
FLEXIBLE ENTERPRISE NETWORK

MANAGEMENT ON COMMODITY SWITCHES

NANXI KANG

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISER: PROFESSOR JENNIFER REXFORD

JANUARY 2016

© Copyright by Nanxi Kang, 2015.

All rights reserved.

Abstract

Enterprise networks interconnect heterogeneous hosts, requiring careful management to

provide secure, reliable and high-performance network communication. Today, the oper-

ators have to manually configure individual network devices, while considering the host

address assignments and devices constraints (e.g., limited memory). These approaches are

too complicated and inefficient for enterprise networks with growing numbers of hosts and

devices.

The rise of Software Defined Networks (SDN) offers opportunities to simplify the

management of enterprise networks. Leveraging the logically-centralized control plane and

the programmable switch rule-tables in SDN, we design a novel network management sys-

tem that supports flexible policies and reduces configuration complexity. We argue that

the operators should focus on defining network-wide policies rather than grappling with

low-level details, such as switch memory sizes, individual switch configurations and host

addresses. It is the controller’s job to compile the high-level policies into rules for individ-

ual switches while staying within the rule-table sizes.

In this thesis, we present a flexible enterprise network management system that as-

signs addresses based on host attributes, distributes network-wide policies across multiple

switches and computes switch rules to achieve high-level load balancing policies. Specifi-

cally,

• we propose the “Attribute-Carrying IPs” (ACIPs) abstraction, where the attributes

of a host are encoded in the IP addresses to enable flexible policy specification. We

present Alpaca, algorithms for realizing ACIPs under practical constraints of limited-

length IP addresses and constraint switch rule-tables.

• we propose the “One Big Switch” abstraction, which consists of an endpoint policy

that views all hosts connected to a single switch, a hop-by-hop routing policy that

defines paths between endpoints and a compiler that synthesizes switch rules that

iii

obey policies and adhere to the resource constraints. We present efficient algorithms

that distribute policies across networks while managing rule-space constraints.

• we propose the “One Big Server” abstraction, where a switch load balances incoming

service requests to multiple equivalent servers based on their capacities. We present

Niagara, an SDN-based traffic-splitting scheme that achieves accurate traffic splits

while being extremely efficient in using the rule-table space.

iv

Acknowledgments

I’m deeply grateful to my advisor, Jennifer Rexford. It is she that introduces me to the

world of computer networking. From her, I learnt how to conduct solid research work, how

to present to the public as well as how to collaborate with people. Being an advisor, Jen

always encourage me to take various opportunities such as conferences and internships,

make my own decisions and get to know great people in the field. One of our projects,

Niagara, started from my casual chatting with Monia Ghobadi, introduced by Jen. Working

with her has been one of the most amazing experiences in my life. I would like to thank for

all her advices, encouragement and support through my Ph.D. years.

I would have not completed this thesis without my collaborators. I would like to thank

David Walker and Zhenming Liu for their tremendous help with my very first project (One

Big Switch). Their clear and vigorous thinking always inspires me. Monia Ghobadi has

been a great friend and a mentor for me. I owe so much to her for the continuous patience

and confidence in me during the ups and downs of working on Niagara. I also want to thank

John Reumann and Alexander Shraer for their contributions and feedbacks to the work. I’m

very fortunate to work with Sanjay Rao and Ori Rottenstreich on Alpaca. Thanks to them

for the heated discussion, effective execution and the fun final deadline rush.

I benefit a lot from my two internships with Microsoft. The first one was in my senior

year in the college, when I interned in the system group at Microsoft Research Asia. I

sincerely thank my mentors, Zheng Zhang and Zhenping Qian, for guiding me into the

research world. During my second internship, I worked with Ming Zhang, Lihua Yuan,

Guohan Lu and Ratul Mahajan. I’m greatly inspired by their intelligence and expert skills

in applying cutting-edge research to industrial products. Their professions will long serve

as an example for my career.

I would like to thank David Walker, Sanjay Rao, Michael Freedman and Nick Feam-

ster to serve as my committee and provide feedbacks on my research.

v

I enjoyed research discussion and fun social activities with the people in Princeton. I

would like to thank the (past and present) members of cabernet: Xin Jin, Peng Sun, Kelvin

Zou, Praveen Naga Katta, Srinivas Narayana, Joshua Reich, Laurent Vanbever, Jennifer

Gossels, Mojgan Ghasemi, Mina Tahmasbi Arashloo and Robert MacDavid. I would like

to thank my other friends in Princeton: Jingwan Lu, Jennifer Guo, Fisher Yu, Xinyi Fan,

Xiaozhou Li, Haoyu Zhang, Fanglu Liu, Linpeng Tang, Feng Liu, Yichen Chen, Mengdi

Wang, Yanqi Zhou and Ping Lu. I would like to give my special thanks to Loretta Bercuk,

who is always considerate and encouraging. The time we spent together is unforgettable.

This dissertation work is supported by National Science Foundation grant CNS-

1162112, CNS-1409056 and CNS-1162112, University of Pennsylvania award 559611,

and Office of Naval Research ONR N00014-12-1-0757.

I dedicate this thesis to my parents for their enduring love and faith in me.

vi

To my parents.

vii

Contents

Abstract . iii

Acknowledgments . v

List of Tables . xii

List of Figures . xiii

1 Introduction 1

1.1 Enterprise Networks . 1

1.2 Today’s Enterprise Network Management 3

1.2.1 VLAN-based IP Assignment . 4

1.2.2 Per-device Configuration . 6

1.2.3 Limited Policy Support . 7

1.3 Flexible Network Management with SDN 8

1.3.1 Software Defined Networks . 8

1.3.2 Switch Constraints . 9

1.3.3 Contributions . 11

2 Optimize “One Big Switch” Abstraction 15

2.1 Introduction . 16

2.2 Rule Placement in One Big Switch . 19

2.3 Related Work . 20

2.4 Algorithm Overview . 22

viii

2.5 Placing Rules Along a Path . 25

2.5.1 Cover-Pack-and-Replace . 26

2.5.2 Rectangles Searching . 29

2.5.3 Algorithm Generalization . 32

2.5.4 Correctness . 32

2.5.5 Special Case: Single-Dimension Endpoint Policy 34

2.6 Decomposition and Allocation . 39

2.6.1 Decomposition through Cross-Product 39

2.6.2 Rule Allocation through Linear Programming 40

2.6.3 Unwanted Traffic Minimization 42

2.7 Incremental Updates . 44

2.7.1 Local Algorithm . 45

2.7.2 Global Algorithm . 46

2.8 Performance Evaluation . 47

2.8.1 Experimental Workloads . 47

2.8.2 Rule-Space Utilization . 48

2.8.3 Minimizing Unwanted Traffic . 52

2.8.4 Comparison with Palette . 53

2.9 Conclusion . 54

3 Alpaca: Compact Network Policies with Attribute-Carrying Addresses 55

3.1 Introduction . 56

3.1.1 Enforcing Policies in Today’s Enterprises 56

3.1.2 Attribute-Carrying IP Addresses 57

3.2 Case Study: Diverse Enterprise Policies 60

3.2.1 Policies on Multiple Dimensions 60

3.2.2 Potential for Concise Rules with ACIPs 62

3.2.3 Diverse Attributes and Group Sizes 63

ix

3.3 ALPACA Overview . 65

3.3.1 ACIP allocation with Alpaca . 65

3.3.2 Problem Formulation . 66

3.3.3 Overview of Alpaca algorithms 67

3.4 ALPACA Algorithms . 68

3.4.1 Prefix Solution . 68

3.4.2 Wildcard Solution . 72

3.4.3 Handle Changes in Host Attributes 78

3.4.4 Practical Issues . 81

3.5 Evaluation . 81

3.5.1 Benefits with Existing Policies . 82

3.5.2 Benefits with Futuristic Policies 85

3.6 Related Work . 89

3.7 Conclusion . 91

4 Niagara: Efficient Traffic Splitting on Commodity Switches 92

4.1 Introduction . 93

4.2 Traffic split background . 95

4.2.1 Use cases . 95

4.2.2 Requirements . 96

4.2.3 Prior Traffic-Splitting Schemes . 97

4.3 Niagara Overview . 98

4.3.1 Rule Optimization Problem Formulation 100

4.3.2 Overview of Optimization Algorithm 101

4.4 Single Aggregate Optimization . 103

4.4.1 Approximate: Binary Expansion 103

4.4.2 Truncate: Fit Rules in the Table 109

4.5 Cross Aggregates Optimization . 110

x

4.5.1 Pack: Divide Rules Across Aggregates 110

4.5.2 Share: Same Rules for Aggregates 111

4.6 Graceful rule update . 114

4.6.1 Incremental Rule Computation . 115

4.6.2 Multi-stage Updates . 116

4.7 Niagara Application: Load Balancer . 117

4.7.1 Preserve Connection Affinity . 119

4.7.2 Prototype . 121

4.8 Evaluation . 122

4.8.1 Niagara for Server Load Balancing 122

4.8.2 Niagara for Multi-pathing . 132

4.9 Conclusion . 136

5 Conclusion 137

5.1 Summary of Contributions . 137

5.2 Deployment of the Management System 138

5.2.1 Deploy Niagara and One Big Switch 139

5.2.2 Deploy Alpaca and One Big Switch 139

5.3 Concluding Remarks . 140

Bibliography 142

xi

List of Tables

2.1 Prior work on rule-space compression. 21

3.1 Host data for CS department (University A) 64

3.2 An example of slack . 79

3.3 Network policies of two universities. 82

4.1 Table of notation, with inputs listed first. 101

xii

List of Figures

1.1 An example enterprise network. 1

1.2 Today’s enterprise network management. 4

1.3 Software Defined Networks. 8

1.4 Abstractions for enterprise network management. 11

2.1 High-level policy and low-level rule placement 17

2.2 Overview of the rule placement algorithm 23

2.3 An example decomposition . 24

2.4 A 3-hop path with rule capacities (C) . 26

2.5 An example two-dimensional policy . 27

2.6 Processing 2-dim endpoint policy E . 28

2.7 Example policy . 28

2.8 Not using unnecessarily large cover. 30

2.9 Only pack maximal rectangle. 31

2.10 Our heuristics for 2-dim chains . 31

2.11 Example one-dimensional policy on a switch 35

2.12 Pack-and-replace for one-dimensional policies 36

2.13 Path heuristics for one-dimensional policy 37

2.14 Linear program for rule-space allocation 41

2.15 Rule insertion example . 45

2.16 Procedure for rule insertion . 46

xiii

2.17 The performance of the graph algorithm over different endpoint policies on

100-switch topologies . 49

2.18 The performance of the path heuristic. 50

2.19 CDF of dropped traffic in the graph . 52

2.20 Comparing our path heuristic to Palette 54

3.1 Use Alpaca in a network. 65

3.2 Example allocation: W = 4,N = 16,M = 2. 68

3.3 Optimal algorithm for a single dimension a 70

3.4 Create nodes from input of Figure 3.2(a). 73

3.5 The compression graph: a node has an id, attributes and a value. Colored

nodes are super-nodes. 74

3.6 Flip bits to compress nodes . 75

3.7 Wildcard rule-sets. 76

3.8 Slack algorithm . 80

3.9 Optimize network policies on mutli-table switches. 83

3.10 Benefits of slack. BS, WC and PFX denote Wildcard, Prefix and BitSeg-

mentation schemes. NS indicates variant without slack. 84

3.11 Optimize network policies on single-table switches. 85

3.12 Encode attributes with increased #dims. 86

3.13 Encode attributes with increase #hosts. 87

3.14 Property of Alpaca algorithm . 89

4.1 Example wildcard rules for load balancing. 99

4.2 Naive and subtraction-based rule generation for weights {1
6 ,

1
3 ,

1
2} and ap-

proximation {1
8 ,

3
8 ,

4
8}. 103

4.3 Wildcard rules to approximate (1
6 ,

1
3 ,

1
2) . 104

4.4 4 plots with different errors. 106

xiv

4.5 Generate rules using a suffix tree. 107

4.6 An example traffic distribution with a suffix tree. Each number represents

the fraction of traffic matched by the suffix, e.g., *11 matches 4
25 traffic. . . 108

4.7 Generate rules using a suffix tree, given the traffic distribution in Figure 4.6. 109

4.8 Stairstep curve (imbalance v.s. #rules) for Aggregate v with weights wv =

{1
6 ,

1
3 ,

1
2} and tv = 1. 110

4.9 An example of packing multiple aggregates. 112

4.10 Generate rules for {1
6 ,

1
3 ,

1
2} given default rules 113

4.11 Rule-sets (and corresponding suffix trees) installed during the transition

from {1
6 ,

1
3 ,

1
2} to {1

2 ,
1
3 ,

1
6}. 115

4.12 Niagara prototype architecture overview. 117

4.13 Global policy update scheme . 120

4.14 Load balancer architecture. 123

4.15 Accuracy of uniform server load balancing. 125

4.16 Weighted server load balancing for multiple VIPs. 126

4.17 Incremental Update. 128

4.18 Multipathing . 129

4.19 Top: update of SWSs and HWS together; Center: update HWS after old

flows finish; Bottom: update HWS at an optimized time. 133

4.20 Topology: NC = 3,NA = 4,LC = 6,LA = 4 134

xv

Chapter 1

Introduction

1.1 Enterprise Networks

An enterprise network interconnects many hosts, such as personal mobile phones,

workstations and public servers, within a university or corporation. A typical enterprise

network topology consists of two layers of devices, as shown in Figure 1.1. At the perimeter

of the network, edge switches form disjoint islands by connecting physically co-located

hosts (e.g., computers in the same building). These islands are then connected by the core

routers at the center of the network.

44

R2
R1

R3
R4

S1

S2

S4

S5

S3

CS

EE

Bio

Figure 1.1: An example enterprise network.

1

To operate the network, the enterprise hires staffs (i.e., operators), who manage de-

vices (i.e., switches and routers) to provide secure, reliable and high-performance network

communication. The management tasks include assigning IP addresses to hosts, routing

packets between hosts, setting up access control, providing Quality-of-Service to network

traffic, balancing traffic loads of servers and so on. In what follows, we use the example

network (Figure 1.1) to illustrate these tasks.

IP Address Assignment. A host has two addresses: the static MAC address, which

is tied to the host permanently, and the dynamic IP address, which is assigned when the

host joins a network. Conventionally, IP address assignment is location-dependent. The

operators divide the enterprise’s IP address space into subnets, each corresponding to a

physical location (e.g., a department building). Hosts in the same location are given IPs

from the same subnet. For example, the operators could divide the address space 1.2.0.0/16

into 256 subnets, i.e., 1.2.0.0/24, ..., 1.2.255.0/24, and assign 1.2.3.0/24 to the CS building

and 1.2.4.0/24 to the EE building.

Routing. A network packet contains the addresses of the sender and the receiver.

Switches and routers forward packets based on destination addresses. For example, within

an island, switches forward a packet based on the receiver’s MAC address by remember-

ing the incoming port of packets sent by that address. Across islands, routers look up IP

addresses, which are allocated based on locations. The operators configure routers so they

could identify the subnet associated with each location and forward packets destined to

the same subnet together. For example, router R1 can forward packets with destination IP

address matching 1.2.3.0/24 (e.g., 1.2.3.4), which is associated to the CS building, to S1.

Access Control. The operators use access control to block packets from untrustwor-

thy hosts. For example, the database server should be accessible to only a small group

of privileged hosts, or the communication between two unrelated departments should be

forbidden. To enforce such policies, the operators install Access Control Lists (ACL) on

routers, which examine packet header fields, such as source and destination IP addresses,

2

to permit or deny packets. For example, to allow network traffic from the CS building to

the EE building, operators can install an ACL rule that permits packets with source IP

addresses in 1.2.3.0/24 and destination IP addresses in 1.2.4.0/24.

Quality of Service. Some network traffic is more critical than others. For example,

video streaming applications require packet delivery with very small latency, whereas pack-

ets of data backup applications are not latency-sensitive. Routers differentiate Quality-of-

Service (QoS) for packets by isolating the critical traffic and the regular traffic in separated

queues and prioritizing packet handling. The classification of traffic depends on certain

header fields, such as the IP DSCP field, the TCP/UDP ports and so on. For example, the

operators can set up a QoS rule that puts any packets with UDP port 3785, which denotes

traffic of VoIP applications, into the critical queue.

Load Balancing. An enterprise network runs many public services (e.g., web ser-

vices, DNS services). Each service is replicated over multiple servers for greater throughput

and reliability. The service requests from one client can be sent to any of these equivalent

servers. To access a service, clients send requests destined to a public Virtual IP address

(called VIP), which is associated with the service. A load balancer, placed in front of the

servers and configured by the operators, rewrites the destination IP field in the VIP requests

to the IP address (called DIP) of one of the servers. For example, server with DIP 1.1.1.1

hosts a web service, whose VIP is 1.0.1.1. The load balancer can redirect a request for VIP

1.0.1.1 to server 1.1.1.1 by rewriting its destination IP field. The goal of load balancing is

to ensure that no server is overloaded.

1.2 Today’s Enterprise Network Management

Management tasks are done in three layers, as shown in Figure 1.2. At the management

plane, the operators decide policies for traffic handling, such as routing and access control,

and specify these policies using the configuration APIs provided by the control planes.

3

Control Plane

Data Plane

Vendor-specific interfaces

On-chip memory

Management Plane

Network policies

Traffic flow

Config flow
Router

Figure 1.2: Today’s enterprise network management.

The control planes then instruct the data planes to enforce these policies. The data planes

can process packets at high speed using fast on-chip memory that stores packet-processing

rules. For example, the operators may decide to allow traffic from the CS building to the

EE building and interpretate this access control policy as “permit packets with source IP

addresses in 1.2.3.0/24 and destination IP addresses in 1.2.4.0/24” using the control-plane

APIs. The control plane installs the corresponding ACL rules in the on-chip memory, which

is looked up by the data plane and executed on every matched packet.

Managing an enterprise network is not easy. Each device has its own data plane and

control plane. Different vendors provide different control-plane configuration APIs, which

support limited network policies. Today, the operators have to manually translate the net-

work policies to control-plane configurations for individual devices, while considering the

address assignment for hosts and differences in configuration APIs. In what follows, we

discuss in detail the current enterprise network management approaches and their draw-

backs.

1.2.1 VLAN-based IP Assignment

Virtual Local Area Network (VLAN) technology is widely used to assign hosts IP

addresses in today’s enterprise networks. In contrast to assigning co-located hosts addresses
4

from the same subnet, VLAN technology groups related hosts (e.g., hosts affiliated with the

same department) in the same subnet even if they are physically apart. A host is assigned a

VLAN number when it joins the network, based on its MAC address or the physical switch

port it connects to; related hosts are assigned the same VLAN number. The operators divide

up the address space into subnets and associate each subnet with a VLAN number. Hosts

are given addresses in the subnet that corresponds to its VLAN number.

A single VLAN can span multiple islands of hosts; a switch may participate in mul-

tiple VLANs. For each VLAN, the participant switches store the output port for a MAC

address by remembering the incoming port of packets sent by that address. The switches

also cooperate to construct a spanning tree. When one switch receives a packet destined to

an unknown MAC address, it floods the packet along the spanning tree. Across VLANs,

routers forward packets based on IP prefixes, i.e., VLAN subnets. A packet is sent to a

switch participating in the VLAN of the destination. Inter-VLAN communication must tra-

verse a router. In other words, as long as they belong to different VLANs, even if two hosts

connect to the same switch, their packets must be routed through the core routers, incurring

unnecessary routing overhead.

VLANs are primarily used to simplify applying access control and QoS to groups

of hosts [85]. Consider an access control policy that permits traffic from the CS depart-

ment to the EE department. With VLAN, the operators can group CS hosts in one subnet,

which may not be co-located at the same building, and EE hosts in another. As a result,

the operators only need to configure a single ACL rule that permits packets from the CS

VLAN subnet to the EE VLAN subnet. Similarly, QoS rules can classify packets using

prefix matches on IP addresses. However, these ACL and QoS rules may only be installed

on routers and applied to inter-VLAN traffic. Another problem is that VLANs always clas-

sify hosts into disjoint groups. If policies depends on orthogonal dimensions of information

such as the affiliated department and the role of the device owner (e.g., faculty or students),

5

the operators can only use VLANs for either one dimension or the product of both (e.g.,

CS faculty), increasing configuration complexity.

1.2.2 Per-device Configuration

While the operators define network-wide policies at the management plane, they have

to decide the portion of the policies implemented by each device and configure them indi-

vidually, as a result of the distributed control planes and distinct control-plane APIs.

Per-device configuration is complicated and error-prone due to the lack of network-

wide view and complex dependencies among policies. Consider enforcing the access con-

trol policy. Access control depends on routing: to deny unwanted traffic, operators need to

install ACL rules on routers traversed by those packets. As packets may traverse different

paths, ACL rules can span multiple routers. The configuration complexity is very high: op-

erators have to decide for each router what packets should be dropped and what should be

allowed. In fact, how the packets are treated depends on the aggregated actions taken by all

devices along the path: while one device may permit the traffic, another device may deny

the same traffic. Consider packets routed from S1 to S4 using path S1!R1!R3!R3!S4.

The packets are safe, if all the devices permit the traffic; otherwise, they will be dropped in

the middle.

Furthermore, manual per-device configuration reacts slowly to network changes (e.g.,

link down, router failures). When changes occur, the operators have to inquire the current

status of devices, decide the new configurations and apply the configurations accordingly.

For example, when a router fails, the operators need to decide how to “migrate” the ACL

rules on the failed devices to other devices such that the network-wide access control re-

mains unchanged. All these tasks are performed manually at the granularity of individual

devices.

6

1.2.3 Limited Policy Support

The existing control planes use different point solutions for each type of network pol-

icy. Not only are these point solutions hard to configure, they also support a limited set of

policy options. Operators have to get through the inflexible control-plane APIs to enforce

the desired policies, and sometimes it is even impossible to implement such policies.

Most control planes run routing protocols (e.g., spanning trees or link state) to compute

paths to the destination IP prefixes or destination MAC addresses. These algorithms only

support forwarding packets on the shortest paths or paths in a spanning tree, thus losing

the opportunities of using other paths. However, forwarding along a spare longer path and

even multiple paths for a pair of sender and receiver increases throughput and reliability. To

maximize bandwidth utilization, operators have to carefully tune the link weights to route

traffic on customized paths.

Meanwhile, existing control planes provide limited support for access control and

QoS. Many devices restrict ACL rules to prefix matches rather than wildcard matches. The

operators have to either compute IP prefixes which describe the group of hosts sharing the

same access privilege, or modify IP address assignment to allocate these hosts addresses in

the same prefix (e.g., VLANs). Similarly, many devices only support QoS rules matching

on a small set of header fields, such as the DSCP field. To apply QoS policies, the operators

have to ensure that hosts, or edge switches when hosts cannot be trusted, set the DSCP field

correctly, otherwise the installed QoS rules cannot be applied.

Finally, load balancing is poorly supported by today’s switches and routers. Most de-

vices hash packet header fields to decide where to forward the packet, when there are

multiple equivalent next-hops (e.g., servers). However, the hashing solution does not con-

sider the real traffic load (of each hash bucket) and could easily overload next-hops. Today,

the operators have to purchase expensive dedicated load balancer appliances to distribute

service requests, rather than trust the hashing schemes on switches.

7

Control Plane

Control protocol

Management Plane

Data Plane

match-and-action rules

Router

Figure 1.3: Software Defined Networks.

To summarize, the existing point solutions are inflexible, forcing operators to hack the

network to (e.g., tuning link weights or embedding information in a certain header field),

and even purchase additional dedicated appliances to achieve the desired policies.

1.3 Flexible Network Management with SDN

1.3.1 Software Defined Networks

Software Defined Networking (SDN) proposes a new network architecture (Fig-

ure 1.3). The most important feature of SDN is the decoupled data plane and control

plane, which were tightly integrated on individual devices before. SDN switches are purely

data-plane devices, managed by a logically-centralized control plane (i.e., controller). The

controller decides the behaviors of data-plane switches by installing packet-handling rules

using a standard protocol (e.g., OpenFlow).

The advanced architecture of SDN offers new opportunities to redesign network man-

agement. The logically-centralized control plane helps simplify policy specification. Rather

than decide the configuration of each data-plane switch, the operators only need to define

network-wide policies for the controller. Meanwhile, the operators do not need to worry

about address assignment to enforce certain policies that depend on host information (e.g.,

8

access control policies depend on affiliated department). Given the policies, the controller

can automatically compile the policies into rules for individual switches based on the cur-

rent address assignment.

Another appealing benefits of SDN is the generic packet-handling rules. Abstractly,

each rule contains a match and an action. The match could be exact, prefix and wildcard

patterns on multiple packet header fields, allowing the controller to perform actions on a

selected set of packets. The actions are diverse, including “send the packet to a port” (for

routing), “drop the packet” (for access control), “put the packet in a queue” (for QoS) and

so on. The “match and action” rules enable flexible and diverse policies. For example,

operators could use prefix matches on destination IP to route packets to a subnet on a

customized path, or they could use prefix matches on destination IP and wildcard matches

on source IP to split the traffic to a subnet over multiple paths.

1.3.2 Switch Constraints

Switches have limited hardware resources. In SDN, the controller must deal with the

constraints on multiple switches simultaneously. Memory limit is the one of the primary

switch constraints.

Switches use three types of on-chip memory to store the packet-handling rules: Static

Random Access Memory (SRAM), Content Addressable Memory (CAM) and Ternary

Content Addressable Memory (TCAM). SRAM is usually used for prefix matches on a

single header field; CAM only supports exact matches on header fields; TCAM is capa-

ble of wildcard matches (including prefix and exact matches) on multiple header fields.

TCAM is the most popular rule-table due to its support for generic header field matches. It

is widely used for access control, QoS and routing.

