the network devices, so we can utilize the

rich application-traffic statistics in the end hosts to build better traffic management

solutions. Our system, named Hone, abstracts the diverse collection of statistics on

both end hosts and network devices into a uniform view of data. We then design a

framework based on functional reactive programming [61, 103] to simplify program-

ming management solutions with the uniform data model. Hone has been adopted

by Overture Networks to use in the Verizon Business Cloud service. With the host-

side data from Hone, the customers of Verizion Business Cloud enjoy better quality

of their connections with the datacenters of Verizon for the improved performance

of cloud-based applications. Our work on Hone is published in Springer Journal of

Network and Systems Management [122, 123].

1.3.3 Direct Control of Entrant ISP for Enterprise Traffic

With the rise of cloud computing services, enterprise networks receive much more

traffic than they send. Although enterprise networks typically connect with multiple

upstream ISPs, they have very limited control over which of their ISPs to carry the

incoming traffic for each cloud application. The limit of control comes from the

10

functionalities divided between the enterprises and the ISPs in routing the traffic,

i.e., the path that the traffic takes is mainly decided by the ISPs.

We propose to bridge the boundary between enterprises and their upstream ISPs

to exert direct and fine-grained control over the entrant ISP for incoming traffic. In

our proposed system called Sprite, we design three levels of abstraction to simplify

the expression of traffic engineering objectives with the highest level of abstraction,

and dynamically translate the objectives into lower levels of abstraction for efficient

and scalable execution. In collaboration with the Office of Information Technology

of Princeton University, we have tested Sprite with the traffic data collected on the

campus network and with live Internet experiments on the PEERING testbed [115,

125]. The work is published in ACM SIGCOMM Symposium on SDN Research

2015 [121].

Chapters 2, 3, and 4 describe Statesman, Hone, and Sprite in detail respectively.

Chapter 5 presents open issues and future works, and concludes the dissertation.

11

Chapter 2

Statesman: Integrating Network

Infrastructure Management

2.1 Introduction

Today’s cloud-based applications (e.g., search, social networking, and online storage)

depend on large datacenter networks. Keeping these networks running smoothly is

difficult, due to the sheer number of network devices, and the dynamic nature of

the environment. At any given moment, multiple network devices may experience

component failures, may be brought down for planned maintenance or saving energy,

may be upgraded with new firmware, or may be reconfigured to adapt to prevailing

traffic demand. In response, the cloud providers have developed an array of auto-

mated systems for managing the traffic (e.g., traffic engineering [81, 82], server load

balancing [68, 107], and network virtualization [89]) and the infrastructure (e.g., hard-

ware power control for failure mitigation or energy saving [78, 132], device firmware

upgrade, and device configuration management [48, 49]).

Each management solution is highly sophisticated in its own right, usually re-

quiring several years to design, develop, and deploy. It typically takes the form of

12

a “control loop” that measures the current state of the network, performs compu-

tation, and then reconfigures the network. For example, a traffic engineering (TE)

solution measures the current traffic demand and network topology, solves an op-

timization problem, and then changes the routing configuration to match demand.

These solutions are complicated because they must work correctly even in the pres-

ence of failures, variable delays in communicating with a distributed set of devices,

and frequent changes in network conditions.

Designing and running a single network management solution is challeng-

ing. Large datacenter networks must simultaneously run multiple management

solutions—created by different teams, each reading and writing some part of the

network state. For instance, both a TE solution and a solution to mitigate link

failures need to run continuously to, respectively, adjust the routing configuration

continuously and detect and resolve failures quickly.

These management solutions can conflict with each other, even if they interact

with the network at different levels, such as establishing network paths, assigning IP

addresses to interfaces, or installing firmware on devices. One solution can inadver-

tently affect the operation of another. As an example in Figure 2.1, suppose the TE

solution wants to create a tunnel through the switch B, while the firmware-upgrade

solution wants to upgrade B. Depending on which action happens first, either the

TE solution fails to create the tunnel (because B is already down), or the already-

established tunnel ultimately drops traffic during the firmware upgrade.

Running multiple management solutions also raises the risk of network-wide fail-

ures because their complex interactions make it hard to reason about their combined

effect. Figure 2.2 shows an example where one management solution wants to shut

down switch AggB to upgrade its firmware, while another wants to shut down switch

AggA to mitigate packet corruption. While each solution acting alone is fine, their

joint actions would disconnect the top-of-rack (ToR) switches. To prevent such disas-

13

Switch
A

Switch
B

Switch D

Switch
C

TE solution allocates
traffic on the path
through Switch B

Switch-firmware-
upgrade solution
schedules switch B
for upgrading

Traffic lost at
B

Figure 2.1: Example of Conflicts between Management Solutions

ters, it is imperative to ensure that the collective actions of the management solutions

do not violate certain network-wide invariants, which specify basic safety and per-

formance requirements for the network. For instance, a pod of servers must not be

disconnected from the rest of datacenter, and there must be some minimum band-

width between each pair of pods.

The cloud providers could conceivably circumvent the problems that stem from

running multiple solutions by developing a single management solution that performs

all functions, e.g., combining TE, firmware upgrade, and failure mitigation. However,

this monolithic solution would be highly complex, and worse, it would need to be

extended repeatedly as new needs arise. Thus, the cloud providers need a way to

keep the management solutions separate.

Another option is to have explicit coordination among the management solutions.

Corybantic [98] is one recent proposal that follows this approach. While coordination

may be useful for some management solutions, using it to solve the problem of multi-

solution coexistence imposes high overhead on each solution, requiring each solution

to understand the intended network changes of all others. To make matters worse,

every time a solution is changed or a new one is developed, the cloud providers would

need to test again, and potentially retrofit some existing solutions, in order to ensure

that all of them continue to coexist safely.

14

Switch-firmware-
upgrade solution
assumes Agg A is up,
and schedules Agg B
for upgrading.

Agg A Agg B

Failure-mitigation
solution tries to shut
down flaky Agg A,
assuming Agg B is up. Connectivity

of ToRs is
lost

ToRs

Core
Routers Pod

Figure 2.2: Example of Safety Violation by Collective Actions

We argue that network management solutions should be built and run in a loosely

coupled manner, without explicit or implicit dependencies on each other, and conflict

resolution and invariant enforcement should be handled by a separate management

system. This architecture would simplify development of management solution, and

its simplicity would boost network stability and predictability. It may forgo some

performance gains possible through tight coupling and joint optimization. However,

as noted above, such coupling greatly increases the complexity of management so-

lution. Furthermore, since management solutions may have competing objectives,

a management system to resolve conflicts and maintain invariants would be needed

anyway. We thus believe that loose coupling of management solutions is a worthwhile

tradeoff in exchange for significant reduction in complexity.

We propose Statesman, a network-state management service that supports multi-

ple loosely-coupled management solutions in large datacenter networks. Each solution

operates by reading and writing some part of the network state at its own pace, and

Statesman functions as the conflict resolver and the invariant guardian. Our design

introduces two main ideas that simplify the design and operation of network man-

agement solutions:

15

• Three views of network state (observed, proposed, target): In order to

prevent conflicts and invariant violations, management solutions cannot change

the state of the network directly. Instead, each solution applies its own logic to

the network’s observed state to generate a proposed state that may change one or

more state variables of the network. Statesman merges all proposed states into

one target state. In the merging process, it examines all proposed states to resolve

conflicts and ensures that the target state satisfies an extensible set of network-

wide invariants. Our design is inspired by version control systems like Git. Each

solution corresponds to a different Git user and (i) the observed state corresponds

to the code each user “pulls”, (ii) the proposed state corresponds to the code the

user wants to “push”, and (iii) the target state corresponds to the merged code

that is ultimately stored back in the shared repository.

• Dependency model of state variables: Prior works on abstracting network

state model the state as independent variable-value pairs [90, 91]. However, this

model does not contain enough semantic knowledge about how various state vari-

ables relate to each other, which hinders detecting conflicts and invariant violations.

For example, a tunnel cannot carry traffic if the path includes an administratively

down device. To ensure safe merging of proposed states, Statesman uses a depen-

dency model to capture the domain-specific dependencies among state variables.

Statesman has been deployed and operational in ten datacenters of Microsoft

Azure cloud service since October 2013. It currently manages over 1.5 million state

variables from links and devices across the globe. We have also deployed two man-

agement solutions—device firmware upgrade and link failure mitigation, while a third

one—inter-datacenter TE—is undergoing pre-deployment testing. The diverse func-

tionalities of these solutions showcase how Statesman can safely support multiple

management solutions, without them hurting each other or the network. We also

show that these benefits come with reasonably low overhead. For instance, the la-

16

tency for conflict resolution and invariant checking is under 10 seconds even in the

largest datacenter network with 394K state variables. We believe that our experi-

ence with Statesman can inform the design of future management systems for cloud

providers.

2.2 Network State Abstraction

In this section, we provide more details on the abstraction of network state underlying

Statesman, and how management solutions use the abstraction.

2.2.1 Three Views of Network State

Although management solutions have different functionalities, they typically follow a

control loop of reading some aspects of the network state, running some computation

on the state, and accordingly changing the network. One could imagine that each

management solution reads and writes states to the network devices directly.

However, direct interaction between the devices and the management solutions is

undesirable for two reasons. First, it cannot ensure that individual solution or their

collective actions will not violate network-wide invariants. Second, reliably reading

and writing network state is difficult because of response-time variances and device

failures. When a command to a device takes a long time to execute, the management

solution has to decide when to retry, how many times, and when to give up. When a

command fails, the management solution has to parse the error code and decide how

to react.

Given the issues above, Statesman abstracts the network state as multiple variable-

value pairs. Furthermore, it maintains three different types of views of network state.

Two of these are observed state (OS) and target state (TS). The OS is (a latest view

of) the actual state of the network, which Statesman keeps up-to-date. Management

17

solutions read the OS to learn about current network state. The TS is the desired state

of the network, and Statesman is responsible for updating the network to match the

TS. Any success or failure of updating the network towards the TS will be (eventually)

reflected into the OS, from where the management solutions will learn about the

prevailing network conditions.

The OS and TS views are not sufficient for resolving conflicts and enforcing safety

invariants. If management solutions directly write to the TS, the examples in Fig-

ure 2.1 and 2.2 can still happen. We thus introduce the third type of view called

proposed state (PS) that captures the state desired by management solutions. Each

solution writes its own PS.

Statesman examines the various PSes and detects conflicts among them and with

the TS. It also validates them against a set of network-wide invariants. The invari-

ants capture the basic safety and performance requirements for the network (e.g., the

network should be physically connected and each pair of server pods should be able

to survive a single-device failure). The invariants are independent of which manage-

ment solutions are running. Only non-conflicting and invariant-compliant PSes are

accepted and merged into the TS.

2.2.2 Dependency Model of State Variables

Management solutions read and write different state variables of the network, e.g.,

hardware power, device configuration, traffic routing, and multi-device tunneling.

Statesman thus provides the state variables at multiple levels of granularity for the

needs of management solutions (more details in §2.4 with examples in Table 2.2).

However the state variables are not independent. The “writability” of one state

variable can depend on the values of other state variables. For example, when a

link interface is configured to use the traditional control-plane protocol (e.g., BGP or

OSPF), OpenFlow rules cannot be installed on that interface. In another example,

18

when the firmware of a device is being upgraded, its configuration cannot be changed

and tunnels cannot be established through it. Thus, when proposing new values of

state variables, conflicts can arise because a state variable in one solution’s PS may

become unchangeable due to some dependent state variables in another solution’s PS.

Requiring management solutions to understand the complex cross-variable depen-

dency will go against our goal of running them in a loosely coupled manner. For

instance, it will be difficult for a TE solution to have to consider how one specific

device configuration affects its operation. Therefore, Statesman does not treat the

network state as a collection of independent variables but includes a model of depen-

dencies among the state variables. These dependencies are used when checking for

conflicts and invariant violations. Based on the dependency model, Statesman also

exposes the “controllability” of each state variable as an additional logical variable.

Thus, a management solution can read just the state variables of interest and their

controllability variables to decide whether it is able to propose new values for those

variables of interest. For example, a TE solution can read the “path” variable (i.e., a

tunnel through multiple devices) and determine whether it is currently controllable.

This is computed by Statesman based on various hardware and routing configura-

tions of the devices along the path; the TE solution does not need to reason about

the related hardware and routing configurations itself.

2.2.3 Application Workflow

In the observed-proposed-target pipeline, the workflow of management solutions is

simple. Each solution reads the OS, runs its computational logic, and writes a newly

generated PS. Statesman generates the new TS after resolving conflicts and invariant

violations in the PSes and merging the accepted ones.

In this model, some proposals may be rejected. Handling this rejection does not

impose extra overhead on management solutions; even if the interaction with network

19

devices was not mediated by Statesman, management solutions have to be prepared

to be unable to update the network to the desired state (e.g., due to failures during

the update process). When Statesman rejects a proposal, the proposer gets detailed

feedback on the reason for rejection (§2.5), at which point it can propose a new PS

in an informed manner.

Per our desire for loose coupling, management solutions make proposals indepen-

dently. It is thus possible that PSes of two solutions frequently conflict or we do

not compute a target state that satisfies all management solutions (even though such

a state may exist). In our operational experience with Statesman, such cases are

not common. Thus, we believe that the simplicity of loose coupling outweighs the

complexity of tight coupling. In cases where coordination among two management

solutions is highly beneficial, it may be done out of band such that the solutions make

proposals after consulting each other. In this way, most management solutions and

the Statesman system as a whole stay simple, and the complexity cost of coordination

is borne only in parties that benefit the most from the coordination.

2.3 System Overview

Figure 2.3 shows the architecture of Statesman. It has four components: storage

service, checker, monitor, and updater. We outline the role of each below, and the

following sections present more details.

Storage service is at the center of the system. It persistently stores the state

variables of OS, PS, and TS and offers a highly-available, read-write interface for

other components and management solutions. It also handles all data availability and

consistency issues, which allows all other components to be completely stateless—

in each round of their operations, they just read the latest values of the needed

20

Monitor	
 Updater	

Device	

Upgrade	

Solu4on	

Link	
 Failure	

Mi4ga4on	

Solu4on	

…

Proposed	

State	

Observed	

State	

Target	

State	

Statesman	

Storage	

Service	

Dependency	
 	

Model	

Checker
Invariant	
 Invariant	
 Invariant	

Figure 2.3: Statesman Architecture Overview

state variables. This stateless mode of operation simplifies the design of the other

components.

The checker, monitor, and updater independently interact with the storage service,

and the latter two also interact with the network devices. Table 2.1 summarizes the

input and output of each component.

Checker plays a pivotal role of generating the TS. After reading the OS, PSes,

and TS from the storage service, the checker first examines whether the PSes are still

applicable with respect to the latest OS (e.g., the proposed change may have already

been made or cannot be made at all due to a failure). It then detects conflicts

among PSes with the state dependency model and resolves them with one of two

configurable mechanisms: last-writer-wins or priority-based locking. After merging

the valid and non-conflicting PSes into the TS, the checker examines the TS for the

21

Component Input Output

Monitor Device/link statistics OS

Checker
OS

TSPSes
TS

Updater
OS

Device update commands
TS

Table 2.1: Input and Output of Each Component in Statesman

operator-specified safety invariants. It writes the TS to the storage service only if

the TS complies with the invariants. It also writes the acceptance or rejection results

of the PSes to the storage service, so management solutions can learn about the

outcomes and react accordingly.

Monitor periodically collects the statistics from the devices and links, transforms

them into values of OS variables, and writes the new values to the storage service. In

addition to simplifying other components and management solutions to learn about

current network state, the monitor also shields them from the heterogeneity among

devices. Based on the device vendor and the supported technologies, it uses the

corresponding protocol (e.g., SNMP or OpenFlow) to collect the network statistics,

and it translates protocol-specific data to protocol-agnostic state variables. Other

components and management solutions use these abstract variables without worrying

about the specifics of the underlying infrastructure.

Updater reads the OS and TS and translates their difference into update com-

mands that are then sent to the devices. The updater is memoryless—it applies the

latest difference between the OS and TS without regard to what happened in the past.

Like the monitor, the updater handles how to update heterogeneous devices with a

command template pool, and allows other components and management solutions to

work with device- and protocol-agnostic state variables.

22

Opera&ng	
 System	
 Setup	

Link	
 Interface	
 Config	

Device Power	

Rou&ng	
 Control	

Link	
 Power	

Path/Traffic	
 Setup	

Link

Path Dependency

Device	
 Configura&on	

Figure 2.4: Network State Dependency Model

2.4 Managing Network State

We now describe the various aspects of Statesman in more details, starting with the

network-state data model. We use the examples in Table 2.2 to illustrate how we

build the state dependency model, and how to use and extend the model.

2.4.1 The State Dependency Model

Managing a datacenter network involves multiple levels of control. To perform the

final function of carrying traffic, the network needs to be properly powered and con-

figured. Statesman aims to support operations in the complete process of bringing

up a large datacenter network from scratch to normal operations. In order to cap-

ture the relationship among the state variables at different levels of the management

process, we use the state dependency model of Figure 2.4. We use the process of

bootstrapping a datacenter network as an example to explain this model.

23

At the bottom of the dependency model is the power state of network devices.

With the power cable properly plugged in and electricity properly distributed to

the devices, we then need to control which operating system (i.e., firmware) runs.

Running a functioning firmware on a device is the prerequisite for managing device

configuration, e.g., use device vendor’s API to configure the management interface,

boot up compatible OpenFlow agent, etc.

With device configuration states ready, we are able to control the link interfaces

on the device now. The fundamental state variable of a link is its being up or down.

The configuration of a link interface follows when the link is ready to be up. There

are various link-interface configuration states, such as IP assignment, VLAN setup,

ECMP-group assignment, etc. Consider an example of control plane setup where a

link interface can be configured to use the OpenFlow protocol or traditional protocols

like BGP. For the chosen option, we need to set it up: either an OpenFlow agent needs

to boot and take control of the link, or the BGP session needs to start with proper

policies. These control plane states of the link determine whether and how the device’s

routing can be controlled.

We can manage the routing states of the devices when all the dependent states are

correct. We represent the routing state in a data structure of the flow-link pairs, which

is agnostic to the supported routing protocols. For example, the routing states can

map to the routing rules in OpenFlow or the prefix-route announcement or withdrawal

in BGP. When management solutions change the value of the routing state variable,

Statesman (specifically the updater) automatically translates the value to appropriate

control-plane commands.

One level higher is the path state which controls tunnels through multiple devices.

Creating a tunnel and assigning traffic along the path depend on all devices on the

path having their routing states ready to manage. Again, Statesman is responsible

24

Entity Level in dependency Example state variables Permission

Path Path/traffic setup
Devices on path ReadWrite

MPLS or VLAN configuration ReadWrite

Link

Link interface configuration
IP assignment ReadWrite

Control plane setup ReadWrite

Link power
Interface admin status ReadWrite
Interface oper status ReadOnly

N/A (counters)
Traffic load ReadOnly

Packet drop rate ReadOnly

Device

Routing control
Flow-link routing rules ReadWrite
Link weight allocation ReadWrite

Device configuration
Management interface setup ReadWrite

OpenFlow agent status ReadWrite

Operating system Firmware version ReadWrite
setup Boot image ReadWrite

Power
Admin power status ReadWrite

Power unit reachability ReadOnly

N/A (counters)
CPU utilization ReadOnly

Memory utilization ReadOnly

Table 2.2: Examples of Network State Variables

for translating the path’s states into the routing states of all devices on the path, and

the management solution only needs to read or write the path states.

2.4.2 Using and Extending the Dependency Model

For simplicity, management solutions should not be required to understand all the

state variables and their complex dependencies. They should be able to simply work

with the subset of variables that they need to manage based on their goals. For

instance, a firmware-upgrade solution should be able to focus on only the Device-

FirmwareVersion variable. However, this variable depends on lower-level variables,

such as device power state whose impact cannot be completely ignored; firmware

cannot be upgraded if the device is down.

25

We find that it suffices to represent the impact of these dependencies by using a log-

ical variable that we call controllability and expose it to management solutions. This

boolean-valued variable denotes whether the parent state variable is currently con-

trollable, and its value is computed by Statesman based on lower-level dependencies.

For instance, DeviceFirmwareVersion is controllable only if the values of variables

such as device power and admin states are appropriate. Now the firmware-upgrade

solution can simply work with DeviceFirmwareVersion and DeviceFirmwareVersion-

IsControllable variables to finish its job.

To give another concrete example, the variable DeviceConfigIsControllable tells

whether management solutions can change various state variables of device configu-

ration, such as the management interface setup. The value of DeviceConfigIsControl-

lable is calculated based on whether the device is powered up, whether the device can

be reachable via SSH/Telnet from the management network (indicating the firmware

is functioning), and whether the device is healthy according to the health criterion

(e.g., CPU/memory utilizations are not continuously 100% for certain amount of

time). Similarly, links have LinkAdminPowerIsControllable calculated with the De-

viceConfigIsControllable of the two devices on the link’s ends.

Exposing just the controllability variables makes the dependency model extensible.