While SRAM and CAM have slightly bigger capacities, the rule-table size of TCAM

is very small. A typical TCAM chipset can store at most a few thousands of rules. There are

two reasons for the small rule-table size. On one hand, TCAM is power hungry. To perform

9

a single lookup, it needs to charge all the memory units and read all rules in parallel to

identify the matching rule. On the other hand, a single TCAM chipset can process a limited

number of lookups per second. Hence, to offer greater throughput, switches have to use

multiple identical TCAMs that store the same set of rules. which further restricts the actual

usable rule-table size.

Dealing with the constrained rule-table sizes has been a long-standing research topic.

There has been a large body of prior work on per-switch optimization of limited mem-

ory through compression or caching. Given an input rule-set, the compression algorithms

search for an equivalent rule-set that contains fewer rules. For prefix matches, optimal

solutions are proposed to minimize the number of rules matching on one or two header

fields [9, 75]. However, minimizing wildcard rules is NP-hard [75]. Algorithms are pro-

posed to compress rules matching on multiple fields on a single rule-table [53, 54] and a

pipeline of tables [52].

Besides compression, researchers propose caching to “expand” the rule-capacity of a

switch [46]. The hardware rule-table is regarded as a cache, which stores a small number of

popular rules matched by most packets. The control plane stores the full set of rules. When

an incoming packet does not match the hardware rules, it is directed to the control plane

for further processing, which is much slower. The control plane can use various caching

algorithms (e.g., Least-Recently-Used) to adjust the hardware rules over time. Caching

allows the switch to store more packet-processing rules than what its hardware supports,

by trading off the load on the control plane.

Despite the past work on rule optimization for a single switch, handling constrained

rule-table sizes for multiple switches, as required in SDN, remains challenging. For exam-

ple, an access control policy may need a large number of rules, which can not fit within a

single switch after compression and can overwhelm the control plane if caching is used. As

a result, the ACL rules must be partitioned into smaller rule-sets, which are distributed to

multiple switches without exceeding the rule-table sizes. The partition problem becomes

10

One Big Switch

Alpaca:
Attribute-Carrying IP

IP address assignment

Niagara:
One Big Server

Switch rules

Access control, QoS Load balancing Routing

Figure 1.4: Abstractions for enterprise network management.

even harder, when routing is taken into account – each switch can only apply access con-

trol to packets that are routed through it. Per-switch rule optimization does not suffice for

handling rule-table constraints in SDN.

1.3.3 Contributions

While SDN offers opportunities to simplify enterprise network management with a

centralized control plane and unified “match-and-action” data-plane rules, handling the

hardware constraints (i.e., rule-table sizes) of multiple SDN switches simultaneously is

challenging. In this thesis, we present a novel design for managing an SDN-enabled en-

terprise network, which supports flexible policies, reduces configuration complexity and

handles hardware constraints.

Design Principles: Abstraction and Algorithms. We argue that the operators should

focus on defining network-wide policies rather than grapple with low-level details, such

as switch rule-table sizes, individual switch configurations and host addresses. It is the

controller’s job to compile the high-level policies into rules for individual switches while

observing the rule-table sizes. We propose a series of abstractions for the operators to

specify policies, which hide low-level details about switches and hosts, and algorithms for

the controller to compute switch rules, which automate the realization of these abstractions

with respect to the switch constraints.

11

Following the principles, we design a flexible enterprise network management sys-

tem that (i) assigns addresses to reduce the number of switch rules for policies (Alpaca),

(ii) distributes network-wide policies across multiple switches (One Big Switch) and (iii)

computes switch rules to achieve high-level load balancing goals (Niagara). The system is

shown in Figure 1.4. Given the access control and QoS policies defined for groups of hosts,

Alpaca computes an efficient address assignment to minimize the switch rules that repre-

sent these policies. Meanwhile, Niagara computes a small rule-set to split traffic according

to a high-level load balancing goal. The resulting switch rules of Alpaca and Niagara are

distributed across multiple physical switches by “One Big Switch” based on the routing

policy.

One Big Switch. Existing network architectures force operators to grapple simulta-

neously with end-to-end access control constraints, routing policy, switch memory limits,

and the configurations of individual switches. We believe solutions to this complex prob-

lem should be factored into three distinct parts: (i) high-level endpoint policies (e.g., access

control, load balancing) on top of the “One Big Switch” abstraction, which hides inter-

nal topology details; (ii) a hop-by-hop routing policy, which specifies what paths traffic

should follow between the ingress and egress ports; and (iii) a compiler that synthesizes

switch rules that obey the user-defined policies and adhere to the resource constraints of

the underlying hardware. We define and implement our proposed architecture, present effi-

cient rule-placement algorithms that distribute policies across general SDN networks while

managing rule-space constraints, and show how to support dynamic, incremental update of

policies.

Attribute-Carrying IP Addresses. In enterprise networks, policies (e.g., QoS or ac-

cess control) are often defined based on the categorization of hosts along dimensions such

as the organizational role of the host (faculty vs. student), and the department (engineering

vs. sales). We propose Attribute-Carrying IPs (ACIPs), where the IP address allocation pro-

cess in enterprises considers attributes of a host along all policy dimensions. ACIPs enable

12

flexible policy specification that may be infeasible owing to the limited size of switch rule-

tables. Our solution, Alpaca (ALgorithms for Policies on Attribute-Carrying Addresses),

realizes ACIPs under practical constraints of limited-length IP addresses and applies to

different switch architectures. Alpaca computes (i) an efficient address assignment, based

on the policy dimensions and the attributes of individual hosts, and (ii) a compact list of

switch-level rules that realize a specific policy. Alpaca greatly simplifies enterprise man-

agement by (i) enabling administrators to specify policies on many orthogonal dimensions

while achieving an order of magnitude reduction in the number of rules; (ii) allowing poli-

cies to be correctly maintained even when a host connects to the network at a new location;

and (iii) simplifying federated management, where different teams manage different parts

of the enterprise network.

One Big Server. A network hosts many public services (e.g., websites), each repli-

cated over multiple backend servers for greater throughput. Dedicated load-balancer ap-

pliances are expensive and do not scale with growing traffic demand. Rather than rely

exclusively on special-purpose load-balancing equipment, we argue that commodity SDN

switches, which offer high-speed packet processing as well as flexible interfaces for in-

stalling forwarding rules, should be programmed to perform most of the load-balancing

function. We present the abstraction of “One Big Server” constituted by backend servers

running the same services. We design the Niagara load balancer to distribute client requests

within the “One Big Server”. Niagara combines the per-packet performance of hardware

switches and the large rule-space of software switches. The hardware switches approximate

the load-balancing weights for each service, and the software switches correct for small er-

rors in the approximation and ensure connection affinity during weight changes. Our main

contributions are algorithms for (i) approximating the weights for each service, (ii) sharing

a limited rule table across many services, and (iii) computing incremental updates to the

rules when the weights change.

13

These three works significantly differ from the previous works that focus on optimiz-

ing the given rules for a single switch. All of our algorithms aim at generating rules for mul-

tiple switches to achieve high-level network policies with respect to the switch constraints.

We (i) compute IP address assignments that would induce fewer rules, (ii) do network-wide

minimization of rule tables through partitioning and placement, and (iii) generate rules that

achieve a particular goal with maximum accuracy, subject to rule-table size as a constraint.

With these high-level management abstractions that enables operators to define diverse

network-wide policies and efficient algorithms that realize these abstractions and deal with

the switch constraints, our system achieves flexible management of enterprise networks

built from commodity switches.

14

Chapter 2

Optimize “One Big Switch” Abstraction

Software Defined Networks (SDNs) offers direct, network-wide control over how

switches handle traffic. Many SDN controller platforms [2, 24, 27, 31, 80] are developed,

with which users can write control applications for diverse network policies. Unfortunately,

these controller platforms force applications to grapple simultaneously with end-to-end

connectivity constraints, routing policy, switch memory limits, and the hop-by-hop inter-

actions between rules installed on different switches. We believe solutions to this complex

problem should be factored in to three distinct parts: (1) an endpoint connectivity policy

defined on top of “one big switch”; (2) a hop-by-hop routing policy; and (3) a compiler that

synthesizes switch rules that obey the policies and adhere to the resource constraints of the

underlying hardware.

In this chapter, we define and implement our proposed architecture, present efficient

rule-placement algorithms that distribute forwarding policies across SDN networks while

managing rule-space constraints, and show how to support dynamic, incremental update

of policies. We evaluate the effectiveness of our algorithms analytically by providing com-

plexity bounds on their running time and rule space, as well as empirically, using both

synthetic benchmarks, and real-world firewall and routing policies.

15

2.1 Introduction

Software-Defined Networking (SDN) enables flexible network policies by allow-

ing controller applications to install packet-handling rules on a distributed collection of

switches. Over the past few years, many applications (e.g., server load balancing, virtual-

machine migration, and access control) have been built using the popular OpenFlow

protocol [51]. However, many controller platforms [2, 24, 27, 31, 80] force applications

to manage the network at the level of individual switches by representing a high-level

policy in terms of the rules installed in each switch. This forces users to reason about

many low-level details, all at the same time, including the choice of path, the rule-space

limits on each switch, and the hop-by-hop interaction of rules for forwarding, dropping,

modifying, and monitoring packets. Rule space, in particular, is a scarce commodity on

current SDN hardware. Many applications require rules that match on multiple header

fields, with “wildcards” for some bits. For example, access-control policies match on the

“five tuple” of source and destination IP addresses and port numbers and the protocol [19],

whereas a load balancing policy may match on source and destination IP prefixes [81].

These rules are naturally supported using TCAM, which can read all rules in parallel to

identify the matching entries for each packet. However, TCAM is expensive and power

hungry. The merchant-silicon chipsets in commodity switches typically support just a few

thousand or tens of thousands of entries [73].

Rather than grappling with TCAM sizes, we argue that the SDN applications should

define high-level policies and have the controller platform manage the placement of rules

on switches. We, and more broadly the community at large [20, 56, 71, 74], have observed

that such high-level policies may be specified in two parts, as shown in Figure 2.1:

• An endpoint policy: Endpoint policies, like access control and load balancing, view

the network as one big switch that hides internal topology details. The policy spec-

16

!
!
srcIP!=!1.0.0.*!:!Drop!
dstIP!=!1.1.0.*!:!Drop!
...!

..."

..."

..."

..."

..."

Endpoint(Policy(Rou/ng(Policy(

Rule(Placement(Algorithm(

Controller

Figure 2.1: High-level policy and low-level rule placement

ifies which packets to drop, or to forward to specific egress ports, as well as any

modifications of header fields.

• A routing policy: The routing policy specifies what paths traffic should follow be-

tween the ingress and egress ports. The routing policy is driven by traffic-engineering

goals, such as minimizing congestion and end-to-end latency.

Expressing these two parts of the policy separately modularizes the problem and allows,

for example, the security application to express an endpoint policy at the highest level

of abstraction while the traffic engineering application plans the lower-level routing pol-

icy. Given two such specifications, the controller platform (a compiler) can apply a rule-

placement algorithm to generate switch-level rules that realize both parts of the policy

correctly, while adhering to switch table-size constraints.

Optimizing the placement of rules is challenging. Minimizing the number of rules

for a single switch is computationally difficult [9], though effective heuristics exist [53].

Solving the rule-placement problem for an entire network of switches, given independent

endpoint and routing policies, is even harder:

17

• Given the rule list for the traffic between two endpoints, we must generate an efficient

and correct placement of rules along the path between them.

• The placement must carefully manage the interactions between packet modification

and packet forwarding (which may depend upon the fields modified).

• A network consists of multiple paths that traverse the same switch and share the

switch rule space. Consequently, we must consider the joint optimization problem

across all paths.

• Since network policies evolve dynamically, we must be able to process changes effi-

ciently, without recomputing rule placement from scratch.

• We must handle the fact that in each of the previous tasks, forwarding depends upon

packet analysis over multiple dimensions of header fields.

In this paper, we take on the general challenge of solving the rule-placement problem.

In doing so, we make a number of important contributions that range from new algorithm

design, to complexity analysis, to implementation and empirical analysis on both synthetic

and real-world data sets. More specifically, our central contributions include:

• The design of a novel rule-placement algorithm. The algorithm has as a key building

block an elegant and provably efficient new technique for distributing rules along a

linear series of switches.

• The design and analysis of principled heuristics for controlling the time complexity

of our algorithm. These heuristics bring, among other things, the concept of cost-

effective covers from the broader algorithms literature to bear on rule placement.

• The design of new algorithms for incremental rule update when either the endpoint

or routing policy changes. Such algorithms are a crucial practical component of any

SDN system that requires rapid response to a changing environment.
18

• An evaluation of our algorithms in terms of rule space and running time on both

synthetic and real-world data that validates our algorithm.

In the next section, we formally introduce the optimization problem for the one big

switch abstraction. Next, Section 2.3 presents related work on optimizing rule space. Sec-

tion 2.4 gives an overview of our algorithm, followed by the detailed algorithm compo-

nents (Section 2.5 and 2.6). Section 2.7 addresses the incremental update issues. Section 2.8

presents experiments involving both synthetic benchmarks and real-world policies. We con-

clude in Section 2.9.

2.2 Rule Placement in One Big Switch

A key problem in implementing the one big switch abstraction is mapping global,

high-level policies to an equivalent, low-level set of rules for each switch in the network.

We call this problem the one big switch problem, and introduce a precise formulation in

this section.

Network topology: The network consists of n switches, each with a set of ports. We

refer a port at a switch as a location (loc). The locations connected to the outside world

are exposed locations. A packet enters the network from an exposed location called ingress

and leaves at an exposed location called egress.

Packets: A packet (pkt) includes multiple header fields. Examples of header fields

include source IP (src ip) and destination IP (dst ip). Switches decide how to handle traffic

based on the header fields, and do not modify any other part of the packet; hence, we equate

a packet with its header fields.

Switches: Each switch has a single, prioritized list of rules [r1, . . . ,rk], where rule

ri has a predicate ri.p and an action ri.a. A predicate is a boolean function that maps a

packet header and a location (pkt, loc) into {true, false}. A predicate can be represented

as a conjunction of clauses, each of which does prefix or exact matching on a single field

19

or location. An action could be either “drop” or “modify and forward”. The “modify and

forward” action specifies how the packet is modified (if at all) and where the packet is

forwarded. Upon receiving a packet, the switch identifies the highest-priority rule with a

matching predicate, and performs the associated action. A packet that matches no rules is

dropped by default.

Endpoint policy (E): The endpoint policy operates over the set of exposed locations

as if they were ports on one big abstract switch. An endpoint policy is a prioritized list of

rules E , [r1, ...,rm], where m = kEk is the number of rules. We assume that at the time a

given policy E is in effect, each packet can enter the network through at most one ingress

point (e.g., the port connected to the sending host, or an Internet gateway). An example of

endpoint policy is shown in Figure 2.3(a).

Routing policy (R): A routing policy R is a function R(loc1, loc2,pkt) = si1si2 ...sik ,

where loc1 denotes packet ingress, loc2 denotes packet egress. The sequence si1si2 ...sik is

the path through the network. The routing policy may direct all traffic from loc1 to loc2

over the same path, or split the traffic over multiple paths based on packet-header fields.

An example endpoint policy is shown in Figure 2.3(b).

Rule-placement problem: The inputs to the rule-placement problem are the network

topology, the endpoint policy E, the routing policy R, and the maximum number of rules

each physical switch can hold. The output is a list of rules on each switch such that the

network (i) obeys the endpoint policy E, (ii) forwards the packets over the paths specified

by R, and (iii) does not exceed the rule space on each switch.

2.3 Related Work

Prior work on rule-space compression falls into four main categories, as summarized

in Table 2.1.

20

Types and examples Switches Optimize rule-space Respect routing
Compressing the policy Single Yes N/A
on a single switch [9, 53, 54]
Distributing the policy at Edge No Yes
the network perimeter [19, 39, 86]
Distributing the policy while All Yes No
changing routing [58, 84]
Distributing the policy while Most Yes Yes
respecting routing [45]
Our work All Yes Yes

Table 2.1: Prior work on rule-space compression.

Compressing the policy on a single switch: These algorithms reduce the number of

rules needed to realize a policy on a single switch. While orthogonal to our work, we can

leverage these techniques to (i) reduce the size of the endpoint policy which is the input to

our rule-placement algorithm and (ii) further optimize the per-switch rule-lists output by

our algorithm.

Distributing the policy at the network perimeter: These works distribute a central-

ized firewall policy by placing rules for packets at their ingress switches [19, 39], or verify

that the edge switch configurations realize the firewall policy [86]. These algorithms do not

consider rule-table constraints on the edge switches, or place rules on the internal switches;

thus, we cannot directly adopt them to solve our problem.

Distributing the policy while changing routing: DIFANE [84] and vCRIB [58]

leverage all switches in the network to enforce an endpoint policy. They both direct traf-

fic through intermediate switches that enforce portions of the policy, deviating from the

routing policy given by users. DIFANE takes a “rule split and caching” approach that in-

creases the path length for the first packet of a flow, whereas vCRIB directs all packets of

some flows over longer paths. Instead, we view the routing policy as something the SDN

application should control, to achieve higher-level goals like traffic engineering. As such,

our algorithms must grapple with optimizing rule placement while respecting the routing

policy.

21

Distributing the policy while respecting the routing: Similar to our solution,

Palette [45] takes both an endpoint policy and a routing policy as input, and outputs a

rule placement. However, Palette leads to suboptimal solutions for two main reasons.

First, Palette has all network paths fully implement the endpoint policy. Instead, we only

enforce the portion of the endpoint policy affecting the packets on each path. Second, the

performance of their algorithm depends on the length of the shortest path (with non-zero

traffic) in the network. The algorithm cannot use all available switches when the shortest

path’s length is small, as is the case for many real networks. Section 2.8 experimentally

compares Palette with our algorithm. We remark here that existing packet-classification

algorithms [32, 72] could be viewed as a special case of Palette’s partitioning algorithm.

These techniques are related to a module in our algorithm, but they cannot directly solve

the rule-placement problem. We make further comparisons with these techniques when we

present our algorithm.

2.4 Algorithm Overview

This section gives an overview of our algorithm, which leverages the following two

important observations:

The “path problem” is a building block: Given a packet pkt entering the network,

the routing policy R tells the path s1,,s` for the packet. In addition to forwarding pkt

along this path, we must ensure that the endpoint policy E is correctly applied to pkt. In

other words, we need to decide the rules for s1, ...,s` so that these switches collectively

apply E on all the traffic going through this path. Therefore, deciding the rule placement

for path s1, ...,s` to implement E is a basic building block in our algorithm.

The “path problem” is an easier special case of our problem: We may also interpret

the path problem as a special case of our general problem, where the network topology

22

Routing policy R
..."

Endpoint policy E!Rule%capacity%%
of%switches%Ci#

1"

Path-wise Endpoint policy!

2"

Path-wise Endpoint policy,!
Share%of%rule%capacity%for%switches%on%a%path%

3"3"

..."

..."..."

..."

Rule%placement%over%a%path%

2."Divide"rule"capacity"
across"paths"

1.Decompose"the"
network"into"paths"

3."Place"rules"
over"a"path"

Rule%placement%over%the%network!

Fail!
Success!

1k" 1k"
0.5k"

0.5k"

Figure 2.2: Overview of the rule placement algorithm

degenerates to a path. Thus, algorithmically understanding this special case is an important

step towards tackling the general problem.

The high-level idea of our algorithm is to find an effective way to decompose the

general problem into smaller problems over paths and design efficient heuristics to solve

the path problems.

Figure 2.2 shows the three main components of our algorithm:

Decomposition (component 1): Our first step is to interpret the problem of imple-

menting {E,R} as implementing the routing policy R and a union of endpoint policies over

23

r1 : (dst ip = 00⇤, ingress = H1 : Permit,egress = H2)
r2 : (dst ip = 01⇤, ingress = H1 : Permit,egress = H3)

(a) An example endpoint policy E

H1
H2

H3
S1

S2

S3
S4

(b) An example routing policy R

P1 = s1s2s4,D1 = {dst ip = 00⇤}
P2 = s1s3s4,D2 = {dst ip = 01⇤}

(c) Paths and flow spaces computed from E and R

Figure 2.3: An example decomposition

the paths. We give an example for the routing policy in Figure 2.3(a) and the endpoint pol-

icy in Figure 2.3(b). From these policies, we can infer that the packets can be partitioned

into two groups (see Figure 2.3(c)): those in D1 (using the path P1 = s1s2s4) and those

in D2 (using the path P2 = s1s3s4). We may separately implement two path-wise endpoint

policies on P1 and P2. By doing so, we decompose the general rule-placement problem into

smaller sub-problems. More formally, we can associate path Pi with a flow space Di (i.e.,

all packets that use Pi belong to Di)1 and the projection Ei of the endpoint policy on Di:

Ei(pkt) =

8
><

>:

E(pkt) if pkt 2 Di

? otherwise,
(2.1)

where ? means no operation is performed.

Resource allocation (component 2): The per-path problems are not independent,

since one switch could be shared by multiple paths (e.g., s4 in Figure 2.3). Thus, we must

divide the rule space in each switch across the paths, so that each path has enough space to
1We can associate a dropped packet with the most natural path it belongs to (e.g., the path taken by other

packets with the same destination address).

24

implement its part of the endpoint policy. Our algorithm estimates the resources needed for

each path, based on analysis of the policy’s structure. Then the algorithm translates the re-

source demands into linear programming (LP) instances and invokes a standard LP-solver.

At the end of this step, each path-wise endpoint policy knows how many rules it can use at

each switch along its path.

Path algorithm (component 3): Given the rule-space allocation for each path, the

last component generates a rule placement for each path-wise policy. For each path, the

algorithm efficiently searches for an efficient “cover” of a portion of the rules and “packs”

them into the switch, before moving on to the next switch in the path. If the estimation of

the rule-space requirements in step 2 was not accurate, the path algorithm may fail to find

a feasible rule placement, requiring us to repeat the second and third steps in Figure 2.2.

In what follows, we present these three components from the bottom up. We start with

the path algorithm (component 3), followed by the solution for general network topologies

(components 1 and 2). We also discuss extensions to the algorithm to enforce endpoint

policies as early in a path as possible, to minimize the overhead of carrying unwanted

traffic.

2.5 Placing Rules Along a Path

Along a path, every switch allocates a fixed rule capacity to the path, as in Figure 2.4.

For a single path Pi, the routing policy is simple—all packets in the flow space Di are

forwarded along the path. We can enforce this policy by installing fixed forwarding rules

on each switch to pass packets to the next hop. The endpoint policy is more complex,

specifying different actions for packets in the flow space. Where a packet is processed (or

where the rules are placed), is constrained by the rule capacity of the switches. However,

performing the defined action (such as drop or modification) for each packet once is enough

25

C1=4 C2=4 C3=4

Figure 2.4: A 3-hop path with rule capacities (C)

along the path. Therefore, the endpoint policy gives us flexibility to moves rules among

multiple switches.

Our goal is to minimize the number of rules needed to realize the endpoint policy2,

while respecting the rule-capacity constraints. We remark that there exists a standard re-

duction between decision problems and optimization problems [10]. So we will switch

between these two formulations whenever needed. In what follows, we present a heuristic

that recursively covers the rules and packs groups of rules into switches along the path.

This algorithm is computationally efficient and offers good performance. For ease of expo-

sition, we assume the flow space associated with the path is the full space (containing all

packets) and the endpoint policy matches on the source and destination IP prefixes (two-

dimensional). A fully general version of the algorithm is presented in the Section 2.5.3.

2.5.1 Cover-Pack-and-Replace

The endpoint policy E can be visualized using a two-dimensional space where each

rule is mapped to a rectangle based on the predicate (Figure 2.5). Higher-priority rectangles

lie on top of lower-priority rectangles, as packets are always handled by the matching rule

with the highest priority. Rule R6 is intentionally omitted in the figure since it covers the

whole rectangle. Let us consider enforcing the policy on the path shown in Figure 2.4. Since

a single switch cannot store all six rules from Figure 2.5(a), we must divide the rules across
2Since optimizing the size of a rule list is NP-hard [75], we cannot assume an optimal representation

of E is provided as input to our algorithm. Instead, we accept any prioritized list of rules. In practice, the
application module generating the endpoint policy may optimize the representation of E.

26

R1 : (src ip = 0⇤,dst ip = 00 : Permit)
R2 : (src ip = 01,dst ip = 1⇤ : Permit)
R3 : (src ip = ⇤,dst ip = 11 : Drop)
R4 : (src ip = 11,dst ip = ⇤ : Permit)
R5 : (src ip = 10,dst ip = 0⇤ : Permit)
R6 : (src ip = ⇤,dst ip = ⇤ : Drop)

(a) Prioritized rule list of an access-control policy

00 01 10 11

00

01

10

11

R1

R4

R3

R2

R5

sr
cI

P

dstIP

(b) Rectangular representation of the policy

Figure 2.5: An example two-dimensional policy

multiple switches. Our algorithm recursively covers a rectangle, packs the overlapping rules

into a switch, and replaces the rectangle region with a single rule, as shown in Figure 2.6.

Cover: The “cover” phase selects a rectangle q as shown in Figure 2.6(a). The rectan-

gle q overlaps with rules R2, R3, R4, and R6 (overlapping rules), with R2 and R3 (internal

rules) lying completely inside q. We require that the number of overlapping rules of a rect-

angle does not exceed the rule capacity of a single switch.

Pack: The intersection of rectangle q and the overlapping rules (see Figure 2.6(b))

defines actions for packets inside the rectangle. The intersection can also be viewed as the

projection of the endpoint policy E on q, denoted as Eq (Figure 2.7(a)). By “packing” Eq

on the current switch, all packets falling into q are processed (e.g., dropped or permitted),

and the remaining packets are forwarded to the next switch.

Replace: After packing the projection Eq in a switch, we rewrite the endpoint policy

to avoid re-processing the packets in q: we first add a rule qFwd = (q,Fwd) with the highest

priority to the policy. The rule qFwd forwards all the packets falling in q without any mod-

27

R1

 R4

R3

 R2

R5

q
(a) Cover q

R’4

R3

 R2

(b) Switch s1

R1

 R4
R5

(c) After s1

Figure 2.6: Processing 2-dim endpoint policy E

r1 : (q^R2.p,R2.a)
r2 : (q^R3.p,R3.a)
r3 : (q^R4.p,R4.a)
r4 : (q^R6.p,R6.a)

(a) Eq

r1 : (q,Fwd)
r2 : (R1.p,R1.a)
r3 : (R4.p,R4.a)
r4 : (R5.p,R5.a)
r6 : (R6.p,R6.a)

(b) New rule list

Figure 2.7: Example policy

ification. Second, all internal rules inside q (R2 and R3) can be safely deleted because no

packets will ever match them. The new rewritten endpoint policy and corresponding rule

list are shown in Figure 2.6(c) and Figure 2.7(b).

The cover-pack-and-replace operation is recursively applied to distribute the rewritten

endpoint policy over the rest of the path. Our heuristic is “greedy”: at each switch, we

repeatedly pack rules as long as there is rule space available before proceeding to the next

switch. We make two observations about the cover-pack-and-replace operation:

• Whether a feasible rule placement exists becomes clear upon reaching the last switch

in the path. If we can fit all remaining rules on the last switch, then the policy can be

successfully implemented; otherwise, no feasible rule placement exists.

• The total number of installed rules will be no less than the number of rules in the

endpoint policy. This is primarily because only rules inside the rectangle are deleted.

A rule that partially overlaps with the selected rectangle will appear on multiple

28

switches. Secondly, additional rules (q,Fwd) are included for every selected rectan-

gle to avoid re-processing.

2.5.2 Rectangles Searching

Building on the basic framework, we explore what rectangle to select and how to find

the rectangle.

Rectangle selection plays a significant role in determining the efficacy of rule place-

ment. A seemingly natural approach is to find a predicate q that completely covers as many

rules as possible, allowing us to remove the most rules from the endpoint policy. How-

ever, we must also consider the cost of duplicating the partially-overlapping rules. Imag-

ine we have two candidate rectangles q1 (with 10 internal rules and 30 overlapping rules)

and q2 (with 5 internal rules and 8 overlapping rules). While q1 would allow us to delete

more rules, q2 makes more effective use of the rule space. Indeed, we can define the cost-

effectiveness of q in a natural way:

utility(q) =
#internal rules�1
#overlapping rules

If q is selected, all overlapping rules must be installed on the switch, while only the internal

rules can be removed and one extra rule (for qFwd) must be added3.

Top-Down search strategy is used in finding the most cost-effective rectan-

gle. We start with rectangle (src ip = ⇤,dst ip = ⇤), and expand the subrectangles

(src ip = 0⇤,dst ip = ⇤), (src ip = 1⇤,dst ip = ⇤), (src ip = ⇤,dst ip = 0⇤), and

(src ip = ⇤,dst ip = 1⇤). In the search procedure, we always shrink the rectangle to

align with rules, as illustrated by the example in Figure 2.8. Suppose our algorithm se-

lected the predicate p in Figure 2.8(a) (the shadowed one) to cover the rules. We can shrink

the predicate as much as possible, as long as the set of rules fully covered by p remains
3Cost-effectiveness metrics have been used in other domains to solve covering problems [79].

29

R7# R6#

R5#
R1#

R3#

R2#

(a) Large cover

R7# R6#

R5#
R1#

R3#

R2#

(b) Small cover

Figure 2.8: Not using unnecessarily large cover.

unchanged. Specifically, we may shrink p as illustrated in Figure 2.8(b), without impacting

the correctness of the algorithm. Moreover, for any shrunk predicate, two rules determine

the left and right boundaries on the x-axis, resulting in a total of m2 possible sides along

the x-axis. Similarly, the y-axis has a total of m2 possible sides, resulting in a total number

of relevant predicates of m4.

Even searching O(m4) predicates in each pack-cover-and-replace operation would be

impractical for larger m. To limit the search space, our algorithm avoids searching too

deeply, preferring larger rectangles over smaller ones. Specifically, let q be a rectangle and

q0 be its subrectangle (q0 is inside q). When both Eq and Eq0 can “fit” into the same switch,

packing Eq often helps reduce the number of repeated rules. In Figure 2.9, we can use either

the large rectangle in Figure 2.9(a) or the two smaller rectangles in Figure 2.9(b). Using

the larger rectangle allows us to remove R3. Using the two smaller rectangles forces us to

repeat R3, and repeat R1 and R4 one extra time. As such, our algorithm avoids exploring

all of the small rectangles. Formally, we only consider those rectangles q such that there

exists no rectangle q0 which satisfies both of the following two conditions: (i) q is inside q0

and (ii) Eq0 can be packed in the switch. We call these q the maximal feasible predicates.

The pseudo code of the full path heuristic is shown in Figure 2.10. Note that we could

have used an existing rule-space partitioning algorithm [32, 49, 72, 78] but they are less

effective. The works of [32, 72, 78] take a top-down approach to recursively cut a cover

30

R7#

R6#

R5#

R4#
R1#

R3# R2#

(a) using larger p

R7#

R6#

R5#

R4#
R1#

R3# R2#

R7#

R6#

R5#

R4#
R1#

R3# R2#

(b) using smaller rectangles

Figure 2.9: Only pack maximal rectangle.

PACK-AND-REPLACE-2D(i,E 0)
1 Let di the remaining capacity of si.
2 Let Q be the set of maximal feasible predicates with respect to E 0 that need di rules.
3 q argmaxq{ |Internal(q,E 0)|�1

kE 0qk
| q 2 Q}

4 Append the rules E 0q sequentially to the end of the prioritized list of si.
5 Let R {r 2 E 0 : r.p is inside q}.
6 E 0 E 0\R
7 E 0 (q,Fwd)�E 0

COMPILE-RULES-2D({s1, ...,s`},E)
1 E 0 E
2 for i 1 to `
3 do Add a default forward rule for all unmatched packet at si.
4 while si has unused rule space
5 do PACK-AND-REPLACE(i,E 0)

Figure 2.10: Our heuristics for 2-dim chains

into smaller ones until each of the cover fits into one switch. This approach cannot ensure

that every switch fully uses its space4 (See results in Section 2.8). SmartPC [49] takes a

bottom-up approach to find the covers. But it searches much less extensively among the set

of feasible covers; they do not use the cost-effectiveness metric to control the number of

repeated rules either.
4For example, imagine at some point in their algorithms, one cover contains C+1 rules. Since this cannot

fit into one switch, they cut the cover further into two smaller ones. But after this cut, each of the two sub-
covers could have only ⇡C/2 rules, wasting nearly 50% of space in each switch.

31

2.5.3 Algorithm Generalization

We end this subsection by highlighting a number of extensions to our algorithm.

Smaller flow space: When the flow space for a path is not the full space, we can still

use the algorithm except we require that the rectangular covers chosen for the path reside

in the corresponding flow space.

Higher dimensions: Our algorithm works when E is a d-dimensional function for a

d � 3. There are two approaches — (i) use“hypercube” predicates instead of rectangular

ones in the “cover” phase and cut on all dimensions in searching for predicates. “Packing”

and “replace” phases remain the same. Or (ii) still cut along source and destination IP prefix

dimensions with all rules projected to rectangles. When we pack a projection of a rectan-

gular predicate q into a switch, all the rules intersect with q are packed and the priorities of

the rules are preserved. “Replace” phase is the same. In both ways, our algorithm behaves

correctly.

Switch-order independence: Once our algorithm finishes installing rules on

switches, we are able to swap the contents of any two switches without altering the

behavior of the whole path (Section 2.5.4). This property plays a key role when we tackle

the general graph problem.

2.5.4 Correctness

This section proves that our path heuristics is correct.

Proposition 1 The path heuristics correctly implement the endpoint policy.

Proof We will prove the proposition by induction on the path length. We also further as-

sume that the first switch selects only one rectangular cover. The analysis for the general

case is similar.

Base case: path length ` = 1. In this case, we install the entire policy on the only

switch, so the heuristics is correct.
32

Case: path length ` = k+ 1. We need more notations. Recall that E is the endpoint

policy we want to deploy (we shall also interpret E as a function, i.e.,E(pkt) refers to

the action needed to be taken when pkt arrives to the ingress). Also, let Eq be the policy

deployed at the first switch, i.e.,q is the rectangular cover in the first switch. Let E 0 be the

policy rewritten by our path heuristics after it processes the first switch. We need to show

that the path correctly implement E. We consider two cases.

Case 1. when pkt 2 q. We can see that Eq(pkt) = E(pkt) by the construction of our algo-

rithm. So after pkt visits the first switch, the appropriate actions are taken. Specifically, if

E(pkt) is a drop, then the first switch drops the packet. Otherwise, E(pkt) is carried out at

the first switch and E 0(·) will silently forward pkt. Thus, by induction the composed effect

for pkt along the path is exactly identical to E.

Case 2. when pkt /2 q. In this case, Eq will simply forward pkt to the second switch. Again,

by construction of the path heuristics, E 0(pkt) = E(pkt) in this case. Thus, by induction,

appropriate actions will be taken at the rest of the path. Therefore, the composed effect for

pkt along the path is again identical to E.

Proposition 2 Let R1, ...,R` be the rule placement output by the path heuristics for switch

S1, ...,S`. Let pkt be any packet. Then there exists exactly one k such that: Rk(pkt) = E(pkt)

and R j(pkt) = Fwd for all j 6= k.

Proof We prove the proposition by induction on path length.

Base case: path length `= 1. In this case, for any packet pkt, R1(pkt) = E(pkt).

Case: path length `= k+1. Let q be the rectangular cover selected for the first switch.

Let E 0 be the rewritten policy after the first switch. We consider two cases.

Case 1. when pkt 2 q. We can see that R1(pkt) = E(pkt) and E 0(pkt) = Fwd by the con-

struction of our algorithm. By induction, R j(pkt) = Fwd for all j > 1.

Case 2. when pkt /2 q. In this case, R1(pkt) = Fwd and E 0(pkt) = E(pkt). Thus, by induc-

tion, there exists k > 1 such that Rk(pkt) = E(pkt) and R j(pkt) = Fwd for all j 6= k.

33

We next prove the switch order independence property of our heuristics based on

Proposition 2.

Lemma 1 Let a1, ...,a` be a permutation of 1,2, ..,` and R1, ...,R` be the rule place-

ment output by the path heuristics. If the switches are arranged in the order Sa1 , ...,Sa` ,

Ra1 , ...,Ra` still implement the endpoint policy E.

Proof Let us consider a packet pkt and examine what the permuted chain will do on pkt.

Let ak be the switch s.t. Rak(pkt) = E(pkt). We can see that the following events happen

sequentially:

1. When pkt travels any switches before Sak , the switch simply forward the packet to

the next hop.

2. When pkt arrives at Sak , the appropriate action will be taken. Specifically, when

E(pkt) is a drop action, pkt is dropped at Sak .

3. If E(pkt) is not a drop action, pkt will continue to travel across the rest of the

switches. But all these switches simply forward pkt to the next hop.

Thus, we can see that the action E(pkt) is executed exactly once at Sak . The effect of

going through the chain is identical to the policy E.

2.5.5 Special Case: Single-Dimension Endpoint Policy

In this section, we consider one-dimensional policies E — those that match on a single

header field, such as the IP destination prefix. Our goal is to find the minimal capacity C

for each of the switch that has a feasible realization of the policy. For this special case, we

can achieve provably near optimal results for paths using the same algorithmic framework

of the multi-dimensional path heuristics.

For one-dimensional policies, there are known algorithms [75] for computing an op-

timal list of rules for a single switch. The function E can be represented as a prefix-tree
34

(a) Tree representation of an access-control policy

r1 : (0001 : Drop) r4 : (0111 : Drop) r7 : (10⇤ : Drop)
r2 : (0010 : Drop) r5 : (1000 : Fwd) r8 : (⇤ : Fwd)
r3 : (0101 : Drop) r6 : (1111 : Drop)

(b) Prioritized list of rules in a switch

Figure 2.11: Example one-dimensional policy on a switch

on the header field, as shown for an example access-control policy in Figure 2.11(a). Each

internal node corresponds to a prefix, and each leaf node corresponds to a fully-specified

header value; each prefix can be interpreted as a predicate. A node can specify an ac-

tion (e.g.,forward or drop) for that prefix, as well as descendants that do not fall under a

more-specific prefix that includes an action. Computing the prioritized list of rules involves

associating each labeled node with a predicate (i.e., the prefix) and an action (i.e., the node

label), and assigning priority based on prefix length (with longer prefixes having higher

priority), as shown in Figure 2.11(b). Importantly, one can see that the resulting rules will

always satisfy the nesting property. In other words, given a pair of rules, their predicates

will either be disjoint or one a strict subset of the other—there will never be a partial over-

lap. Moreover, if rules r1 and r2 contain predicates p1 and p2, respectively, and p1 is a strict

subset of p2, then r1 must have higher priority than r2. (Otherwise, r1 would be completely

covered by r2 and would go unused.)

Pack-and-Replace on a Prefix Tree: If a single switch cannot store all eight rules in

Figure 2.11, we must divide the rules across multiple switches. Our algorithm recursively

covers a portion of the tree, packs the resulting rules into a switch, and replaces the subtree

with a single node, as shown in Figure 2.12. In the “pack” phase, we select a subtree that

35

(a) Pack operation

(b) Replace operation (without reoptimization)

Figure 2.12: Pack-and-replace for one-dimensional policies

can “fit” in one switch, as shown in Figure 2.11(a) (the subtree inside the rectangle). If

the root of this subtree has no action, the root inherits the action of its lowest ancestor—

in this case, the root of the entire tree (see Figure 2.12(a)). The resulting rules are then

reoptimized, if possible, before assignment to the switch. In this example, switch 1 would

have a prioritized list of four rules—(1000, Fwd), (1111, Drop), (10*, Drop) and (1*, Fwd).

More generally, we may pack multiple subtrees into a single switch. To ensure packets in

this subtree are handled correctly at downstream switches, we replace the subtree with a

single predicate at the root of the subtree (e.g., a single “F” node in Figure 2.12(b)). Then,

we can recursively apply the same pack-and-replace operations on the new tree to generate

the rules for the second switch.

We now describe our algorithm in further details. As we walk through each switch

deciding what rules to place, we maintain an intermediate prioritized list E 0 = [r01, ...,r
0
n0]

to represent the set of unprocessed rules that remain. The set E 0 starts as E, shrinks as we

move along the chain, and ends as a trivial function that forwards all packets.

Our algorithm is “greedy” in packing as many large subtrees as possible, as early in

the chain as possible. At the i-th switch, we recursively perform the “pack-and-replace”

36

PACK-AND-REPLACE(i,E 0)
1 Let di the remaining capacity of si.
2 q argmaxq{kEqk | kEqk di}
3 Append the rules E 0q sequentially to the end of the prioritized list of si.
4 E 0 E 0\E 0q
5 E 0 (q,Fwd)�E 0

COMPILE-RULES({s1, ...,sn},E)
1 E 0 E
2 for i 1 to n
3 do
4 Add a default forward rule for all unmatched packets at si.
5 while si has unused rule space and E 0 is non-trivial
6 do PACK-AND-REPLACE(i,E 0)

Figure 2.13: Path heuristics for one-dimensional policy

operation, and have a default rule that forwards all unmatched packets to the next hop. At

each step, we pack the largest possible subtree, subject to the switch’s capacity constraint,

as shown in the pseudocode in PACK-AND-REPLACE in Figure 2.13. We pack as many

subtrees as possible in a single switch before proceeding to the next switch, as shown in

the inner while loop in COMPILE-RULES in Figure 2.13.

Running time. One can see that a straightforward implementation of our algorithm

has time complexity O(mn logm), where m is the number of rules and n is the number of

switches.

Performance analysis We have the following theorem regarding the performance of

our one-dimensional algorithm.

Theorem 1 Consider our path heuristics described above. We have

• Correctness of the algorithm: the prioritized rules in the paths correctly implement

the policy function E = [r1, ...,rm].

37

• Approximation ratio: let C be the minimum capacity so that our algorithm will return

a feasible solution. Let C⇤ be the optimal capacity. We have C
C⇤ (1+ e) for any

constant e when m and n are sufficiently large.

Proof The first part of the Proposition is proved in Lemma 1. We shall focus on the second

part. Recall that a lower bound on the optimal capacity C⇤ for each of the switches is m/n.

Thus, we need to show that the capacity C given by our algorithm satisfies C (1+e)m/n,

where e tends to zero when m,n!+•.

We start with the following Lemma.

Lemma 2 Let C be the capacity of each switch. For a switch si, the number of prefixes we

can find by invoking PLACE-RULE(si,ci,qi,E 0) is at most log2C is at most log2 c.

Proof (Proof of Lemma 2) Let q be an arbitrary prefix. Let q0 be the prefix obtained by

appending a 0 at the end of q (e.g.,when q= 010⇤, q0 = 0100⇤) and q1 be the prefix obtained

by appending a 1 at the end of q. One can see that for any 1-dim policy E,

kEqk � kEq0k+kEq1k�1. (2.2)

Let us write ci be the size of available space for si while we are packing subtrees for si.

We claim that when a q in PLACE-AND-PACK is found and packed, either the size of ci

is reduced by at least a half or q = ⇤ (i.e.,the prefix represents the whole tree). We use an

existential argument to prove the claim. Let q be an arbitrary prefix such that kE 0qk > ci

while kE 0q0
k ci and kE 0q1

k ci. Such q always exists unless kE 0k ci, in which case

we complete our argument. Now because of kE 0qk > ci and (2.2), one of kE 0q0
k or kE 0q1

k

must be at least ci/2. Thus, the subtree we found that is packed in si has at least ci/2 rules.

Therefore, the number of prefixes we can find before ci = 0 is at most log2 c.

We now continue our analysis by using Lemma 2. Let us define F be the sum of the

total number of rules deployed in the switch so far and the size of E 0, which is a changing
38

variable over the time and is m at the beginning of our algorithm. When our algorithm

terminates, one can see that (n� 1)C < F n ·C (using the fact that all the switches are

full except for the last one), i.e.,

dF
n
e=C (2.3)

At the point we deploy rules at the i-th switch si, F changes in the following way:

• F is incremented by 1 because we install a default forwarding rule for all unmatched

packets.

• F is incremented by 2 when we pack a new subtree in a switch.

Thus, the total increment of F at si is at most 2 log2C+1. At the end, we have

F m+2(log2C)+n.

Together with (2.3) and the fact that C⇤ �m/n, we see that C (1+ e)C⇤ for any constant

e (when m and n are sufficiently large).

2.6 Decomposition and Allocation

We now describe how we decompose the network problem into paths and divide rule

space over the paths.

2.6.1 Decomposition through Cross-Product

We start the “decomposition” by finding all t paths in the graph P1,P2, ...,Pt , where

path Pi is a chain of switches si1si2 ...si`i
connecting one exposed location to another. By

examining the “cross-product” of endpoint policy E and routing policy R, we find the flow

39

space Di for each Pi. Finally, we project the endpoint policy E on Di to compute the “path-

wise endpoint policy” Ei for Pi. This generates a collection of path problems: for each path

Pi, the endpoint policy is Ei and the routing policy directs all packets in Di over path Pi.

Since each packet can enter the network via a single ingress location and exit at most

one egress location (Section 2.2), any two flow spaces Di and D j are disjoint. Therefore, we

can solve the rule-placement problem for each path separately. In addition to solving the

t rule-placement problems, we must ensure that switches correctly forward traffic along

all paths, i.e., the routing policy is realized. The algorithm achieves this by placing low-

priority default rules on switches. These default rules enforce “forward any packets in Di

to the next hop in Pi”, such that packets that are not handled by higher-priority rules traverse

the desired path.

2.6.2 Rule Allocation through Linear Programming

Ideally, we would simply solve the rule-placement problem separately for each path

and combine the results into a complete solution. However, multiple paths can traverse the

same switch and need to share the rule space. For each path Pi, we need to allocate enough

rule space at each switch in Pi to successfully implement the endpoint policy Ei, while

respecting the capacity constraints of the switches. The goal of “allocation” phase is to find

a global rule-space allocation, such that it is feasible to find rule placements for all paths.

Enumerating all possible rule-space partitions (and checking the feasibility by running

the path heuristic for each path) would be too computationally expensive. Instead, we capi-

talize on a key observation from evaluating our path heuristic: the feasibility of a rule-space

allocation depends primarily on the total amount of space allocated to a path, rather than

the portion of that space allocated to each switch. That is, if the path heuristic can find a

feasible rule placement for Figure 2.4 under the allocation (c1 = 4,c2 = 4,c3 = 4), then the

heuristic is likely to work for the allocation (c1 = 3,c2 = 4,c3 = 5), since both allocations

have space for 12 rules.

40

max: ?
s.t: 8i n : Â jt hi, j · xi, j 1 (C1)

8 j t : Âin hi, j · xi, j · c j � h j (C2)

Figure 2.14: Linear program for rule-space allocation

To assess the feasibility of a rule-space allocation plan, we introduce a threshold value

h for the given path: if the total rule space allocated by the plan is no less than h (c1+c2+

c3 � h in the example), then a feasible rule placement is likely to exist; otherwise, there

is no feasible rule placement. Therefore, our rule-space allocation plan consists of two

steps: (i) estimate the threshold value h for each path and (ii) compute a global rule-space

allocation plan, which satisfies all of the constraints on the threshold values.

This strategy is very efficient and avoids exhaustive enumeration of allocation plans.

Furthermore, it allows us to estimate whether any feasible solution exists without running

the path heuristics.

Estimate the necessary rule space per path: Two factors impact the total rule space

needed by a path:

• The size of endpoint policy: The more rules in the endpoint policy, the more rule

space is needed.

• The path length: The number of rectangles grows with the length of the path, since

each switch uses at least one rectangle.

Since paths have different endpoint policies and lengths, we estimate the threshold value

for the `i-hop path Pi with endpoint policy Ei. When Â j`i ci j � hi for a suitably chosen hi,

a feasible solution is likely to exist. In practice, we found that hi grows linearly with kEik

and `i. Thus, we set hi = aikEik, where ai is linear in the length of Pi and can be estimated

empirically.

Compute the rule-space allocation: Given the space estimates, we partition the ca-

pacity of each switch to satisfy the needs of all paths. The decision can be formulated as a
41

linear programming problem (hereafter LP). Switch si can store ci rules, beyond the rules

needed for the default routing for each path. Let h j be the estimated total rule space needed

by path Pj. We define {hi, j}in, jt as indicator variables so that hi, j = 1 if and only if si

is on the path Pj. The variables are {xi, j}in, jt , where xi, j represents the portion of rules

at si allocated to Pj. For example, when c4 = 1000 and x4,3 = 0.4, we need to allocate

1000⇥0.4 = 400 rules at s4 for the path P3. The LP has two types of constraints (see Fig-

ure 2.14): (i) capacity constraints ensuring that each switch si allocates no more than 100%

of its available space and (ii) path constraints ensuring that each path Pj has a total space

of at least h j.

Our LP does not have an objective function since we are happy with any assignment

that satisfies all the constraints. 5 Moreover, we apply floor functions to round down the

fractional variables, so we never violate capacity constraints; this causes each path can lose

at most `i rules compared to the optimal solution, where the path length `i is negligibly

small.

Re-execution and correctness of the algorithm: When the path algorithm fails to

find a feasible solution based on the resource allocation computed by our LP, it means our

threshold estimates are not accurate enough. In this case, we increase the thresholds for the

failed paths and re-execute the LP and path algorithms and repeat until we find a feasible

solution. In the technical report, we show the correctness of the algorithm.

2.6.3 Unwanted Traffic Minimization

One inevitable cost of distributing the endpoint policy is that some unwanted pack-

ets travel one or more hops before they are ultimately dropped. For instance, consider an

access-control policy implemented on a chain. Installing the entire endpoint policy at the

ingress switch would ensure all packets are dropped at the earliest possible moment. How-

ever, this solution does not utilize the rule space in downstream switches. In its current
5This is still equivalent to standard linear programs; see [62].

42

form, our algorithm distributes rules over the switches without regard to where the un-

wanted traffic gets dropped. A simple extension to our algorithm can minimize the cost

of carrying unwanted packets in the network. Specifically, we leverage the following two

techniques:

Change the LP’s objective to prefer space at the ingress switches: In our origi-

nal linear program formulation, we do not set any objective. When we execute a standard

solver on our LP instance, we could get a solution that fully uses the space in the “interior

switches,” while leaving unused space at the edge. This problem becomes more pronounced

when the network has more rule space than the policy needs (i.e., many feasible solutions

exist). When our path algorithm runs over space allocations that mostly stress the interior

switches, the resulting rule placement would process most packets deep inside the network.

We address this problem by introducing an objective function in the LP that prefers a solu-

tion that uses space at or near the first switch on a path. Specifically, let ` j be the length of

the path Pj. Our objective is

max: Â
in

Â
jt

` j�wi, j +1
` j

hi, jxi, j, (2.4)

where wi, j is si’s position in Pj. For example, if s4 is the third hop in P6, then w4,6 = 3.

Leverage the switch-order independence in the path algorithm: At the path level,

we can also leverage the switch-order independence property discussed in Section 2.5.3 to

further reduce unwanted traffic. Specifically, notice that in our path algorithm, we sequen-

tially pack and replace the endpoint policies over the switches. Thus, in this strategy, more

fine-grained rules are packed first and the “biggest” rule (covering the largest amount of

flow space) is packed at the end. On the other hand, the biggest rule is more likely to cover

larger volumes of unwanted traffic. Thus, putting the biggest rules at or near the ingress will

drop unwanted traffic earlier. This motivates us to reverse the order we place rules along a

chain: here, we shall first pack the most refined rules at the last switch, and progressively

43

pack the rules in upstream switches, making the ingress switch responsible for the biggest

rules.