The functions calculating the controllability are implemented in the storage service

of Statesman. When a new state variable is added to Statesman, we just need to

place it in the dependency model, i.e., find what state variables will be dependent on

the new one. Then we modify the controllability functions of the corresponding state

variables to consider the impact of the new variable. For management solutions that

are not interested in the new variable, no modifications are necessary.

26

2.5 Checking Network State

The checker plays a pivotal role in Statesman. It needs to resolve conflicts among

management solutions and enforce network-wide invariants. Its design also faces scal-

ability challenges when handling large networks. We first explain the state checking

process and then describe techniques for boosting scalability of the checker. Figure 2.5

outlines the checker’s operation.

2.5.1 Resolving Conflicts

Multiple types of conflicts can occur in the network state due to the dynamic nature

of datacenter networks and uncoordinated management solutions:

• TS–OS: The TS can conflict with the latest OS when changes in the network

render some state variables uncontrollable, although they have new values in the

TS. For instance, if the OpenFlow agent on a device crashes, which is reflected as

DeviceAgentBootStatus=Down in the OS, any routing changes in the TS cannot be

applied.

• PS–OS: When the checker examines a PS, the OS may have changed from the time

that the PS was generated, and some variables in the PS may not be controllable

anymore. For example, a PS could contain the new value of a LinkEndAddress

variable, but when the checker reads the PS, the link may have been shut down

for maintenance.

• PS–TS: The TS is essentially the accumulation of all accepted PSes in the past.

A PS can conflict with the TS due to an accepted PS from another management

solution. For example, assume that a firmware-upgrade solution wants to upgrade

a device and proposes to bring it down; its PS is accepted and merged into the TS.

Now, when a TE solution proposes to change the device’s routing state, it conflicts

with the TS even though the device is online (i.e., no conflict with the OS).

27

Examine	
 TS+PS	

for	
 invariants.	

TS=TS+PS	
 if	
 pass.	

Read	
 OS,	
 TS.	

Resolve	
 TS-­‐OS	

conflicts.	

Read	
 next	
 PS.	

Resolve	
 PS-­‐OS	

conflicts.	

Resolve	
 PS-­‐TS	

conflicts.	

Write	
 new	
 TS	

back.	

Figure 2.5: Flow of The Checker’s Operation

The first two types of conflicts are because of the changing OS, which makes some

variables in the PS or TS uncontrollable. To detect these conflicts, the checker reads

the controllability values from the OS, which are calculated by the storage service

based on the dependency model when relevant variable values are updated. It then

locates the uncontrollable variables in the PS or TS. To resolve TS–OS conflicts, we

introduce a flag called SkipUpdate for each variable in the TS. If set, the updater will

bypass the network update of the state variable, thus temporarily ignoring the target

value to resolve the conflict. The checker will clear the flag once the state variable is

controllable again.

For uncontrollable state variables in a PS, the checker removes them from the PS,

i.e., rejecting the part of PS that is inapplicable on the current network. The choice

of partial rejection is a tradeoff between the progress of management solutions and

the potential side-effects of accepting a partial PS. An asynchrony is normal between

the OS views of the management solution and the checker. By rejecting the whole

PS due to a small fraction of conflicting variables, Statesman will be too conservative

and will hinder the progress of management solution. We thus allow partial rejection.

We have not yet observed any negative consequences in our deployment from this

choice. In the future, we will extend the PS data structure such that solutions can

group variables. When a variable in a group is uncontrollable, the entire group is

rejected, but other groups can still be accepted.

28

For PS–TS conflicts, which are caused by the conflicting proposals, Statesman

supports an extensible set of conflict resolution mechanisms. It currently offers two

mechanisms. The basic one is last-writer-wins, in which the checker favors the value

of state variable from the newer PS. The more advanced mechanism is priority-based

locking. Statesman provides two levels of priorities of locks for each device and

link. Management solutions can acquire a low-priority or a high-priority lock before

proposing a PS. In the presence of a lock, management solutions other than the lock

holder cannot change the state variables of the device or link. However, the high-

priority lock can override the low-priority one. The choice of the conflict resolution

mechanism is not system-wide and can be configured at the level of individual devices

and links.

Although simple, these two conflict resolution strategies have proved sufficient for

the management solutions that we have built and deployed thus far. In fact, we find

from our traces that last-writer-wins is good enough most of the time since it is rare

for two management solutions to compete for the same state variable head-to-head.

For our intra-datacenter infrastructure, we configure the checker with the last-writer-

wins resolution; for our inter-datacenter network, we have enabled the priority-based

locking. If needed, additional resolution strategies (e.g., based on access control) can

be easily added to Statesman.

2.5.2 Choosing and Checking Invariants

Network-wide invariants are intended to ensure the infrastructure’s operational sta-

bility in the face of development bugs or undesired effects of collective actions of

the management solutions. They should capture minimum safety and performance

requirements, independent of which management solutions are currently running.

Choosing invariants: The choice must balance two criterion. Firstly, the in-

variant should suffice to safeguard the basic operations of the network. As long as it

29

is not violated, most services using the network would continue to function normally.

Second, the invariant should not be so stringent that it interferes with the manage-

ment solutions. For instance, an invariant that require all devices up is likely too

strict and interferes with a firmware-upgrade solution.

Following the criterion above, we currently use two invariants in the checker. Both

are solution-agnostic and relate to the topological properties of the network. The first

invariant considers network connectivity. It requires that every pair of ToR devices in

the same datacenter are (topologically) connected and that every ToR is connected to

the border routers of its datacenter network (for WAN connectivity). Here, we ignore

the routing configurations on the devices (which could result in two ToRs not being

able to communicate) because management solutions can intentionally partition a

network at the routing level for multi-tenant isolation.

The second invariant considers network capacity. We define the capacity between

two ToRs in the same datacenter as maximum possible traffic flow between them

based on the network topology. The invariant is that the capacity between p% of

ToR pairs should be at least t% of their baseline, when all links are functional. The

values of p and t should be based on level of capacity redundancy in the network,

tolerance of the hosted services to reduced capacity, and implications of blocking a

management solution that violates the invariant. We currently use p = 99 and t = 50,

i.e., 99% of the ToR pairs must have at least 50% of the baseline capacity.

Although Statesman currently maintains only two invariants, the set of invariants

is extensible. The invariant checking is implemented as a boolean function over a

graph data structure that has the network topology and all state variables. It is

straightforward to add more invariants by implementing new functions with the same

interface. For example, some networks may add an invariant that requires the absence

of loops and black holes, which can be checked using the routing states of the devices.

30

Checking invariants: When checking whether the TS obeys the invariants, the

checker first creates a base network graph using variable values from the OS. Then,

it translates the difference between a variable’s observed and target values into an

operation on the network graph, e.g., bringing a device offline, changing the routing

state to the target value, etc. Finally, the invariant checking functions are run with

the new network graph.

The invariant checking is invoked in two places. The first is when the checker

reads the TS from the storage service. The TS was compliant when written but can

be in violation when read due to changes in the network (i.e., the TS–OS conflict).

While running the invariant checking as described above, the checker clears or sets

the SkipUpdate flags in the TS respective of its compliance status.

The second place is when the checker tries to merge a PS into the TS after conflict

resolution. The checker analyzes TS+PS, as if the PS was merged into the TS. If

TS+PS passes the check, the PS is accepted and merged into the TS. Otherwise, the

PS is rejected.

The acceptance or rejection (and reasons) for each PS is recorded by the checker

into the storage service. We categorize the rejection reasons into three groups: state

variable became uncontrollable; invariant was violated; and TS was unreachable. The

reasons are encoded as machine-readable status code as values of a special state vari-

able called ProposalStatus for each PS. Management solutions use the same interface

as for reading the OS to read their PSes’ statuses. They can then react appropriately

(e.g., generate a new PS that resolves the conflicts with the latest OS).

2.5.3 Partitioning by Impact Group

The checker needs to read all the state variables in the OS and TS to examine conflicts

and invariants every round of operation. The sheer number of state variables in the

datacenters and the WAN poses a scalability threat.

31

To help scale, we observe that the impact of state changes for a given device or link

is limited. For instance, changes to an aggregation router in one datacenter do not

affect the connectivity and capacity of ToRs in another datacenter. Similarly, changes

to border routers in a datacenter do not impact the capacity and connectivity within

the datacenter, though they do impact other datacenters’ WAN reachability.

Based on this observation, we partition the checker’s responsibility into multiple

impact groups. We set up one impact group per datacenter and one additional group

with border routers of all datacenters and the WAN links. These groups are indepen-

dent with respect to the state checking process. In our deployment of Statesman, we

run one instance of checker per impact group, which has enabled the state checking

to scale (§2.8).

2.6 System Design and Implementation

We now describe in more details the design and implementation of Statesman. We

start with the storage service, followed by the updater and monitor; we skip the

checker as it was covered in details in §2.5. Figure 2.6 provides a closer look at

various components in a Statesman deployment. Our implementation of Statesman

has roughly 50 thousand lines of C# and C++ code, plus a number of internal

libraries. At its core, it is a highly-available RESTful web service with persistent

storage. Below, we also describe Statesman’s read-write APIs.

2.6.1 Globally Available and Distributed Storage Service

The storage service needs to persistently and consistently store the network states.

We thus use a Paxos-based distributed file system. However, two challenges prevent

us from using a single big Paxos ring to maintain all the states for all our datacenters.

The first is datacenter reachability. Due to WAN failures, one datacenter may lose

32

Service'Frontend'/'Paxos'Backend'

Proxy'
R W

Storage Service

Dependency''
Graph'

Merge'OS,'
PS'to'TS'

Examine'
Invariant'

Checker

SNMP'
Collector'

OpenFlow'
Collector' …

Translate'
to'OS'

Monitor

Execute'
Command'

Diff'OSGTS'DeviceGspecific'
Command'Pool'

Updater

Other DCs

Write OS

Read
OS,
PS,
TS

Write TS

Read OS, TS

Statesman in
one datacenter

Zoom in

Device'Firmware'
Upgrade'
SoluJon'

Link'Failure''
MiJgaJon'
SoluJon'

Read OS
Write PS

Invariant'Invariant'Invariant'

Figure 2.6: Statesman System Design

connectivity to all others, or two datacenters may not be able to reach each other.

To protect Statesman from such failures, the storage instances need to be located in

multiple datacenters.

A second challenge stems from the volume of state data. In datacenters, there

are hundreds of thousands of devices and links, each with dozens of state variables.

33

It results in millions of state variables (§2.8). Manipulating all variables in a single

Paxos ring would impose a heavy message-exchange load on the file system to reach

consensus over the data value. This impact worsens if the exchange happens over the

WAN (as storage instances are located in multiple datacenters for reliability). WAN

latencies will hurt the scalability and performance of Statesman.

Therefore, we break a big Paxos ring into independent smaller rings for each

datacenter. One Paxos ring of storage instances is located in each datacenter, and it

only stores the state data of the devices and links in that datacenter. In this way,

Statesman reduces the scale of state storage to individual datacenters, and it lowers

the impact of Paxos consensus by limiting message exchanges inside the datacenter.

Although the underlying storage is partitioned and distributed, we still want to

provide a uniform and highly available interface for the management solutions and

other Statesman components. These users of the storage service should not be re-

quired to understand where and how various state variables are stored.

We thus deploy a globally available proxy layer that provides uniform access to

the network states. Users read or write network states of any datacenter from any

proxy without knowing the exact locations of the storage service. Inside the proxy,

we maintain an in-memory hash table of the device and link names to corresponding

datacenters for distributing the requests across the storage-service instances. The

proxy instances sit behind a load balancer, which enables high availability and flexible

capacity.

2.6.2 Stateless Update on Heterogeneous Devices

Network update is a challenging problem itself [81, 93, 127]. In the context of man-

aging a large network, it becomes even more challenging for three reasons. First,

the update process is device- and protocol-specific. Although OpenFlow provides a

standard interface for changing the forwarding behaviors of devices, there is no stan-

34

dard interface today for management-related tasks such as changing the device power,

firmware, or interface configuration. Second, because of scale and dynamism, network

failures during updates are inevitable. Finally, the device’s response can be slow and

dominate the solution’s control loop. Two aspects of the design of the Statesman

updater help to address these challenges.

Command template pool for heterogeneous devices: The changes from

management solutions (i.e., PSes) are device-agnostic network states. The updater

translates the difference between a state variable’s OS and TS values into device-

specific commands. This translation is done using a pool of command templates

that contains templates for each update action on each device model with supported

control-plane protocol (e.g., OpenFlow or vendor-specific API). When the updater

carries out an update action, it looks up the template from the pool based on the

desired action and device details.

For instance, suppose we want to change the value of a device’s DeviceRout-

ingState. If the device is an OpenFlow-enabled model, the updater looks up this

model’s OpenFlow command template to translate the routing state change into the

insertion or deletion of OpenFlow rules, and issues rule update commands to the

OpenFlow agent on the device. Alternatively, if the device is running a traditional

routing protocol like BGP, the updater looks up the BGP command template to

translate the routing state change into the BGP-route announcement or withdrawal.

Stateless and automatic failure handling: With all network states persis-

tently stored by the storage service, the updater can be stateless and simply read the

new values of OS and TS every round. This mode of operation makes the updater

robust to failures in the network or in the updater itself. It can handle failures with

an implicit and automatic retry. When any failure happens in one run of update, the

state changes resulted by the failure reflect as a changed OS in the storage service.

In the next run, the updater picks up the new OS which already includes the failure’s

35

impact, and it calculates new commands based on the new OS-TS difference. In this

manner, the updater always brings the latest OS towards the TS, no matter what

failures have happened in the process.

Being stateless also means that we can run as many updater instances as needed

to scale, as long as we are able to coherently partition the work among them. In our

current deployment, we run one instance per state variable per device model. In this

way, each updater instance is specialized for one task.

2.6.3 Network Monitors

The monitors collect the network states with various protocols from the devices, in-

cluding SNMP and OpenFlow. The monitors then translate the protocol-specific data

into the value of corresponding state variables, and write them into the storage service

as the OS. We split the monitoring responsibility across many monitor instances, so

each instance covers roughly 1,000 devices.

Currently the monitors run periodically to collect all devices’ power states,

firmware versions, configurations, and various counters (and routing states for a

subset of devices). For links, our monitors cover the link power, configuration, and

counters like the packet drop rate and the traffic load.

2.6.4 Read-Write APIs

The storage service is implemented as a HTTP web service with RESTful APIs. The

management solutions, monitors, updaters, and checkers use the APIs to read or

write NetworkState objects from the storage service. A NetworkState object consists

of the entity name (i.e., the device, link, or path name), the state variable name, the

variable value, and the last-update timestamp. The read-write APIs of Statesman

are shown in Table 2.3.

36

GET
NetworkState/Read?Datacenter={dc}&Pool={p}
&Freshness={c}&Entity={e}&Attribute={a}

POST
NetworkState/Write?Pool={p}
(Body is list of NetworkState objects in JSON)

(a) HTTP Request

Datacenter dc Datacenter name
Pool p OS, PS, or TS

Freshness c Up-to-date or bounded-stale
Entity e Entity name (i.e., device, link, or path)

Attribute a State variable name

(b) Parameters

Table 2.3: Read-Write APIs of Statesman

There is a freshness parameter in the read API because Statesman offers dif-

ferent freshness modes for reading the network states. The up-to-date mode is for

management solutions who are strict with the state staleness. For instance, the link-

failure-mitigation solution needs to detect link failures as soon as possible when the

failures happen. Statesman also offers 5-minute bounded-staleness mode by reading

from caches [124]. Many management solutions do not need the most up-to-date

network states and can safely tolerate some staleness in state data. For instance,

the firmware-upgrade solution needs to upgrade the devices within hours; it does not

matter if the value of DeviceFirmwareVersion is slightly stale. By allowing such man-

agement solutions to read from caches, we boost the read throughput of Statesman.

At the same time, solutions that cannot tolerate staleness can use the up-to-date

freshness mode.

2.7 Operational Experiences

In this section, we present our experiences of running Statesman in Microsoft Azure.

Statesman is now deployed in ten datacenters. We have built two production and

one pilot-stage management solutions on top of Statesman. We first describe the

37

deployment, and then use three representative scenarios to illustrate how Statesman

facilitates the operations of management solutions.

2.7.1 Deployment in Microsoft Azure

Statesman currently manages ten geographically distributed datacenters of Microsoft

Azure, covering all the devices and links in those datacenters and the WAN connect-

ing the datacenters. The three management solutions that we have built leverage

Statesman to manage different aspects (e.g., devices, links, and traffic flows) of our

datacenter network.

• Device upgrade: When a new version of firmware is released by a device vendor,

this solution automatically schedules all the devices from the vendor to upgrade

by proposing a new value of DeviceFirmwareVersion. In the upgrade process, the

checker of Statesman ensures that the datacenter network continues to meet the

network-wide invariants.

• Failure mitigation: This solution periodically reads the Frame-Check-Sequence

(FCS) error rates on all links. When detecting persistently high FCS error rates

on certain links, it changes the LinkAdminPower state to shut down those faulty

links to mitigate the impact of the failures [132]. The solution also initiates an

out-of-band repair process for those links, e.g., by creating a repair ticket for the

on-site team.

• Inter-datacenter traffic engineering (TE): As described in SWAN [81], States-

man collects the bandwidth demands from the bandwidth brokers sitting with the

hosted services. In addition, the monitor of Statesman collects all the forwarding

states, such as tunnel status and flow matching rules. Given this information, this

solution computes and proposes new forwarding states, which are then pushed to

all the relevant devices by the Statesman updater.

38

…

ToR

AGG
…

…
Pod 1

1 4

1 n

1

…

4

…
Pod 4

1 4

1 n …
Pod 10

1 4

1 n

… …

…CORE

Link with FCS error

Figure 2.7: Network Topology for The Scenario in §2.7.2

The first two solutions have been fully tested and deployed, while the third one is in

pilot stage and undergoing testing.

We state two issues of how management solutions interact with Statesman. First,

they should understand that it takes time for Statesman to read and write a large

amount of network states in large networks. Thus, their control loops should operate

at the time scale of minutes, not seconds. Second, the management solutions should

understand that their PSes may be rejected due to failures, conflicts, or invariant

violations. Thus, they need to run iteratively to adapt to the latest OS and the

acceptance or rejection of their previous PSes.

2.7.2 Maintaining Network-wide Invariants

We use a production trace to illustrate how Statesman helps two management solu-

tions (device-upgrade and failure-mitigation) safely coexist in intra-datacenter net-

works, while Statesman maintains the capacity invariant—99% of the ToR pairs in

the datacenter should have at least 50% of their baseline capacity.

Figure 2.7 shows the topology for the scenario. It is a portion of one datacenter

with 10 pods, where each pod has 4 Agg routers and a number of ToRs. The device-

upgrade solution wants to upgrade all the 40 Agg routers in a short amount of time.

39

0 100 200 300 400
1

10

19

28

37

46

55

64

73

82

91

A

B

C

E

F

D

Time Series in Minutes

T
o

R
−

P
a

ir
 I

n
d

e
x

100% Capacity 75% Capacity 50% Capacity

Figure 2.8: Device Upgrade Process while Statesman Maintains Safety

Specifically, it will upgrade the pods one by one. Within each pod, it will attempt

to upgrade multiple Agg routers in parallel by continuing to write a PS for one Agg

upgrade until it gets rejected by Statesman.

In Figure 2.8, we pick one ToR from each pod, and organize the 10 ToRs from the

10 pods into 90 ToR pairs (10×9, excluding the originating ToR itself). On the Y-axis,

we put the 9 ToR pairs originating from the same ToR/pod together. Essentially,

Figure 2.8 shows how the network capacity between each ToR pair changes over time.

Boxes A, B, and C illustrate how the network capacity temporarily drops when the

device-upgrade solution upgrades the Agg routers in Pod 1, 2, and 3 sequentially.

To meet the 50%-capacity invariant, the device-upgrade solution can simultaneously

upgrade up to 2 out of 4 Agg routers, leaving at least 2 Agg routers alive for traffic.

During the upgrade, the failure-mitigation solution discovers persistently high

FCS error rate on link ToR1-Agg1 in Pod4. As a result, it shuts down this link at

time D. Since one ToR-Agg link is down, the capacity of all Pod4-related ToR pairs

40

drops to 75%, which originate from Pod4 (index # 28–36) or end at Pod4 (index

3, 12, 21, 40, 49, 58, 67, 76, & 85). When the device-upgrade solution starts

to work on Pod4, Statesman can only allow it to upgrade one Agg at a time to

maintain the 50%-capacity invariant. Thus, as shown in box E, the device-upgrade

solution automatically slows down when upgrading Pod4. Its actual upgrade steps are

Agg1-Agg2-together, then Agg3, and finally Agg4. Note that Agg1 and Agg2 can be

upgraded in parallel, because link ToR1-Agg1 is already down and hence upgrading

Agg1 does not further reduce the ToR-pair capacity. The device-upgrade solution

resumes normal speed when it upgrades Pod5 in box F.

2.7.3 Resolving Conflicts of Management Solutions

The inter-datacenter TE solution is responsible for allocating inter-datacenter traffic

along different WAN paths. Figure 2.9 shows the pilot WAN topology used in this

experiment. This WAN inter-connects four datacenters in a full mesh, and each

datacenter has two border routers. The device-upgrade solution is also running on

the WAN.

One recurring scenario is that we need to upgrade all the border routers while

inter-datacenter traffic is on. This can lead to a conflict between the two management

solutions: the device-upgrade solution wants to reboot a router for firmware upgrade,

while the TE solution wants the router to carry traffic. Without Statesman, the

operators of the two management solutions have to manually coordinate, e.g., setting

up a maintenance window. During this window, the operators must carefully watch

the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When there is no

upgrade, the TE solution acquires the low-priority lock over each router, and changes

the forwarding states as needed. When the device-upgrade solution wants to upgrade

a router, it first acquires the high-priority lock over that router. Soon after, the TE

41

BR 1

BR 2
DC 1

BR 8

BR 7
DC 4

BR 3
BR 4

DC 2

BR 5
DC 3

BR 6

BR = Border Router

Figure 2.9: WAN Topology for The Scenario in §2.7.3

solution realizes that it cannot acquire a low-priority lock over the router, and it

starts to shift traffic away from that router. Meanwhile, the device-upgrade solution

keeps reading the traffic load of the locked router until the load drops to zero. At

this moment, it kicks off the upgrade by writing a PS with a new value of Device-

FirmwareVersion. Once the upgrade is done, the device-upgrade solution releases the

high-priority lock of the router, and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in off-peak hours.

Since the load patterns of different routers are similar, we only illustrate the upgrade

process of BorderRouter1 (BR1). Figure 2.10 shows the time series of the link load

(note that both solutions run every 5 minutes). The Y-axis shows the 24 links (12

physical links × 2 directions) indexed by the originating router of each link. At time

B, the TE solution fails to acquire the low-priority lock over BR1, since the high-

priority lock of BR1 was acquired by the device-upgrade solution at time A. So the

TE solution moves traffic away from BR1. At time C, the load drops to zero on all the

links originating from BR1 (index # 1, 2, & 3) and ending at BR1 (index # 7, 16, &

22). As expected, this increases the loads on the other links. After the device-upgrade

42

0 10 20 30 40 50
0

3

6

9

12

15

18

21

24
A C DB E

Time Series in Minutes

L
in

k
 I
n
d
e
x

Empty (0%) Low (1~40%) Medium (40%~80%) High (80%~100%)

Figure 2.10: Conflict-Free TE and Device Upgrade with Statesman

solution finishes upgrading BR1 and releases the high-priority lock at time D, the TE

solution successfully acquires the low-priority lock again at time E, and then moves

traffic back to BR1.

In this example, neither management solutions needs to be aware of the other

since conflict resolution and necessary coordination are automatically enabled by

Statesman. We use locking as the conflict resolution strategy in the inter-datacenter

case. So the TE solution can move tunnels away from devices being upgraded before

the upgrade process starts, rather than after (which would be the case with the

conflict resolution based on last-writer-wins). In the intra-datacenter case, we do not

use tunnel-based TE, and neighboring routers can immediately reroute traffic when

a device is brought down for upgrade without warning.

2.7.4 Handling Operational Failures

In Statesman, a management solution outputs a PS instead of directly interacting

with the network devices. Once the PS is accepted into the TS, Statesman takes

43

Time in Hours
0 20 40 60 80 100 120

P
e

rc
e

n
ta

g
e

0

20

40

60

80

100

A

B

C

Devices Running
with Latest Firmware

A: Straggler
B: Unstable after upgrade
C: External-force failure

Figure 2.11: Time Series of Firmware Upgrade at Scale

the responsibility of (eventually) moving the network state to the TS. This simplifies

failure handling in the management solution.

In this example, we show how the device-upgrade solution rolls out a new firmware

to roughly 250 devices in several datacenters in two stages. In the first stage, 25% of

the devices are upgraded to test the new firmware. Once we are confident with the

new firmware, the remaining 75% of the devices are upgraded in the second stage.

Figure 2.11 illustrates the upgrade process, where the percentage of devices with new

firmware gradually grows to 100% in about 100 hours. Here, the device-upgrade

solution runs conservatively and upgrades one device at a time.

During this process, Statesman automatically overcomes a variety of failures,

which are highlighted in Figure 2.11. In box A, there is a straggling device which

takes 4 hours to upgrade; note the flat line in the figure. During the 4 hours, States-

man repeatedly tries to upgrade until it succeeds. This straggling happens because

the device has a full memory and cannot download the new firmware image. After

some of the device memory is freed up, the upgrade proceeds. In box B, a few devices

44

Time in Hours
0 1 2 3 4 5

Unreachable

Factory Default

Firmware v1.0

Firmware v2.0

Solution
proposes v2.0

Updater
picks up

Taken out
of service

Back online

New observed
state value

Updater
picks up
again

Figure 2.12: External-Force Failure in Device Upgrade

become unstable after the upgrade, e.g., frequently flipping between on and off. This

appears as a stair-shape line in Figure 2.11. Statesman automatically retries until

the devices are stable with the new firmware.

Box C shows a failure case which involves human interventions. After a device is

upgraded, the operators take it out of service, and manually reset it to the factory-

default firmware before returning it to production. This action causes the time-series

line to slightly drop in Box C, and we zoom in the process in Figure 2.12. Once the

device is back to production, Statesman finds that the observed DeviceFirmwareVer-

sion of one device is the factory-default one. Since the firmware of the device has been

set to a new value in the TS, Statesman automatically redoes the firmware upgrade

without any involvement from the device-upgrade solution.

2.8 System Evaluation

In this section, we quantify the latency and coverage of Statesman as well as the

performance of checking, reading and writing network states.

45

M
ill

is
e

c
o

n
d

s

1

10

100

1000

10000

Solution Latency
Checker Latency
Updater Latency
Idling Time
Total

Figure 2.13: End-to-end Latency Breakdown

End-to-end latency: Figure 2.13 shows Statesman’s end-to-end latency mea-

sured by running the failure-mitigation solution on a subset of our datacenter network.

We manually introduce packet drops on a link, and let the failure-mitigation solu-

tion discover the problem and then shut down the link. The end-to-end latency is

measured from when the solution reads the high packet drop rate of the link to when

the faulty link is actually deactivated in the network. We break down the end-to-end

latency into four portions:

• Solution latency: from when the solution reads the high packet drop rate to when

it writes a PS for shutting down the faulty link.

• Checker latency: from when the checker reads the PS to when it finishes checking

and writes a new TS.

• Updater latency: from when the updater reads the new TS to when it finishes

shutting down the faulty link.

• Idling time: cumulative time when no one is running. It exists because the solution,

checker and updater run asynchronously (every 5 seconds in this experiment).

46

DC 1 DC 2 DC 3 DC 4 DC 5 DC 6 DC 7 DC 8 DC 9 DC 10
0

100K

200K

300K

400K

N
u
m

b
e
r

Total number of state variables

Number of writable variables

DC 1 DC 2 DC 3 DC 4 DC 5 DC 6 DC 7 DC 8 DC 9 DC 10
0

2

4

6

8

10

12

S
e
c
o
n
d
s

50th Percentile

90th Percentile

99th Percentile

Figure 2.14: Network State Scale & Checker Performance

Figure 2.13 shows that the solution and checker latencies are negligibly small,

accounting for only 0.13% and 0.28% of the end-to-end latency on average. The main

bottleneck is the time for the updater to apply the link-shutdown commands to the

device, which accounts for 57.7% of the end-to-end latency on average.

Coverage: Figure 2.14 shows the deployment scale and the checker latency across

the ten datacenters where Statesman is deployed. The number of state variables in

each datacenter indicates its size. The largest datacenter (datacenter4) has 394K

variables and 7 out of 10 datacenters have over 100K variables. The total number

of variables managed by Statesman is currently 1.5 million and it continues to grow

as Statesman expands to more datacenters. Since only 23.4% of the variables are

writable on average, the size of TS is correspondingly smaller than the OS.

Checker latency: Figure 2.14 also shows that one round of checking takes 0.5

to 7.6 seconds in most datacenters. In the most complex datacenter (datacenter3),

the 99th-percentile of checking latency is 11.2 seconds.

47

20K 40K 60K 80K 100K
1

10

100

1000

Number of State Variables per Batch Read

M
ill

is
e
c
o
n
d
s

50th 90th 99th Percentile

20K 40K 60K 80K 100K
0
1
2
3
4
5
6
7

Number of State Variables per Batch Write

S
e
c
o
n
d
s

Figure 2.15: Read-write Micro-benchmark Performance

Read-write performance: We stress-test the read-write performance of States-

man by randomly reading and writing varying numbers of state variables. Figure 2.15

shows that the 99th-percentile latency of reading 20K to 100K variables always stays

under a second. Since the solutions rarely read more than 100K variables at a time,

Statesman’s read speed is fast enough. Figure 2.15 also shows that the write latency

of Statesman grows linearly with the number of variables, and the 99th-percentile

latency of writing 100K variables is under 7 seconds. Since our largest datacenter has

fewer than 100K variables in the TS, it takes less than 10 seconds to write the entire

TS. In practice, the state-variable writers (i.e., management solutions, monitors, and

checkers) rarely write more than 10K variables at a time. Hence, the write latency is

usually around 500ms in our normal operations.

48

2.9 Related Work

Statesman descends from a long line of prior works on software-defined network-

ing [44, 46, 64, 74, 75, 97]. These works enable centralized control of traffic flow

by directly manipulating the forwarding states of devices. In contrast, Statesman

supports a wider range of network management functions (e.g., device upgrade, link

failure mitigation, elastic scaling, etc.).

Similar to Statesman, Onix [90, 91] and Hercules [88] provide a shared network-

state platform for all management solutions. But these systems neither resolve con-

flicts among management solutions, in particular those caused by state variable de-

pendency, nor enforce network-wide invariants.

Pyretic [99], PANE [66], and Maple [128] are recent proposals on making multiple

management solutions coexist. Their target is again limited to traffic management

solutions. Their composition strategies are specific to such solutions, and are not

generalized for the broader class of management solutions that we target. Mesos [79]

schedules competing management solutions using the cluster-resource abstraction,

which is quite different from our network-state abstraction (e.g., no cross-variable

dependency).

Corybantic [98] proposes a different way of resolving conflicts by letting each

management solution evaluate others’ proposals. As noted previously, such tight

coordination, while sometimes beneficial, imposes enormous complexity on the design

and testing of the management solutions.

Another approach of hosting multiple management solutions is to partition the

network into multiple isolated virtual slices as described Kopone, et al. [89] and

Sherwood, et al. [117]. Compared to the virtual topology model, our network-state

model is more fine-grained and flexible. It allows multiple management solutions to

manage different levels of states (e.g., power, configuration, and routing) on the same

device.

49

There are also earlier works on invariant verification [85, 86, 95] for the network’s

forwarding state. In the future, we may incorporate some of these invariant checking

algorithms into Statesman.

2.10 Conclusion

In this chapter, we propose the Statesman system. Statesman builds a common plat-

form to run multiple loosely-coupled network management solutions, while preserving

network safety and performance. It safely composes uncoordinated and sometimes

conflicting management solutions using three distinct views of network state, inspired

by version control systems, and a model of dependencies among different parts of net-

work state. Statesman is currently running in ten Microsoft Azure datacenters, along

with three diverse applications.

50

Chapter 3

Hone: Combining End Host and

Network for Traffic Management

3.1 Introduction

The cloud providers run a wide variety of applications that generate large amount of

traffic. These applications have a complex relationship with the underlying datacenter

network, including varying traffic patterns [83], suboptimal TCP parameters [134],

traffic bursts that temporarily congest network links (i.e., TCP incast) [131], and

elephant flows that overload certain links [39]. To optimize application performance,

cloud providers build various traffic management solutions, such as performance mon-

itoring, server load balancing [107], rate limiting [114], and traffic engineering [81, 82].

However, today’s traffic-management solutions are constrained by an artificial di-

vision between the end hosts and the network. Most existing solutions only rely

on network devices. Without access to the application and transport layers, net-

work devices cannot easily associate traffic statistics with applications. For instance,

it is difficult to infer the root causes of application performance problems or infer

the backlog of application traffic in the sender’s socket buffer, when just analyzing

51

network-level statistics. Furthermore, traffic management solutions are limited by the

CPU and memory resources of network devices.

Compared to network devices, end hosts have better visibility into application

behavior, greater computational resources, and more flexibility in adopting new func-

tionality. Increasingly, datacenter traffic management capitalizes on the opportunity

to move functionality from network devices to end hosts [59, 80, 84, 109, 116, 118,

130, 134, 137]. However, in these works, the hosts are just used as software network

devices. The unique advantages of end hosts in traffic management are not fully

harnessed.

In order to realize these advantages, the scope of traffic management should ex-

pand further, into the host network stack, to measure and analyze fine-grained traffic

information. The host network stack can provide detailed data about how appli-

cations interact with the underlying network, while remaining application-agnostic.

By combining host and network data, traffic management solutions can understand

the applications better in order to improve application performance and efficiency of

network resource usage.

Bringing the host network stack into traffic management, we face multiple chal-

lenges: First, today’s end hosts have numerous interfaces for performing network-

related functions. Cloud providers use heterogeneous tools to collect TCP logs and

kernel network statistics from end hosts (e.g., Windows ETW [31] and Web10G [29])

and they have multiple tools for controlling network behavior (e.g., Linux tc [13],

iptables [18], and Open vSwitch [22]). To simplify traffic management, we need to

provide a uniform interface for cloud providers to collect measurement data from end

hosts and network devices.

Furthermore, cloud providers do not settle on a fixed set of data to measure in

advance. Multiple traffic management solutions need to run at the same time, and

they need to measure different data from the hosts and devices. Additionally, new

52

solutions will adopt new measurement data as the application mix and the network

design evolve. However, the overhead of measuring all data blindly is prohibitive,

especially when the detailed statistics of host network stacks are included in traf-

fic management. Thus, we need a flexible way to selectively collect measurements,

tailored to the demands of the management solutions.

A final challenge is the efficiency and scalability of traffic management. Although

end hosts provide us with detailed statistics, the sheer volume of data poses a scal-

ability challenge for the real-time analysis of the measured data. At the same time,

the computational resources of hosts provide an opportunity to execute the analysis

logic locally on the same hosts that collect the measurements. To utilize the hosts’

resources, the analysis logic of management solutions should be partitioned into two

parts: one that runs locally with monitoring on the hosts, and the other that runs on

a controller with a global view of all the hosts and network devices.

In this chapter, we present a scalable and programmable platform for joint HOst-

NEtwork (Hone) traffic management. As shown in Figure 3.1, the architecture in-

cludes a logically centralized controller, Hone agents running on each host, and a

module interacting with network devices, following the recent trend of Software De-

fined Networking (SDN). Hone performs monitoring and analysis on streams of mea-

surement data in a fashion of functional reactive programming (FRP) [61, 67, 103].

A management solution can easily define the measurement of various data on hosts

and network with minimum collection overhead. The data-analysis logic can be di-

vided into local parts that execute together with measurement on hosts, and global

parts running on the controller. To be more specific, two key technical contributions

underlie Hone:

Lazy measurement of various data on hosts and network: Hone first

abstracts the heterogeneous data on hosts and network devices into a uniform rep-

resentation of database-like tables. Using our query language on top of the uniform

53

Network

Server OS

HONE
Agent

APP

Controller

HONE Runtime System

Management
Solution

Hosts

Legend:
 Programmer’s
 work
 HONE
 Component

Figure 3.1: Overview of the Hone System

interface, network operators can easily specify what data to measure from various

sources. Collecting many statistics for many connections at arbitrary time granular-

ity would be too expensive to support directly. Instead, Hone enables lazy material-

ization of the measurement data, i.e., the controller and the host agents analyze the

queries to collect only the necessary statistics for multiple management solutions at

the appropriate frequencies.

Partitioning of analysis logic for local execution on hosts: We have de-

signed a set of data-parallel FRP operators for programming the data-analysis logic.

With these operators, programmers can easily link the measurement queries with the

analysis logic in a streaming fashion. Our design of the operators further enables par-

titioning of the analysis logic between the host agents and the controller. To further

boost scalability, we have also designed operators for programmers to hierarchically

aggregate/process analysis results among multiple hosts.

Hone combines and extends techniques in FRP and distributed systems in a unique

way to offer a programmable and scalable platform for joint host-network traffic man-

agement in SDN. To demonstrate the effectiveness of our design, we have built a pro-

54

totype of Hone. Our prototype host agent collects socket activities by intercepting

Linux system calls, and measures TCP statistics with Web10G [96, 29]. Our con-

troller interacts with network devices using OpenFlow [97]. The micro-benchmark

experiments show that Hone can measure and calculate an application’s throughput,

and aggregate the results across 128 EC2 machines within a 90th-percentile latency

of 58ms.

To further demonstrate the power of the Hone programming framework, we build

a collection of canonical management solutions, such as flow scheduling [39, 55],

distributed rate limiting [110, 114], network diagnosis [134], etc. These examples

demonstrate the expressiveness of our language, as well as the scalability of our data

collection and analysis techniques.

Hone focuses on different contexts and problems than prior works in streaming

database [42, 54] and MapReduce [57, 58, 108]. Compared to streaming databases

which operate on existing data, Hone focuses on how to lazily monitor a minimum

necessary set of statistics on hosts, and dynamically generate streams of measurement

data for later analysis. MapReduce’s key-value programming model fits well with

naturally parallelizable data with multiple keys, and it uses data shuffling by keys

for reduce operations. In contrast, Hone focuses on the measurement data which are

inherently associated with the end hosts that collected them. Hone partitions and

places the analysis logic together with monitoring to consume data locally and reduce

data-transmission overhead.

3.2 Hone Programming Framework

Hone’s programming framework is designed to enable a wide range of traffic manage-

ment solutions. Traffic management is usually oriented around a three-stage “control

55

Measure servers’

utilization and request
incoming rates

Compute total request
rate and a target

distribution of requests

Reconfigure load
balancing policies to

enforce the target

Server Load Balancing

Measure sockets’
backlog traffic

demand

Detect elephant flows.
Compute routes for

them

Install routing rules
in network

Elephant Flow Scheduling

Measurement Analysis Control

Figure 3.2: Three Stages of Traffic Management

loop” of measurement, data analysis, and control. Figure 3.2 presents two represen-

tative management solutions that serve as running examples throughout the chapter:

Server load balancing: The first management solution distributes incoming

requests across multiple servers. After measuring the request rate and the workload

(e.g., CPU, memory, and bandwidth usage) at each host, the management solution

estimates the total request rate, computes a new target division of requests over the

hosts, and configures network devices accordingly.

Elephant flow scheduling: The second management solution is inspired by how

Hedera [39] and Mahout [55] schedule large flows. After measuring the backlog in

the socket buffer for each TCP connection, the management solution identifies the

elephant flows and directs them over paths that minimize network congestion.

3.2.1 Measurement: Query on Global Tables

Hone’s data model unifies the representation of statistics across a range of formats,

locations, types of devices, and modes of access. The Hone controller offers a simple

abstraction of a central set of database tables. Programmers can launch sophisticated

queries, and rely on Hone to distribute the monitoring to the devices, materialize the

necessary tables, transform the data to fit the schema, perform local computations

56

Table Name Row for each Columns

Connections Connection App, TCP/UDP five-tuple, TCP-stack statistics.

Applications Process Host ID, PID, app’s name, CPU/memory usage.

Machines Host Host ID, total CPU usage, total memory usage, IP.

Links Link IDs/ports of two ends, capacity.

SwitchStats Switch interface Switch ID, port, timestamp, per-port counters.

Table 3.1: Global Tables Supported in Hone Prototype

and data reduction, and aggregate the data. The data model reduces a complex and

error-prone distributed programming solution to a set of simple, tabular queries that

can usually be crafted in just tens of lines of code.

The Hone data model is organized around the protocol layers and the available

data sources. Table 3.1 shows the tables that our current prototype supports. On

the hosts, Hone collects socket logs and TCP connection statistics, in order to cap-

ture the relationship between applications and the network stack while remaining

application-agnostic. On the network devices, Hone collects the topology, the rout-

ing configurations, and per-port counters using OpenFlow. However, we can easily

extend our prototype to support more interfaces (e.g., NetFlow, SNMP) by adding

new tables, along with implementations for collecting the data.

Hone offers programmers a familiar, SQL-like query language for collecting the

data, as summarized in Table 3.2 1. The query language gives programmers a way to

state declaratively what data to measure, rather than how. More sophisticated anal-

ysis, transformation, filtering, and aggregation of the data take place in the analysis

phase. To illustrate how to create a management solution on Hone, consider the three

example queries needed for elephant-flow scheduling:

Backlog in socket buffer: This query generates the data for computing the

backlog in the socket buffers:

1In the syntax, the star operator (*) glues together the various query components.