2.7 Incremental Updates

Network policies change over time. Rather than computing a new rule placement from

scratch, we must update the policy incrementally to minimize the computation time and

network disruption. We focus on the following major practical scenarios for policy updates:

Change of drop or modification actions: The endpoint policy may change the subset

of packets that are dropped or how they are modified. A typical example is updating an

access-control list. Here, the flow space associated with each path does not change.

Change of egress points: The endpoint policy may change where some packets leave

the network (e.g., because a mobile destination moves). Here, the flow space changes, but

the routing policy remains the same.

Change of routing policy: When the topology changes, the routing policy also need

to be changed. In this case, the network has some new paths, and the flow space may change

for some existing paths.

The first example is a “planned change,” while the other two examples may be planned

(e.g., virtual-machine migration or network maintenance) or unplanned (e.g., user mobility

or link failure). While we must react quickly to unplanned changes to prevent disruptions,

we can handle planned updates more slowly if needed. These observations guide our al-

gorithm design, which has two main components: a “local algorithm” used when the flow

space does not change, and a “global algorithm” used when the flow space does change. 6

6We can use techniques in [64] to ensure consistent updates.

44

(a) Original placement

R’ R

(b) Final placement

Figure 2.15: Rule insertion example

2.7.1 Local Algorithm

When the flowspace remains the same (i.e., all packets continue to traverse the same

paths), a local update algorithm is sufficient. If a path’s policy does not change, the rule

placement for that path does not need to change, so we do not need to re-execute the path

algorithm presented in Section 2.5. We can always convert an original path-wise endpoint

policy into the new one by applying one of the following three operations one or more

times: (i) insert a new rule, (ii) delete an existing rule, and (iii) alter an existing rule. Thus,

we need only design an algorithm to handle each of these operations. Then we may recur-

sively invoke this algorithm to update the policy for the entire path.

Let us focus on rule insertion, i.e., adding a new rule R to the endpoint policy E and the

path P= s1s2...s`, as shown in Figure 2.15. Strategies to handle the other two operations are

similar. Recall each switch si along the path is responsible for some region of flow space,

indicated by predicates. In our algorithm, we simply walk through each si and see whether

45

INSERT-RULE-PATH({s1, ...,s`},R,E)
1 for i 1 to `
2 do Let Q be the set of predicates covered by si.
3 for every predicate q 2 Q
4 do if R.p overlaps with q
5 then Install (R.p^q,R.a) on si
6 do if R.p is inside q
7 then return

Figure 2.16: Procedure for rule insertion

R.p overlaps with the region (R.p is the predicate of rule R). When an overlap exists, we

“sneak in” the projection of R with respect to the region of si. Otherwise, we do nothing.

Figure 2.16 illustrates the pseudocode.

2.7.2 Global Algorithm

When the flowspace change, our algorithm first changes the forwarding rules for the

affected paths. Then we must decide the rule placements on these paths to implement the

new policies. This consists of two steps. First, we run the linear program discussed in

Section 2.4 only on the affected paths to compute the rule-space allocation (notice that rule

spaces assigned to unaffected paths should be excluded in the LP). Second, we run the path

algorithm for each of the paths using the rule space assigned by the LP.7

Performance in unplanned changes. When a switch or link fails, we must execute

the global algorithm to find the new rule placement. The global algorithm could be com-

putationally demanding, leading to undesirable delays. 8 To respond more quickly, we can

precompute a backup rule placement for possible failures and cache the results at the con-
7If the algorithm cannot find an allocation plan leading to feasible rule placements for all affected paths,

an overall re-computation must be performed.
8 In our experiments, we observe the failure of one important switch can cause the recomputation for up

to 20% of the paths (see Section 2.8 for details). The update algorithm may take up to 5 to 10 seconds when
this happens.

46

troller. We leave it as a future work to understand the most efficient way to implement this

precompute-and-cache solution.

2.8 Performance Evaluation

In this section, we use real and synthetic policies to evaluate our algorithm in terms of

(i) rule-space overhead, (ii) running time, and (iii) resources consumed by unwanted traffic.

2.8.1 Experimental Workloads

Routing policies: We use GT-ITM [17] to generate 10 synthetic 100-node topologies.

Four core switches are connected to each other, and the other 96 switches constitute 12 sub-

graphs, each connected to one of the core switches. On average, 53 of these 96 switches lie

at the periphery of the network. We compute the shortest paths between all pairs of edge

switches. The average path length is 7, and the longest path has 12 hops.

Endpoint policies: We use real firewall configurations from a large university net-

work. There are 13 test cases in total. We take three steps to associate the rule sets with the

topology. First, we infer subnet structures using the following observation: when the pred-

icate of a rule list is (src ip = q1^dst ip = q2) (where q1 and q2 are prefixes), then q1 and

q2 should belong to different subnets. We use this principle to split the IP address space

into subnets such that for any rule in the ACL, its src ip prefix and dst ip prefix belong

to different subnets. Subnets that do not overlap with any rules in the ACL are discarded.

Second, we attach subnets to edge switches. Third, for any pair of source and destination

subnets, we compute the projection of the ACL on their prefixes. Then we get the final

endpoint policy E. 4 of the 13 endpoint policies have less than 15,000 rules, and the rest

have 20,000–120,000 rules.

In addition, ClassBench [76] is used to generate synthetic 5-field rule sets to test

our path heuristic. ClassBench gives us 12 test cases, covering three typical packet-

47

classification applications: five ACLs, five Firewalls, and two IP Chains. (IP Chain test

cases are the decision tree formats for security, VPN, and NAT filter for software-based

systems, see [76] for details.)

We evaluate our algorithms using two platforms. For stand-alone path heuristic, we use

RX200 S6 servers with dual, six-core 3.06 Intel X5675 processors with 48GB RAM. To test

the algorithm on graphs, we use the Gurobi Solver to solve linear programs. Unfortunately,

the Gurobi Solver is not supported on the RX200 S6 servers so we use a Macbook with

OS X 10.8 with a 2.6 GHz Intel Core i7 processor and 8GB memory for the general graph

algorithms. Our algorithms are implemented in Java and C++ respectively.

2.8.2 Rule-Space Utilization

Our evaluation of rule-space utilization characterizes the overhead of the algorithm,

defined as the number of extra rules needed to implement the endpoint policy E. The over-

head comes from two sources:

Decomposition of graph into paths: A single rule in the endpoint policy may need

to appear on multiple paths. For example, a rule (src ip = 1.2.3.4 : Drop) matches pack-

ets with different destinations that follow different paths; as such, this rule appears in the

projected endpoint policies of multiple paths. Our experiments show that this overhead is

very small on real policies. The average number of extra rules is typically just twice the

number of paths, e.g., in a network with 50 paths and 30k rules in the endpoint policy, the

decomposition leads to approximately 100 extra rules.

Distributing rules over a path: Our path heuristic installs additional rules to dis-

tribute the path-wise endpoint policy. If our heuristic does a good job in selecting rectan-

gles, the number of extra rules should be small. We mainly focus on understanding this

overhead, by comparing to a lower bound of kEik rules that assumes no overhead for de-

ploying rules along path Pi. This also corresponds with finding a solution in our linear

program where all ai’s are set to 1.

48

(a) Rule-space overhead

0"

1"

2"

3"

4"

5"

6"

7"

8"

rich
%16

5)

rich
%24

4)
rich

702
)

t47
)

t13
4)

t16
0)

t16
1)

t20
9)

t41
1)

t49
9)

t69
1)

t98
5)

t19
01)

Ti
m
e(
se
c)
)

2x)processes)
Single)process)
Linear)Programming)

(b) Computation time (for one and two processes)

Figure 2.17: The performance of the graph algorithm over different endpoint policies on
100-switch topologies

Our experiments assume all switches have the same rule capacity. As such, the over-

head is defined as C�CL

CL , where C is the rule capacity of a single switch, such that our

algorithm produces a feasible rule placement, and CL is the minimum rule capacity given

by the LP, assuming no overhead is incurred in the path algorithm.

Results: The overhead is typically between 15% and 30%, as shown in Figure 2.17(a).

Even when the overhead reaches 0%, the overhead is still substantially lower than in the

strawman solution that places all rules at the first hop [19, 39]—for example, we distribute

a policy of 117.5k rules using 74 switches with 2.7k rules, while the first-hop approach

needs 32 edge switches with 17k rules each. Figure 2.17(b) shows the running time of

our algorithm, broken down into solving the LP and applying the path heuristic. The LP

49

(a) A large university network data

(b) CDF of all test cases

Figure 2.18: The performance of the path heuristic.

solver introduces a small overhead, and the path heuristic is responsible for the longer

delays. Fortunately, the path heuristic can easily run in parallel, with different processes

computing rule placement for different paths. Each pair of bars in Figure 2.17(b) compares

the running time when using one vs. two processes. The speed-up is significant, except

for some policies that have one particularly hard path problem that dominates the running

time. The algorithm is fast enough to run in the background to periodically re-optimize rule

placements for the entire network, with the incremental algorithm in Section 2.7 handling

changes requiring an immediate response.

50

Evaluating the path heuristic: We also evaluate the path heuristic in isolation to

better understand its behavior. These experiments apply the entire endpoint policy to one

path of a given length. Figure 2.18(a) plots the rule-space overhead (as a function of path

length) for three representative policies (with the lowest, median and highest overhead)

from the university firewall data. The median overhead for the 8-hop case is approximately

5% and the worst case is around 28%. For all policies, the overhead grows steadily with

the length of the path. To understand the effect of path length, we compare the results for

four and eight switches in the median case.

#switches #rules/switch #total rules kEk

4 1776 7104 6966

8 911 7288 6966

With eight switches, the number of rules per switch (911) is reduced by 49% (compared to

1776 for four switches). This also means we must search for smaller rectangles to pack rules

into the smaller tables. As each rectangle becomes smaller, a rule in the endpoint policy that

no longer “fits” within one rectangle must be split, leading to more extra installed rules.

Figure 2.18(b) plots the CDF of the overhead across both the synthetic and real poli-

cies for three different path lengths. While overhead clearly increases with path length,

the variation across data sets is significant. For 8-hop paths, 80% of the policies have less

than 40% overhead, but the worst overhead (from the ClassBench data) is 155%. 9 In this

synthetic policy, rules have wildcards in either the source or destination IP addresses, caus-

ing significant rule overlaps that make it fundamentally difficult for any algorithm to find

good “covering” rectangles. Of the six data sets with the worst overhead, five are syn-

thetic firewall policies from ClassBench. In general, the overhead increases if we tune the

ClassBench parameters to generate rules with more overlap. The real policies have lower

overhead, since they don’t contain many rule overlaps.
9Even for this worst-case example, spreading the rules over multiple hops allow a network to use switches

with less than one-third the TCAM space than a solution that places all rules at the ingress switch.

51

0"

0.2"

0.4"

0.6"

0.8"

1"

0" 0.2" 0.4" 0.6" 0.8" 1"Fr
ac
%o

n(
of
(d
ro
pp

ed
((t
ra
ffi
c(

Frac%on(of(the(path(travelled(

((Small(alpha(
((Big(alpha(

Figure 2.19: CDF of dropped traffic in the graph

Profiling tool: We created a profiling tool that analyzes the structure of the endpoint

policies to identify the policies that are fundamentally hard to distribute over a path. The

tool searches for all the rectangular predicates in the endpoint policy that can possibly

be packed into a single switch. Then, for each predicate q, the tool analyzes the cost-

effectiveness ratio between the number of internal rules with respect to q and kEqk. The

largest ratio here correlates well with the performance of our algorithm. Our tool can help

a network administrator quickly identify whether distributed rule placement would be ef-

fective for their networks.

2.8.3 Minimizing Unwanted Traffic

We next evaluate how well our algorithm handles unwanted traffic i.e., packets match-

ing a “drop” rule). When ingress switches have sufficient rule space, our LP automatically

finds a solution that does not use internal switches. But, when switches have small rule

tables, some rules must move to interior switches, causing unwanted packets to consume

network bandwidth. Our goal is to drop these packets as early as possible, while still obey-

ing the table-size constraints. We summarize our results using a cumulative distribution

function F(·), e.g., F(0.3) = 0.65 means that 65% of the unwanted packets are dropped

before they travel 30% of the hops along their associated paths.

52

We evaluate the same test cases in Section 2.8.2 and assume the unwanted traffic has

a uniform random distribution over the header fields. Figure 2.19 shows a typical result.

We run the algorithm using two sets of a values. When a values are small, LP allocation

leave as much unused space as possible; when a values are large, LP allocates more of the

available rule space, allowing the path algorithm to drop unwanted packets earlier. In both

cases, more than 60% of unwanted packets are dropped in the first 20% of the path. When

we give LP more flexibility by increasing a value, the fraction of dropped packets rises

to 80%. Overall, we can see that our algorithm uses rule space efficiently while dropping

unwanted packets quickly.

2.8.4 Comparison with Palette

We next compare our algorithm with Palette [45], the work most closely related to

ours. Palette’s main idea is to partition the endpoint policy into small tables that are placed

on switches, such that each path traverses all tables at least once. Specifically, Palette con-

sists of two phases. In the first phase (coloring algorithm), the input is the network structure

and the algorithm decides the number of tables (i.e., colors), namely k, needed. This phase

does not need the endpoint policy information. In the second phase (partitioning algorithm),

it finds the best way to partition the endpoint policy into k (possibly overlapping) parts.

This phase does not require the knowledge of the graph. We compare the performance of

our work and Palette for both the special case where the network is a path and the general

graph case. When the network is a path, we only examine the partitioning algorithm (be-

cause the number of partitions here exactly equals to the length of the path). Figure 2.20

shows that Palette’s performance is similar to ours when path length is a power of 2 but is

considerably worse for other path lengths. Moreover, Palette cannot address the scenario

where switches have non-uniform rule capacity. Next, we examine Palette’s performance

over general graphs. Specifically, we execute Palette’s coloring algorithm on the general

graph test cases presented in Section 2.8.2. The maximum number of partitions found by

53

0"

0.2"

0.4"

0.6"

0.8"

1"

1" 2" 3" 4" 5" 6" 7" 8"
O
ve
rh
ea
d(

Path(Length(

(((Ours(

(((Pale1e(

Figure 2.20: Comparing our path heuristic to Palette

their algorithm is four. This means in a test case where an endpoint policy contains 117k

rules, Palette requires each switch to contain at least 117k/4⇡ 29k rules (this assumes no

further overhead in their partitioning phase). In contrast, our algorithm produces a solution

requiring only 2.5k rules per switch.

2.9 Conclusion

Our rule-placement algorithm helps raise the level of abstraction for SDN by shielding

programmers from the details of distributing rules across switches. Our algorithm performs

well on real and synthetic workloads, and has reasonable running time. A promising direc-

tion for the future work is to explore techniques for handling policies which do not fit within

the global network hardware constraints, such as caching [46].

54

Chapter 3

Alpaca: Compact Network Policies with

Attribute-Carrying Addresses

In enterprise networks, policies (e.g., QoS or security) often depend on the catego-

rization of hosts along dimensions such as the organizational role of the host (faculty vs.

student), and department (engineering vs. sales). While current best practices (VLANs)

help specify policies when hosts are categorized along a single dimension, most policies

need to be expressed along multiple orthogonal dimensions.

In this chapter, we introduce Attribute-Carrying IPs (ACIPs), where the IP address

allocation process in enterprises considers attributes of a host along all policy dimensions.

ACIPs enable flexible policy specification in a manner that may not otherwise be feasible

owing to the limited size of switch rule-tables. Further, we present Alpaca, algorithms for

realizing ACIPs under practical constraints of limited-length IP addresses. Our algorithms

can be applied to different switch architectures, and we provide bounds on their perfor-

mance. Finally, we demonstrate the importance and viability of ACIPs on data collected

from real campus networks.

55

3.1 Introduction

Managing large enterprise networks is challenging. A typical enterprise has many

users who belong to different departments (e.g., sales and engineering, or computer sci-

ence and history), and play different roles (e.g., faculty, staff, administrators, and students).

In addition, the network supports diverse end-hosts running different operating systems and

offering different services. In response, network administrators want to enforce policies—

such as access control and quality of service—that group hosts along multiple different

dimensions. For instance, one policy may restrict access to a database to all employees in

the sales department, while another may offer a higher bandwidth limit to senior managers

across all departments, and yet another may restrict access for old hosts running a less

secure operating system.

3.1.1 Enforcing Policies in Today’s Enterprises

To enforce policies in today’s enterprises, network administrators typically rely on vir-

tual local area networks (VLANs) [85]. A host joining the network is assigned to a VLAN

based on its MAC address or the physical port of the access switch. Hosts in the same

VLAN are assigned an IP address in the same IP prefix, even if they are not located near

each other. Traffic flows freely between hosts in the same VLAN, while traffic between

different VLANs traverses an IP router that can enforce policy. Since a host can only be-

long to a single VLAN, administrators typically assign hosts to VLANs based on a single

dimension (e.g., department or role), which has several major limitations:

• The routers interconnecting VLANs need long lists of data-plane “rules” to classify

traffic along all relevant “dimensions” of the source and destination hosts.

• No security or QoS policies can be imposed on intra-VLAN traffic, forcing adminis-

trators to use a VLAN only to group hosts that should “trust” each other.

56

• Since VLAN tags are removed from traffic destined to the Internet, the border router

must classify all return traffic from the Internet to assign VLAN tags.

For instance, suppose a security policy depends on both user role and department. If

VLANs were created based on the user’s department, then expressing a policy based on

role in a concise fashion is challenging. And, if two users in the different department are

close to each other, the traffic follows inefficient paths through intermediate routers to go

between VLANs.

The rise of more flexible network switches, with open interfaces to separate control

software, enables an attractive alternative. In recent years, switches built with commodity

chipsets expose a pipeline of rule-tables that perform match-action processing on packet

headers. While the rule tables are relatively small (with small thousands of rules per stage,

to limit power and cost), the switches support programmatic interfaces (e.g., OpenFlow,

OF-Config, and OVSDB [3]) that enable new ways of controlling the network by installing

the rules in support of higher-level policies. One natural approach, adopted in the early

Ethane system [19], directs the first packet of each flow to a central controller, which con-

sults a database—containing all the relevant host attributes and high-level policies—and

reactively install rules for forwarding the remaining packets of the flow. However, reactive,

fine-grained solutions like Ethane have high overhead and do not scale to large enterprises.

FlowTags [25] tags packets and uses the tags to enforce network policies. Yet, this ap-

proach, when applied to enterprise networks, requires installing many extra tagging rules

at the edge switches to classify hosts along all dimensions. Instead, we need a proactive

design that can aggregate hosts along many dimensions, while keeping switch rule tables

small.

3.1.2 Attribute-Carrying IP Addresses

In the current enterprise networks, although IP addresses are assigned based on at-

tributes (e.g., a separate IP prefix per VLAN), it is just on a single dimension. We argue
57

that a complete IP address management scheme should consider all dimensions and enable

compact representation of policies. Our key idea is to assign each host an IP address based

on all dimensions of the policy—that is, an attribute-carrying IP address (ACIP). Our solu-

tion, Alpaca (algorithms for policies on attribute-carrying addresses), computes an efficient

address assignment, based on the policy dimensions and the attributes of individual hosts,

and a compact list of switch rules that realize a specific network policy.

Alpaca proactively generates a small number of coarse-grained rules in the switches,

without using VLANs. Alpaca greatly simplifies enterprise management by (i) enabling

administrators to specify policies on many orthogonal dimensions while achieving an order

of magnitude reduction in rules; (ii) allowing policy to be correctly maintained even when a

host connects to the network at a new location; and (iii) simplifying federated management,

where different teams manage different parts of the enterprise network.

While Alpaca has many potential advantages, several practical issues must be consid-

ered:

Limited IP address space: Since most enterprises have limited IP address space, a

naive ACIP assignment can easily exhaust all the available bits.

Heterogenous group sizes: Some combinations of policy attributes are much more

common than others. As such, an efficient address assignment cannot simply devote a por-

tion of the bits to representing group size.

Minimizing churn: It is important to support changes in the policy attributes associ-

ated with a host (e.g., due to a user moving to a different role or department), or changes in

the set of attributes themselves (e.g., due to the creation of a new department).

Multi-stage switch pipelines: Rather than assuming switches have a single rule table

(as in OpenFlow 1.0 [51]), a practical solution should capitalize on the multi-stage pipelines

in modern switch chipsets [14, 15, 61].

We propose a family of algorithms to generate ACIPs and the associated rule tables,

starting with a simple strawman that devotes a separate set of address bits to each policy

58

dimension. This solution minimizes the number of rules but consumes too much IP address

space, making it infeasible in most practical settings. We then propose two other algorithms

that can keep the number of rules small, while respecting constraints on the number of bits

in the IP address space. Our algorithms optimize based on the characteristics of modern

switch chipsets. Conventionally, switch chip-sets have a single TCAM rule-table that sup-

ports a few thousands of wildcard rules matching on multiple header fields [8, 38, 51].

More recently, we are seeing the emergence of switch chip-sets with a pipeline of multiple

tables, where each table could be a TCAM or a larger SRAM that supports prefix matching

on source IP or destination IP [14,15,61]. As such, our first algorithm generates ACIPs that

enable policies to be expressed by solely IP prefixes, useful for rule tables that support IP

prefix matching. Our second algorithm targets both single-table switches and multi-table

switches, generating rules that perform arbitrary wildcard matching on IP addresses, in ex-

change for a reduction in the number of rules. Together, these algorithms can capitalize on

the unique capabilities of a variety of commodity switch architectures.

In the next section, we present a case study of multiple campus networks, to un-

derscore the need for policies along multiple dimensions. Section 3.3 introduces ACIPs

and formulates the optimization problem Alpaca must solve, followed by Section 3.4 that

presents our two algorithms. Using access control data from two large campuses, the ex-

periments in Section 3.5 show that Alpaca can reduce the number of ACL rules on existing

networks by 60%�68% for switches with multiple tables and by 40%�96% for switches

with a single table, while requiring only 1 more bit of the IP address space than needed to

represent the number of hosts in the network. Further, Alpaca can support futuristic sce-

narios with policies based on multiple dimensions, while requiring an order of magnitude

fewer rules than VLAN-based configurations optimized for a single dimension. Section 3.6

presents related work, and Section 3.7 concludes.

59

3.2 Case Study: Diverse Enterprise Policies

In this section, we present a case study of 25 enterprise networks, to identify the chal-

lenges in representing sophisticated policies, and the implications for Alpaca. Specifically:

• We present a qualitative analysis of the security and quality-of-service policies employed

by 22 universities, plus one individual department that runs its network separately from

the campus IT group. The analysis indicates that networks must often apply policy along

several logical dimensions, with multiple attributes as possible categories in each dimen-

sion. However, the analysis also points to policies that are desirable but difficult to realize

in practice.

• We analyze router configuration data from two other large campuses. The analysis pro-

vides further confirmation that there is significant commonality in policy across hosts, but

also points to how an inefficient assignment of IP addresses can lead to an unnecessary

“blow-up” in rule-table size.

• We study host-registration data for one department-level network, to understand the di-

mensions of network policies and the number and size of host “groups” with these at-

tributes. The analysis has important implications for the design of Alpaca.

3.2.1 Policies on Multiple Dimensions

Many universities make descriptions of their high-level network policies available on-

line (see http://tinyurl.com/pwvlygx for a summary). Most schools classify hosts by

the owner’s role (e.g., faculty, students, staff, visitors), department, residence (e.g., a par-

ticular dormitory), and usage (e.g., research vs. education). In addition, many schools asso-

ciate each host with a security level (with around ten different integer values) and whether

the host is currently viewed as compromised (with a “yes” or “no” value). Some schools

also classify hosts by bandwidth quota and past usage, to inform rate-limiting policies, and

by whether they offer core services (e.g., email and web servers). Based on these docu-

60

http://tinyurl.com/pwvlygx

ments, and our discussions with the administrators of the computer-science department’s

network of one university (University A), we learned about the following example policies.

Security: Schools use the security level to limit which external users can access a

given host (and in what way). For example, hosts at the lowest security level might be

blocked from receiving unsolicited traffic from external hosts; that is, these hosts cannot

run public services. Other security levels correspond to different restrictions on which

transport port numbers are allowed (e.g., port 80 for HTTP, but not port 22 for SSH or

109, 110, and 195 for POP3). Some schools allow individual departments to state their

own access-control lists, applicable only to hosts with IP addresses in that department’s

address block. When administrators identify an internal host as compromised, they change

the compromised attribute and significantly restrict the host’s access to network services.

In addition, users in the visitor category typically have access to a limited set of services on

the campus (e.g., no access to the printers or campus email servers and compute clusters).

One school restricts access to compute clusters in dormitories to the students residing in

that particular dorm.

Quality of Service: Some universities impose a different default bandwidth quota

based on the host’s role, but allow students and postdocs to purchase a higher quota. Some

universities employ rate-limiting policies that depend on the user’s bandwidth usage on pre-

vious days (e.g., users whose bandwidth usage exceeded a certain level were rate-limited

to a lower level). Hosts offering core services are excluded from bandwidth usage calcula-

tions for both the users responsible for the service machines and the owners of the access

machines, to avoid that traffic counting against their usage caps. Also, some schools offer

higher quality-of-service for hosts assigned for educational use (e.g., for streaming high-

quality media in a classroom). The administrators of University A also expressed a desire

to perform server load balancing for internal Web services based on user role, to prevent

heavy load from one group of users from compromising the performance of other users.

61

Administrator “wish-lists”: Our discussions with the administrators of University A

also indicated that there were many additional policies that they would ideally like to imple-

ment in the network, but did not do so since they were hard to realize in practice. University

A assigns hosts to VLANs based on role (e.g., faculty, staff, and students), for traffic iso-

lation, to prevent packet sniffing and excessive broadcast traffic. The administrators would

like to apply access-control policies based on device usage, device ownership, and OS, but

do not do so today, since this would require exhaustive enumeration of IP addresses in the

switch configuration. Likewise, the administrators expressed a desire to apply flexible QoS

policies based on (i) the way a device is used (e.g., research vs. infrastructure machines)

and (ii) whether the host is owned by the department (as opposed to a personal “Bring Your

Own Device” host).