57

def ElephantQuery ():

return (

Select ([SrcIp , DstIp , SrcPort , DstPort , BytesWritten , BytesSent]) *

From(Connections) *

Every(Seconds 1))

The query produces a stream of tables, with one table every second. In each table,

each row corresponds to a single connection and contains the endpoint IP addresses

and port numbers, as well as the amount of data written into the socket buffer and sent

into the network. Later, the analysis phase can use the per-connection BytesWritten

and BytesSent to compute the backlog in the socket buffer to detect elephant flows.

Active links and their capacities: This query generates a stream of tables

with all unidirectional links in the network:

def LinkQuery ():

return(

Select ([BeginDevice , EndDevice , Capacity]) *

From(Links) *

Every(Seconds 1))

Connection-level traffic by host pair: This query collects the data for com-

puting the traffic matrix:

def TrafficMatrixQuery ():

return(

Select ([SrcIp , DstIp , BytesSent , Timestamp]) *

From(Connections) *

Groupby ([SrcIp ,DstIp]) *

Every(Seconds 1))

The query uses the Groupby operator to convert each table (at each second) into a

list of tables, each containing information about all connections for a single pair of

end-points. Later, the analysis phase can sum the BytesSent across all connections

58

Query := Select(Stats) *
From(Table) *
Where(Criteria) *
Groupby(Stat) *
Every(Interval)

Table := Connections | Applications
| Machines | Links | SwitchStats

Stats := Columns of Table

Interval := Integer in Seconds or Milliseconds

Criteria := Stat Sign value

Sign := > | < | ≥ | ≤ | = | 6=

Table 3.2: Measurement Query Language Syntax

in each table in the list, and compute the difference from one time period to the next

to produce the traffic matrix.

Together, these queries provide the information needed for the elephant-flow solu-

tion. They also illustrate the variety of different statistics that Hone can collect from

both hosts and network devices—all within a simple, unified programming frame-

work. Under the hood, the Hone controller analyzes these queries to merge overlap-

ping parts. Then the host agents or the network module will lazily collect only the

queried statistics at appropriate frequencies to minimize the measurement overhead.

3.2.2 Analysis: Data-Parallel Operators

Hone enables programmers to analyze data across multiple hosts, without worrying

about the low-level details of communicating with the hosts or tracking their failures.

Hone’s FRP-based data-parallel operators allow programmers to say what analysis to

perform, rather than how. Programmers can associate their own functions with the

operators to apply these functions across sets of hosts, as if the streams of tabular

measurement data were all available at the controller. Yet, Hone gives the program-

mers a way to express whether their functions can be (safely) applied in parallel across

59

data from different hosts, to enable the runtime system to reduce the bandwidth and

processing load on the controller by executing these functions at the hosts. Hone’s

data-parallel operators include the following:

• MapSet(f): Apply function f to every element of a stream in the set of streams,

producing a new set of streams.

• FilterSet(f): Create a new set of streams that omits stream elements e for which

f(e) is false.

• ReduceSet(f,i): “Fold” function f across each element for each stream in the

set, using i as an initializer. In other words, generate a new set of streams where

f(. . . f(f(i, e1), e2) . . . , en) is the nth element of each stream when e1, e2, ..., en were

the first n elements of the original stream.

• MergeHosts(): Merge a set of streams on the hosts into one single global stream.

(Currently in Hone, the collection of network devices already generate a single

global stream of measurement data, given that our prototype integrates with one

SDN controller to access data from network devices.)

MapSet, FilterSet, and ReduceSet are parallel operators. Using them indicates

that the analysis functions associated with the operators can run in a distributed fash-

ion. It offers Hone knowledge of how to partition the analysis logic into the local part

that can run in parallel on each host and the global part that sits on the controller.

Hone also enables analysis on a single global stream with corresponding operators,

such as MapStream, FilterStream, and ReduceStream. To combine queries and anal-

ysis into a single program, the programmer simply associates his functions with the

operators, and “pipes” the result from one query or operation to the next (using the

>> operator).

Consider again the elephant-flow scheduling solution, which has three main parts

in the analysis stage:

60

Identifying elephant flows: Following the approach suggested by Curtis et

al. [55], the function IsElephant defines elephant flows as the connections with a

socket backlog (i.e., the difference between bytes bw written by the application and

the bytes bs acknowledged by the recipient) in excess of 100KB:

def IsElephant(row):

[sip ,dip ,sp,dp,bw,bs] = row

return (bw-bs > 100)

def DetectElephant(table):

return (FilterList(IsElephant , table))

EStream = ElephantQuery () >>

MapSet(DetectElephant) >>

MergeHosts ()

DetectElephant uses FilterList (the same as filter in Python) to apply Is-

Elephant to select only the rows of the connection table that satisfy this condition.

Finally, DetectElephant is applied to the outputs of ElephantQuery, and the results

are merged across all hosts to produce a single stream EStream of elephant flows at

the controller.

Computing the traffic matrix: The next analysis part computes the traf-

fic matrix, starting from aggregating the per-connection traffic volumes by source-

destination pair, and then computing the difference across consecutive time intervals:

TMStream = TrafficMatrixQuery () >>

MapSet(MapList(SumBytesSent) >>

ReduceSet(CalcThroughput , {}) >>

MergeHosts () >>

MapStream(AggTM)

The query produces a stream of lists of tables, where each table contains the per-

connection traffic volumes for a single source-destination pair at a point in time.

61

MapList (i.e., the built-in map in Python) allows us to apply a custom function

SumBytesSent that aggregates the traffic volumes across connections in the same

table, and MapSet applies this function over time. The result is a stream of tables,

which each contains the cumulative traffic volumes for every source-destination pair

at a point in time. Next, the ReduceSet applies a custom function CalcThroughput

to compute the differences in the total bytes sent from one time to the next. The last

two lines of the analysis merge the streams from different hosts and apply a custom

function AggTM to create a global traffic matrix for each time period at the controller.

Constructing the topology: The last part of our analysis builds a network

topology from the link tables produced by LinkQuery, which is abstracted as a single

data stream collected from the network:

TopoStream = LinkQuery () >>

MapStream(BuildTopo)

The auxiliary BuildTopo function (not shown) converts a single table of links into a

graph data structure useful for computing paths between two hosts. The MapStream

operator applies BuildTopo to the stream of link tables to generate a stream of graph

data structures.

3.2.3 Control: Uniform and Dynamic Policy

In controlling end hosts and network devices, the cloud providers have to use various

interfaces. For example, network operators use tc, iptables, or Open vSwitch on

hosts to manage traffic, and they use SNMP or OpenFlow to manage the network

devices. For the purpose of managing traffic, these different control interfaces can

be unified because they share the same pattern of generating control policies: for

a group of connections satisfying predicate, define what actions to take. Therefore,

Hone offers cloud providers a uniform way of specifying control policies as predicate

62

Policy := [Rule]+

Rule := if Predicate then Action

Predicate := Field = value | Predicate and Predicate
| Predicate or Predicate

Field := AppName | SrcHost | DstHost | Headers

Headers := SrcIP | DstIP | SrcPort | DstPort | · · ·
Action := rate-limit value | forward-on-path path

Table 3.3: Control Policy in Hone Prototype

+ action clauses, and Hone takes care of choosing the right control implementations,

e.g., we implement rate limiting using tc and iptables in the host agent.

The predicate can be network identifiers (e.g., IP addresses, port numbers, etc.).

But this would force the programmer to map his higher-level policies into lower-level

identifiers, and identify changes in which connections satisfy the higher-level policies.

Instead, we allow programmers to identify connections of interest based on higher-

level attributes, and Hone automatically tracks which traffic satisfies these attributes

as connections come and go. Our predicates are more general than network-based

rule-matching mechanisms in the sense that we can match connections by applications

with the help of hosts. Table 3.3 shows the syntax of control policies, each of which

our current prototype supports.

Continuing the elephant-flow solution, we define a function Schedule that takes

inputs of the detected elephant flows, the network topology, and the current traffic

matrix. It assigns a routing path for each elephant flow with a greedy Global First

Fit [39] strategy, and creates a Hone policy for forwarding the flow along the picked

path. Other non-elephant flows are randomly assigned to an available path. The

outputs of policies by Schedule will be piped into RegisterPolicy to register them

with Hone for execution.

def Schedule(elephant , topo , traffic):

routes = FindRoutesForHostPair(topo)

63

policies = []

for four_tuples in elephant:

path = GreedilyFindAvailablePath(four_tuples , routes , traffic)

predicate = four_tuples

action = forward -on -path path

policies.append ([predicate , action])

return policies

3.2.4 All Three Stages Together

Combining the measurement, analysis, and control phases, the complete program

merges the data streams, feeds the data to the Schedule function, and registers the

output of policies. With this concrete example of an elephant-flow detection and

scheduling solution, we have demonstrated the simple and straightforward way of

designing traffic management solutions in Hone programming framework.

def ElephantFlowDetectionScheduling ():

MergeStreams ([EStream , TopoStream , TMStream]) >>

MapStream(Schedule) >>

RegisterPolicy ()

3.3 Efficient and Scalable Execution

Monitoring and controlling many connections of applications on many hosts could

easily overwhelm a centralized controller. Hone overcomes the scalability challenge

in four ways. First, a distributed directory service dynamically tracks the mapping

of management solutions to hosts, applications, and connections. Second, the Hone

agents lazily materialize virtual tables based on the current queries. Third, the con-

troller automatically partitions each management solution into global and local por-

tions, and distributes the local part over the host agents. Fourth, the hosts automat-

64

ically form a tree to aggregate measurement data based on user-defined aggregation

functions to limit the bandwidth and computational overhead on the controller.

3.3.1 Distributed Directory Service

Hone determines which hosts should run each management solution, based on which

applications and connections match the queries and control policies. Hone has a di-

rectory service that tracks changes in the active hosts, applications, and connections.

To ensure scalability, the directory has a two-tiered structure where the first tier

(tracking the relatively stable set of active hosts and applications) runs on the con-

troller, and the second tier (tracking the large and dynamic collection of connections)

runs locally on each host. This allows the controller to decide which hosts to inform

about a query or control policy, while relying on each local agent to determine which

connections to monitor or control.

Tracking hosts and applications: Rather than build the first tier of the di-

rectory service as a special-purpose component, we leverage the Hone programming

framework to run a standing query:

def DirectoryService ():

(Select ([HostID , App]) *

From(Applications) *

Every(Seconds 1)) >>

ReduceSet(GetChangeOfAppAndHealth ,[]) >>

MergeHosts () >>

MapStream(NotifyRuntime)

This query returns the set of active hosts and their applications. GetChangeOfApp-

AndHealth identifies changes in the set of applications running on each host, and

the results are aggregated at the controller. The controller uses its connectivity to

each host agent as the host’s health state, and the host agent uses ps to find active

applications.

65

Tracking connections: To track the active connections, each host runs a Linux

kernel module we build that intercepts the socket system calls (i.e., connect, accept,

send, receive, and close). Using the kernel module, the Hone agent associates each

application with the TCP/UDP connections it opens in an event-driven fashion. This

avoids the inevitable delay of poll-based alternatives, such as lsof and /proc.

3.3.2 Lazily Materialized Tables

Hone gives programmers the abstraction of access to diverse statistics at any time

granularity. To minimize measurement overhead, Hone lazily materializes the statis-

tics tables by measuring only certain statistics, for certain connections, at certain

times, as needed to satisfy the queries. The Hone controller analyzes the queries

from the management solutions, and identifies what queries should run on hosts or

network devices. For queries to run on hosts, the host agents merge the collection of

overlapping statistics to share among management solutions. The agents collect only

the statistics as specified in the queries with appropriate measurement techniques,

instead of measuring all statistics in the virtual tables. The network module also

merges the collection of shared statistics among queries, and collects the requested

statistics from network devices using OpenFlow.

Returning to the elephant-flow solution, the controller analyzes the ElephantQuery

and decides to run the query on the hosts. Since the query does not constrain the

set of hosts and applications, the controller instructs all local agents to run the

query. Each Hone agent periodically measures the values of SrcIP, DstIP, SrcPort,

DstPort, and BytesSent from the network stack (via Web10G [29]), and collects the

BytesWritten from the kernel module discussed earlier in §3.3.1. Similarly, Hone

queries the network devices for the LinkQuery data; in our prototype, we interact

with network devices using the OpenFlow protocol. Hone does not collect or record

66

any unnecessary data. Lazy materialization supports a simple and uniform data

model while keeping measurement overhead low.

3.3.3 Host-Controller Partitioning

In addition to selectively collecting traffic statistics, the hosts can significantly reduce

the resulting data volume by filtering or aggregating the data. For example, the hosts

could identify connections with a small congestion window, sum throughputs over all

connections, or find the top k flows by traffic volume.

However, parallelizing an arbitrary controller program would be difficult. Instead,

Hone provides a MergeHosts operator that explicitly divides a management solution

into its local and global parts. Analysis functions before MergeHosts run locally on

each host, whereas functions after MergeHosts run on the controller. Hone hides

the details of distributing the computation, communicating with hosts and network

devices, and merging the results. Having an explicit MergeHosts operator obviates

the need for complex code analysis for automatic parallelization.

Hone coordinates the parallel execution of management solutions across a large

group of hosts2. We first carry out industry-standard clock synchronization with

NTP [30] on all hosts and the controller. Then the Hone runtime stamps each man-

agement solution with its creation time tc. The host agent dynamically adjusts when

to start executing the solution to time tc + nT + ε, where n is an integer, ε is set

to 10ms, and T is the period of the management solution (as specified by the Every

statement). Furthermore, the host agent labels the local execution results with a

logical sequence number (i.e., n), in order to tolerate the clock drifts among hosts.

The controller buffers and merges the data bearing the same sequence number into a

2The Hone controller ships the source code of the local portion of management solutions to the
host agent. Since Hone programs are written in Python, the agent can execute them with its local
Python interpreter, and thus avoids the difficulties of making the programs compatible with diverse
environments on the hosts.

67

MergeHosts

ToController

Hosts’ Execution Plans

Controller Execution Plan

Estream
TMStream
TopoStream ToController

MergeHosts

MapSet
DetectElephant()

ReduceSet
CalcThroughput()

Measure

MapStream
AggTM()

MergeStreams

Network
Measure

MapStream
BuildTopo()

MapStream
Schedule() RegisterPolicy

MapSet
SumBytesSent()

Figure 3.3: Partitioned Execution Plan of Elephant-Flow Solution

single collection, releasing data to the global portion of management solution when

either receiving from all expected hosts or timing out after T .

Using our elephant-flow-scheduling solution, Figure 3.3 shows the partitioned ex-

ecution plan of the management program. Recall that we merge EStream, TMStream,

and TopoStream to construct the program. The measurement queries are interpreted

as parallel Measure operations on the host agents, and the query of switch statistics

from the network module. Hone executes the EStream and TMStream parts on each

host in parallel (to detect elephant flows and calculate throughputs, respectively),

and streams these local results to the controller (i.e., ToController). The merged

local results of TMStream pass through a throughput aggregation function (AggTM),

and finally merge together with the flow-detection data and the topology data from

TopoStream to feed the Schedule function.

3.3.4 Hierarchical Data Aggregation

Rather than transmit (filtered and aggregated) data directly to the controller, the

hosts construct a hierarchy to combine the results using user-specified functions.

68

Hone automatically constructs a k-ary tree rooted at the controller3 and applies a

TreeMerge operator at each level. All hosts running the solution are leaves of the

tree. For each group of b hosts, Hone chooses one to act as their parent in the tree.

These parents are grouped again to recursively build the tree towards the controller.

User-defined functions associated with TreeMerge are applied to all non-leaf nodes of

the tree to aggregate data from their children. Hone is unique among research efforts

on tree-based aggregation [126, 133], since prior works focus on aggregating data with

a priori knowledge of the data structure, and don’t allow users to specify their own

aggregation functions.

Many aggregation functions used in traffic management are both commutative

and associative; such functions can be applied hierarchically without compromising

correctness. For example, determining the top k values for heavy-hitter analysis is

amenable to either direct processing across all data or to breaking the data into subsets

for intermediate analysis and combining the results downstream. Calculating the total

throughput of connections across all hosts can also be calculated in a distributed

manner, as the arithmetic sum is also a commutative and associative function.

Making the user-defined aggregation functions to be both associative and commu-

tative ensures that Hone can apply them correctly in a hierarchical manner. Using

TreeMerge, Hone assumes that the associated functions have the required properties,

avoiding the semantics analysis. TreeMerge is similar to MergeHosts in the sense

that they both combine local data streams from multiple hosts into one data stream

on the controller, and intermediate hosts similarly buffer data until they receive data

from all their children or a timeout occurs. But with TreeMerge, Hone also applies

a user-defined aggregation function, while MergeHosts simply merges all hosts’ data

at the controller without intermediate reduction.

3The runtime uses information from the directory service to discover and organize hosts.

69

H1 H2 H3 H4 H8 H7 H6 H5

H1 H3 H5 H7

H1 H5

Controller Branching = 2
Total Hosts = 8

Level 0

Level 1

Level 2

Level 3

Figure 3.4: Aggregation Tree: 8 Hosts with Branching of 2

The algorithm of constructing the aggregation tree is an interesting extensible part

of Hone. We can group hosts based on their network locality, or we can dynamically

monitor the resource usage on hosts to pick the one with most available resource

to act as the intermediate aggregator. In our prototype, we leave those interesting

algorithms to future works, but offer a basic one of incrementally building the tree

by when hosts join the Hone system. Subject to the branching factor b, the newly

joined leaf greedily finds a node in one level up with less than b children, and links

with the node if found. If not found, the leaf promotes itself to one level up, and

repeats the search. When the new node reaches the highest level and still cannot

find a place, the controller node moves up one level, which increases the height of the

aggregation tree. Figure 3.4 illustrates an aggregation tree under the basic algorithm

when 8 hosts have joined and b is 2.

3.4 Performance Evaluation

In this section, we present micro-benchmarks on our Hone prototype to evaluate

measurement overhead, the execution latency of management solutions, and the scal-

ability; §3.5 will demonstrate the expressiveness and ease-of-use of Hone using several

canonical traffic management solutions.

70

We implement the Hone prototype in combination of Python and C. The Hone

controller provides the programming framework and runtime system, which parti-

tions the management solutions, instructs the host agents for local execution, forms

the aggregation hierarchy, and merges the data from hosts for the global portion of

program execution. The host agent schedules the installed management solutions to

run periodically, executes the local part of the program, and streams the serialized

data to the controller or intermediate aggregators. We implement the network part

of the prototype as a custom module in Floodlight [9] to query switch statistics and

install routing rules.

Our evaluation of the prototype focuses on the following questions about our

design decisions in §3.2 and §3.3.

1. How efficient is the host-based measurement in Hone?

2. How efficiently does Hone execute entire management solutions?

3. How much overhead does lazy materialization save?

4. How effectively does the controller merge data from multiple end hosts using the

hierarchical aggregation?

We run the Hone prototype and carry out the experiments on Amazon EC2. All

instances have 30GB memory and 8 virtual cores of 3.25 Compute Units each4.

3.4.1 Performance of Host-Based Measurement

The Hone host agent collects TCP connection statistics using the Web10G [29] kernel

module. We evaluate the measurement overhead in terms of time, CPU, and memory

usage as we vary the number of connections running on the host. To isolate the

measurement overhead, we run a simple management solution that queries a few

randomly-chosen statistics of all connections running on the host every one second

4One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron
or Xeon processor.

71

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000

Number of connections to measure

T
im

e
 (

m
s
)

Measure statistics of the connections
Organize measurement results for analysis phase
Identify connections to measure

Figure 3.5: Overhead of Collecting Connection Statistics

(we choose the four tuples, bytes of sent data, and the congestion window size). Our

experiment consists of three EC2 instances: one for the controller, and two running

the Hone agent.

To collect the statistics, the host agent must first identify what connections to

measure. Then the agent queries the kernel via Web10G to retrieve the statistics.

Finally, the agent organizes the statistics in the schema specified by the query and

feeds the result to the management program. In Figure 3.5, we break down the latency

in each portion. For each fixed number of connections, we run the management

solution for five minutes (i.e., about 300 iterations), and plot the average and standard

deviation of time spent in each portion.

Figure 3.5 shows that the agent performs well, measuring 5000 connections in an

average of 532.6ms. The Web10G measurement takes the biggest portion–432.1ms,

and the latency is linear in the number of active connections. The time spent in

identifying connections to measure is relatively flat, since the agent tracks the relevant

72

connections in an event-driven fashion via the kernel module of intercepting socket

calls. The time spent in organizing the statistics rises slowly as the agent must go

through more connections to format the results into the query’s schema. The results

set lower limit for the periods of management solutions that need measurement of

different numbers of connections. The CPU and memory usage of the agent remain

stable throughout the experiments, requiring an average of 4.55% CPU of one core

and 1.08% memory of the EC2 instance.

3.4.2 Performance of Management Solutions

Next, we evaluate the end-to-end performance of several management solutions. To

be more specific, we evaluate the latency of finishing one round of a solution: from the

agent scheduling a solution to run, measuring the corresponding statistics, finishing

the local analysis, sending the results to the controller, the controller receiving the

data, till the controller finishing the remaining parts of the management program.