Our discussions also revealed additional challenges with federated network manage-

ment. The campus network assigns IP addresses in blocks based on location (e.g., building).

This raises challenges in applying security policies that restrict access to users affiliated

with computer science department. Currently, the policy works correctly for hosts that are

physically in the CS building, since these hosts are assigned a prefix from the CS subnet.

However, when a CS user works in another building (common for faculty with dual ap-

pointments in other departments), the host receives a different IP address outside the CS

subnet and the user is no longer able to access the CS resources. While the administrators

could conceivably update network configurations dynamically to reflect the IP addresses

that should have access, the management complexity is a deterrent. More generally, fed-

erated management would be much easier if network administrators had concise ways to

represent security and QoS policies based on host attributes.

3.2.2 Potential for Concise Rules with ACIPs

Existing techniques for assigning IP addresses to hosts can lead to a large numbers

of rules in the switches. To quantify this problem, we analyzed the access-control policies

62

in router configuration files for two university networks (University B and University C).

Prior work shows that hosts in a network may be partitioned into a small number of policy

units [11]—i.e., a set of hosts that have identical reachability policies in terms of their

communication with the rest of the network. Though the number of policy units is small,

the number of ACL rules to express policy could still be as large as the square of the

number of policy units. Thus, we go beyond [11], and not only identify policy units, but

also calculate the number of rules required if ACLs were written in terms of policy units

rather than the existing IP assignment.

Specifically, we consider two hosts as belonging to the same source policy unit (SPU)

if and only if packets sent by these hosts to all destinations are treated identically in every

ACL across all routers. Likewise, we consider two hosts as belonging to the same desti-

nation policy unit (DPU) if and only if packets from all sources to these hosts are treated

identically in every ACL across all routers. We then compute the total number of rules

needed to represent each ACL if it were more compactly expressed in terms of its source

and destination policy units. Our results show that the number of ACL rules required is

much smaller than the product of the source and destination policy units, and indicates

that a smart ACIP allocation, which classifies hosts into their SPUs and DPUs efficiently,

can potentially offer significant reduction ranging from 48% to 98% for ACLs of the two

universities (Section 3.5).

3.2.3 Diverse Attributes and Group Sizes

To better understand the attributes of hosts, we collected data about the 1491 registered

hosts of the CS department of one university (University A). Each host is associated with

seven dimensions of information, as summarized in Table 3.1. In this network, (i) hosts

are assigned to separate VLANs based on role and (ii) role, security level, and status are

considered in access-control policy.

63

Dimensions #Attributes Example Attributes
Role 8 Faculty, Students
Security Level 16 1, 2, ..., 16
Status 6 In service, In testing
Location 7 –
Usage 3 Research, Infrastructure, ...
CS owned 2 Yes, No
OS 5 MacOS, Windows, Linux, ...

Table 3.1: Host data for CS department (University A)

Given the number of attributes in each dimension, hosts could theoretically have

161,280 (i.e., 8⇥16⇥6⇥7⇥3⇥2⇥5) combinations of attributes. In practice, only 287

unique combinations exist; for example, no visitor has a CS owned host. In addition, some

combinations are much more popular than others. One group of hosts—belonging to one

Linux-based compute cluster—has 109 members (more than 7% of all hosts). The large

number of attributes and the diversity of group sizes have important implications for ad-

dress assignment in Alpaca, which encodes host attributes in the IP address to enable more

compact representations of policies.

Consider a naive address allocation scheme that performs BitSegmentation, by (1) con-

catenating a binary encoding of the host attributes along each dimension, where dimension

i with a set of attributes Di requires dlogkDike bits, and (2) using the remaining bits to dis-

tinguish hosts with the same attributes along all dimensions, requiring dlogXe bits, where

X is the size of the largest group.

The resulting encoding would enable very compact rules in the switches, using wild-

card patterns to match on any attribute. However, this solution is impractical, even for this

small network. Representing the seven dimensions would require 19 bits, and representing

the largest group (with 109 members) would requires 7 bits, for a total of 26 bits—a highly

inefficient allocation of IP address space.

64

'+&3 6ZLWFK�GULYHU��H�J���2SHQ)ORZ�

$
VV
LJ
Q�
,3
V ,QVWDOO�UXOHV

$GGUHVV�VSDFH+RVW�LQIR

�GK<><

3ROLFLHV

Figure 3.1: Use Alpaca in a network.

3.3 ALPACA Overview

3.3.1 ACIP allocation with Alpaca

We present Alpaca, a system that embeds host attributes in IP addresses to enable

compact policies. Figure 3.1 shows an overview of the system. Alpaca takes as inputs from

the network operator the set of policy dimensions, and a database that lists the attributes

associated with each host. It instructs DHCP servers how to assign IP addresses to hosts

based on the results of Alpaca algorithm. If a host needs to be assigned a new address (e.g.,

it moves to a new location), the original attributes along with the new location are used

in determining the new IP address. Meanwhile, the switch driver instantiates the network

policies, which are defined on attributes, by installing match-action processing rules on

switches. Alpaca coordinates with the switch driver such that rules can correctly classify

the IP addresses of hosts to the corresponding attributes along different dimensions.

While ACIP allocation enables operators to express policies defined on multiple di-

mensions with switch rules, Alpaca must adapt to the following constraints:

65

Switch rule-table sizes: Switches impose hard constraints on the maximum number

of rules to be installed. Therefore, Alpaca should optimize the classification of hosts for dif-

ferent switch architectures so that the attribute-based policies can be compactly expressed

with switch rules that stay within the rule-table sizes.

Adddress space: IPv4 is widely deployed and likely to remain for the foreseeable

future. Many enterprises have 16 or fewer bits for public IPv4 address space, or up to 24

bits for private IPv4 address space (i.e., 10.0.0.0/8). The limited address space calls for an

efficient ACIP allocation that encodes attributes without wasting IPs. Though the address

space constraint may be relaxed if IPv6 is fully deployed in a network, the allocation still

needs to take the size of address space into account to correctly represent attributes.

Dynamics: Attributes of a host along any dimension may change. Alpaca must be

able to handle changes in the attributes of a host while ensuring that only the IP address of

that host changes, and that IP addresses of other hosts are not impacted. Alpaca should also

handle (1) addition or removal of new attributes in existing dimensions without impacting

the existing IP address allocation, and (2) addition or removal of dimensions, which is

however relatively rare and may require significant changes.

3.3.2 Problem Formulation

Given an IP address space of W bits, a set U of N hosts (N 2W), a set of M dimen-

sions and the attributes for the hosts along each dimension, an Alpaca algorithm computes

an assignment of IPs to individual hosts and M sets of classification rules. Each rule-set

corresponds to a dimension. A classification rule consists of an address pattern p and an

attribute a; rule (p,a) means that any host with IP matching p has attribute a. The classi-

fication rules in the same rule-set have disjoint address patterns. An example is shown in

Figure 3.2(a)(b).

The classification rule-sets must be optimized. Consider a multi-table switch architec-

ture. We install the rule-sets to classify source or destination (or both) to the corresponding

66

attributes for the use by following tables. Figure 3.2(c) shows an example, where the first

two tables decide the attributes of “department”and “role” of the source by appending val-

ues to metadata, the last table decides to permit or deny the source based on attributes.

Our primary optimization goal is to minimize the total sizes of M rule-sets, i.e., the

number of classification rules that decide the attributes of all hosts along all dimensions in

a multi-table switch architecture. We also extend our algorithms (Section 3.4.2) to optimize

the rules for a single-table switch architecture, where the installed rule-set is the product of

all rule-sets in a multi-table architecture (e.g., the three tables in the example) and the total

number of installed rules heavily depends on how frequent attributes (or the combination

of attributes) are used in the network policies.

3.3.3 Overview of Alpaca algorithms

Alpaca consists of a series of algorithms targeted at different scenarios.

The Prefix algorithm computes prefix classification rules with a proven approximation

ratio to the optimal case. It uses address space efficiently, requiring exactly dlog2Ne bits. It

is specially designed for multi-table switches with SRAMs that support a large number of

prefix rules.

The Wildcard algorithm computes wildcard classification rules. It uses a small ad-

dress space and can be applied to single-table and multi-table switch architectures.

Both prefix and wildcard algorithms by themselves do not handle dynamics and host

attribute changes.

The Slack algorithm refines the prefix and wildcard algorithms by taking advantage

of one more bit in the address space for an allocation that works well under dynamics in

host attributes.

67

Input Output
Hosts Dept Role Addresses
h1�h5 CS Faculty 0000, 0001,

0010, 0011
0111

h6�h7 CS Students 1010, 1011
h8�h10 EE Faculty 0100, 0101

0110
h11�h16 EE Students 1000, 1001

1100, 1101
1110, 1111

(a) Address assignment.

Output
Dept

p a
0111 CS
101* CS
00** CS
0110 EE
010* EE
100* EE
11** EE

Role
p a

0*** Faculty
1*** Students

(b) Prefix rules.

Dept
Match Action

src append
0111 1
101* 1
00** 1
0110 2
010* 2
100* 2
11** 2

!

Role
Match Action

src append
0*** 1
1*** 2

!

Match Action
metadata

1,2 permit
2,1 permit
* deny

(c) Rules on multiple tables to permit CS Students and EE Faculty

Figure 3.2: Example allocation: W = 4,N = 16,M = 2.

3.4 ALPACA Algorithms

In this section we describe Alpaca algorithms for assigning IPs to individual hosts.

The first algorithm is designed for switch chipsets that allow prefix rules while the second

solution applies for more general chipsets with tables allowing wildcard rules.

3.4.1 Prefix Solution

This section presents an address allocation algorithm that optimizes the number of

prefix rules to represent attributes along multiple dimensions. It targets at multi-table switch

68

architectures with IP prefix matching tables. We first introduce the notation, then discuss

the optimal solution for a single dimension and the generalization to multiple dimensions.

We use the following notations when illustrating the algorithms. Let a be a dimension

and A = {a1,a2, ...} be the set of associated attributes. We view a as a function that maps

every host to an attribute, i.e., a(x) 2 A is the attribute of host x. Let T be an ACIP allo-

cation. We use Ca(T) to denote the minimum number of rules to represent dimension a .

Likewise, for a set of dimensions D = {a,b , . . .}, CD(T) represents the total number of

rules to present all the dimensions in D using the allocation T , i.e., CD(T) = Âf2D Cf (T).

We define opta =minT Ca(T) and optD =minT CD(T) to be the minimum number of rules

to represent dimension a and the set of dimensions, respectively.

A single dimension: We start with the simplest case: assigning addresses to represent

exactly one dimension. Consider the dimension Role: each attribute of Role, such as Fac-

ulty, Students or Visitors, should have its own set of rules for the hosts. As a prefix pattern

matches a power-of-two number of hosts (e.g., 0*** stands for 8 hosts and 111* stands for

2 hosts), one attribute might need several rules. The rules of different attributes do not over-

lap, i.e., matches are disjoint. Below, we describe a simple algorithm that finds an optimal

address allocation to represent one dimension.

Given the dimension function a : U ! A, the algorithm returns the address allocation

function T : U ! {0,1}W . The core idea is to treat the number of hosts for each attribute

as the sum of power-of-twos and use a prefix rule for each power-of-two. Specifically, we

first partition hosts into |A| sets based on their attributes. Let ni be the number of hosts with

attribute ai (i = 1, ..., |A|) and bin(ni) be the binary representation of ni. We represent ni as

the sum of distinct power-of-twos based on bin(ni). For example, bin(14) = b1110 and 14

is represented as 8+4+2. Next, for each attribute ai, we further partition the set of hosts

into subsets according to sum representation of ni. For example, if ni = 14, we will partition

the set of hosts into 3 subsets with size 2,4 and 8 respectively. The last step is to sort all

the subsets for different attributes in non-increasing sizes. Hosts are ordered based on the

69

SINGLEDIM(a,W)

1 for attribute ai 2 A
2 do Ui {x 2U , where a(x) = ai}
3 ni |Ui|
4 for i 0 to W
5 do if 2 j & ni > 0
6 then Create a subset of 2 j hosts selected from Ui
7 Remove these 2 j hosts from Ui
8 return the address allocation of hosts

Figure 3.3: Optimal algorithm for a single dimension a

subsets they belong to. The resulting address allocation gives the k-th host address bin(k).

The pseudo-code of the algorithm is shown in Algorithm 3.3.

Let kbin(ni)k be the number of 1s in the binary representation of ni, e.g., kbin(14)k=

3. The above algorithm constructs Â|A|
i=1 kbin(ni)k subsets. We show that the resulting ad-

dress allocation needs exactly Â|A|
i=1 kbin(ni)k rules for a . In other words, each subset takes

a single rule to represent. To prove it, we consider a subset of size 2i. Since subsets are

sorted in non-increasing sizes, any previous subset must have a size of 2 j for some j � i.

Hence, the sum of the sizes of all previous subsets are multiples of 2i. This guarantees that

all 2i hosts in the current set can be all represented by a single prefix rule with exactly i

wildcards. To prove the optimality of the algorithm, we further show that an attribute shared

by ni hosts requires at least kbin(ni)k rules.

Property 1 For a dimension a , let ni = |{x 2U |a(x) = ai}| be the number of hosts that

have to be mapped to an attribute ai, i = 1,2, · · · , |A|. The minimal number of rules that

can represent a in any ACIP allocation satisfies opta = minT Ca(T) = Â|A|
i=1 kbin(ni)k.

Two dimensions: Let a : U ! A,b : U ! B be the dimensions under consideration,

where B = {b1, · · · ,b|B|} is the set of attributes in the second dimension. We observe a clear

tradeoff between shortening the representation of these two dimensions. While we could

choose the address allocation to be the optimal for a and use the minimal number of rules
70

for a , we may have to use many more rules to represent b . Since the address allocation

is shared by both dimensions, in most cases we cannot find an allocation that favors both

dimensions. Below, we show the property on the relationship between the optimal alloca-

tion for two dimensions and the optimal allocation for each dimension. We recall that the

optimal allocation minimizes the sum of the number of rules to represent each dimension.

Property 2 The optimal allocation for the dimensions a , b satisfies opta,b � opta +optb .

An equality opta,b = opta + optb is achieved if there exists an allocation that is optimal

for the dimension a as well as for the dimension b .

To obtain an upper bound on the optimal number of rules, we construct a special

allocation below. Let g be a new dimension, which is the product of a and b . The corre-

sponding set of attributes C = {c1, . . . ,c|A|·|B|}. For a host x 2U , if a(x) = ai,b (x) = b j

then g(x) = c(i�1)·|B|+ j. The dimension g , denoted by g = a⇥b , has the property that g(x)

determines the attributes a(x),b (x) for the same host x. Consider the representation of g

under some allocation T with Cg(T) rules. We can obtain a representation of the dimension

a (or of b) with the same number of rules by only modifying the attribute of each rule, i.e.,

replacing attribute in C with the corresponding attribute in A (respectively in B). Therefore,

Ca(T)Cg(T), Cb (T)Cg(T). Finally,

Ca(T)+Cb (T) =Ca,b (T) 2Cg(T) (3.1)

We remark here that these are not necessarily the minimum representations of a,b with

the address allocation T : we can further compress rules for each dimension.

Next we show that an optimal allocation for g is a 2-approximation of the optimal

allocation for a,b , i.e., the number of rules it generates is at most twice of the minimum.

Consider some allocation T , it must satisfy

Cg(T)Ca(T)+Cb (T) =Ca,b (T) (3.2)
71

This is because a group of hosts that cannot be represented using a single rule in g must

have different attributes in at least one of a and b , thus requiring a minimum of two rules

to represent in that dimension. Let Tg be the optimal solution of g and Ta,b be the optimal

solution for a,b together. Substituting T with Ta,b in Equation 3.1 and 3.2, we obtain

Cg(Ta,b)Ca(Ta,b)+Cb (Ta,b) =Ca,b (Ta,b) 2Cg(Ta,b)

Meanwhile, since Ca,b (Ta,b) = opta,b and Cg(Ta,b) Cg(Tg) = optg , we conclude the

following property:

Property 3 Let Tg be an optimal allocation for g = a⇥b . Then, Ca,b (Tg) 2 ·opta,b .

To summarize, for two given dimensions a,b , we calculate g = a ⇥ b and find its

optimal allocation Tg by the algorithm for a single dimension. We then use this allocation

to represent each of the dimensions a,b .

General number of dimensions: We can generalize the above solution for two di-

mensions to handle a set D of an arbitrary number of dimensions M = |D |. Similar to

computing g for the two dimensions, we introduce a dimension PD , whose attributes for

a host x 2U is a vector of length |D | with the attributes of all dimensions in D for that

host. We show that the optimal allocation for PD is an M-approximation to the optimal

allocation for D . We omit the proof for brevity.

3.4.2 Wildcard Solution

In this section, we present an algorithm that generates wildcard rules by optimizing

the output of the prefix solution. To illustrate the algorithm, we use the same example in

Figure 3.2. For clarity, we use host group to refer the set of hosts with the same attributes

along all dimensions; we use rules and patterns interchangeably to refer the compact ACIP

representation of host groups and attributes.

72

CS EE
Faculty 5 3
Student 2 6

(a) Group sizes

)

Id (Dept, Role, Value)
1 CS, F, 1
2 EE, F ,1
3 EE, S, 2
4 CS, S, 2
5 EE, F, 2
6 EE, S, 4
7 CS, F, 4

(b) Initial nodes

Figure 3.4: Create nodes from input of Figure 3.2(a).

We revisit our example. The prefix solution uses 1 pattern for the CS Students group

and 2 patterns for each of the rest groups, because it views the size of a host group as the

sum of powers-of-twos (e.g., 5 = 1+ 4), each of which corresponds to a prefix pattern.

Hence, it uses 2+2 = 4 prefix rules to represent Faculty attribute. But if we assign {0111,

010*} to EE Faculty and {0110, 11**} to CS Faculty, then we can compress these patterns

to a single pattern *1** to represent Faculty attribute. The key observation is that if two

host groups share common attribute(s), it is beneficial to assign them similar patterns that

can be compressed to reduce the number of rules for the common attribute.

Potential compression. Our first task is to find out all the potential compression of

patterns among host groups. Starting with the output of prefix solution, which uses the sum

of power-of-two terms to denote the size of a host group, we map every power-of-two term

to a node. The node saves the value of the term and copies the attributes of the host group.

For example, we can create two nodes for the CS Faculty group: (CS, Faculty, 1) and (CS,

Faculty, 4), as the group size 5 = 1+4. Figure 3.4(b) shows the full list of nodes.

Two nodes can be compressed if their values are equal and they share some common

attribute(s). The result of compression is a new node that (1) has a value equal the sum of

the values of the two nodes, (2) “inherits” the shared attributes and (3) has /0 attributes for

other dimensions. For example, (CS, Faculty, 1) and (EE, Faculty, 1) can be compressed

into a new node (/0, Faculty, 2). We call the new node a super-node and the two original

73

��������)����

����&6��)���� ����((��)���

����((��6����

����((��)��������((��6���� ����&6��6����

����&6��)����

�������)����

��������6����

�����((������� ��������)�����������6����

�����((�������

�T��JG@
�T��@KO

Figure 3.5: The compression graph: a node has an id, attributes and a value. Colored nodes
are super-nodes.

nodes sub-nodes. The compression suggests that we could use the super-node instead of

listing two sub-nodes individually to represent their common attributes.

A super-node can be compressed with other nodes, as long as they share the same

attributes (except /0). But a node cannot be compressed twice on the same dimension, i.e.,

once (CS, Faculty, 1) and (EE, Faculty, 1) are compressed, neither of them can be com-

pressed with other nodes that have Faculty attribute. We repeat the compression until no

new super-nodes can be produced. We plot graphs to denote the compression relationship

by creating edges from sub-nodes to their super-nodes (Figure 3.5).

In the graph, a node with value 2k can be assigned a wildcard pattern with exactly k

wildcards, which represent 2k hosts. As we work on the output of the prefix solution, the

initial nodes (Figure 3.4(b)) should be assigned prefix patterns.

Compressible patterns. Two patterns are compressible if they negate at exactly one

bit, e.g., *00* and *10* are compressed into **0*. When two sub-nodes (of a super-node)

are assigned compressible patterns (e.g., *00* and *10*), the resulting pattern (e.g., **0*)

can be assigned to the super-node to achieve a reduction of one rule in representing the

common attribute, where we can use the compressed pattern instead of listing two patterns

independently. In the example, we can use the pattern for (/0, Faculty, 2) to represent CS

attribute rather than two patterns for (CS, Faculty, 1) and (EE, Faculty, 1). Therefore, our

74

�D�

�F�

�

� �

��G
�

�E�

�

� �

��F
�

G
�

� �

F
�

�

� �

��

�

E
�

�

�G�

��

G
�

� �

F
�

�

� �

��

�

E
�

�

Figure 3.6: Flip bits to compress nodes

goal is to assign patterns to nodes to maximize the number of pairs of sub-nodes with

compressible patterns, i.e., the total reduction in the number of rules to represent attributes.

Key idea: flip one bit. Let aibicidi be the pattern assigned to the i-th node, where

ai,bi,ci,di 2 {0,1,⇤}. Consider Node 1 (CS, Faculty, 1) and Node 2 (EE, Faculty, 1).

a1b1c1d1 and a2b2c2d2 are compressible if they negate at one bit, i.e., a1b1c1d1 = a2b2c2d2,

or a2b2c2d2, or a2b2c2d2, or a2b2c2d2. Our key idea to enable compression is to choose a

bit (e.g., a,b,c or d) to flip. If we flip d, the compressed pattern a1b1c1⇤ (or a2b2c2⇤) can

be assigned to the super-node (/0, Faculty, 2), i.e., Node 8. As a result, a8b8c8d8 = a1b1c1⇤.

We plot the equality in Figure 3.6(a).

Similarly, we can compress patterns of Node 3 and Node 4 by flipping c (d3 = d4 = ⇤)

as shown in Figure 3.6(b). We can further compress (1) Node 5 and Node 3 by flip-

ping b (as c3 is flipped before) and (2) Node 5 and Node 8 by flipping c (shown in Fig-

ure 3.6(c)). However, we are unable to compress Node 6 (a6b6c6d6 = a3b3 ⇤ ⇤) and Node

10 (a10b10c10d10 = a3 ⇤ c3⇤), because their patterns do not match. We finish the procedure

by compressing Node 6 and Node 9, Node 7 and Node 10 (Figure 3.6(e)). To translate the

results to patterns, we set all variables, i.e., a3,b3,c3,d1, to 0.

75

Dept
p a

0110 CS
001* CS
11** CS
0111 EE
10** EE
0*0* EE

Role
p a

*1** Faculty
*0** Students

Figure 3.7: Wildcard rule-sets.

To summarize, with the idea of bit flipping, we construct equality and inequality be-

tween the bits of patterns, i.e., a,b,c,d, assigned to nodes. For the patterns of each pair

of sub-nodes, if the equality (or inequality) is not determined before, we choose the last

possible bit to flip. When there is no such a bit (i.e., all the patterns negating at one bit are

already used), then we choose to flip more than one bit until the resulting patterns do not

overlap with any used ones. After checking all the pairs of sub-nodes, we obtain the full

equality and inequality. The final step is to set all free bit variables to 0.

We can represent each attribute with rules given the pattern assignment (Figure 3.7).

For example, to represent Student, we can use *0** for super-node (/0, Student, 8), i.e.,

Node 12. Similarly, we use 10**, 0*0* and 0111 to represent EE. In total, we need 3+

3+ 1+ 1 = 8 rules to represent all the attributes, whereas prefix solution needs 9 rules

(Figure 3.2(b)).

In what follows, we discuss the order to process pairs of sub-nodes (or super-nodes)

to achieve the optimization goal, extend the solution to generate prefix rules and how to

handle weighted attributes to support the single-table switch architecture (Section 3.3).

Processing order of sub-nodes. The order we use to process sub-nodes matters, as the

compression of one pair of sub-nodes may restrict the compression of another (due to the

equality and inequality between bits). The algorithm calculates the order values for super-

node n as the total number of super-nodes in the tree rooted at n in the graph. For example,

the tree rooted at (/0, S, 4) only contains one super-node (i.e., itself); the tree rooted at (/0,

F, 8) contains three. Super-nodes are sorted according to their order values and examined

76

one by one. When examining one super-node, we process all the pairs of sub-nodes in its

tree. If the compression failed for one pair (i.e., we cannot find a bit to flip), we roll back

all the previous compressions of sub-node pairs in the tree and continue to examine the

next super-node in the sorted list; if the compressions of all pairs of sub-nodes succeed, we

remove these sub-nodes from the trees of other super-nodes, re-calculate order values of

the affected super-nodes and sort again.

Extension: minimize prefix rules. Although the above algorithm is designed to gen-

erate wildcard rules, with a simple trick we could use it to minimize prefix rules as well. The

key observation is that wildcard patterns are produced when we choose to flip non-trailing

bits to compress patterns. For example, when compressing nodes a1b1c1⇤ and a2b2c2⇤, if

we choose c1 then the result a1b1 ⇤⇤ is a prefix pattern, otherwise the pattern (e.g., a1 ⇤ c1⇤

or ⇤b1c1⇤) is a wildcard pattern. Hence, to generate prefix rules, we only need to constrain

the algorithm to flip the last non-wildcard bit (e.g., c1 in the pattern a1b1c1⇤).

Extension: weighted attributes. The basic algorithm minimizes the total number of

rules to represent all the attributes. But attributes may not be equally important in the single-

table switch architecture. For example, Students may be used more often than Faculty. It

is preferred to use fewer rules to represent Students despite the increased number of rules

to represent Faculty. We can extend the wildcard algorithm to minimize the total number

of rules when attributes are weighted. The intuition is to change how the order values of

super-nodes are calculated. We introduce the weight of a super-node as the sum of weights

of its non- /0 attributes. To calculate the order value of a super-node, instead of counting the

number of super-nodes in its tree, we sum up the weights of the super-nodes in the tree.