We run three different kinds of management solutions which have a mix of leverages

of hosts, network devices, and the controller in Hone, in order to show the flexibil-

ity of Hone adapting to different traffic management solutions. All experiments in

this subsection run on an 8-host-10-switch fat-tree topology [38]. The switches are

emulated by running Open vSwitch on an EC2 instance.

• Task1 calculates the throughputs of all iperf connections on each host, sums

them up, and aggregates the global iperf throughput at the controller. This

solution performs most of the analysis at the host agents, leaving very few work

for the controller. Every host launches 100 iperf connections to another randomly

chosen host.

• Task2 queries the topology and statistics from the network, and uses the per-

port counters on the network devices to calculate the current link utilization. This

solution uses the network module in Hone a lot to measure data, and runs com-

73

putation work on the controller. Task2 is performed under the same setting of

running iperf as Task1.

• Task3 collects measurement data from the hosts to detect connections with a

small congestion window (i.e., which perform badly). It also queries the network to

determine the forwarding path for each host pair. The solution then diagnoses the

shared links among those problematic flows as possible causes of the bad network

performance. Task3 is a joint host-network job, which runs its computation across

hosts, network, and the controller. Task3 is still under the same setting, but we

manually add rules on two links to drop 50% of packets for all flows traversing the

links, emulating a lossy network.

Figure 3.6 illustrates the cumulative distribution function (CDF) of the latency

for finishing one round of execution, as we run 300 iterations for each solution. We

further break down the latency into three parts: the execution time on the agent or

the network, the data-transmission time from the host agent or network module to the

controller, and the execution time on the controller. In Figure 3.7, we plot the average

latency and standard deviation for each part of the three solutions. Task1 finishes one

round with a 90th-percentile latency of 27.8ms, in which the agent takes an average

of 17.8ms for measurement and throughput calculation, the data transmission from 8

hosts to the controller takes another 7.7ms, and the controller takes the rest. Having

a different pattern with Task1, Task2 ’s 140.0ms 90th-percentile latency is consisted

of 87.5ms of querying the network devices via Floodlight and 8.9ms of computation

on the controller (the transmission time is near zero since Floodlight is running on

the controller machine). Task3 ’s latency increases as it combines the data from both

hosts and the network, and its CDF also has two stairs due to different responsiveness

of the host agents and the network module.

Table 3.4 summarizes the average CPU and memory usage on the host agent and

the controller when running the solution. The CPU percentage is for one core of

74

Time (ms)
20 40 80 160 320 640

C
u

m
u
la

ti
v
e
 d

is
tr

ib
u

ti
o
n
 f
u

n
c
ti
o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Task1: sum throughputs of application

Task2: calculate network utilization

Task3: diagnose network for bottlenecks

Figure 3.6: Latency of One Round of Execution of Management Solutions

CPU Agent Memory Agent CPU Controller Memory Controller

Task1 3.71% 0.94% 0.67% 0.10%

Task2 N/A N/A 0.76% 1.13%

Task3 7.84% 1.64% 1.03% 0.11%

Table 3.4: Average CPU and Memory Usage of Execution

8 cores of our testbed machines. The results show that Hone’s resource usage are

bound to the running management solutions: Tasks3 is the most complex one with

flow detection/rate calculation on the hosts, and having the controller join host and

network data.

3.4.3 Effects of Lazy Materialization

Hone lazily materializes the contents of the statistics tables. We evaluate how much

overhead the feature can save for measurement efficiency in Hone.

We set up two applications (A and B) with one thousand active connections

each on a host. We run multiple management solutions with different queries over

75

Task1 Task2 Task3
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

T
im

e
 (

m
ic

ro
s
e

c
o

n
d

)

 Agent/Network Execution
 Data Transmission
 Controller Execution

Figure 3.7: Breakdown of Execution Latency

the statistics to evaluate the measurement overhead in terms of latency. Figure 3.8

illustrates the average and standard deviation of the latencies for different queries.

The first program queries all 122 TCP-stack statistics available in Web10G of all two

thousands connections, and all applications’ CPU and memory usage. The following

ones query various statistics of Connections or Applications tables with details

shown on Figure 3.8.

The lazy materialization of the tables lowers the measurement overhead by either

measuring a subset of tables (Query1 vs. others), rows (number of connections in

Query1 vs. Query2 and Query3), and columns (number of statistics in Query2

vs. Query3). The high overhead of Query4 is due to the implementation of CPU

measurement, which is, for each process, one of the ten worker threads on the agent

keeps running for 50ms to get a valid CPU usage.

76

Query1 Query2 Query3 Query4 Query5 Query6
0

200

400

600

800

1000

1200

L
a
te

n
c
y
 o

f
o
n
e
 m

e
a
s
u
re

m
e
n
t
ro

u
n
d
 (

m
s
)

Query1: All 2k conns. All 122 stats.
 CPU and memory of all ~120 apps.
Query2: App A’s 1k conns. 7 stats.
Query3: App A’s 1k conns. All 122 stats
Query4: CPU of all ~120 apps.
Query5: Memory of all ~120 apps.
Query6: App A’s CPU and memory.

Figure 3.8: Effects of Lazy Materialization

3.4.4 Evaluation of Scalability in Hone

We will evaluate the scalability of Hone from two perspectives. First, when Hone

controller partitions the management program into local and global parts of execution,

the controller will handle the details of merging the local results processed in the same

time period from multiple hosts, before releasing the merged result to the global part

of execution. Although the host clocks are synchronized via NTP as mentioned in

§3.3.3, the clocks still drift slightly over time. resulting in a buffering delay at the

controller. Now we will evaluate how well the buffering works in terms of the time

difference between when the controller receives the first piece of data and when the

controller receives all the data bearing the same sequence number.

To focus on the merging performance, we use the Task1 in §3.4.2. All hosts will

directly send their local results to the controller without any hierarchical aggregation.

Each run of the experiment lasts 7 minutes, containing about 400 iterations. We

repeat the experiment, varying the number of hosts from 16 to 128.

77

0.5 2 8 32
0

0.2

0.4

0.6

0.8

1

Time (ms)

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
 f

u
n

c
ti
o

n

Number of Hosts: 16
Number of Hosts: 32
Number of Hosts: 64
Number of Hosts: 128

Figure 3.9: Buffering Delay of Merging Data from Hosts on Controller

Figure 3.9 shows the CDFs of the latencies for these experiments. The 90th-

percentile of the controller’s buffering delay is 4.3ms, 14.2ms, 9.9ms, and 10.7ms for

16, 32, 64, and 128 hosts respectively. The results show that the synchronization

mechanism on host agents work well in coordinating their local execution of a man-

agement solution, and the controller’s buffering delay is not a problem in supporting

traffic management solutions whose execution periods are typically in seconds.

After evaluating how the controller merges distributed collection of data, we would

evaluate another important feature of Hone for scalability–the hierarchical aggrega-

tion among the hosts. We continue using the same management solution of sum-

ming the application’s throughputs across hosts. However, we switch to using the

TreeMerge operator to apply the aggregation function. In this way, the solution will

be executed by Hone through a k -ary tree consisted of the hosts.

78

Number CPU Memory CPU Memory
of Hosts Agent Agent Controller Controller

16 4.19% 0.96% 1.09% 0.05%

32 4.93% 0.96% 1.27% 0.05%

64 5.26% 0.97% 1.31% 0.06%

128 4.80% 0.97% 2.36% 0.07%

Table 3.5: Average CPU/Memory Usage with Hierarchical Aggregation

In this experiment, we fix the branching factor k of the hierarchy to 4. We

repeat the experiment with 16, 32, 64, and 128 hosts, in which case the height of

the aggregation tree is 2, 3, 3, and 4 respectively. Figure 3.10 shows the CDFs of

the latencies of one round of execution, which captures the time difference from the

earliest agent starting its local part to the controller finishing the global part. The

90th-percentile execution latency increases from 32.2ms, 30.5ms, 37.1ms, to 58.1ms.

Table 3.5 shows the average CPU and memory usage on the controller and the host

agent. The host agent’s CPU and memory usage come from the agent that multiplexes

as local-data generator and the intermediate aggregators in all levels of the k -ary

tree. It shows the maximum overhead that the host agent incurs when running in a

hierarchy.

From the results above, we can conclude that Hone’s own operations pose little

overhead to the execution of management solutions. The performance of management

solutions running in Hone will be mainly bound by their own program complexities,

and the amount of data they need to process or transmit.

3.5 Case Studies

We have shown the micro-benchmark evaluation of Hone to demonstrate its efficiency

and scalability. Now we will illustrate the expressiveness and ease-of-use of Hone by

showing how we build a diversity of traffic management solutions in data centers.

79

20 25 32 40 51 64
0

0.2

0.4

0.6

0.8

1

Time (ms)

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
 f

u
n

c
ti
o

n

Number of Hosts: 16
Number of Hosts: 32
Number of Hosts: 64
Number of Hosts: 128

Figure 3.10: End-to-end Execution Latency with Hierarchical Aggregation

Table 3.6 lists all the management solutions that we have built, ranging from con-

ventional management operations in data centers (e.g., calculating link utilizations)

to recent proposals (e.g., network performance diagnosis [134]). Those conventional

traffic management solutions can actually serve as basic building blocks for more com-

plex management solutions. The network operators can compose the code of those

Hone programs to construct their own. Hone is an open-source project, and code for

the management programs are also available at http://hone.cs.princeton.edu/

examples.

In the following subsections, we pick two management solutions as case studies to

illustrate more details, and evaluate the Hone-based solutions.

80

http://hone.cs.princeton.edu/examples
http://hone.cs.princeton.edu/examples

Management Task Lines of Code

Summing application’s throughputs 70

Monitoring CPU and memory usage 24

Collecting connection TCP statistics 19

Calculating traffic matrix 85

Calculating link utilizations 48

Discovering network topology 51

Network performance diagnosis 56

Hone’s directory service 31

Elephant flow scheduling 140

Distributed rate limiting 74

Table 3.6: Hone-based Traffic Management Solutions

3.5.1 Elephant Flow Scheduling

In data centers, it is important to detect elephant flows with high traffic demands

and properly route them to minimize network congestion. With Hone, we can easily

build such a management solution to schedule the elephant flows. This example takes

the scheduling strategies and the elephant-flow detection threshold from Hedera [39]

and Mahout [55]. We implement Hedera’s Global-first-fit routing strategy with 140

lines of code in Hone. The code of the management solution has been already shown

in previous sections as an example.

We deploy Hone on EC2 instances to emulate a datacenter network with a 8-host-

10-switch fat-tree topology (the switches are instances running Open vSwitch). We

repeat an all-to-all data shuffle of 500MB (i.e., a 28GB shuffle) for 10 times. The

Hone-based solution finishes the data shuffle with an average of 82.7s, compared to

103.1s of using ECMP. The improvement over shuffle time is consistent with Hedera’s

result.

81

3.5.2 Distributed Rate Limiting

Distributed rate limiting in datacenters is used to control the aggregate network

bandwidth used by an application, which runs on multiple hosts. It can help the

application’s owner to control the total cost under a pay-as-you-go billing model.

Prior works [110, 114] proposed mechanisms to make distributed rate limiters

collaborate as a single, aggregate global limiter inside the network. Hone enables

distributed rate limiting from the host side, which would introduce less overhead

as the hosts have more computational power than the network devices, and better

visibility into the traffic demand of applications.

In Hone, the network operators do not need to worry about the complexity of

collecting throughputs from multiple hosts in a synchronized way. Instead, they

just need to write a simple program that sums up throughputs of an application’s

connections on each host, aggregates the throughputs across hosts, and then calculates

their rate-limiting policies accordingly. The code written in Hone are shown below:

def DistributedRateLimiting ():

(Select ([App , SrcIp , DstIp ,

BytesSent , Timestamp]) *

From(Connections) *

Where(App == X) *

Every(Seconds 1)) >>

ReduceSet(CalculateThroughput , {}) >>

MapSet(LocalAgg) >>

ReduceSet(MovingAverage , initValue) >>

MergeHosts () >>

MapStream(GenerateRateLimitPolicy) >>

RegisterPolicy ()

We run the solution to limit the aggregate throughput of application X to

100Mbps. The application X is set to send traffic on each host for 80 seconds with

a default rate of 50Mbps. We launch X on 5 hosts, one by one every 10 seconds.

82

0 10 30 50 70 90 110 130 150
0

20

40

60

80

100

120

140

Time (second)

R
a

te
 (

M
b

p
s
)

Aggregate
Host 1
Host 2
Host 3
Host 4
Host 5

Figure 3.11: Time Series of Application Throughput

Figure 3.11 shows the time series of the aggregate and individual traffic rates of

X. The management solution succeeds in limiting the total rate of X running on a

distributed set of hosts to 100Mbps. Note that it takes one round of execution for the

management solution to discover new traffic and update the rate-limiting policies.

That is why there are several 1-second spikes when X starts on new hosts.

3.6 Related Work

Recent projects have sought to incorporate end hosts into network management [59,

84]. But these solutions view the hosts only as software switches or as trusted ex-

ecution environments for the network. Cooke et al. [53] use hosts to collect socket

activities for a better understanding of network. However, their solution cannot se-

lectively collect statistics, and the statistics at the transport layer are not covered.

OpenTCP [71] dynamically adapts the configuration of TCP on the end hosts based

83

on traffic conditions. Lee et al. [92] propose joint optimization across the application

and network layers for better application throughput. In contrast, Hone supports

diverse traffic management solutions, and thus provides more measurement, data

analysis, and control functionalities across hosts and network devices.

There have also been industry efforts in simplifying cloud management, such as

various commercial tools from vendors [4, 24, 32]. They aim at enabling better vi-

sualization and infrastructure control at hosts and switches in the cloud. Hone is

complementary to these systems by focusing more on monitoring and analysis in traf-

fic management solutions and providing programmable interfaces for these solutions.

Prior work also adopts the stream abstraction for network traffic analysis [42,

54]. But they mainly focus on extending the SQL language, while we use functional

language constructs to define traffic management mechanisms more easily. Further,

some of these works [42, 106] focus on a specific problem (e.g., intrusion detection)

when designing their programming language, while Hone aims for a more generic

programming interface for traffic management.

Finally, there are recent works proposing network programming languages [67,

99, 102, 116, 135, 136]. Their programming abstraction is the raw packets or traffic

counters on a single network device. Hone mainly moves the programmability to the

end hosts, provides an extensible platform for various types of measurement, and

spans both the hosts and the network devices.

3.7 Conclusion

Hone is a programmable and scalable platform for joint host-network traffic manage-

ment. Hone expands the scope of traffic management to the host network stacks,

in order to harness the detailed network-related statistics and the computational re-

sources on the hosts. We design an integrated data model for diverse fine-grained

84

measurement from hosts and network. The programming framework further offers

data-parallel streaming operators to define measurement and analysis logic of traffic

management solutions. The system can selectively measure the data as needed by the

management solutions, and it divides the analysis logic to execute locally on hosts in

real time. Thus the Hone system is efficient and scalable for traffic management with

integration of host stacks. Micro-benchmarks and experiments with real management

solutions demonstrate the performance and expressiveness of our system. We believe

that Hone can become an invaluable platform for the research community and cloud

providers.

85

Chapter 4

Sprite: Bridging Enterprise and

ISP for Inbound Traffic Control

4.1 Introduction

Many edge networks—like enterprises, university campuses, and broadband access

networks—connect to multiple Internet Service Providers (ISPs) for higher reliability,

better performance, and lower cost.

Over the past fifteen years, many research projects [36, 37, 72] and commercial

products [5, 6, 10, 14, 20, 25] have shown how multihomed networks can divide their

outbound traffic over multiple ISPs to optimize peformance, load, and cost. How-

ever, relatively few works have explored how to perform inbound traffic engineering

effectively.

Yet, inbound traffic engineering has never been more important due to the growing

role of modern applications like video streaming and cloud services. Video streaming

has highly asymmetric traffic demands, with the vast majority of the traffic enter-

ing the edge network and only small requests and acknowledgments traveling in the

other direction. For example, our measurements show that the Princeton University

86

campus receives an average of eight times more traffic than it sends. Receiving this

traffic via the right ISP is thus crucial for offering good performance at a reasonable

cost. Moreover, video traffic increasingly encounters bottlenecks in the middle of

the Internet [51], where some ISPs do not devote enough bandwidth for high-quality

video streaming, leading video services to decrease the video quality to reduce the

bandwidth requirements. Switching the traffic to a different incoming ISP along a

better end-to-end path could increase the video quality.

Many enterprises have outsourced key business applications to the cloud (e.g.,

Amazon Web Services, Microsoft Azure, and Google App Engine). These enterprises

now receive much of their own business traffic over the Internet through their ISPs,

rather than purely internally. However, without more control over the flow of traf-

fic, enterprises can experience bad end-to-end performance for these business-critical

applications. To ensure good performance, enterprises could connect to the cloud

provider over dedicated Virtual Private Network (VPN) [3, 16], rather than the pub-

lic Internet, but at a much greater cost. In addition, enterprises often outsource

the hosting of their public websites to content distribution networks (e.g., Akamai,

CloudFlare, and Limelight Networks). As a result, these enterprises have even less

outbound traffic, relative to the volume of incoming traffic. Broadband providers face

similar challenges, where most traffic goes to their customers, and “apps” experience

poor performance when the traffic arrives over a bad end-to-end path.

Unfortunately, inbound traffic engineering (TE) is quite difficult. Indeed, Inter-

net routing is destination-based. As such, the sending Autonomous System (AS)

decides where to forward traffic, based on the routes announced by its neighbors.

The receiving network has, at best, clumsy and indirect control by manipulating its

Border Gateway Protocol (BGP) announcements. For example, the edge network

can perform AS-PATH prepending to make routes through one ISP look artificially

longer than another by adding fake hops. However, AS-PATH prepending is hard to

87

control—adding one extra (fake) hop to the path can dramatically change the division

of traffic, or have no effect at all [94]. Alternatively, the edge network can exert direct

control with selective prefix announcements to force all traffic to one group of users

to arrive via one ISP rather than another. Both techniques are coarse-grained and

do not allow an edge network to, for instance, receive all Netflix traffic via one ISP

and all Gmail traffic via another.

Edge networks need an inbound TE solution that offers: (i) direct control over

which traffic enters via each ISP; (ii) fine-grained control, by sender, receiver, appli-

cations or even individual connections; (iii) local control without requiring support

from the sending network or the rest of the Internet; (iv) BGP stability, so that it

should not adapt its BGP announcements to achieve its objectives; and (v) scalabil-

ity, so that the system can handle fine-grained TE objectives over a large number of

connections and multiple border routers.

In this chapter, we introduce Sprite (Scalable PRogrammable Inbound Traffic En-

gineering), a software-defined TE solution. Sprite controls inbound traffic by dividing

the edge network’s public IP address space across the ISPs, and using source network

address translation (SNAT) to map each outbound connection to a specific inbound

ISP for the return traffic [36], as discussed in more detail in the next section. Given

the nature of Internet routing, an edge network cannot fully control the entire end-to-

end path—only which entry point receives the traffic. Still, this gives an edge network

enough control to balance load and optimize performance by selecting among a small

set of end-to-end paths for each connection.

The key contribution of Sprite is a scalable solution for realizing high-level TE

objectives, using software-defined networking (SDN):

• Scalable data plane through distributed SNAT: Sprite distributes the SNAT

functionality over many (possibly software) switches, close to the end hosts, rather

than implementing SNAT at a single proxy or border router.

88

• Scalable control plane through local agents: A local agent at each switch

generates the SNAT rules himself, based on a network policy set by the controller,

rather than sending the first packet of each connection to the controller.

• Dynamic adaptation of network policy based on high-level objective:

The network administrator specifies a high-level traffic-engineering objective based

on names (rather than network identifiers) and performance metrics (rather than

routing decisions). The controller translates the high-level objective into network

policy, and dynamically adjusts the network policy based on measurements of per-

formance metrics.

We present the design and implementation of our Sprite architecture, and evaluate

our system “in the wild” using an EC2-based testbed with the help of the PEERING

testbed [115, 125].

4.2 Inbound TE Using Source NAT

An edge network can directly control inbound traffic by combining two mechanisms:

Split the IP address block across ISPs: To control the flow of inbound traffic,

the edge network’s public address space is divided into separate prefixes, and Sprite

assigns each prefix to one upstream ISP, similar to the common practice of selec-

tive prefix announcements. In the example in Figure 4.1, an edge network with the

1.1.0.0/23 address and two ISPs could announce 1.1.0.0/24 via ISP 1 and 1.1.1.0/24

via ISP 2; for fault tolerance in the case of ISP disconnection, the edge network also

announces the supernet 1.1.0.0/23 via both ISPs.

Perform SNAT on outbound traffic: To associate a new connection with a

particular inbound ISP, the edge network maps the source IP address of outgoing

request traffic to an address in the appropriate prefix. In the example of Figure 4.1,

the edge network numbers its client machines using private addresses (e.g., in the

89

ISP 1

ISP 2

Internet

YouTube

Salesforce

Edge Network

1.1.0.0/24	

1.1.1.0/24	

Agent	

Agent	
 SNAT:1.1.0.3	

SNAT:1.1.1.3	

Controller	

10.1.1.2	

Figure 4.1: Example of How Sprite Works

10.0.0.0/8 address block), and maps outgoing connections to a source IP address in

either 1.1.0.0/24 (if the destination corresponds to a YouTube server) or 1.1.1.0/24

(if the destination corresponds to a Salesforce.com server).

While the outbound traffic might leave the edge network through either upstream

ISP, these two mechanisms ensure that the response traffic arrives via the selected

ISP. If the edge network runs any public services, those hosts should have public IP

addresses routable via either ISP.

Using SNAT for inbound traffic engineering is not a new idea. Previous work [36,

Sec IV.C] briefly discusses how to realize NAT-based inbound route control at a Web

proxy using iptables. The main challenges we address in this paper are (i) auto-

matically translating fine-grained TE objectives to low-level rules and (ii) distributing

both the control-plane and data-plane functionality for better scalability.

4.3 Scalable Sprite Architecture

Sprite achieves scalability by distributing the data-plane rules (across switches near

the end hosts) and control-plane operations (across local agents on or near the

switches), as Figure 4.3 shows the architecture of Sprite. The network administrator

90

High-­‐level	

Objec.ve	

Network	

Policy	

Flow	
 Rule	

Abstraction

<CSDept,	
 YouTube>	

èBestThroughput	

<10.1.1.0/24:*,	
 173.194.0.0/16:80>	

è1.1.0.0/24	
 (ISP1)	

<10.1.1.2:60257,173.194.61.236:80>	

SNAT	
 to	
 1.1.0.3	

Control plane

Global sync

Example

Data plane

Local only

Figure 4.2: Three Levels of Abstraction in Sprite

conveys a high-level traffic-engineering objective to the controller, then the controller

generates a set of network policies to distribute to the local agents, and finally the

local agents install SNAT rules in the switch data plane, as summarized in Figure 4.2.

4.3.1 Data Plane: Edge Switches Near Hosts

SNAT gives edge networks direct, fine-grained control over inbound traffic, at the

expense of scalability. SNAT requires dynamically establishing a data-plane rule for

each connection. Performing SNAT at a single proxy or border router would require

data-plane state in proportion to the number of active connections, as well as control-

plane operations on every connection set-up. The presence of multiple border routers

introduces further complexity, since traffic for the same connection may enter and

leave via different locations.

Instead, Sprite performs SNAT on a distributed collection of switches, near the

end hosts. These switches can also collect passive traffic measurements (e.g., byte and

packet counts per rule) that can help drive traffic-engineering decisions. These edge

switches could be virtual switches running on the end hosts, access switches connected

directly to a group of end hosts, or a gateway switch connecting a department to the

91

High-level
Objective

Agent

SNAT	
 IP	

Allocator	

Network
Policy

Network
Policy

Network
Policy

Controller

Network
Policy

Network
Policy

Network
Policy

SNAT	
 IP	

Pool	

SNAT Flow Rule

…
Sync Req

ue
st

Al
loc

ate

Agent

…

Switch

C
ontrol

P
lane

D
ata

P
lane SNAT Flow Rule SNAT Flow Rule SNAT Flow Rule SNAT Flow Rule

Admin SDN	
 Control	

Figure 4.3: Sprite System Components

rest of the enterprise network. Compared to the border routers, each switch handles

much fewer active connections and a much lower arrival rate of new connections,

enabling the use of commodity switches (with small rule tables) or software switches.

The edge switches also need to receive the return traffic destined to its associated

end hosts. Each edge switch maps outbound traffic from internal private addresses to

a small set of public IP addresses assigned by the controller to the local agent. As such,

the return traffic is easily routed to the right edge switch based on the destination IP

prefix. If the edge network runs a legacy routing protocol (e.g., OSPF or IS-IS), the

controller configures the injection of these prefixes into the routing protocol. If the

edge network consists of SDN switches, the controller can install coarse-grained rules

in the border router and interior switches to forward traffic to the right edge switch.

By carefully assigning contiguous prefixes to nearby edge switches, the controller

could further aggregate these prefixes in the rest of the edge network.

92

4.3.2 Control Plane: Local Agents Near Switches

Rather than involving the controller in installing each SNAT rule, a local agent on (or

near) each switch performs this simple task. Based on a high-level traffic-engineering

objective, the controller computes a network policy that maps network identifiers (e.g.,

IP addresses and port ranges) to the appropriate inbound ISP. Then, the controller

subdivides the unique set of source IP addresses and port ranges across the local

agents, so each local agent can generate flow rules on its own as new connections

arrive. As a result, Sprite does not send any data packets to the controller, and

ensures that all traffic follows an efficient path between the end hosts and the border

routers. The local agent can also collect and aggregate measurement data from the

switch’s rule counter and via active probing, and share the results with the controller

to inform future decisions.

The network policy generated by the Sprite controller only specifies source and

destination IP prefixes, TCP/UDP port ranges, and which inbound ISP to use. Each

local agent uses the network policy to automatically create SNAT rules for each new

flow. Each edge switch has a default rule that sends all outbound traffic (i.e., packets

with an internal source IP address) to the associated local agent. Upon receiving the

packet, the local agent consults the current network policy to identify the suitable set

of public addresses and port numbers, selects a single unused address/port pair, and

installs the NAT rules for both directions of the traffic.

The controller needs to assign each local agent a sufficiently large pool of addresses

and port numbers. When new flow starts, the agent can immediately use one free

source IP from its own pool without requesting the controller and pausing the new

flow. Yet the limited public address space shall not be wasted. Thus, the allocation

algorithm of Sprite follows two rules: 1) the number of IPs and ports allocated for an

agent shall slightly exceed the actual number of connections traversing the agent; and

93

2) when network policy changes, we shall limit the changes of ownership of source

IPs to minimize the impact to ongoing connections.

The controller uses measurement data collected from the local agent to track

statistics on the number of simultaneously active connections. When running low on

available address/port pairs, the agent contacts the controller to request additional

identifiers, e.g., when the actual number of SNATed connections exceeds 90% of the

upper limit of currently allocated IPs and port ranges. Similarly, the controller can

reclaim unused ranges of addresses from one local agent and assign them to another

as needed. With reasonable “headroom” to over-allocate address/port pairs to each

agent, the controller can limit the churn in the assignments.

4.4 Dynamic Policy Adaptation

Sprite enables network administrators to express a wide range of TE objectives using

high-level names of remote services and groups of users, as well as performance met-

rics. The controller automatically translates the TE objective into a set of network

policies, and adapts in real time to traffic and performance measurements.

4.4.1 High-level Traffic Engineering Objectives

Rather than specifying TE objectives on IP addresses and port numbers, Sprite allows

administrators to use high-level names to identify services (e.g., YouTube) and groups

of users (e.g., CSDept). The administrators can let Sprite dynamically map the con-

nections of the users/services onto the ISPs by providing an evaluation function. The

function takes many metrics (e.g., the ISP capacity, the connections’ performance,

etc.) as inputs, and returns a score for how the ISP behaves. For example,

USER(BioDept) AND SERVICE(Salesforce.com) →

DYNAMIC(LatencyCalculationFunction)

94

OBJECTIVE := PREDICATE → ISP CHOICE
PREDICATE := USER(user identifier)

| SERVICE(remote service name)
| PREDICATE AND/OR PREDICATE

ISP CHOICE := DYNAMIC(evaluation function)
| STATIC([<ISP identifier, weight>, . . .])

evaluation function := User-defined function over ISP capacity,
connection statistics, and other metrics

Table 4.1: Syntax of High-level Objective

specifies that traffic from Salesforce.com to the Biology Department should use the

ISP that offers the lowest latency. Alternatively, the administrator can associate

connections with particular named users and services with a specific set of ISPs (with

weights that specify the portion of inbound traffic volume by ISP). For example,

SERVICE(YouTube) → STATIC([<ISP1,1.0>, <ISP2,4.0>, <ISP3,9.0>])

specified that YouTube traffic should enter via ISPs 1, 2, and 3 in a 1:4:9 ratio by

traffic volume. We summarize the syntax of the language in Table 4.1.

4.4.2 Computing Network Policy

Sprite collects performance metrics of the network policy and uses inputs from the

edge network itself to automatically adapt the set of network policies for a high-level

objective. Figure 4.4 illustrates the workflow of network policy adaptation.

Mapping names to identifiers: Sprite maintains two data sources to map the

high-level name of a service or a group of users to the corresponding IP addresses. For

users, Sprite combines the data from the device registry database of the edge network

(linking device MAC addresses to users) and the DHCP records to track the mappings

of <user ID, list of owned IPs>. The <user group, list of users> records are provided

by the network administrators manually. For external services, Sprite tracks the set

of IP addresses hosting them. Like NetAssay [60], Sprite combines three sources of

95

High-­‐level	

Objec.ve	
 Controller

Perf.	

Metrics	

User ID
Database

Service
Mapping

Policy
Evaluation

Flow-­‐level	

Rules	

Flow-­‐level	

Rule	

Network	

Policy	

Figure 4.4: Workflow of Network Policy Adaptation

data to automatically map a service’s name to the prefixes it uses to send traffic: 1)

the DNS records obtained from the edge network; 2) the BGP announcements at the

border routers; and 3) traces coming from a few probe machines that emulate user

traffic to popular services. Although Sprite cannot guarantee 100% accuracy, it can

discover the prefixes for a majority of the service’s inbound volume in practice1.

Satisfying the TE objective: The Sprite controller translates the high-level

objective into a set of clauses for the network policy, expressed as <user prefix: port

range, service prefix: port range>→ inbound ISP. For each network policy, the Sprite

agent collects the performance metrics of each matching connection, from the counters

of SNAT rules in the data plane (e.g., throughput) to richer transport-layer statis-

tics (e.g., round-trip time, size of socket buffer, TCP congestion window size) [123].

The controller collects these metrics periodically, and calculates the aggregate per-

formance. Then the data are fed to the evaluation function provided by the adminis-

trators to score how each ISP behaves. If the scores of the ISPs are different enough,

the controller adapts the network policy by swapping some users from one inbound

ISP to another. Sprite always keeps at least one active user on an ISP so that it can

1One reason is that the major contributors of inbound traffic (e.g., Netflix and YouTube) are
increasingly using their own content delivery networks (CDNs) [11, 19], rather than commercial
CDNs. These services’ own CDNs usually sit in their own ASes.

96

Objec&ve:	

Best	
 avg.	
 per-­‐user	
 throughput	
 for	
 YouTube	

ISP1 ISP2

Avg. throughput: 2Mbps Avg. throughput: 1Mbps

T
<10.1.0.0/23:*,	
 173.194.0.0/16:80>	

è1.1.0.0/24	
 (ISP1)	

<10.1.2.0/23:*,	
 173.194.0.0/16:80>	

è1.1.1.0/24	
 (ISP2)	

T+1

Expect avg. throughput: 1.5Mbps Expect avg. throughput: 1.5Mbps

<10.1.0.0/23:*,	
 173.194.0.0/16:80>	

è1.1.0.0/24	
 (ISP1)	

<10.1.2.0/24:*,	
 173.194.0.0/16:80>	

è1.1.1.0/24	
 (ISP2)	

<10.1.3.0/24:*,	
 173.194.0.0/16:80>	

è1.1.0.0/24	
 (ISP1)	

Figure 4.5: Network Policy Adaptation for Dynamic Perf-driven Balancing

always know the actual performance of inbound traffic via an ISP through passive

measurement of real traffic.

We now illustrate the process through an example in Figure 4.5. Suppose the

objective is to achieve the maximum average throughput for YouTube clients. Users

in the edge network are in the 10.1.0.0/22 address block. The Sprite controller initially

splits the users into two groups (10.1.0.0/23, 10.1.2.0/23), and allocates their traffic

with YouTube to use one of the two ISPs. Figure 4.5 shows the network policies

generated in the iteration T. Carrying out the network policies, Sprite measures the

throughput of each SNATed connection with YouTube, and calculates the average

per-user throughput. The average inbound throughput via ISP2 is 1Mbps due to

high congestion, while that of ISP1 is 2Mbps. Thus the controller decides to adapt

the set of network policies to move some users from ISP2 to ISP1. In the iteration

T+1, the users in 10.1.2.0/23 are further split into two smaller groups: 10.1.2.0/24

and 10.1.3.0/24. While users in 10.1.2.0/24 stay with ISP2, users in 10.1.3.0/24 have

their new connections use ISP1 for their traffic from YouTube. The new set of network

policies should alleviate congestion on ISP2 and might increase congestion on ISP1,

leading to further adjustments in the future.

97

4.5 Implementation

In this section, we describe the design and implementation of the Sprite system and

how we made it efficient and robust.

4.5.1 Design for Fault Tolerance

Sprite system centers on a distributed datastore (see Figure 4.62), which keeps all

the stateful information related to the high-level objective, the network policy, the

performance metrics of SNATed connections, and the status of SNAT IP allocation.

The controller and all the agents run independently in a stateless fashion. They

never directly communicate with each other, and just read or write data through the

distributed datastore.

Making the datastore the single stateful place in Sprite greatly improves the sys-

tem’s robustness. Indeed, device failures are common since Sprite employs a dis-

tributed set of agents and commodity switches. In this architecture, any controller

or agent failure won’t affect the operations of other instances or the stability of the

whole system. Recovery from failures also becomes a simple task. We can start a

fresh instance of controller or agent to catch up states from the datastore to resume

the dropped operations. Taking switches offline for maintenance is also tolerable as

we can freeze the datastore correspondingly to stop the operation of affected agents.

The architecture also makes the Sprite system very flexible for different deploy-

ment environments. For instance, some enterprises may have standard imaging for

all machines, and wish to bundle the Sprite agent in the image to run directly on the

end host, while others can only place the agent side by side with the gateway routers.

The adopters of Sprite can plug in/out or re-implement their own controller or agent

2Not shown in Figure 4.6, we use Floodlight controller as our SDN control module, and it only
communicates with the controller for insertion and deletion of routing rules.

98

Backend Distributed Datastore

High-­‐level	

Objec.ve	

Network	

Policy	

Perf.	

Metrics	

SNAT	
 IP	

Alloca.on	

Controller	

Agent	

Pub/Sub	

Channel	

Request Queue

Agent	
 Agent	

Read/Sub

Write/Pub

Figure 4.6: System Architecture of Sprite Implementation

to accommodate the deployment constraints, as long as maintaining the read/write

interface with the datastore.

The implementation of the distributed datastore depends on our data model. The

model of network policy involves the mapping of the four-tuple prefix/port wildcard

match and the inbound ISP. The SNAT IP allocation is the mapping among IP, ISP,

allocation state, and agent. Using multiple items as the keys, the row-oriented, multi-

column-index data structure of Cassandra is the best fit. Thus, we use Cassandra as

the datastore of Sprite.

4.5.2 How Components Communicate

The controller and agents of Sprite interact via the datastore in a pull-based fashion.

However, the pull-based approach slows Sprite in two places. Firstly, when the con-

troller adapts the network policies, a pull-based agent may take up to its run period

to pick up the new set of network policies. This significantly drags the convergence

speed of carrying out the new policy throughout the edge network, thus slowing the

convergence of the policy adaptation. A second issue with the pull-based approach

happens in the allocation process of SNAT IPs. When agents request the allocation

of new source IPs and port ranges, new connections of users may be halted at the

99

agent. A long wait time would trigger the connection to drop, thus affecting the user’s

performance.

We need to add push-based communication method to balance the robustness and

performance of Sprite. Thus, we add two communication points in the datastore for

push-based signaling between controller and agents: a publish/subscribe channel and

a message queue, as shown in Figure 4.6. The signaling works as shown below:

• Network policy adaptation: When the controller writes new network policies

or new SNAT IP allocation into the datastore, the controller publishes notification

via the pub/sub channel. As all agents subscribe to the channel upon startup, the

notification triggers them to refresh the data from the datastore, thus catching up

with the new policy or allocation state quickly. Also, whenever a new controller

instance starts, it will publish notification upon finishing bootstrap, in case that

the old controller instance has failed after writing into the datastore, yet before

publishing the notification.

• SNAT IP allocation: The message queue keeps the agents’ allocation requests

at its tail, and the controller only removes the head once it successfully handles

the request and updates the datastore. In this way, the message queue guarantees

that each request is handled at least once. Thus users’ connections are less likely

to be stuck at the agents due to lack of source IPs. The effects of possibly handing

one request more than once are offset by the reclamation of the controller. This

mechanism also tolerates agent failures that a rebooted agent instance can read

the allocation results from the datastore without re-submitting a request.

4.5.3 Routing Control for Returning Packets

When we design to scale up the control plane of Sprite, we decide not to synchronize

the SNAT states of active connections. These states are kept only locally at each

agent/switch. As a result, the returning packets destined for the SNATed IP must

100

arrive at the agent which handles the translation in the first place, in order to reverse

the translation correctly.

Assuming an OpenFlow-enabled network in our implementation, Sprite installs

routing rules to direct the returning packets to the right agents, i.e., once a source

IP/port range is allocated to an agent, the controller installs OpenFlow rules to match

the source IP/port range along the switches from the border router to the agent.

Rather than simply installing one rule per allocated source IP in switches, we try

to consolidate the routing rules into matching a bigger prefix block to collapse many

rules into one. Our current algorithm works in this way: we construct the shorted-

path tree rooted at the border router with all agents as the leaves. When allocating a

source IP to an agent, we pick the one that is bit-wise closest to the IPs allocated to

the agents having the longest shared paths. We leave the improvement of the current

algorithm to future efforts.

4.5.4 BGP Stability

Sprite splits the edge network’s address space to announce separately via different

ISPs. An alternative would be using the peering IPs with ISPs for SNAT. Com-

pared to the alternative, our splitting technique risks inflating global routing tables.

However, we argue that the technique offers more benefits than drawbacks.

Our approach ensures global reachability, while benefiting from the robustness of

BGP. The separately announced IP blocks belong to the edge network. The neigh-

boring ISPs must advertise them to further upstream ISPs, while the peering IPs are

typically private. The edge networks also enjoy the automatic failover brought by

BGP, since Sprite announces the supernet to all ISPs. In case of ISP-level discon-

nection, inbound traffic can move to other ISPs automatically, instead of being lost

if using the peering IPs.

101

Sprite can also have higher capacity for SNATing connections. For example,

the announcement of a /24 block gives Sprite an upper limit of about 14 million

connections (256 × (65535 − 10000)) to SNAT. Using the peering IPs only yields a

55-thousand capacity (65535− 10000), which is way not enough for a large-size edge

network.

Finally, the splitting technique is already widely used in practice. Adopting this

approach in Sprite requires the least cooperation from the upstream ISPs, thus being

the most deployable option.

4.6 Evaluation

We collected traffic data from the campus network of Princeton University to un-

derstand the traffic patterns of multi-homed enterprise networks. We then evaluate

Sprite with a pilot deployment on an EC2-based testbed to demonstrate how Sprite

achieves TE objectives.

4.6.1 Princeton Campus Network Data

The campus network of Princeton University is a multihomed site with three upstream

ISPs (Cogent, Windstream, and Magpie). The ISPs are contracted to provide 3Gbps,

2Gbps, and 1Gbps respectively. In recent years, the campus network receives rapidly

growing inbound traffic mainly from video streaming services, and the university is

consolidating the departmental computation services into one university-wide service

hosted in a remote, newly built datacenter.

We want to study how the traffic pattern changes under the trends and how the

upstream ISPs are utilized for the inbound traffic. We have collected Netflow data

on the border router of the campus 3. The Netflow data spreads two weeks long in

3 For privacy concern, we have anonymized the Netflow data at the time of collection. For every
IP address that belongs to Princeton University, we create a unique yet random map to an address

102

Days
0 2 4 6 8 10

N
o

rm
a

liz
e

d
 V

o
lu

m
e

0

1

2

3

4

5
Inbound
Outbound

Figure 4.7: Stacked Chart of Inbound and Outbound Traffic Volume

Windstream Magpie Cogent

Percentage 32.2% 8.0% 59.8%

Table 4.2: Total Inbound Volume Distribution among ISPs

December 2014. Each Netflow record identifies a single connection with many traffic

statistics (e.g., number of packets/bytes). Matching with the physical configuration

of the border router, we can study which ISPs carries each connection.

Figure 4.7 is the stacked area chart showing the volume of inbound and outbound

traffic over time 4. The inbound traffic is always dominant, averaging 89.7% of the

total volume. Further delving into the inbound traffic pattern, we show the stacked

chart of the inbound traffic carried by the three ISPs in Figure 4.8. We also aggregate

the total volume via each ISP of the collection window, and show the traffic proportion

in Table 4.2. The results show that the campus network currently uses ISP Cogent and

ISP Windstream as the main carriers, and splits the traffic roughly 2:1 regardless of

users or services. Remember that the contracted bandwidth of Cogent, Windstream,

and Magpie is 3:2:1. It means Windstream and Magpie are usually underutilized.

in the 10.0.0.0/8 block, and modify the Netflow records correspondingly. We leave non-Princeton
IP addresses intact.

4We have normalized the traffic volume of the campus network for privacy concerns.