The sorting and compression procedure remains the same. We can also handle weighted

combinations of attributes (e.g., CS Faculty) with a similar modification to the calculation

of weights and order values of super-nodes.

77

3.4.3 Handle Changes in Host Attributes

Our algorithms proposed so far support address allocation given the attributes of each

host. In practice, attributes of a host may change over time (e.g., the department of the

corresponding user might change), or new attributes may be added (e.g., a new department

may be created). In handling changes, a key consideration is ensuring that only the IP

addresses of impacted hosts are modified to the extent possible.

We employ two techniques to handle changes in attributes. First, to handle growth

in the number of hosts that have a certain attribute, we introduce slack, and budget for

more hosts than actually exist. A straight-forward solution is to provision for a growth in

the number of hosts corresponding to a given attribute by a fixed percentage (e.g., 10%),

though information about projected trends could be used when available. For example, a

university can estimate the number of hosts in the coming semester based on the number

of newly admitted students.

Second, to handle growth in the number of attributes along each dimension, we intro-

duce a “ghost” attribute for each dimension (an additional attributes with which no host

is currently associated) and decide the group sizes for combinations of ghost and real at-

tributes (e.g., the number of hosts with ghost department and Students, or the number of

hosts with ghost department and ghost role).

Given the input with slacked group sizes and ghost attributes, Alpaca algorithms com-

pute ACIP allocation. When the updates only occur for the existing attributes, we change

the addresses of the affected hosts to unused ACIP from the patterns computed for their

new attribute. In the case that the provisioned slack of a group is exhausted, we partition

the address space of the associated ghost groups, whose attributes are either ghost attributes

or attributes of the exhausted group, and allocate part of the space to the exhausted one. For

example, if the ACIPs of (Student, CS) are used up, we could partition the address space of

(Student, GhostDept), (GhostRole, CS) or (GhostRole, GhostDept) and assign new space

to (Student, CS). When the updates involve a new attribute in one dimension, e.g., De-

78

CS (9) EE (8) Ghost dept (6)
Faculty (6) 3 1 2

Students (11) 4 5 2
Ghost role (6) 2 2 2

#
CS (16) EE (8) Ghost dept (6)

Faculty (8) 5 1 2
Students (16) 9 5 2
Ghost role (6) 2 2 2

Table 3.2: An example of slack

partment, we run Alpaca algorithms on the address space for the ghost attribute to split

the space into two parts: one for the new attribute and the other for the ghost attribute.

Afterwards, the addresses of affected hosts are changed accordingly.

Benefits of slack and ghost attributes. The above two techniques offer another im-

portant advantage: further compacting network policies beyond the optimal solution. Con-

sider an example where there are 7 CS hosts and 7 EE hosts. Alpaca needs at least 3 rules

for each attribute, as 7 = 4+ 2+ 1 (Section 3.4.1). With slack, we can round 7 to 8, thus

allowing Alpaca to use only 1 rule per attribute. In fact, if we round the group size for

every attribute to the nearest power-of-two upper bound, we at most double the number

of addresses to use. Namely, we use at most one extra bit to encode attributes given the

slacked group sizes.

We create extra hosts with “mix-matched” attributes such that the number of hosts for

every attribute is power-of-two (Algorithm 3.8). Let pa be the target power-of-two and ga

be the number of hosts for the attribute a. We choose attribute vi from i-th dimension such

that pvi > gvi ,8i2 [1,M], and create h=mini{pvi�gvi} hosts with attribute v1, ..,vM. When

all attributes in a dimension reach their target power-of-two (i.e., pa = ga), we use the ghost

attribute as default, assuming its target power-of-two is infinite. We repeat the procedure

until all attributes reach their target power-of-two (except ghost attributes). Consider the

example in Table 3.2. The numbers of hosts for CS, Faculty and Students should be rounded

79

SLACK(D,G,P)
1 while (True)
2 do for dimension di 2 D
3 do vi ghost attribute
4 for attribute a 2 di
5 do if Pa > Ga
6 then vi a
7 if 8i,vi is ghost attribute
8 then Break
9 h mini{Pvi�Gvi}

10 Gvi Gvi +h,8i
11 Create h hosts with attribute v1, ...,vM
12 return the address allocation of hosts

Figure 3.8: Slack algorithm

to 16,8 and 16. We create 2 CS Faculty hosts in the first iteration and create 5 CS Students

afterwards.

For more complex updates that involve additions of new dimensions, it may be desir-

able to recompute IP allocations from scratch. However, we make several points. First, such

scenarios are relatively infrequent. We envision that Alpaca algorithms are run with a con-

servative set of dimensions, even if some of these dimensions are not currently used as part

of network policy. Addition of new dimensions is likely to happen over long time-scales

— operators typically collect host attribute information using device registration informa-

tion filled by owners, and introducing new dimensions would require new data collection

for registered devices. Second, when such scenarios do occur, it is feasible to temporar-

ily deal with it by splitting the unused address space of other dimensions and introducing

less compact classification rules to identify a given set of hosts. Finally, changes in address

allocation can be incrementally handled using DHCP.

80

3.4.4 Practical Issues

Layer-3 routing. In Alpaca, we consider L3 routing as a policy that forwards packets

based on the “location” of their destinations (e.g., the edge switches of the L3 network).

Hence, Location is regarded as one dimension in the ACIP allocation. We can run Alpaca

to generate classification rules for location dimension, i.e., the rule-set for routing. In some

cases, operators may want to pre-assign subnets to the edge switches, i.e., the classification

rules for Location are pre-determined. Alpaca can work with the requirement as well. The

prefix solution naturally decides the prefix patterns for one dimension after another, it can

compute the rules given the pre-assigned prefixes for Location; the wildcard solution can

construct the equality and inequality of bits in the patterns for nodes based on the Location

prefixes first, and make the later ACIP allocation to comply the prefixes.

Mobility. There are two common solutions to ensure connection affinity when hosts

move. One approach is to keep the IPs of end-hosts unchanged and update routing rules

instead [41]; the other proposes protocols for end-hosts to maintain connections when both

IPs can change [59, 87]. While seamless migration is orthogonal to our work, Alpaca can

work well with either approach. In the former case, we do not update Alpaca’s classification

results, as the attributes of the host is unchanged except location, and the change of location

(used by the routing policy) is handled by the proposed solution; in the latter case, we can

freely assign a new ACIP to the host based on its updated attributes (including location).

3.5 Evaluation

In this section, we evaluate Alpaca’s effectiveness in producing concise rules under

two scenarios: (i) actual policies in existing networks and (ii) futuristic scenarios where

operators may express policy along many orthogonal dimensions. For existing settings, we

evaluate Alpaca using the network configuration files of University B and University C

81

#ACLs Total #Rules #SPU #DPU
University B 13 17868 577 624
University C 5027 32401 523 87

Table 3.3: Network policies of two universities.

(Section 3.5.1). For futuristic settings, we use the host attribute data obtained from Univer-

sity A (Section 3.5.2). Details of both data-sets were presented in Section 3.2.

Overall, our results show that Alpaca can reduce the number of rules by 60%� 68%

and 40%� 96% as compared to the current IP address allocation for multi-table switches

and single-table switches, respectively. Meanwhile, it has the potential to reduce the total

number of rules by over an order of magnitude as compared to the traditional single di-

mensional approaches (e.g.,VLAN) in futuristic scenario where the policy is expressed on

many dimensions. Our experiments further demonstrate that Alpaca can handle changes in

hosts gracefully, with only a small extra number of rules.

Our evaluations explore the performance of both Alpaca variants: Prefix (ALP PFX)

and Wildcard (ALP WC), and for comparison purposes we also consider the BitSegmenta-

tion scheme (BitSeg). Unless otherwise mentioned, both our prefix and wildcard algorithms

use the algorithm (with prefix extension) in Section 3.4.2 and the extension with slack in

Section 3.4.3 by default. We evaluate the schemes for multi-table and single-table switches.

However, our evaluations with single-table switches is limited to the wildcard algorithm,

since the prefix algorithm can only be applied to the multi-table architectures with prefix

matching tables.

3.5.1 Benefits with Existing Policies

Alpaca for multi-table switches

We extract the source and destination policy units (SPUs and DPUs) from the low-

level configuration files for both University B and University C, as discussed in Section 3.2.

Table 3.3 shows the total number of ACL rule-sets, ACL rules across rule-sets, and the

82

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

UniversityB UniversityC
#

R
u

le
s

Orig

BitSeg

ALP_WC

ALP_PFX

Figure 3.9: Optimize network policies on mutli-table switches.

number of SPUs and DPUs for both universities. Given a pipeline of tables, we install the

classification rules that associate a given IP with its appropriate SPU and DPU in the first

two tables, and the actual policy action (e.g., permit or deny) based on the SPUs and DPUs

in the last table. We focus on the number of classification rules in the first two tables for a

given policy, since the last table is the same in all approaches.

Figure 3.9 compares the number of rules used by (1) the original IP allocation (Orig),

(2) BitSeg, (3) ALP PFX and (4) ALP WC for University B and University C, respectively.

The original IP allocation needs the most rules. BitSeg takes the least, as it uses one rule

for each policy unit. Specifically, the number of rules used by BitSeg equals the number

of SPUs and DPUs. Both ALP PFX and ALP WC perform closely to BitSeg, achieving

68% reduction in rule consumption as compared to the original. It confirms that Alpaca

can efficiently encode policy units.

Benefits of slack. We compare the case with and without slack operations to show the

benefits of trading an extra bit for significant reduction in number of rules. Figure 3.10(a)

presents the reduction in the number of rules for University B. We use NS to indicate run-

ning Alpaca without slack. While WC NS (3rd bar) is competitive with other approaches,

PFX NS (5th bar) performs slightly worse, giving a reduction of 35.4%. The reasons are

two-fold: for one thing, prefix patterns fundamentally restrict the potential of using fewer

83

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

Orig BitSegWC_NS WC PFX_NS PFX

#
R

u
le

s

(a) Rules

 0

 5

 10

 15

 20

 25

 30

 35

Orig BitSegWC_NS WC PFX_NS PFX

#
B

it
s

(b) Bits

Figure 3.10: Benefits of slack. BS, WC and PFX denote Wildcard, Prefix and BitSegmen-
tation schemes. NS indicates variant without slack.

rules (as compared to wildcard patterns); for the other, PFX NS solutions represent the ex-

act group size of every combination (i.e., each SPU and DPU pair) without any slack. If the

group size is not power-of-two, PFX NS solutions need many more rules. We bridge the

gap by adding slack and rounding group sizes. As a result, PFX offers similar performance

to the optimal (i.e., BitSeg). In the remainder of the evaluation, we run slack algorithm

before IP allocation by default.

Moving to the number of bits for encoding (Figure 3.10(b)), we find BitSeg performs

the worst, using as many as 34 bits (more than IPv4!). We calculate the least number of bits

that can sufficiently number all the hosts (13 for University B). While the original allocation

uses the least bits, PFX NS takes exactly one bit more as the slack algorithm makes use

of an extra bit to round group sizes (Section 3.4.3). Alpaca strikes a balance in both the

number of rules and bits, using almost as few rules as BitSeg and one extra bit than the

least number of bits.

Alpaca for single-table switches

Generally, a switch with a single table takes more rule space than the one with multiple

tables to implement the same policy, because the rules installed in the former case are the

cross-product of rules in the multiple tables in the latter case. Alpaca uses the frequency

84

 0

 2000

 4000

 6000

 8000

 10000

 12000

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13

#
R

u
le

s

Orig

BitSeg

ALP_WC

(a) University B

 0

 100

 200

 300

 400

 500

 600

 700

 800

C1 C2 C3

#
R

u
le

s

Orig

BitSeg

ALP_WC

(b) University C

Figure 3.11: Optimize network policies on single-table switches.

of attributes (i.e., SPU or DPU) used in ACLs to minimize the resulting rules. We com-

pare three approaches: ALP WC, BitSeg and the original IP allocation. Figure 3.11(a)(b)

demonstrate the effectiveness of Alpaca in compacting large ACL rule-set. Alpaca wild-

card compacts the original policies by 40%� 96%, competitive with BitSeg. We would

like to point out that the original ACLs are written with respect to the resource constraints

of the deployed switches in the networks. As a result, all the original ACLs could fit into the

switches. But even so, the reduction by Alpaca is significant. It suggests that with Alpaca,

the network operators can use cheaper switches with smaller rule-tables to support today’s

policies, or plan for larger policies in the future with the current switches.

3.5.2 Benefits with Futuristic Policies

We demonstrate Alpaca’s capability to support flexible attribute-based policies with a

series of experiments on the host information at the CS department of University A (Ta-

ble 3.1). In the current CS network, operators deploy VLANs to group hosts with the same

Role, which is used in most network policies. But they would like to use Security Level,

Status and Operating System for access control and have flexible QoS policies defined on

Usage, CS owned as well. Hence, we examine the cost in terms of rules and address space

85

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

1 2 3 4 5 6

#
R

u
le

s

#Dimensions

SingleDim

SD_PFX

SD_WC

ALP_PFX

ALP_WC

(a) Rules

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6

#
B

it
s

#Dimensions

Opt

BitSeg

ALP/SingleDim/SD_PFX/SD_WC

(b) Bits

Figure 3.12: Encode attributes with increased #dims.

to support the futuristic scenarios, where policies are defined on attributes along multiple

dimensions.

We compare Alpaca with three approaches:

(1) SingleDim (e.g., VLAN), which assigns addresses based on a single dimension.

SingleDim uses a few rules to represent attributes for one dimension: VLAN uses one

rule (the subnet) for each Role attribute; a host is assigned a random address in the subnet

corresponding to its Role attribute. However, given a second dimension or more, SingleDim

has to enumerate every single host and list their attributes.

(2) SD PFX, which applies an optimal algorithm [53] to minimize the number of prefix

rules for attributes, given the SingleDim address assignment.

(3) SD WC, which uses an efficient heuristic [54] to compute the wildcard rules to

represent attributes based on the SingleDim address assignment, as minimizing wildcard

rules is NP-hard [50].

We remark that SD PFX and SD WC minimize the number of rules by assuming rule

priority. Both methods generate overlapping rules for different attributes. In contrast, Al-

paca generates non-overlapping rules for different attributes, i.e., does not apply rule prior-

ity. Below, we show that even without using rule priority, Alpaca significantly outperforms

the two compression methods.

86

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

1500 3000 6000 9000 12000 15000
#

R
u

le
s

#Hosts

SingleDim

SD_PFX

SD_WC

ALP_PFX

ALP_WC

Figure 3.13: Encode attributes with increase #hosts.

Scale with more dimensions. We evaluate Alpaca’s encoding efficiency and scala-

bility with increasing number of dimensions. Six dimensions are chosen (in order): Role,

Security Level, Location, Status, CS owned and Usage. The initial set of dimensions only

contains Role. Then, in each iteration, we add one more dimension to the current set and

run Alpaca algorithms to generate classification rules. Figure 3.12(a) plots the number of

rules generated by SingleDim, SD PFX and SD WC and Alpaca over the six iterations.

Given one dimension, all approaches generate a small number of rules. Moving to two di-

mensions (i.e., Role and Security Level), SingleDim has to potentially enumerate hosts and

their attributes, taking as many rules as the number of hosts in the data. The number of rules

used by SingleDim is unchanged over the iterations then. SD PFX and SD WC generates

less rules than SingleDim, as they apply compression algorithms for a smaller rule set to

represent attributes. Yet, when there are six dimensions, the number of rules (1130 wildcard

rules and 1363 prefix rules) is very close to the number of hosts. In contrast, both Alpaca

prefix and wildcard scales well with increasing number of dimensions. Alpaca uses 376

wildcard rules or 456 prefix rules for six dimensions, which are significantly smaller. We

show the number of bits in Figure 3.12(b). Both Alpaca and SingleDim approaches use 12

bits, while the least number of bits (denoted as Opt) is 11 (1491 < 211). BitSeg is infeasible

in practice after two dimensions, as it takes more than 16 bits to encode attributes.

87

Scale with more hosts. Our data only covers a single department, but an entire univer-

sity (with dozens of departments) has more hosts and enterprises can be even larger in sizes.

We examine Alpaca’s scalability with more hosts, by synthesizing the host information. We

copy each host 2 to 10 times and obtain the scaled-up host data. Figure 3.13 compares sev-

eral approaches to classify hosts in 6 dimensions. Alpaca scales well, using 436 wildcard

rules or 528 prefix rules for around 15000 hosts. Its performance is very stable, due to the

use of aggregated patterns (e.g., wildcard or prefix matches) to classify groups of hosts.

The number of hosts does not impact its performance. In contrast, SingleDim potentially

needs 15000 rules to enumerate every host; it does not scale to larger networks. The com-

pression algorithms do not help much: SD PFX and SD WC need 13589 and 10821 rules,

respectively, because the single dimension based allocation does not help the aggregation

on other dimensions.

Encode different sets of dimensions. While Alpaca performs well for three dimen-

sions: Role, Security Level and Location (as shown above), we are curious about its per-

formance on a different set of three dimensions, such as Role, CS owned and Operating

System. Hence, we fix the number of dimensions to encode and run the algorithm on var-

ious sets of dimensions. Figure 3.14(a) shows the performance of Alpaca to encode seven

sets of three dimensions. We do observe the fluctuation: the number of rules generated by

Alpaca ranges from 36 to 117 for wildcard case and 44 to 135 for prefix case. Upon closer

examination, we find out that the performance is highly correlated with the possible combi-

nations of attributes. Specifically, for the set of dimension {Role, Security Level, Location},

there are 80 combinations of attributes which at least one host is associated with; for the

set {Status, CS owned, OS}, there are only 22 combinations. Given increasing numbers of

combinations of attributes, Alpaca is more likely to generate many rules.

Update the assignment for new hosts. We divide hosts into two equal-sized sets

based on their created time and run Alpaca to encode four dimensions: Role, Security Level,

Status and Usage. We use the first set for the initial hosts and the second set for the newly

88

 0

 20

 40

 60

 80

 100

 120

 140

R,SL,Loc

R,SL,OS
Loc,CS,OS

R,CS,OS
Loc,S,Use

SL,S,CS
S,CS,OS

#
R

u
le

s

ALP_PFX

ALP_WC

(a) Different sets of dims

 0

 50

 100

 150

 200

PFX_Update � WC_Update �

#
R

u
le

s

FirstSet

Overflow

NewAttribute

UnionOfTwoSets

(b) Update assignment

Figure 3.14: Property of Alpaca algorithm

added hosts. For the first set, Alpaca provisions slack and creates ghost attributes for all

dimensions. The second set not only inserts more hosts with the existing attributes but also

introduces 4 more new attributes in Security Level. To assign addresses to new hosts with

existing attributes, Alpaca uses the slack in the corresponding group. But if the group size is

insufficient, Alpaca has to “steal” flow space from the related ghost groups (Section 3.4.3).

To handle the new attributes, Alpaca splits the address space of ghost attributes in the same

dimension as well. In our evaluation (Figure 3.14(b)), the first set (left red bar) uses 139

prefix rules or 119 wildcard rules to represent the four dimensions. Fixing the assignment

for the first set, we calculate the extra rules needed to handle the second set. The extra

rules come from two parts: (1) hosts with new attributes and (2) overflowed group sizes.

As a result, we need an extra 6 rules for the new attributes and 24 rules for the overflowed

groups. The overhead is very small compared to 153 prefix rules or 130 wildcard rules

for the union of the two sets, where the assignment is computed from scratch without any

incremental updates.

3.6 Related Work

Rule optimization: Minimizing prefix rules matching one header field is easy [23],

but minimizing prefix rules or wildcard rules in general cases is NP-hard [50, 53]. Optimal

89

solutions are developed to minimize prefix rules in special cases [9, 23, 60, 66, 75]. Heuris-

tics [47,53,68] are presented to compress rules in general cases. In particular, [55] suggests

to decompose a single rule list into a pipeline of rule lists to minimize the total number of

rules. All of these works take the rule-set as an input and explore the potential for min-

imization, which, in fact, is limited by the original (unoptimized) address allocation. In

comparison, Alpaca generates the rule list as an output through a smart address allocation

process to minimize the number of rules.

Address permutation: Wei et al. propose to swap addresses between two blocks of

users to reduce the number of rules [82], but the algorithm can only handle up to two

dimensions. Meiners et al. use permutation of the bits in addresses to create prefix patterns

so compression algorithms can apply [54]. But it only discovers the optimization potential

within the original address allocation.

Information encoding: Huffman coding encodes attributes of a single dimension us-

ing prefixes, but its goal is to minimize the weighted sum of the prefix lengths of all at-

tributes. Hence the prefixes do not match the group sizes. SoftCell [41] embeds two dimen-

sional information, i.e., location and middlebox service chain, in the NAT-ed IP addresses.

Its encoding mechanism is a special case of BitSegmentation. Algorithms to encode for-

warding rules with minimum bits are proposed in [65, 67].

Attribute-based policy enforcement: Ethane [19] proposes to implement access con-

trol at the network edge by directing the first packet of every flow to a controller, which

consults the attributes of hosts and install microflow rules on the switch. FlowTags [25]

tag packets based on host attributes and match tags to enforce network policies. Another

approach, NetAssay [22], supports network traffic monitoring policies by pushing specific

switch-rules for each host given their current IPs. All these work do not optimize IP allo-

cation and install many host-specific rules.

90

3.7 Conclusion

In this paper, we have made three contributions. First, we show the importance and

feasibility of considering attributes in IP address allocation. Second, we present the Alpaca

system, and two algorithms which cope well with constraints on the IP address space, en-

terprise churn, and heterogeneity in group sizes. When evaluated with configuration data

from two universities, ALP WC and ALP PFX reduce the number of rules by 50%�68%

and 60%�68% respectively for multi-table switches. Further, the algorithms have the po-

tential to reduce the total number of rules by over an order of magnitude compared to

single dimension based IP address allocation schemes. This can in turn lower the barriers

for network administrators to express richer policies involving multiple dimensions.

91

Chapter 4

Niagara: Efficient Traffic Splitting on

Commodity Switches

Traffic often needs to be split over multiple equivalent backend servers, links, paths,

or middleboxes. For example, in a load-balancing system, switches distribute requests of

online services to backend servers. Hash-based approaches like ECMP have low accuracy

due to hash collision and incur significant churn during update. In a Software-Defined

Network (SDN), the accuracy of traffic splits can be improved by crafting a set of wildcard

rules for switches that better match the actual traffic distribution. The drawback of existing

SDN-based traffic-splitting solutions [13,33,70,81] is poor scalability as they generate too

many rules for small rule-tables on switches.

In this chapter, we present the design of Niagara, an SDN-based traffic-splitting

scheme that achieves accurate traffic splits while being extremely efficient in the use of

rule-table space available on commodity switches. Niagara uses an incremental update

strategy to minimize the traffic churn given an update. We prototype Niagara for a hybrid

load balancer comprising of a hardware switch and multiple software switches and propose

an efficient update scheme to preserve connection affinity. Experiments demonstrate that

Niagara (1) achieves nearly optimal accuracy using only 1.2%� 37% of the rule space

92

of the current state-of-art, (2) scales to tens of thousands of services with the constrained

rule-table capacity and (3) offers nearly minimum churn.

4.1 Introduction

Network operators often spread traffic over multiple components (such as links, paths,

middleboxes, and backend servers) that offer the same functionality or service, to achieve

better scalability, reliability, and performance. Managing these distributed resources ef-

fectively requires a good way to balance the traffic load, especially when different com-

ponents have different capacity. Rather than deploying dedicated load-balancing appli-

ances, modern networks increasingly rely on the underlying switches to split load across

the replicas [4, 7, 28–30, 63, 81, 88]. For example, server load-balancing systems [28, 63]

use hardware switches to spread client requests for each service over multiple software

load balancers, which in turn direct requests to backend servers. Another example is multi-

pathing [37,77,88], where a switch splits the flows with the same destination over multiple

paths.

The most common traffic-splitting mechanism is ECMP [37,77], which is available in

most commodity switches and widely used for load balancing [28, 63] and multi-pathing

purposes [4,30]. ECMP splits a set of flows (typically flows with the same destination pre-

fix) uniformly over a group of next-hops based on the hash values of the packet-header

fields. Weighted-Cost Multi-Path (WCMP) [88] is an extension of ECMP that supports a

weighted splits by repeating the same next-hop multiple times in an ECMP group. ECMP

and WCMP both partition the flow space, assuming equal traffic load in each hash bucket.

The splitting accuracy of ECMP degrades significantly due to hash collision [5, 13]. Fur-

thermore, ECMP incurs unnecessary traffic shifts during updates. When a next-hop is added

or removed in ECMP, any hash function shifts at least 25% to 50% of the flow space to a

different next-hop [37].

93

In this paper, we are interested in designing a generic and accurate traffic-splitting

scheme for commodity switches. The emergence of open interfaces to commodity SDN

switches such as OpenFlow [16, 51], enables operators to have a controller that installs

rules on switch rule-tables to satisfy the load-balancing goals [13,33,81]. These rule-tables

(e.g., TCAM) are optimized for high-speed packet-header matching, however they have

small capacities on the order of a few thousand entries [8,38,68]. The simplest SDN-based

solution [33] directs the first packet of each flow to the controller, which reactively installs

an exact-match (microflow) rule on the switch. More efficient approaches [13, 26, 69, 81]

proactively install wildcard rules that direct packets matching the same header patterns to

the same next-hop, but they do not use the rule-table space efficiently and cannot scale to

large networks.