103

Days
0 2 4 6 8 10

N
o
rm

a
liz

e
d
 I
n
b

o
u
n
d

 V
o

lu
m

e

0

0.5

1

1.5

2

2.5

3

3.5

4
ISP Windstream
ISP Magpie
ISP Cogent

Figure 4.8: Stacked Chart of Inbound Traffic via Three ISPs

4.6.2 Multi-ISP Deployment Setup

We build a testbed in AWS Virtual Private Cloud (VPC) to emulate an enterprise

network with multiple upstream ISPs, with the help of the PEERING testbed. The

PEERING testbed is a multi-university collaboration platform which allows us to

use each participating university as an ISP. Our VPC testbed connects with two

PEERING sites to emulate a two-ISP enterprise network.

Figure 4.9 shows the testbed setup. In the AWS VPC, we launch one machine

(i.e., an AWS EC2 instance) to function as the border router. The border-router

instance runs Quagga software router to establish BGP sessions with the PEERING

sites in Georgia Tech and Clemson University. For each PEERING site, we have one

/24 globally routable block to use.

Behind the border-router instance, we launch many EC2 instances to function as

the “user” machines. These user-machine instances connect with the border-router

instance via regular VPN tunnels to create a star topology. On each user-machine

instance, we run the Sprite agent and OpenVSwitch. The Sprite agents uses iptables

and OpenVSwitch to monitor and SNAT the connections. We will launch applications

(e.g., YouTube) from the user-machine instances to emulate the traffic.

104

Instance as
Border Router

Instance as
End Host

Agent	
 User	

App.	

Mux	
 A	

ISP	
 A	
 PEERING
Gatech

Mux	
 B	

ISP	
 B	
 PEERING
Clemson

Agent	
 User	

App.	

… Software
Switch

Tunnel with
BGP session

Regular
Tunnel

Instance	
 as	

Controller	

AWS VPC

Figure 4.9: Setup of the Multihomed Testbed on AWS VPC

4.6.3 Inbound-ISP Performance Variance

ISPs perform differently when delivering the same service to the edge networks, e.g.,

YouTube and Netflix. The performance difference among ISPs can be caused by

various reasons [51]. An example is the recent dispute between Netflix/Cogent and

Verizon. The video quality of Netflix is bad when delivered by Verizon, due to the

limited capacity of the peering links between Verizon and Netflix. In contrast, Cogent

does not have the quality issue as its peering links have higher capacity.

Using Sprite, we can prove that different ISPs provide different quality towards

the same service by specifying an objective of equally splitting the users to use one of

the two ISPs. On all user machines, we launch YouTube for a 2-hour-long movie, and

we explicitly set the users to stream the movie from the same YouTube access point.

In the process, we measure the video quality of the video every 1 minute on every

machine. Figure 4.10 shows the histogram of all these quality measurement points

to examine the characteristics of the two ISPs for streaming YouTube. The Gatech

PEERING site consistently delivers video of higher quality than the Clemson site.

105

ISP Clemson ISP Gatech

P
e

rc
e

n
ta

g
e

 o
f

Q
u

a
lit

y
 M

e
a

s
u

re
m

e
n

t
P

o
in

ts

0

20

40

60

80

100
240p 360p 480p 720p 1080p

Figure 4.10: Histogram of Video Quality via Two ISPs

4.6.4 Effects of Dynamic Balancing

Sprite can dynamically move traffic among ISPs to achieve the TE objective specified

by the administrators. We provide an objective to achieve best average per-user

throughput for YouTube traffic, and evaluate how Sprite adapts the network policies

for such an objective. The objective is expressed as:

SERVICE(YouTube) → BEST(AvgIndividualThroughput)

The experiment runs on the VPC-based testbed. We launch YouTube on 10 user

machines. We want to examine how the traffic of users moves from one ISP to another

over the time, and whether Sprite can keep the average per-user throughput roughly

the same (within 5% margin) between the two ISPs. To evaluate how Sprite reacts, we

manually limit the capacity of the tunnel with the Gatech PEERING site to emulate

high congestion on the link. Figure 4.11 shows the time series of the average per-user

throughput of accessing YouTube on these two ISPs. The average throughput of two

ISPs are always kept in line.

106

Time in Hours
0 2 4 6 8 10 12 14 16 18 20

A
v
g
 P

e
r-

U
s
e
r

T
h
ro

u
g
h
p
u
t
in

 K
b
p
s

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500
Via ISP Gatech
Via ISP Clemson

Figure 4.11: Time Series of Average Per-User Throughput of YouTube

4.7 Related Work

Many works have considered aspects of the problem we address, without providing a

complete solution for direct, fine-grained, incrementally-deployable inbound TE.

BGP-based approaches: Studying the impact of tuning BGP configuration to

an AS’s incoming traffic has a long and rich history spanning over a decade [47, 50,

63, 69, 111, 112, 113, 129], including numerous proprietary solutions [6, 12, 21]. All

these solutions suffer from at least three problems. First, they are non-deterministic.

They can only indirectly influence remote decisions but cannot control them, forcing

operators to rely on trial-and-error. Second, they are too coarse-grained as they only

work at the level of a destination IP prefix. Third, they often increase the amount

of Internet-wide resources (e.g., routing table size, convergence, churn) required to

route traffic, for the benefit of a single AS. In contrast, Sprite provides direct and

fine-grained control (at the level of a user or service) without increasing Internet

resources.

107

Clean-slate approaches: Given the inherent problems with BGP, many works

have looked at re-architecting the Internet to enable better control over the forwarding

paths. Those works can be classified as network-based [62, 65, 119], which modify the

way the routers select paths, and host-based approaches which do the opposite [40,

56, 100, 105]. While these solutions can offer a principled solution to the problem of

inbound traffic engineering, they all suffer from incremental deployment challenges.

In contrast, any individual AS can deploy Sprite on its own, right now, and reap the

benefits of fine-grained inbound traffic engineering.

4.8 Conclusion

In this chapter, we study how to control the inbound traffic of cloud services for the

edge networks with multiple upstream ISPs. Our proposal, called Sprite, enables edge

networks to have direct and fine-grained control of their inbound traffic with a scalable

system solely residing inside the edge networks. Sprite also provides simple and high-

level interfaces to easily express traffic engineering objectives, and Sprite dynamically

adapts the objectives into low-level policies to enforce throughout the edge networks.

We have tested Sprite with live Internet experiments on the PEERING testbed, and

we plan to conduct more extensive experiments with possible deployment on the

campus network of Princeton University.

108

Chapter 5

Conclusion

The ongoing trend of adopting cloud computing raises the requirements for the qual-

ity of the end-to-end networks. Building proper network management solutions is

the key factor in improving the efficiency and reliability of networks. This disser-

tation focuses on solving two main problems of current network management: 1)

The management systems of network components are disjoint, e.g., servers, routing

on network devices, device hardware configurations, etc. As the responsibilities of

managing various components fall on the shoulders of cloud service providers, the

separation becomes bottleneck in building better management solutions; 2) Network

management heavily relies on the vendor-specific interfaces with devices. It not only

binds management solutions to hardware features, but also becomes overcomplicated

as datacenters grow in scale with commodity devices from multiple vendors.

This dissertation takes a practical approach to carefully balance the research explo-

ration in solving the two problems and the engineering efforts in impacting commercial

cloud services. Closely working with major cloud providers, we identify real-world op-

portunities for integrating different management components with proper high-level

abstraction. We then design and build safe, efficient, and scalable integrated man-

agement systems, deploying them in datacenters of cloud providers and enterprise

109

networks that use cloud-based applications. In this chapter, we first summarize the

contributions of this dissertation in §5.1. We then briefly discuss some open issues

and future directions on our works in §5.2, and conclude in §5.3.

5.1 Summary of Contributions

This dissertation identified three areas of network management in need of integrating

different components, and presented corresponding abstraction design and system

solutions.

We first built a management platform for cloud providers to consolidate traffic and

infrastructure management in datacenters. In this platform, named Statesman, we

designed a network-state abstraction to provide a uniform data model for interacting

with various aspects of network devices. Offering three distinct views of network state

as the workflow pipeline, Statesman could run many traffic and infrastructure man-

agement solutions simultaneously, resolving their conflicts and preventing network-

wide failures in datacenters. We deployed Statesman in Microsoft Azure worldwide,

making it a foundation layer of Azure networking. We also published the work in

ACM SIGCOMM 2014.

Second, we identified the opportunity for bringing end hosts into datacenter traffic

management. Our solution, named Hone, integrated end hosts and network devices

with a uniform data model, and empowered traffic management solutions to utilize

the rich application-traffic statistics in the end hosts. Adopted by Verizon Business

Cloud, Hone improved the performance of cloud-based applications by improving the

quality of connections between customers and Verizon’s datacenters. The work was

published in Springer Journal of Network and Systems Management, volume 23, 2015.

Finally, we bridged edge networks and their upstream ISPs to provide the edge

networks with direct and fine-grained control of their inbound traffic from cloud appli-

110

cations. Our Sprite system provided simple and high-level interface to easily express

traffic engineering objectives, and Sprite executed the objectives with an efficient

and scalable system. We tested Sprite with live Internet experiments on the PEER-

ING testbed, and the work was published in ACM SIGCOMM Symposium on SDN

Research 2015.

Collectively, the contributions in this dissertation provide system solutions for

managing networks along the end-to-end path of cloud computing services. These

works have explored how to integrate various disjoint management components to

simplify and enhance network management solutions.

5.2 Open Issues and Future Works

The works presented in this dissertation raised a number of open questions that

deserve future investigation.

5.2.1 Combining Statesman and Hone in Datacenters

Statesman consolidates traffic and infrastructure management on network devices,

and Hone joins end hosts with the routing control on network devices. We believe it

is a promising direction to integrate the measurement and control functions of end

hosts (as provided by Hone) into the framework of Statesman. In this way, servers and

network devices could be managed on a single platform by cloud providers. Yet there

are still several challenges: 1) how to adapt the network-state abstraction to capture

the rich data and functionalities of servers; 2) how to expand the dependency model

to correctly capture the relationship between server-side and network-side states; and

3) how to correctly capture the server availability requirements in the safety invariants

checked by Statesman. How to solve these challenges merits further investigation.

111

5.2.2 Supporting Transactional Semantics in Statesman

The current conflict-resolution mechanism in Statesman does not provide any guaran-

tees as to how the proposed network changes from management solutions are accepted

or denied. One could imagine building transactional semantics on top of Statesman.

One possible direction to explore is to provide grouping semantics that some of the

proposed network changes are grouped together for being accepted or denied as a

whole. This could guarantee that Statesman either executes all grouped changes to-

gether or none at all. Another possible direction is to provide condition semantics that

specifies the conditions when a proposed change shall be accepted, e.g., a proposal of

moving traffic onto device A shall only be accepted if device A is healthy. We currently

do not support these advanced mechanisms in Statesman, because the current simple

mechanism is sufficient for our operational management solutions. Identifying what

transactional semantics are actually necessary and building them into Statesman is a

promising venue for future research.

5.2.3 Hone for Multi-tenant Cloud Environment

Hone collects the fine-grained traffic statistics from inside the end hosts, assuming

that the cloud providers have access to the hosts’ operating systems. In a multi-

tenant public cloud, tenants may not want the cloud providers to access the guest

OS of the virtual machines. A viable alternative would be to collect measurement

data from the hypervisor and infer the transport-layer statistics of the applications

in the virtual machines. This direction is currently under exploration [70], and can

complement Hone to support more types of cloud environments.

112

5.3 Concluding Remarks

This dissertation has 1) presented a new datacenter network management platform

that simplifies both traffic and infrastructure management and allows many manage-

ment solutions to run with no conflicts and network-wide failures; 2) designed and

built a traffic management system for cloud providers to utilize the measurement and

control functions of both end hosts and network devices; 3) developed a scalable sys-

tem for edge networks to directly control which ISPs shall carry their inbound traffic

from cloud applications.

At a high level, the works presented in this dissertation are motivated by practical

challenges in network operation of cloud computing services, and we solved the chal-

lenges by leveraging evolving technology in our field (e.g., SDN) and knowledge from

other fields (e.g., software engineering, distributed storage system, etc.). We believe

that, in the networking research area, it will remain an effective research approach to

keep close with industry practices, identify and abstract their challenges as research

problems, and apply emerging technologies to solve the problems.

113

Bibliography

[1] Amazon Web Services. http://aws.amazon.com/.

[2] Amazon Web Services Elastic Load Balancing. http://aws.amazon.com/

elasticloadbalancing/.

[3] AWS Virtual Private Gateway. http://aws.amazon.com/vpc/.

[4] Boundary. http://www.boundary.com/.

[5] Cisco Optimized Edge Routing (OER). http://www.cisco.com/en/US/tech/
tk1335/tsd_technology_support_sub-protocol_home.html.

[6] Cisco Systems Performance Routing (PfR). http://www.cisco.com/c/en/us/
products/ios-nx-os-software/performance-routing-pfr/index.html.

[7] Cisco Visual Networking Index Forecast 2013-2018. http://www.

cisco.com/c/en/us/solutions/collateral/service-provider/

ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf.

[8] Details of the February 22nd 2013 Windows Azure Storage
Disruption. http://azure.microsoft.com/blog/2013/03/01/

details-of-the-february-22nd-2013-windows-azure-storage-disruption/.

[9] Floodlight OpenFlow Controller. http://floodlight.openflowhub.org/.

[10] Google chooses RouteScience Internet technology.
http://www.computerweekly.com/news/2240046663/

Google-chooses-RouteScience-Internet-technology.

[11] Google Global Caching. http://peering.google.com/about/ggc.html.

[12] Internap. Managed Internet Route Optimizer (MIRO). http://www.internap.
com/network-services/ip-services/miro/.

[13] Linux Advanced Routing & Traffic Control. http://www.lartc.org/.

[14] Managed Internet Route Optimizer (MIRO). http://www.internap.com/

network-services/ip-services/miro/.

[15] Microsoft Azure. http://azure.microsoft.com/.

114

http://aws.amazon.com/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/vpc/
http://www.boundary.com/
http://www.cisco.com/en/US/tech/tk1335/tsd_technology_support_sub-protocol_home.html
http://www.cisco.com/en/US/tech/tk1335/tsd_technology_support_sub-protocol_home.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/performance-routing-pfr/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/performance-routing-pfr/index.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://azure.microsoft.com/blog/2013/03/01/details-of-the-february-22nd-2013-windows-azure-storage-disruption/
http://azure.microsoft.com/blog/2013/03/01/details-of-the-february-22nd-2013-windows-azure-storage-disruption/
http://floodlight.openflowhub.org/
http://www.computerweekly.com/news/2240046663/Google-chooses-RouteScience-Internet-technology
http://www.computerweekly.com/news/2240046663/Google-chooses-RouteScience-Internet-technology
http://peering.google.com/about/ggc.html
http://www.internap.com/network-services/ip-services/miro/
http://www.internap.com/network-services/ip-services/miro/
http://www.lartc.org/
http://www.internap.com/network-services/ip-services/miro/
http://www.internap.com/network-services/ip-services/miro/
http://azure.microsoft.com/

[16] Microsoft Azure ExpressRoute. http://azure.microsoft.com/en-us/

services/expressroute/.

[17] Mobility and Networking Researchers Making a Big Impact in the
Cloud. http://research.microsoft.com/en-us/news/features/

sigcomm14-081814.aspx.

[18] Netfilter.org. http://www.netfilter.org/.

[19] Netflix Open Connect. http://openconnect.itp.netflix.com/.

[20] netVmg’s Flow Control Platform (FCP) puts you in the driver’s seat. http:

//www.davidwriter.com/netvmgw/.

[21] Noction. Intelligent Routing Platform. http://www.noction.com/

intelligent_routing_platform.

[22] Open vSwitch. http://openvswitch.org/.

[23] OpenStack. http://www.openstack.org/.

[24] OpenTSDB Project. http://www.opentsdb.net/.

[25] Sockeye’s GlobalRoute 2.0 for managed routing ser-
vices. http://www.networkcomputing.com/networking/

sockeyes-globalroute-20-for-managed-routing-services/d/d-id/

1204992?

[26] State of the Network: Project with Microsoft Manages Compet-
ing Demands. https://www.cs.princeton.edu/news/article/

state-network-project-microsoft-manages-competing-demands.

[27] Summary of the December 24, 2012 Amazon ELB Service Event in the US-East
Region. http://aws.amazon.com/message/680587/.

[28] Today’s Outage for Several Google Services. http://googleblog.blogspot.

com/2014/01/todays-outage-for-several-google.html.

[29] Web10G Project. http://web10g.org/.

[30] NTP: The Network Time Protocol. http://www.ntp.org/, 2003.

[31] Event Tracing for Windows. http://support.microsoft.com/kb/2593157,
2011.

[32] VMWare vCenter Suite. http://www.vmware.com/products/

datacenter-virtualization/vcenter-operations-management/overview.

html, 2013.

[33] Intel AGMT Dated 09-09-09. Hosting Virtual Networks on Multicore Platforms.

115

http://azure.microsoft.com/en-us/services/expressroute/
http://azure.microsoft.com/en-us/services/expressroute/
http://research.microsoft.com/en-us/news/features/sigcomm14-081814.aspx
http://research.microsoft.com/en-us/news/features/sigcomm14-081814.aspx
http://www.netfilter.org/
http://openconnect.itp.netflix.com/
http://www.davidwriter.com/netvmgw/
http://www.davidwriter.com/netvmgw/
http://www.noction.com/intelligent_routing_platform
http://www.noction.com/intelligent_routing_platform
http://openvswitch.org/
http://www.openstack.org/
http://www.opentsdb.net/
http://www.networkcomputing.com/networking/sockeyes-globalroute-20-for-managed-routing-services/d/d-id/1204992?
http://www.networkcomputing.com/networking/sockeyes-globalroute-20-for-managed-routing-services/d/d-id/1204992?
http://www.networkcomputing.com/networking/sockeyes-globalroute-20-for-managed-routing-services/d/d-id/1204992?
https://www.cs.princeton.edu/news/article/state-network-project-microsoft-manages-competing-demands
https://www.cs.princeton.edu/news/article/state-network-project-microsoft-manages-competing-demands
http://aws.amazon.com/message/680587/
http://googleblog.blogspot.com/2014/01/todays-outage-for-several-google.html
http://googleblog.blogspot.com/2014/01/todays-outage-for-several-google.html
http://web10g.org/
http://www.ntp.org/
http://support.microsoft.com/kb/2593157
http://www.vmware.com/products/datacenter-virtualization/vcenter-operations-management/overview.html
http://www.vmware.com/products/datacenter-virtualization/vcenter-operations-management/overview.html
http://www.vmware.com/products/datacenter-virtualization/vcenter-operations-management/overview.html

[34] NSF / Rutgers University 4847 (Prime CNS 1247764). EARS: SAVANT - High
Performance Dynamic Spectrum Access via Inter Network Collaboration.

[35] PRIME DARPA N66001-11-2-4206 UIUC 2012-00310-02. DARPA Cloud Com-
puting.

[36] Aditya Akella, Bruce Maggs, Srinivasan Seshan, and Anees Shaikh. On the
Performance Benefits of Multihoming Route Control. IEEE/ACM Transactions
on Networking, 16(1):91–104, February 2008.

[37] Aditya Akella, Bruce Maggs, Srinivasan Seshan, Anees Shaikh, and Ramesh
Sitaraman. A Measurement-based Analysis of Multihoming. In ACM SIG-
COMM, 2003.

[38] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A Scalable,
Commodity Data Center Network Architecture. In ACM SIGCOMM, 2008.

[39] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson
Huang, and Amin Vahdat. Hedera: Dynamic Flow Scheduling for Data Center
Networks. In USENIX NSDI, San Jose, California, April 2010.

[40] R. J. Atkinson and S. N. Bhatti. Identifier-Locator Network Protocol (ILNP)
Architectural Description. RFC 6740, Nov 2012.

[41] Theophilus Benson, Aditya Akella, and David A. Maltz. Network Traffic Char-
acteristics of Data Centers in the Wild. In ACM IMC, 2010.

[42] Kevin Borders, Jonathan Springer, and Matthew Burnside. Chimera: A Declar-
ative Language for Streaming Network Traffic Analysis. In USENIX Security,
2012.

[43] Sergey Brin and Lawrence Page. The Anatomy of a Large-scale Hypertextual
Web Search Engine. In International Conference on World Wide Web, 1998.

[44] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman
Shaikh, and Jacobus van der Merwe. Design and Implementation of a Routing
Control Platform. In USENIX NSDI, May 2005.

[45] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McK-
eown, and Scott Shenker. Ethane: Taking Control of the Enterprise. In ACM
SIGCOMM, 2007.

[46] Martin Casado, Tal Garfinkel, Aditya Akella, Michael J. Freedman, Dan Boneh,
Nick McKeown, and Scott Shenker. SANE: A Protection Architecture for En-
terprise Networks. In USENIX Security Symposium, July 2006.

[47] Rocky KC Chang and Michael Lo. Inbound Traffic Engineering for Multihomed
ASs using AS Path Prepending. IEEE Network, 19(2):18–25, 2005.