This paper presents Niagara, an efficient traffic-splitting scheme that computes switch

rules to minimize traffic imbalance (i.e., the fraction of traffic sent to the “wrong” next-

hop, based on the target load balancing weights), subject to rule-table constraints. Niagara

handles multiple flow aggregates—sets of flows with the same destination or egress. Each

flow aggregate is splitted according to distinct target weights. Our experiments demonstrate

that Niagara scales to tens of thousands of flow aggregates and hundreds of next-hops

with a small imbalance. After a brief discussion of traffic-splitting use cases and related

work (Section 4.2), we present the traffic-splitting optimization problem and a high-level

overview of Niagara (Section 4.3).

We make the following contributions.

Efficient traffic-splitting algorithm: Niagara approximates load-balancing weights

accurately with a small number of wildcard rules. For each flow aggregate, Niagara can

flexibly trade off accuracy for fewer rules (Section 4.4). Niagara packs rules for multiple

flow aggregates into a single table, and allows sharing of rules across multiple aggregates

with similar weights (Section 4.5). Given an update, Niagara computes incremental changes

94

to the rules to minimize churn (i.e., the fraction of traffic shuffled to a different next-hop

due to the update) and traffic imbalance (Section 4.6).

Realistic prototype: We implement the Niagara OpenFlow controller and deploy the

controller (i) in a physical testbed with a hardware Pica8 switch interconnecting four hosts

and (ii) in Mininet [34] with Open vSwitches [3] and a configurable number of hosts. We

recently conducted a live demonstration of Niagara at an SDN-based Internet eXchange

Point (IXP) in New Zealand [1], where Niagara load balanced DNS and web requests

to backend servers in a production environment. In Section 4.7, we present the design

and implementation of a Niagara-based load balancer with an efficient update scheme to

preserve connection affinity.

Trace-driven large-scale evaluation: We evaluate the performance of Niagara for

server load balancing and multi-path traffic splitting through extensive simulation against

real and synthetic data and validate the simulation results subject to the limitations of our

prototype (Section 4.8). Experiments demonstrate that Niagara (1) achieves nearly opti-

mal accuracy outperforming ECMP and other SDN-based approaches, (2) scales to tens

of thousands of aggregates using as little as 1.2%� 37% of the rule space compared to

alternative solutions and (3) handles update gracefully with nearly minimal churn.

4.2 Traffic split background

4.2.1 Use cases

We provide three examples that illustrate how hardware switches are used to split

traffic over next-hops.

Server load balancing. Cloud providers host many services, each replicated on

multiple servers for greater throughput and reliability. Load balancers (e.g., Ananta [63],

Duet [28]) rely on hardware switches to spread service requests over servers. Ananta uses

switches to forward requests over software load balancers (SLB), which then send requests

95

to backends; Duet requires switches to distribute requests to backends for popular services

directly, besides forwarding to SLBs. Depending on the server capacity and deployments

(e.g., server allocation in racks, maintenance and failures), a switch is required to spread

requests evenly or in a weighted fashion [28, 81]. Both Ananta and Duet use hash-based

traffic-splitting schemes (Section 4.2.3).

Data center multi-pathing. Data center topologies [4,30,88] offer many equal-length

paths that switches can use to increase bisection bandwidth. In a fully symmetric topol-

ogy, a switch splits traffic of each destination prefix equally over available paths. A recent

study [88] found that data-center topologies tend to be asymmetric due to failures and het-

erogeneous devices. In such a topology, a switch should split traffic in proportion to the

capacity of the equal-length paths.

Wide area traffic engineering. Wide Area Networks (WAN) carry a huge amount

of inter-datacenter traffic. WAN traffic engineering systems (TE) establish tunnels among

data center sites and run periodic algorithms to optimize the bandwidth allocation of tunnels

to different applications. The underlying switches should split traffic for each application

over tunnels according to the algorithm’s results for the best network utilization. Existing

TE solutions (e.g., SWAN [36], B4 [40]) use hash-based approaches as their default traffic-

splitting schemes (Section 4.2.3).

4.2.2 Requirements

Accuracy. Traffic-splitting schemes should be accurate. Commodity servers can han-

dle a limited number of requests; an inaccurate traffic split can easily overload a server,

thus incurring long latencies and request failures. In the network, inaccurate splits create

congestion and packet loss.

Scalability. The scheme should scale. Data centers host up to tens of thousands of

services (i.e., flow aggregates), which are collectively handled by a handful of SLBs (i.e.,

next-hops); multi-path routing requires an ingress switch to handle hundreds of destination

96

prefixes (i.e., flow aggregates) and dozens of paths (i.e., next-hops). A scalable traffic-

splitting scheme should handle the heterogeneity in the numbers of flow aggregates and

next-hops, given the constraints in rule-table capacity.

Update efficiency. Failures or changes in capacity require updating the split of flow

aggregates. However, transitioning to this new split comes at some cost of reshuffling pack-

ets among servers (i.e., churn). This requires extra work to ensure consistent handling of

TCP connections already in progress [21, 63, 64]. A good traffic-splitting scheme needs to

be updatable with limited churn.

4.2.3 Prior Traffic-Splitting Schemes

Hash-based approaches. ECMP aims at an equal split over a group of next-hops

(e.g., SLBs) by partitioning the flow space into equal-sized hash-buckets, each of which

corresponds to one next-hop. WCMP handles weighted splits by repeating next-hops in

an ECMP group, thus assigning multiple hash-buckets to the same next-hop. ECMP is

available on most commodity switches, which gives rise to its popularity [28, 36, 40, 63].

However, it splits the flow space equally, rather than the actual traffic. It is common that

certain parts of the flow spaces (e.g., a busy source) contribute more traffic than others [5,

12, 30]; an even partition of the flow space does not guarantee the equal split of traffic.

Moreover, the size of the ECMP table, which is a TCAM with hundreds to thousands rules

on commodity switches [88], severely restricts the achievable accuracy of WCMP. Finally,

updating an ECMP group unnecessarily shuffles packets among next-hops. It is shown that

when a next-hop is added to a N� 1-member group, at least 1
4 +

1
4N of the flow space are

shuffled to different next-hops [37], while the minimum shuffle is 1
N .

SDN-based approaches. SDN supports programming rule-tables in switches, en-

abling finer-grained control and more accurate splitting. Aster*x [33] directs the first packet

of each flow to a controller, which then installs micro-flow rules for forwarding the remain-

ing packets, making the controller load and hardware rule-table capacity quickly become

97

bottlenecks. MicroTE [13] proactively decides routing for every pair of edge switches (i.e.,

ToR-to-ToR flows in a data center), but still generates many rules. A more scalable alter-

native installs coarse-grained rules that direct a consecutive chunk of flows to a common

next-hop. A preliminary exploration of using wildcard rules is discussed in [81]. Niagara

follows the same high-level approach, but presents more sophisticated algorithms for opti-

mizing rule-table size, while also addressing churn under updates. We discuss [81] in detail

in Section 4.4.1.

Other approaches for multi-pathing. The traffic-splitting problem has been studied

extensively in the past in the context of multi-pathing. LocalFlow [70] achieves perfectly

uniform splits, but cannot produce weighted splits and may split a flow, causing packet

reordering. Conga [6] and Flare [44] load balance flowlets (bursts of packets within a flow)

to avoid reordering but require advanced switch hardware support. In comparison, Niagara

load balances traffic without packet reordering using off-the-shelf OpenFlow switches. An

alternative approach to these schemes is centralized flow scheduling such as Hedera [5].

Hedera reroutes “elephant” flows based on global information. Niagara could provide the

default routing scheme for a centralized flow-scheduler which then installs specific flow-

rules for elephant flows. The third type of approaches is host-controlled routing, which

changes the paths of packets by customizing extra fields in ECMP hash functions [43] or

round-robin forwarding to intermediate switches [18]. Niagara does not directly compete

with these approaches by design, as it does not touch the end-hosts.

4.3 Niagara Overview

Niagara generates wildcard rules to split the traffic within the constrained rule-table

size. Incoming traffic is grouped into flow aggregates, each of which is divided over the

same set of next-hops according to a weight vector. The per-aggregate weight vector is

calculated with consideration on the bandwidth of both downstream links and capacity of

98

Match Action
DIP SIP Next-hop

63.12.28.42 ⇤0 17.12.11.1
63.12.28.42 ⇤ 17.12.12.1
63.12.28.34 ⇤00100 17.12.11.1
63.12.28.34 ⇤000 17.12.11.1
63.12.28.34 ⇤0 17.12.12.1
63.12.28.34 ⇤ 17.12.13.1

(a) Load balancing two services.

Match Action
DIP Tag

63.12.28.42 1
63.12.28.53 1
63.12.28.27 1
63.12.28.34 2
63.12.28.43 2

=)

Match Action
Tag SIP Next-hop
1 ⇤0 17.12.11.1
1 ⇤ 17.12.12.1
2 ⇤00100 17.12.11.1
2 ⇤000 17.12.11.1
2 ⇤0 17.12.12.1
2 ⇤ 17.12.13.1

(b) Grouping and load balancing five services.

Figure 4.1: Example wildcard rules for load balancing.

next-hops. In the load balancing example, incoming packets are grouped by their desti-

nation IPs (i.e., services). Traffic of each service is divided over next-hops (i.e., SLBs)

according to their capacity (e.g., bandwidth, CPU, the number of backend servers they

connect to). Figure 4.1(a) shows an example of wildcard rules generated by Niagara for

load balancing. Each rule matches on destination IP to identify the service and source IP

to forward packets to the same SLBs. Packets are forwarded based on the first matching

rule. In addition to wildcard rules, Niagara leverages the metadata tags supported by latest

chip-sets [16] and generates tagging rules to group services of similar weight distributions,

thus further reducing the number of rules (Figure 4.1(b)).

In this section, we formulate the optimization problem for computing wildcard rules in

the switch and outline the five main components of our algorithm. For easy exposition of the

rule generation algorithm, we use suffixes of source IP address and assume a proportional

split of the traffic over suffixes (e.g., ⇤0 stands for 50% traffic). We relax this assumption

in Section 4.4.1.

99

4.3.1 Rule Optimization Problem Formulation

The algorithm computes the rules in the switch, given the per-aggregate weights and

the switch rule-table capacity. A hardware switch should approximate the target division

of traffic over the next-hops accurately. The misdirected traffic may introduce congestion

over downstream links and overload on next-hops. As such, an important challenge is to

minimize the imbalance—the fraction of traffic that routes to the “wrong” next-hops.

The weights of each aggregate vary due to differences in resource allocation (e.g.,

bandwidth), next-hop failures, and planned maintenance. Each aggregate v has non-

negative weights {wv j} for splitting traffic over the M next-hops j = 1,2, . . . ,M, where

Â j wv j = 1. (Table 4.1 summarizes the notation.) The traffic split is not always exact, since

matching on header bits inherently discretizes portions of traffic. In practice, splitting

traffic exactly is not necessary, and aggregates can tolerate a given error bound e, where

the actual split is w0v j such that |w0v j�wv j| e. The value of e depends on the deployment:

an aggregate with a few next-hops requires a smaller e value (usually in [0.001,0.01]).

Ideally, the hardware switch could achieve w0v j with wildcard rules. But small rule-table

sizes thwart this, and instead, we settle for the lesser goal of approximating the weights as

well as possible, given a limited rule capacity C at the switch.

To approximate the weights, we solve an optimization problem that allocates cv rules

to each aggregate v to achieve weights {w0v j} (i.e., cv = numrules({w0v j})). Aggregate v has

traffic volume tv, where some aggregates contribute more traffic than others. We define the

total imbalance as the sum of over-approximated weights. The goal is to minimize the total

100

Variable Definition
N Number of aggregates (v = 1, . . . ,N)
M Number of next-hops (j = 1, . . . ,M)
C Hardware switch rule-table capacity

wv j Target weight for aggregate v, next-hop j
tv Traffic volume for aggregate v
dv Traffic distribution for aggregate v over the flow space
e Error tolerance |w0v j�wv j| e

w0v j Actual weight for aggregate v, next-hop j
cv Hardware rule-table space for aggregate v

Table 4.1: Table of notation, with inputs listed first.

traffic imbalance, while approximating the weights:

minimize Âv(tv⇥Â j E(w0v j�wv j,e)) s.t.

w0v j � 0 8v, j

Â j w0v j = 1 8v

cv = numrules({w0v j}) 8v

Âv cv C

where E(x,e) =

8
><

>:

x if x > e

0 if x e

given the weights {wv j}, traffic volumes {tv}, rule-table capacity C, and error tolerance e

as inputs.

4.3.2 Overview of Optimization Algorithm

Our solution to the optimization problem introduces five main contributions, starting

with the following three ideas:

Approximating weights for a single aggregate (Section 4.4.1): Given weights {wv j}

for aggregate v and error tolerance e, we compute the approximated weights {w0v j} and the

101

associated rules for each aggregate. The algorithm expands each weight wv j in terms of

powers of two (e.g., 1
6 ⇡

1
8 +

1
32) that can be approximated using wildcard rules.

Truncating the approximation to use fewer rules (Section 4.4.2): Given the above

results, we can truncate the approximation and fit a subset of associated rules into the rule

table. This results in a tradeoff curve of traffic imbalance versus the number of rules.

Packing multiple aggregates into a single table (Section 4.5.1): We allocate rules

to aggregates based on their tradeoff curves to minimize the total traffic imbalance. In each

step of the packing algorithm, we allocate one more rule to the aggregate that achieve the

highest ratio of the benefit (the reduction in traffic imbalance) to the cost (number of rules),

until the hardware table is full with a total of C = Âv cv rules. Consequently, more rules are

allocated to aggregates with larger traffic volume and easy-to-approximate weights.

Together, these three parts allow us to make effective use of a small rule table to divide

traffic over next-hops.

Thousands of aggregates with dozens of next-hops can easily overwhelm the small

wildcard rule table (i.e., TCAM) in today’s hardware switches. Fortunately, today’s hard-

ware switches have multiple table stages. For example, the popular Broadcom chipset [16]

has a table that can match on destination IP prefix and set a metadata tag that can be matched

(along with the five-tuple) in the subsequent TCAM. Niagara can capitalize on this table

to map an aggregate to a tag—or, more generally, multiple aggregates to the same tag. Our

fourth algorithmic innovation uses this table:

Sharing rules across aggregates with similar weights (Section 4.5.2): We associate

a tag with a group of aggregates with similar weights over the same next-hops. We use k-

means clustering to identify the groups, and then generate one set of rules for each group.

Furthermore, we create a set of default rules of low priority, which are shared by all groups.

Transitioning to new weights (Section 4.6): In practice, weights change over time,

forcing Niagara to compute incremental changes to the rules to control the churn.

102

¦
¦»

¦»» ¦»¼
¦¼

� � � � � � � �

¦¼» ¦¼¼

�

�
� �
� � �

�
� �

� � � �
� �

� �

�
� �

� � � �

�
� �

� � � �

(a) Suffix allocation

Pattern Action
⇤000 fwd to 1
⇤100 fwd to 2
⇤10 fwd to 2
⇤1 fwd to 3

(b) Naive approach

Pattern Action Priority
⇤000 fwd to 1 high
⇤0 fwd to 2 low
⇤1 fwd to 3 low

(c) Use subtraction and priority

Figure 4.2: Naive and subtraction-based rule generation for weights {1
6 ,

1
3 ,

1
2} and approxi-

mation {1
8 ,

3
8 ,

4
8}.

4.4 Single Aggregate Optimization

We begin with generating rules to approximate the weight vector {wv j} of a single

aggregate v within error tolerance e. We then extend the method to account for constrained

rule-table capacity C.

4.4.1 Approximate: Binary Expansion

Naive approach to generating wildcard rules. A possible method to approximate the

weights [81] is to pick a fixed suffix length k and round every weight to the closest multiple

of 2�k such that the approximated weights still sum to 1. For example by fixing k = 3,

weights wv1 =
1
6 , wv2 =

1
3 , and wv3 =

1
2 are approximated by w0v1 =

1
8 , w0v2 =

3
8 , and w0v3 =

4
8 . The visualized suffix tree is presented in Figure 4.2(a). To generate the corresponding

wildcard rules, an approximate weight b⇥ 2�k is represented by b k-bit rules. In practice,

allocating similar suffix patterns to the same weight may enable combining some of the

103

Iteration w0v1 w0v2 w0v3

0 0 0 1

1 0 1
2 1�1

2

2 1
8

1
2�

1
8 1� 1

2

3 1
8 +

1
32

1
2 �

1
8�

1
32 1� 1

2
(a) Approximation iterations

Pattern Action Corresponding terms

⇤00100 fwd to 1 1
32 in w0v1 and � 1

32 in w0v2

⇤000 fwd to 1 1
8 in w0v1 and � 1

8 in w0v2

⇤0 fwd to 2 1
2 in w0v2 and � 1

2 in w0v3

⇤ fwd to 3 1 in w0v3
(b) Wildcard rules

Figure 4.3: Wildcard rules to approximate (1
6 ,

1
3 ,

1
2)

rules, hence reducing the number of rules. The corresponding wildcard rules are listed in

Figure 4.2(b).

Shortcomings of the naive solution. The naive approach always expresses b as the

“sums” of power of two (for example 3
8 is expressed as 2

8 +
1
8) and only generates non-

overlapping rules. In contrast, our algorithm allows subtraction as well as longest-match

rule priority. In the above example, 3
8 can be expressed as 4

8 �
1
8 to achieve the same ap-

proximation with one less rule (Figure 4.2(c)). The generated rules overlap and the longest-

matching rule is given higher priority: ⇤000 is matched first and “steals” 1
8 of the traffic from

rule ⇤0.

The power of subtractive terms and rule priority. Our algorithm approximates

weights using a series of positive and negative power-of-two terms. We compute the ap-

proximation w0v j = Âk x jk for each weight wv j subject to |w0v j�wv j| e. Each term x jk =

b jk⇥2�a jk , where b jk 2 {�1,+1} and a jk is a non-negative integer. For example, wv2 =
1
3

is approximated using three terms as w0v2 = 1
2 �

1
8 �

1
32 . As we explain later, each term

x jk is mapped to a suffix matching pattern. In what follows, we show how to compute the

approximations and how to generate the rules.

Approximate the weights

We start with an initial approximation where the biggest weight is 1 and the other

weights are 0. The initial approximation for wv = (1
6 ,

1
3 ,

1
2) is w0v = (0,0,1) (Figure 4.3(a)).

104

The errors, namely the difference between the w0v and wv, are (�1
6 ,�

1
3 ,

1
2). wv1,wv2 are

under-approximated , while wv3 is over-approximated.

We use error tolerance e = 0.02 for the example. The initial approximation is not good

enough; wv2 is the most under-approximated weight with an error �1
3 . To reduce its error,

we add one power-of-two term to w0v2. At the same time, this term must be subtracted from

another over-approximated weight to keep the sum unchanged. We move a power-of-two

term from wv3 to wv2.

We decide the term based on the current errors of both weights. The term should offer

the biggest reduction in errors. Let the power-of-two term be x. Given the current errors of

wv2 and wv3, i.e., �1
3 and 1

2 , we calculate the new errors as �1
3 + x and 1

2 � x. Hence, the

reduction is

4 = |� 1
3
|+ |1

2
|� |� 1

3
+ x|� |1

2
� x| (4.1)

= 2⇥ (min(
1
3
,x)+min(

1
2
,x)� x) (4.2)

The function is plotted as red line in Figure 4.4. When x = 1, 1
2 and 1

4 , the reduction is

�1
3 ,

2
3 and 1

2 respectively. In fact, Equation4 is a concave function, which reaches its max-

imum value when x 2 [1
3 ,

1
2]. Hence, we choose 1

2 . In a more general case, where multiple

values give the maximum reduction, we break the tie by choosing the biggest term. After

this operation, the new approximation becomes (0, 1
2 ,1�

1
2) with errors (�1

6 ,
1
6 ,0).

We repeat the same operations to reduce the biggest under-approximation and over-

approximation errors iteratively. In the example, wv3 is perfectly approximated (the error is

0). We only move terms from wv2 to wv1. Two terms 1
8 ,

1
32 are moved until all the errors are

within tolerance. Eventually, each weight is approximated with an expansion of power-of-

two terms (Figure 4.3(a)).

105

-1

-0.5

 0

 0.5

 1

 0.125 0.25 0.5 1
R

ed
u

ct
io

n
Term values

Max reduction in [1/3,1/2]

Max reduction at 1/6

Errors: -1/3, 1/2

Errors: 1/6, -1/6

Figure 4.4:4 plots with different errors.

We make three observations about this process. First, the errors are non-increasing,

as each time we reduce the biggest errors. Second, the chosen power-of-two terms are

non-increasing, because the terms with the maximum 4 always lie between two errors

(Figure 4.4). For a term that gives the best4 in the current iteration, only smaller terms may

have a bigger reduction in the next iteration1. Finally, the reduction 4 is non-increasing,

as Equation 4 is monotonic with both errors and the chosen power-of-two term. In other

words, we gain diminishing return on 4 for the term-moving operation, as we are getting

closer to the error tolerance.

Generate rules based on approximations

Given the approximation w0v, we generate rules by mapping the power-of-two terms to

nodes in a suffix tree. Each node in the tree represents a 2�k fraction of traffic, where k is the

node’s depth (or, equivalently, the suffix length). Figure 4.5 visualizes the rule-generation

steps for our example from Figure 4.3(a) with wv1 = 1
6 , wv2 = 1

3 , and wv3 = 1
2 . When a

term is mapped to a node, we explicitly assign a color to the node. Initially, the root node is

colored with the biggest weight to represent the initial approximation (Figure 4.5(a)). Color

j means that the node belongs to w0v j. Each uncolored node implicitly inherits the color of

its closest ancestor. We use dark color for explicitly colored nodes and light color for the

unassigned nodes.
1A term may be picked in multiple consecutive iterations.

106

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

� �

� �

(a)

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

� �

� �(b)

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

� �

� �

(c)

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

� �

� �
(d)

Figure 4.5: Generate rules using a suffix tree.

We process the terms in the order that they are added to the expansions (i.e., 1
2 , 1

8 ,

1
32). Then, one by one, the terms are mapped to nodes as follows. Let x be the term under

consideration, which is moved from weight wvb to wva. We map it to a node representing x

fraction of traffic with color b. The node is then re-colored to a. In the example, we map 1
2

to node ⇤0 and color the node with wv2 (Figure 4.5(b)). Subsequently, 1
8 ,

1
32 are mapped to

⇤000,⇤00100, which are colored to wv1 (Figure 4.5(c) (d)).

Once all terms have been processed, rules are generated based on the explicitly colored

nodes. Figure 4.3(b) shows the rules corresponding to the final colored tree in Figure 4.5(d).

Use non-power-of-two terms

We discuss the case that each suffix pattern may not match a power-of-two fraction

of traffic. For example, there may be more packets matching ⇤0 than those matching ⇤1.

Niagara’s algorithm can be extended to handle the unevenness, once the fractions of traffic

for suffixes are measured [35, 57, 83, 89].

107

1

3/5

9/25 6/25

27/125

2/5

6/25 4/25

18/125 0.096 0.144 0.096 0.096 0.0640.14427/125 18/125 18/125 12/125 18/125 12/125 12/125 8/125

27/125 18/125

9/25

18/125 12/125

6/125

3/5

27/125 18/125

9/25

18/125 12/125

6/125

2/5

1

Figure 4.6: An example traffic distribution with a suffix tree. Each number represents the
fraction of traffic matched by the suffix, e.g., *11 matches 4

25 traffic.

We refine the approximation iteratively. In each iteration, a suffix (i.e., a term) is

moved from an over-approximated weight to an under-approximated weight to maximize

the reduction of errors. The only difference is that the candidate values of this term are

no longer powers of two, but all possible fractions denoted by suffixes belonging to the

over-approximated weight. We use the concaveness of Equation4 to guide our search for

the best term value. Instead of brute-force enumeration, we can scan all candidate values in

decreasing order, and stop when4 starts decreasing.

To illustrate the extended algorithm, we use wv = (1
6 ,

1
3 ,

1
2) as an example and as-

sume an uneven traffic distribution over the flow space shown in Figure 4.6. We start

with the approximation w0v = (0,0,1) (Figure 4.7(a)) and move a suffix from the over-

approximated weight wv3 to the most under-approximated weight wv2 in the first iteration.

Based on Equation 4, among all suffixes of w0v3, *1 with term = 2
5 maximizes 4 and is

moved to wv2 (Figure 4.7(b)). The approximation becomes (0, 2
5 ,1�

2
5). In the next iter-

ation, we move suffix *100 with term = 18
125 to wv1, reducing the approximation error to

w0v�wv = (18
125�

1
6 ,

2
5�

1
3 ,(1�

2
5�

18
125)�

1
2). Finally, moving *111 with term = 8

125 to wv2

completes the approximation. The resulting suffix tree is shown in Figure 4.7(d).

We also remark that it is not necessary to use suffix matches to approximate traffic

volume. As long as the traffic distribution is measured for some bits in the header fields,

we could apply the above algorithm to generate patterns matching those bits.

108

�
�

� �

� � � �

�
� �

� � � �

�
�

� �

� � �

�
� �

� � � ��

�
�

� �

� � �

�
� �

� � � ��

�
�

� �

� � �

�
� �

� � � ��

(a)

�
�

� �

� � � �

�
� �

� � � �

�
�

� �

� � �

�
� �

� � � ��

�
�

� �

� � �

�
� �

� � � ��

�
�

� �

� � �

�
� �

� � � ��
(b)

�
�

� �

� � � �

�
� �

� � � �

�
�

� �

� � �

�
� �

� � � ��

�
�

� �

� � �

�
� �

� � � ��

�
�

� �

� � �

�
� �

� � � ��

(c)

�
�

� �

� � � �

�
� �

� � � �

�
�

� �

� � �

�
� �

� � � ��

�
�

� �

� � �

�
� �

� � � ��

�
�

� �

� � �

�
� �

� � � ��
(d)

Figure 4.7: Generate rules using a suffix tree, given the traffic distribution in Figure 4.6.

4.4.2 Truncate: Fit Rules in the Table

Given the restricted rule-table size, some generated rules might not fit in the hardware.