116

[48] Chao-Chih Chen, Peng Sun, Lihua Yuan, David A. Maltz, Chen-Nee Chuah,
and Prasant Mohapatra. SWiM: Switch Manager For Data Center Networks.
IEEE Internet Computing, April 2014.

[49] Kai Chen, Chuanxiong Guo, Haitao Wu, Jing Yuan, Zhenqian Feng, Yan Chen,
Songwu Lu, and Wenfei Wu. Generic and Automatic Address Configuration for
Data Center Networks. In ACM SIGCOMM, August 2010.

[50] Luca Cittadini, Wolfgang Muhlbauer, Steve Uhlig, Randy Bush, Pierre Fran-
cois, and Olaf Maennel. Evolution of Internet Address Space Deaggregation:
Myths and Reality. Journal on Selected Areas in Communications, 28(8):1238–
1249, 2010.

[51] D. Clark, S. Bauer, K. Claffy, A. Dhamdhere, B. Huffaker, W. Lehr, and
M. Luckie. Measurement and Analysis of Internet Interconnection and Conges-
tion. In Telecommunications Policy Research Conference (TPRC), September
2014.

[52] NSF CNS-1162112. NeTS: Medium: Collaborative Research: Optimizing Net-
work Support for Cloud Services: From Short-Term Measurements to Long-
Term Planning.

[53] Evan Cooke, Richard Mortier, Austin Donnelly, Paul Barham, and Rebecca
Isaacs. Reclaiming network-wide visibility using ubiquitous end system moni-
tors. In USENIX ATC, 2006.

[54] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav
Shkapenyuk. Gigascope: A Stream Database for Network Applications. In
ACM SIGMOD, 2003.

[55] Andrew Curtis, Wonho Kim, and Praveen Yalagandula. Mahout: Low-
Overhead Datacenter Traffic Management using End-Host-Based Elephant De-
tection. In IEEE INFOCOM, 2011.

[56] Cédric De Launois, Olivier Bonaventure, and Marc Lobelle. The NAROS Ap-
proach for IPv6 Multihoming with Traffic Engineering. In Quality for All, pages
112–121. Springer, 2003.

[57] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. In USENIX OSDI, 2004.

[58] Jeffrey Dean and Sanjay Ghemawat. MapReduce: A Flexible Data Processing
Tool. Commun. ACM, 53(1):72–77, January 2010.

[59] Colin Dixon, Hardeep Uppal, Vjekoslav Brajkovic, Dane Brandon, Thomas An-
derson, and Arvind Krishnamurthy. ETTM: A Scalable Fault Tolerant Network
Manager. In USENIX NSDI, 2011.

117

[60] Sean Donovan and Nick Feamster. Intentional Network Monitoring: Finding
the Needle Without Capturing the Haystack. In ACM HotNets, 2014.

[61] Conal Elliott and Paul Hudak. Functional Reactive Animation. In ACM SIG-
PLAN International Conference on Functional Programming, 1997.

[62] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. The Locator/ID Separation
Protocol (LISP). IETF Request for Comments 6830, January 2013.

[63] Nick Feamster, Jay Borkenhagen, and Jennifer Rexford. Guidelines for Interdo-
main Traffic Engineering. ACM SIGCOMM Computer Communication Review,
33(5):19–30, 2003.

[64] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The Road to SDN. ACM
Queue, 11(12):20:20–20:40, December 2013.

[65] Anja Feldmann, Luca Cittadini, Wolfgang Mühlbauer, Randy Bush, and Olaf
Maennel. HAIR: Hierarchical Architecture for Internet Routing. In Workshop
on Re-architecting the Internet, pages 43–48. ACM, 2009.

[66] Andrew Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram
Krishnamurthi. Participatory Networking: An API for Application Control of
SDNs. In ACM SIGCOMM, August 2013.

[67] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jen-
nifer Rexford, Alec Story, and David Walker. Frenetic: A Network Program-
ming Language. In ACM SIGPLAN International Conference on Functional
Programming, 2011.

[68] Rohan Gandhi, Hongqiang Harry Liu, Y. Charlie Hu, Guohan Lu, Jitendra
Padhye, Lihua Yuan, and Ming Zhang. Duet: Cloud Scale Load Balancing
with Hardware and Software. In ACM SIGCOMM, 2014.

[69] Ruomei Gao, Constantinos Dovrolis, and Ellen W Zegura. Interdomain Ingress
Traffic Engineering through Optimized AS-path Prepending. In Networking
Technologies, Services, and Protocols; Performance of Computer and Commu-
nication Networks; Mobile and Wireless Communications Systems, pages 647–
658. Springer, 2005.

[70] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. RINC: Real-Time
Inference-based Network Diagnosis in the Cloud. Technical Report TR-975-14,
Princeton University, 2015.

[71] Monia Ghobadi, Soheil Hassas Yeganeh, and Yashar Ganjali. Rethinking End-
to-End Congestion Control in Software-Defined Networks. In ACM HotNets,
October 2012.

118

[72] David K. Goldenberg, Lili Qiu, Haiyong Xie, Yang Richard Yang, and Yin
Zhang. Optimizing Cost and Performance for Multihoming. In ACM SIG-
COMM, 2004.

[73] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. VL2: A Scalable and Flexible Data Center Network. In ACM SIG-
COMM, Barcelona, Spain, 2009.

[74] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers, Jennifer
Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang. A Clean Slate 4D
Approach to Network Control and Management. ACM SIGCOMM Computer
Communication Review, 35(5):41–54, October 2005.

[75] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Mart́ın Casado, Nick
McKeown, and Scott Shenker. NOX: Towards an Operating System for Net-
works. ACM SIGCOMM Computer Communication Review, 38(3):105–110,
July 2008.

[76] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, Yongguang Zhang, and Songwu Lu. BCube: A High Performance,
Server-centric Network Architecture for Modular Data Centers. In ACM SIG-
COMM, 2009.

[77] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu
Lu. Dcell: A Scalable and Fault-tolerant Network Structure for Data Centers.
In ACM SIGCOMM, 2008.

[78] Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiakoumis,
Puneet Sharma, Sujata Banerjee, and Nick McKeown. ElasticTree: Saving
Energy in Data Center Networks. In USENIX NSDI, April 2010.

[79] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A Platform for
Fine-grained Resource Sharing in the Data Center. In USENIX NSDI, March
2011.

[80] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. Finishing Flows
Quickly with Preemptive Scheduling. In ACM SIGCOMM, 2012.

[81] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill,
Mohan Nanduri, and Roger Wattenhofer. Achieving High Utilization with
Software-driven WAN. In ACM SIGCOMM, August 2013.

[82] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski,
Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon
Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experience with a
Globally-deployed Software Defined WAN. In ACM SIGCOMM, August 2013.

119

[83] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and
Ronnie Chaiken. The Nature of Datacenter Traffic: Measurements & Analysis.
In ACM IMC, 2009.

[84] Thomas Karagiannis, Richard Mortier, and Antony Rowstron. Network Excep-
tion Handlers: Host-network Control in Enterprise Networks. In ACM SIG-
COMM, 2008.

[85] Peyman Kazemian, George Varghese, and Nick McKeown. Header Space Anal-
ysis: Static Checking for Networks. In USENIX NSDI, April 2012.

[86] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten
Godfrey. VeriFlow: Verifying Network-wide Invariants in Real Time. In
USENIX NSDI, April 2013.

[87] Changhoon Kim, Matthew Caesar, and Jennifer Rexford. Floodless in Seattle:
A Scalable Ethernet Architecture for Large Enterprises. In ACM SIGCOMM,
2008.

[88] Wonho Kim and P. Sharma. Hercules: Integrated Control Framework for Dat-
acenter Traffic Management. In IEEE Network Operations and Management
Symposium, April 2012.

[89] Teemu Koponen, Keith Amidon, Peter Balland, Martin Casado, Anupam
Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan Jack-
son, Andrew Lambeth, Romain Lenglet, Shih-Hao Li, Amar Padmanabhan,
Justin Pettit, Ben Pfaff, Rajiv Ramanathan, Scott Shenker, Alan Shieh, Jeremy
Stribling, Pankaj Thakkar, Dan Wendlandt, Alexander Yip, and Ronghua
Zhang. Network Virtualization in Multi-tenant Datacenters. In USENIX NSDI,
April 2014.

[90] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon
Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue,
Takayuki Hama, and Scott Shenker. Onix: A Distributed Control Platform for
Large-scale Production Networks. In USENIX OSDI, Vancouver, BC, Canada,
October 2010.

[91] Bob Lantz, Brian O’Connor, Jonathan Hart, Pankaj Berde, Pavlin Radoslavov,
Masayoshi Kobayashi, Toshio Koide, Yuta Higuchi, Matteo Gerola, William
Snow, and Guru Parulkar. ONOS: Towards an Open, Distributed SDN OS. In
ACM SIGCOMM HotSDN Workshop, August 2014.

[92] Young Lee, Greg Bernstein, Ning So, Tae Yeon Kim, Kohei Shiomoto, and
Oscar Gonzalez de Dios. Research Proposal for Cross Stratum Optimization
(CSO) between Data Centers and Networks. http://tools.ietf.org/html/

draft-lee-cross-stratum-optimization-datacenter-00, March 2011.

120

http://tools.ietf.org/html/draft-lee-cross-stratum-optimization-datacenter-00
http://tools.ietf.org/html/draft-lee-cross-stratum-optimization-datacenter-00

[93] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger Wattenhofer,
and David Maltz. zUpdate: Updating Data Center Networks with Zero Loss.
In ACM SIGCOMM, August 2013.

[94] Samantha Lo and Rocky K. C. Chang. Measuring the Effects of Route Prepend-
ing for Stub Autonomous Systems. In IEEE ICC Workshop on Traffic Engi-
neering in Next Generation IP Networks, June 2007.

[95] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten
Godfrey, and Samuel Talmadge King. Debugging the Data Plane with Anteater.
In ACM SIGCOMM, August 2011.

[96] Matt Mathis, John Heffner, and Raghu Raghunarayan. RFC 4898: TCP Ex-
tended Statistics MIB. http://www.ietf.org/rfc/rfc4898.txt, May 2007.

[97] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow:
Enabling Innovation in Campus Networks. ACM SIGCOMM Computer Com-
munication Review, 38(2):69–74, March 2008.

[98] Jeff Mogul, Alvin AuYoung, Sujata Banerjee, Jeongkeun Lee, Jayaram
Mudigonda, Lucian Popa, Puneet Sharma, and Yoshio Turner. Corybantic:
Towards Modular Composition of SDN Control Programs. In ACM HotNets,
November 2013.

[99] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. Composing Software-defined Networks. In USENIX NSDI, April 2013.

[100] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. Host Identity Proto-
col, April 2008. RFC 5201.

[101] Prime ONR N00014-12-1-757. Networks Opposing Botnets (NoBot).

[102] Tim Nelson, Arjun Guha, Daniel J. Dougherty, Kathi Fisler, and Shriram Kr-
ishnamurthi. A Balance of Power: Expressive, Analyzable Controller Program-
ming. In ACM SIGCOMM HotSDN, 2013.

[103] Henrik Nilsson, Antony Courtney, and John Peterson. Functional Reactive
Programming, Continued. In ACM SIGPLAN Workshop on Haskell, 2002.

[104] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson
Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and
Amin Vahdat. PortLand: A Scalable Fault-tolerant Layer 2 Data Center Net-
work Fabric. In ACM SIGCOMM, 2009.

[105] Erik Nordmark and Marcelo Bagnulo. Shim6: Level 3 Multihoming Shim Pro-
tocol for IPv6. IETF Request for Comments 5533, June 2009.

121

http://www.ietf.org/rfc/rfc4898.txt

[106] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. MulVAL: A
Logic-based Network Security Analyzer. In USENIX Security, 2005.

[107] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Greenberg,
David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,
Changhoon Kim, and Naveen Karri. Ananta: Cloud Scale Load Balancing. In
ACM SIGCOMM, August 2013.

[108] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. De-
Witt, Samuel Madden, and Michael Stonebraker. A Comparison of Approaches
to Large-scale Data Analysis. In ACM SIGMOD, 2009.

[109] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and
Scott Shenker. Extending networking into the virtualization layer. In ACM
HotNets, October 2009.

[110] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Ion Stoica. FairCloud: Sharing the Network in Cloud
Computing. In ACM SIGCOMM, 2012.

[111] Bruno Quoitin and Olivier Bonaventure. A Cooperative Approach to Interdo-
main Traffic Engineering. In Next Generation Internet Networks, pages 450–457.
IEEE, 2005.

[112] Bruno Quoitin, Cristel Pelsser, Louis Swinnen, Ouvier Bonaventure, and Steve
Uhlig. Interdomain Traffic Engineering with BGP. IEEE Communications
Magazine, 41(5):122–128, 2003.

[113] Bruno Quoitin, Sébastien Tandel, Steve Uhlig, and Olivier Bonaventure. In-
terdomain Traffic Engineering with Redistribution Communities. Computer
Communications, 27(4):355–363, 2004.

[114] Barath Raghavan, Kashi Vishwanath, Sriram Ramabhadran, Kenneth Yocum,
and Alex C. Snoeren. Cloud Control with Distributed Rate Limiting. In ACM
SIGCOMM, 2007.

[115] Brandon Schlinker, Kyriakos Zarifis, Italo Cunha, Nick Feamster, and Ethan
Katz-Bassett. PEERING: An AS for Us. In ACM HotNets, 2014.

[116] Justine Sherry, Daniel C. Kim, Seshadri S. Mahalingam, Amy Tang, Steve
Wang, and Sylvia Ratnasamy. Netcalls: End Host Function Calls to Net-
work Traffic Processing Services. Technical Report UCB/EECS-2012-175, U.C.
Berkeley, 2012.

[117] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado,
Nick McKeown, and Guru Parulkar. Can the Production Network Be the
Testbed? In USENIX OSDI, October 2010.

122

[118] Alan Shieh, Srikanth Kandula, Albert Greenberg, Changhoon Kim, and Bikas
Saha. Sharing the Data Center Network. In USENIX NSDI, 2011.

[119] Lakshminarayanan Subramanian, Matthew Caesar, Cheng Tien Ee, Mark Han-
dley, Morley Mao, Scott Shenker, and Ion Stoica. HLP: A Next Generation
Inter-domain Routing Protocol. In ACM SIGCOMM, August 2005.

[120] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, and
Ahsan Arefin. A Network-state Management Service. In ACM SIGCOMM,
August 2014.

[121] Peng Sun, Laurent Vanbever, and Jennifer Rexford. Scalable Programmable
Inbound Traffic Engineering. In ACM SIGCOMM SOSR, 2015.

[122] Peng Sun, Minlan Yu, Michael J. Freedman, and Jennifer Rexford. Identifying
Performance Bottlenecks in CDNs Through TCP-level Monitoring. In ACM
SIGCOMM Workshop on Measurements Up the Stack, 2011.

[123] Peng Sun, Minlan Yu, MichaelJ. Freedman, Jennifer Rexford, and David
Walker. HONE: Joint Host-Network Traffic Management in Software-Defined
Networks. Journal of Network and Systems Management, 23(2):374–399, 2015.

[124] Doug Terry. Replicated Data Consistency Explained Through Baseball. Com-
munications of the ACM, 56(12):82–89, December 2013.

[125] Vytautas Valancius, Nick Feamster, Jennifer Rexford, and Akihiro Nakao.
Wide-area Route Control for Distributed Services. In USENIX ATC, 2010.

[126] Robbert van Renesse and Adrian Bozdog. Willow: DHT, Aggregation, and
Publish/Subscribe in One Protocol. In IPTPS, 2004.

[127] Laurent Vanbever, Stefano Vissicchio, Cristel Pelsser, Pierre Francois, and
Olivier Bonaventure. Seamless Network-wide IGP Migrations. In ACM SIG-
COMM, August 2011.

[128] Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and Paul
Hudak. Maple: Simplifying SDN Programming Using Algorithmic Policies. In
ACM SIGCOMM, August 2013.

[129] Feng Wang and Lixin Gao. On Inferring and Characterizing Internet Routing
Policies. In Internet Measurement Conference, pages 15–26. ACM, 2003.

[130] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. Bet-
ter Never Than Late: Meeting Deadlines in Datacenter Networks. In ACM
SIGCOMM, 2011.

[131] Haitao Wu, Zhenqian Feng, Chuanxiong Guo, and Yongguang Zhang. ICTCP:
Incast Congestion Control for TCP in Data Center Networks. In ACM
CoNEXT, 2010.

123

[132] Xin Wu, Daniel Turner, Chao-Chih Chen, David A. Maltz, Xiaowei Yang, Lihua
Yuan, and Ming Zhang. NetPilot: Automating Datacenter Network Failure
Mitigation. In ACM SIGCOMM, August 2012.

[133] Praveen Yalagandula and Mike Dahlin. A Scalable Distributed Information
Management System. In ACM SIGCOMM, 2004.

[134] Minlan Yu, Albert Greenberg, Dave Maltz, Jennifer Rexford, Lihua Yuan,
Srikanth Kandula, and Changhoon Kim. Profiling Network Performance for
Multi-tier Data Center Applications. In USENIX NSDI, 2011.

[135] Minlan Yu, Lavanya Jose, and Rui Miao. Software Defined Traffic Measurement
with OpenSketch. In USENIX NSDI, 2013.

[136] Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapatra. ProgME: Towards
Programmable Network Measurement. In ACM SIGCOMM, 2007.

[137] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy
Katz. DeTail: Reducing the Flow Completion Time Tail in Datacenter Net-
works. In ACM SIGCOMM, 2012.

124

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Problems of Current Network Management
	1.2 Research Approach
	1.3 Contributions
	1.3.1 Safe Datacenter Traffic/Infrastructure Management
	1.3.2 End-host/Network Cooperative Traffic Management
	1.3.3 Direct Control of Entrant ISP for Enterprise Traffic

	2 Statesman: Integrating Network Infrastructure Management
	2.1 Introduction
	2.2 Network State Abstraction
	2.2.1 Three Views of Network State
	2.2.2 Dependency Model of State Variables
	2.2.3 Application Workflow

	2.3 System Overview
	2.4 Managing Network State
	2.4.1 The State Dependency Model
	2.4.2 Using and Extending the Dependency Model

	2.5 Checking Network State
	2.5.1 Resolving Conflicts
	2.5.2 Choosing and Checking Invariants
	2.5.3 Partitioning by Impact Group

	2.6 System Design and Implementation
	2.6.1 Globally Available and Distributed Storage Service
	2.6.2 Stateless Update on Heterogeneous Devices
	2.6.3 Network Monitors
	2.6.4 Read-Write APIs

	2.7 Operational Experiences
	2.7.1 Deployment in Microsoft Azure
	2.7.2 Maintaining Network-wide Invariants
	2.7.3 Resolving Conflicts of Management Solutions
	2.7.4 Handling Operational Failures

	2.8 System Evaluation
	2.9 Related Work
	2.10 Conclusion

	3 Hone: Combining End Host and Network for Traffic Management
	3.1 Introduction
	3.2 Hone Programming Framework
	3.2.1 Measurement: Query on Global Tables
	3.2.2 Analysis: Data-Parallel Operators
	3.2.3 Control: Uniform and Dynamic Policy
	3.2.4 All Three Stages Together

	3.3 Efficient and Scalable Execution
	3.3.1 Distributed Directory Service
	3.3.2 Lazily Materialized Tables
	3.3.3 Host-Controller Partitioning
	3.3.4 Hierarchical Data Aggregation

	3.4 Performance Evaluation
	3.4.1 Performance of Host-Based Measurement
	3.4.2 Performance of Management Solutions
	3.4.3 Effects of Lazy Materialization
	3.4.4 Evaluation of Scalability in Hone

	3.5 Case Studies
	3.5.1 Elephant Flow Scheduling
	3.5.2 Distributed Rate Limiting

	3.6 Related Work
	3.7 Conclusion

	4 Sprite: Bridging Enterprise and ISP for Inbound Traffic Control
	4.1 Introduction
	4.2 Inbound TE Using Source NAT
	4.3 Scalable Sprite Architecture
	4.3.1 Data Plane: Edge Switches Near Hosts
	4.3.2 Control Plane: Local Agents Near Switches

	4.4 Dynamic Policy Adaptation
	4.4.1 High-level Traffic Engineering Objectives
	4.4.2 Computing Network Policy

	4.5 Implementation
	4.5.1 Design for Fault Tolerance
	4.5.2 How Components Communicate
	4.5.3 Routing Control for Returning Packets
	4.5.4 BGP Stability

	4.6 Evaluation
	4.6.1 Princeton Campus Network Data
	4.6.2 Multi-ISP Deployment Setup
	4.6.3 Inbound-ISP Performance Variance
	4.6.4 Effects of Dynamic Balancing

	4.7 Related Work
	4.8 Conclusion

	5 Conclusion
	5.1 Summary of Contributions
	5.2 Open Issues and Future Works
	5.2.1 Combining Statesman and Hone in Datacenters
	5.2.2 Supporting Transactional Semantics in Statesman
	5.2.3 Hone for Multi-tenant Cloud Environment

	5.3 Concluding Remarks

	Bibliography