Therefore, we truncate rules to meet the capacity of rule table. We refer to the switch rules

as PH . PH achieves a coarse-grained approximation of the weights while numrules(PH)

stays within the rule-table size C. We capture the total over-approximation error as imbal-

ance, i.e.,

tv⇥Â
j

E(wH
v j�wv j,e)

where tv is the expected traffic volume for aggregate v and wH
v j is the approximation of

weight wv j given by PH .

We pick the C lower-priority rules from the rule-set generated in Section 4.4.1 as PH .

This is because rules are generated with increasing priority and decreasing 4 values (i.e.,

the reduction in imbalance). The C lowest-priority rules give the overall biggest reduction

of imbalance. For example, when C = 3 the rules in Figure 4.3(b) are truncated into PH

containing the last three rules.

109

,PEDODQFH� ������
��������������3¶�������������
�������������IZG�WR��
���������������IZG�WR��
����������������IZG�WR��

Figure 4.8: Stairstep curve (imbalance v.s. #rules) for Aggregate v with weights wv =
{1

6 ,
1
3 ,

1
2} and tv = 1.

Stairstep plot. Figure 4.8 shows the imbalance as a function of C. Each point in the

plot (r, imb) can be viewed as a cost for rule space r, and the corresponding gain in reducing

imbalance imb. This curve helps us determine the gain an aggregate can have from a certain

number of allocated switch rules, which is used in packing rules for multiple aggregates into

the same switch table (Section 4.5.1).

4.5 Cross Aggregates Optimization

In this section, we generate rules for multiple aggregates using two main techniques:

(1) packing multiple sets of rules (each corresponding to a single aggregate) into one rule

table and (2) sharing the same set of rules among aggregates.

4.5.1 Pack: Divide Rules Across Aggregates

The stairstep plot in Figure 4.8 presents the tradeoff between the number of rules al-

located to an aggregate and the resulting imbalance. When dividing rule-table space across

multiple aggregates, we use their stairstep plots to determine which aggregates should have

110

more rules, to minimize the total traffic imbalance. Figure 4.9 shows the weight vectors,

traffic volumes and stairsteps of two aggregates.

To allocate rules, we greedily sweep through the stairsteps of aggregates in steps. In

each sweeping step, we give one more rule to the aggregate with largest per-step gain by

stepping down one unit along its stairstep. The allocation repeats until the table is full.

We illustrate the steps through an example of packing two aggregates v1 and v2 using

five rules (Figure 4.9). We begin with allocating each aggregate one rule, resulting in a

total imbalance of 50% (27.5%+ 22.5%). Then, we decide how to allocate the remaining

three rules. Note that v1’s per-step gain is 18.33% (27.5%� 9.17%), which means that

giving one more rule to v1 would reduce its imbalance from 27.5% to 9.17%, while v2’s

gain is 11.25% (22.5%� 11.25%). We therefore give the third rule to v1 and move one

step down along its curve. The per-step gain of v1 becomes 6.88% (9.17%�2.29%). Using

the same approach, we give both the fourth and fifth rules to v2, because its per-step gains

(22.5%�11.25% = 11.25% and 11.25%�0% = 11.25%) are greater than v1’s. Therefore,

v1 and v2 are given two and three rules, respectively, and the total imbalance is 9.17%

(9.17%+0%). The resulting rule-set is a combination of rules denoted by point (2,9.17%)

in v1’s stairstep and (3,0%) in v2’s.

A natural consequence of our packing method is that aggregates with heavy traffic

volume and easy-to-approximate weights are allocated more rules. Our evaluation demon-

strates that this way of handling “heavy hitters” leads to significant gains.

4.5.2 Share: Same Rules for Aggregates

In practice, a switch may split thousands of aggregates. Given the small TCAM in

today’s hardware switches, we may not always be able to allocate even one rule to each

aggregate. Thus, we are interested in sharing rules among multiple aggregates, which have

the same set of next-hops. We employ sharing on different levels, creating three types of

rules (with decreasing priority): (1) rules specific to a single aggregate (Section 4.4); (2)

111

Aggregate Weights Traffic Volume

v1 w11 =
1
6 ,w12 =

1
3 ,w13 =

1
2 t1 = 0.55

v2 w21 =
1
4 ,w22 =

1
4 ,w23 =

1
2 t2 = 0.45

(a) Weights and traffic volume of v1 and v2.

3DFNLQJ�UHVXOWV�IRU�������
WDEOH�FDSDFLW\�&� ��

$JJUHJDWH�9�����UXOHV
$JJUHJDWH�9�����UXOHV
WRWDO�LPEDODQFH� ������

(b) Packing v1 and v2 based on stairsteps.

Figure 4.9: An example of packing multiple aggregates.

rules shared among a group of aggregates (Section 4.5.2), and (3) rules shared among all

aggregates, called default rules (Section 4.5.2).2

Default rules shared by all aggregates

Default rules have the lowest priority and are shared by all aggregates. There are many

ways to create default rules, including approximating a certain weight vector using algo-

rithm in Section 4.4. Here we focus on the simplest and most natural one—uniform default

rules that divide the traffic equally among next-hops.

Assuming there are M next-hops where 2k M < 2k+1, we construct 2k default rules

matching suffix patterns of length k and distributing traffic evenly among the first 2k next-

hops. 3 These rules provide an initial approximation wE of the target weight vector: wE
i =

2�k for i 2k and wE
i = 0 otherwise, which can then be improved using more-specific per-

2Default rules do not require extra grouping table.
3When M is the power of two, the uniform default rules gives an equivalent split to ECMP.

112

� � � � � � � �

�

�
� �
� � �

�
� �

� � � �
� �

� �

�
� �

� � � �

�
� �

� � � �

(a) Initial (left) and final (right) suffix trees for w0v1 = 1
2 �

1
2 + 1

8 + 1
32 ,

w0v2 =
1
2 �

1
8 �

1
32 , w0v3 =

1
2 (pool).

Rules Pattern Action
Rules for aggregate v ⇤00101 fwd to 1

⇤001 fwd to 1
⇤0 fwd to 3

Shared default rules ⇤0 fwd to 1
⇤1 fwd to 2

(b) Rules that approximate v.

Figure 4.10: Generate rules for {1
6 ,

1
3 ,

1
2} given default rules

aggregate rules. If aggregates do not use the same set of next-hops, the default rules will

only balance over the common set of next-hops and the per-aggregate rules will rebalance

the loads of the rest of next-hops.

We revisit the example (1
6 ,

1
3 ,

1
2). The initial approximation wE = (1

2 ,
1
2 ,0). wv1 =

1
6 is

over-approximated with error 1
3 ; wv3 =

1
2 is under-approximated with error �1

2 ; we move

1
2 from wv1 to wv3. The rest operations are similar to Section 4.4.1. Figure 4.10(a) shows

the corresponding suffix tree. Initially, the tree is colored according to the uniform default

rules. Next, we refine the approximation and obtain terms 1
2 , 1

8 , 1
32 and the final rules (Fig-

ure 4.10(b)). The total number of rules is five, compared to four rules without using default

rules (Figure 4.3(b)). However, only three of the five rules are “private” to aggregate v, as

the two default rules are shared among all aggregates. This illustrates that default rules may

not save space for one (or even several) aggregates, but will usually bring significant table

space savings when the number of aggregates is large (Section 4.8).

113

Grouping aggregates with similar weights

To further save the table space, we group aggregates and tag aggregates in each group

with the same identifier.

We use k-means clustering to group aggregates with similar weights. The centroid of

each group is computed as the average weight vector of its member aggregates; to prior-

itize “heavy” aggregates, the average is weighted using tv (the expected traffic volume of

aggregate v). We begin by selecting the top-k aggregates with highest traffic volume as the

initial centroid of the groups, where the choice of k depends on the available rule table

space (Section 4.8). Then, we assign every aggregate to the group whose centroid vector

is closest to the aggregate’s target weight vector (using Euclidean distance). After assign-

ment, we re-calculate group centroids. The procedure is repeated until the overall distance

improvement is below a chosen threshold (e.g., 0.01% in our evaluation).

Putting it all together. Niagara’s full algorithm first (i) groups similar aggregates,

then (ii) creates one set of default rules (e.g., uniform rules) that serve as the initial approx-

imation for all the groups, (iii) generates per-group stairstep curves, and finally (iv) packs

groups into a rule table.

4.6 Graceful rule update

Weights change over time, due to next-hop failures, rolling out of new services, and

maintenance. When the weights for an aggregate change, Niagara computes new rules

while minimizing (i) churn due to the difference between old and new weights and (ii)

traffic imbalance due to inaccuracies of approximation. Niagara has two update strategies,

depending on the frequency of weight changes. When weights change frequently, Niagara

minimizes churn by incrementally computing new rules from the old rules (Section 4.6.1).

When weights change infrequently, Niagara minimizes traffic imbalance by computing the

new set of rules from scratch and installs them in stages to limit churn (Section 4.6.2).

114

Pattern Action
⇤00100 fwd to 3
⇤100 fwd to 3
⇤000 fwd to 1
⇤0 fwd to 2
⇤ fwd to 1

(a) Target rules.

Pattern Action
⇤00100 fwd to 1
⇤000 fwd to 1
⇤11 fwd to 1
⇤0 fwd to 2
⇤ fwd to 3

(b) Intermediate rules.

�
�

� �

� � � �

�
� �

� � � �

� �

� �

�
� �

� � � �

�
� �

� � � �

� �

� �

�

(c) Suffix tree corresp. to (a).

�
�

� �

� � � �

�
� �

� � � �

� �

� �

�
� �

� � � �

�
� �

� � � �

� �

� �

�

(d) Suffix tree corresp. to (b).

Figure 4.11: Rule-sets (and corresponding suffix trees) installed during the transition from
{1

6 ,
1
3 ,

1
2} to {1

2 ,
1
3 ,

1
6}.

4.6.1 Incremental Rule Computation

When weights change, Niagara computes new rules to approximate the updated

weights. New rules not only determine the new imbalance, but also the traffic churn

during the transition. We use an example of changing weights from {1
6 ,

1
3 ,

1
2} to {1

2 ,
1
3 ,

1
6}

to illustrate the computation of new rules. Initial rules are given in Table 4.3(b) and the

corresponding suffix tree in Figure 4.5(d). In this example, any solution must shuffle at

least 1
3 of the flow space (assuming a negligible error tolerance e), namely the minimal

churn is 1
3 .

Minimize imbalance (recompute rules from scratch). A strawman approach to han-

dle weight updates is to compute new rules from scratch. In our example, this means that

action “fwd to 1” in Table 4.3(b) become “fwd to 3” and vice versa. This approach mini-

mizes the traffic imbalance by making the best use of rule-table space. However, it incurs

two drawbacks. First, it leads to heavy churn, since recoloring 1
2 +

1
8 +

1
32 fraction of the

suffix tree in Figure 4.5(d) means that nearly 2
3 of traffic will be shuffled among next-hops.

115

Second, it requires significant updates to hardware, which slow down the update process.

As a result, this approach does not work well when weights change frequently.

Minimize churn (keep rules unchanged). An alternative strawman is to keep the

switch rules “as is”. This approach minimizes churn but results in significant imbalance

and overloads on next-hops. In the example, both the churn and the new imbalance are

roughly 1
3 .

Strike a balance (incremental rule update). The above two approaches illustrate two

extremes in computing the new rules. Niagara intelligently explores the tradeoff between

churn and imbalance by iterating over the solution space, varying the number of old rules

kept. In the example, keeping two old rules (⇤000 fwd to 1, and ⇤0 fwd to 2) leads to the

rule-set shown in Figure 4.11(a) and the suffix tree in Figure 4.11(c). The imbalance is 1
32 ,

the same with computation from scratch; the churn is 1
32 +

3
8 , which is slightly higher than

the minimum churn 1
3 , as suffixes ⇤00100,⇤011,⇤11 are re-colored to 1. In practice, when

computing new rules for an aggregate, Niagara does not use more rules than the old ones.

4.6.2 Multi-stage Updates

Incurring churn during updates is inevitable. Depending on the deployment, this traffic

churn might not be tolerable. Niagara is able to bound the churn by dividing the update pro-

cess into multiple stages. Given a threshold on acceptable churn, Niagara finds a sequence

of intermediate rule-sets such that the churn generated by transitioning from one stage to

the next is always under the threshold.

Continuing the example in Section 4.6.1, we limit maximum acceptable churn to 1
4 .

The churn for the direct transition from the old rules to the new rules is 1
32 +

3
8 , exceeding

the threshold. Hence, we need to find an intermediate stage so that both the transition from

the old rules to the intermediate rules and from the intermediate rules to the new rules do

not exceed the threshold.

116

HWS

SWS SWS

BE

requests

controller

...

BE BE BE

...
Tunnel
Physical Topology

Control Path

Router

Figure 4.12: Niagara prototype architecture overview.

To compute the intermediate rules, we pick the pattern ⇤11, which is the maximal frac-

tion of the suffix tree that can be recolored within the churn threshold. The intermediate tree

(Figure 4.11(d)) is obtained by replacing the subtree ⇤11 of the old one (Figure 4.5(d)) with

the new one’s (Figure 4.11(c)). The intermediate rules are computed accordingly. Then,

transitioning from the intermediate suffix-tree in Figure 4.11(d) to the one in Figure 4.11(c)

recolors only 1
32 +

1
8 (< 1

4) of the flow space and therefore we can transition directly to the

rules in Figure 4.11(a) after the intermediate stage.

We note that performing a multi-stage update naturally results in lengthy update pro-

cess for aggregates with frequent weight changes. To mitigate this, Niagara may rate limit

the update frequency of aggregates.

4.7 Niagara Application: Load Balancer

We prototype Niagara to show how to apply the output of our algorithm to an actual

load balancer system comprising multiple switches (both stateless hardware and stateful

software), as well as how to update switches consistently and ensure connection affinity.

System design. Figure 4.12 shows the network of switches and backends, with a router

connecting to clients. The architecture is similar to Ananta [63]. All devices attach to a

117

shared L3 network and connect via GRE tunnels. We configure the router to direct all

incoming requests to the hardware switch (HWS), which then forwards to a collection

of software switches (SWSs). We program these SWSs to act as simple Software Load

Balancers and distribute requests to backends (BEs). Return traffic is not tunnelled via

SWSs but instead uses direct server return (DSR). We chose to implement both HWS and

SWS atop regular Linux servers using iptables to reduce our implementation work at the

expense of forwarding performance. Iptables can be configured remotely via ssh by the

controller. Iptables allows the controller to create a collection of routing tables that match

on arbitrary packet-header fields and set per-packet metadata. In addition, iptables can be

configured to track L4 connections.

Software rules. SWSs have large forwarding tables optimized for exact-match rules,

and fast rule updates, contrasting to the constrained rule table on the HWS. Hence, in

addition to packing subsets of rules into the hardware rule table(Section 4.5.1), we could

store the finer-grained unchosen rules that have higher priority in SWSs. We revisit the

example in Figure 4.9. We pack five hardware rules: two rules for aggregate V1 and three

rules for aggregate V2. Two higher-priority rules for V1 (Figure 4.3(b)) are not selected.

We could store them in the SWSs. Namely, we install (⇤, fwd to 3) and (⇤0, fwd to 2) in the

HWS, and install (⇤000, fwd to 1) and (⇤00100, fwd to 1) in the three SWSs. As a result,

when the HWS splits aggregate V1 to SWSs, giving a rough approximation (0, 1
2 ,

1
2), SWSs

could bounce back the “imbalanced” traffic to the correct SWSs. For example, a flow 00100

first is forwarded to 2nd SWS by the HWS, then matches to the software rules (⇤00100,

fwd to 1) and finally arrives at the 1st SWS.

An important requirement in designing load balancers is to avoid breaking connections

when changes occur (e.g., backend addition and weight changes). The rule generation for

hardware switches is stateless, i.e., the update scheme for hardware switch (Section 4.6.1)

does not protect existing connections. In our load balancer prototype, we design SWSs to

118

preserve ongoing connection during updates (Section 4.7.1). We present the implementa-

tion of the prototype in Section 4.7.2.

4.7.1 Preserve Connection Affinity

When performing updates, we must ensure that ongoing TCP connections remain

pinned to the same backend (“connection affinity”) regardless of where the new policy

would send the flow. We could wait for old flows to terminate before applying a new pol-

icy [81] but this could delay updates indefinitely. The alternative, storing per-flow state in

HWS, does not scale. Niagara chooses to track the connection-to-backend mapping at the

software layer. Each time a new L4 connection is observed, an SWS maintains its routing

decision in a table whose priority supersedes the load-balancing policy, thus pining con-

nection mappings across changes in routing tables. HWS is freed from L4-related tracking

tasks. All state tracking is done in abundant DRAM on SWSs.

Connection tracking. The idea of letting SWSs automatically generate a new

micro-flow rule for each L4 routing choice follows the local-autonomy principle of De-

voFlow [21]. Niagara’s local micro-flows gain global significance whenever rules are

updated as flows may bounce between switches. At those times, it is important to syn-

chronize local microflows among all SWS. This could be done either via (i) eager periodic

broadcast from the switches, (ii) controller-initiated poll-and-broadcast when there is

a global policy update, or (iii) lazy schemes in which switches query upon receiving

unexpected packets.

Policy versioning. Large sets of forwarding rules are tracked and applied atomically

using versions. We tie each packet to the active policy via version tag in the packet. HWS

always holds exactly one policy version and labels each routed packet accordingly. SWSs

match their version to the routing label on the received packet.

A global policy update consists of the five steps as shown in Figure 4.13. We first

install the new policy version (both hardware and software rules) on all SWSs (Step 1).

119

POLICY-UPDATE(version id,PH ,PS)

1 Install PH and PS on SWSs
2 SWSs apply new policy
3 Synchronize connection registry
4 Install PH on HWS
5 Remove unmatched rules on SWSs

Figure 4.13: Global policy update scheme

These new rules remain shadowed until HWS stamps the new version number into for-

warded packets; alternatively, we may instruct SWSs to re-stamp the new version individ-

ually (Step 2). Now, new connections are forwarded using the new version while existing

connections remain routed as before. Note, all new flows are now being deflected to their

target SWS by (another) SWS. Then, we synchronize the connection registries among all

SWSs (Step 3) to ensure that any existing connection established under an old version is

recognized and forwarded consistently by all SWSs. We then install new hardware rules at

HWS (Step 4), so the “new connections” no longer need to be deflected by SWSs. How-

ever, connections from previous versions need to be deflected until they terminate. Finally,

we garbage collect unmatched rules on SWSs.

In fact, the whole system applies the new policy to incoming packets after Step 2, irre-

spective of HWS’s forwarding behavior. We could choose to never update HWS and things

would continue to work. Updating HWS (Step 4) is important to reduce deflection. Not

updating HWS keeps forwarding all packets of pre-existing connections to their “correct”

SWSs per some previous policy version. This becomes less desirable as old connections

die out and traffic churn begins to consist only of the new connections (established un-

der the new policy); Once HWS is updated, only old connections need to be deflected by

SWSs. We demonstrate this churn tradeoff between new and old flows when we evaluate

the update dynamics of our prototype (§4.8).

120

4.7.2 Prototype

We discuss the implementation of the load balancer prototype in this section.

Packet processing. The controller begins by creating one routing table at each switch

for the current policy version. Each version corresponds to one specific VLAN-tag. Upon

receiving a packet, the switch translates the VLAN tag to a per-packet internal metadata

vmark, and uses it to select the routing table. The rules inside the routing table, which are

directly translated from the output of the algorithm, set additional metadata rmark denoting

the next-hop for the packet. At the network ingress, HWS sets the first vmark (a.k.a. VLAN-

tag) on any incoming packet.

Connection tracking. IPConntrack in iptables maintains a state table of active local

flows, where we save the next-hop information (rmark) for the first packet of the connec-

tion. SWSs are configured to first check for each incoming packet if it belongs to an existing

connection. If so, the packet is immediately forwarded according to the previously-saved

rmark. Therefore, each flow is routed only once, when adding the flow to the state table;

policy changes do not impact ongoing connections.

Since HWS update can reshuffle flow-to-SWS mappings, we need to synchronize con-

nection mappings across SWSs. Conntrackd was built as an iptables add-on exactly for

this purpose. In our prototype, we configured multicast state replication among SWSs.

This multicast group effectively combines the local state tables into one logically shared

global connection table, ensuring that packets of the same connection are forwarded to the

same BE, even if they traverse different SWSs. To prevent conntrack state from blowing

up, we must ensure fast garbage collection as connections expire. To this end, we set up

route-exceptions at the BEs (also through iptables) to route all SYN-ACK and FIN packets

through SWSs instead of sending them DSR. In practice there are a few more packets that

need this exception treatment (e.g., ICMP messages, RST, etc.).

Rule updates. We implement the update mechanism (§4.7.1) in our prototype. The

update first creates the tables in SWSs that contain the complete rule-set of the new version.

121

When all SWSs are primed with the new version, we change the vmark at HWS. However,

we do not to install the new rules at HWS immediately (§4.7.1). Instead, we proceed with

a later HWS update to minimize traffic churn (§4.8).

Failures. The current prototype keeps an unbounded history of policy versions to

avoid having to deal with wrap-around version numbers and out-of-sync SWSs.

Practical observations. The HWS rule-set is completely stateless, matching only on

L3 bits and can be mapped to the tables of a standard packet-forwarding chip like Broad-

com’s. The use of GRE tunnels is not always necessary (e.g., L2 fabrics) and GRE causes

trouble as it reduces MTU size, consumes CPU cycles, and often lacks NIC offload support.

In L2 fabrics it may suffice to drive packets to the right SWS by forwarding the packet to the

corresponding destination MAC address. Finally, we realize that multicasting the connec-

tion table is not going to scale. Instead we propose synchronizing each SWS against a few

replicas of a sharded global connection table. Then on policy update, the global controller

would initiate a push of connection-table entries from this sharded repository to SWSs,

as fallback, SWSs would poll the sharded connection state table on receipt of unexpected

packets.

4.8 Evaluation

This section presents the evaluation of Niagara in two scenarios: server load balanc-

ing and multi-path traffic splitting. We conduct both trace-driven analysis and synthetic

experiments to demonstrate Niagara’s splitting accuracy, scalability and update efficiency.

4.8.1 Niagara for Server Load Balancing

We evaluate Niagara’s accuracy against real packet traces and load balancing con-

figuration from a campus network. We further use large-scale synthetic data-center load

122

��
�

��
�

�RDO>C

�@MQ@MN

��
�

�RDO>C

�@MQ@MN

���N

(a) University

��
�

��
�

�RDO>C

�@MQ@MN

��
�

�RDO>C

�@MQ@MN

���N

(b) Data center

Figure 4.14: Load balancer architecture.

balancing configuration to examine its scalability and update efficiency. Before diving into

the results, we first describe the experiment setup and data for the two scenarios.

Setup. We use two different load balancer architectures for the campus network and

the data center network (Figure 4.14). In the campus network, the switch directly forwards

VIP requests to backend servers. VIPs are deployed on different servers, hence the switch

cannot use default rules that are intended to be shared by all aggregates (i.e., VIPs). In the

data center network, the switch directs requests to an intermediate layer of Software Load

Balancers (SLBs) [28,63], which encapsulate packets to a pool of backend servers. In such

a case, all VIP requests are distributed over the same set of SLBs, although the weights for

each VIP can be different depending on the deployment of backend servers behind SLBs.

University traces and configuration. The campus network hosts around 50 services

(i.e., VIPs). Each VIP is served by 2 to 5 backends. VIP requests should be evenly dis-

tributed over backends. We collected a 20-minute Netflow traces from the campus border

router and extracted the top 14 popular VIPs from the traces for our evaluation as the other

VIPs saw only negligible traffic.

Synthetic weight distribution. In a large-scale data center network, the weights of a

VIP depend on various factors such as capacity of next-hop servers and deployment plans.

To reflect this variability, we use three different distribution models to choose VIP weights:

123

Gaussian, Bimodal Gaussian, and Pick Next-hop. Weights of a VIP v are drawn from these

models and normalized such that Â j wv j = 1 .

Gaussian distribution. Weights are chosen from N(4,1). Since the variance is small,

the generated weights are close to uniform. This distribution models a setting where re-

quests should be equally split over next-hops.

Bimodal Gaussian distribution. Here, each weight is chosen either from N(4,1) or

N(16,1), with equal probability. The generated weights are non-uniform, but VIPs exhibit

certain similarity. This distribution models a setting where some next-hops can handle more

VIP requests than others.

Pick Next-hop distribution. In this model, we pick a subset of next-hops uniformly at

random for each VIP. For the chosen next-hops, we draw the weights from the Bimodal

Gaussian distribution and set the weights for the remaining unchosen next-hops to zero.

The generated weights are non-uniform, making it hard for grouping. This case models a

setting where different VIPs should be split over different subsets of next-hops.

Synthetic VIP traffic volume distribution. We use a Zipf traffic distribution where

the k-th most popular VIP contributes 1/k fraction of the total traffic. The traffic volume is

normalized so that Âv tv = 1.

Metrics. We calculate imbalance lb as

Â
v
(tv⇥Â

j
E(w0v j�wv j,0))

where tv is the traffic volume of VIP v, wv j is the desired fraction of loads on next-hop j by

VIP v and w0v j is the actual load.A total imbalance 10% is considered low.

Accuracy

We assume that the hardware switch directly forwards VIP requests to the backend

servers (Figure 4.14(a)). The collected traffic traces exhibit stable traffic distribution over

124

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

L
o

a
d

Time

ECMP
Niagara

Balance Goal

(a) Server load (single VIP)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
D

F

Imbalance

Niagara
ECMP

(b) Imbalance CDF

Figure 4.15: Accuracy of uniform server load balancing.

last 8 bits of source IP. In the experiment, we run Niagara once with the profiled traffic

distribution.

We slice the 20-min trace into 2-min timeframes and compute the load of each backend

using Niagara and ECMP. The ECMP hash function is SHA. We first examine one VIP

with two backends each with 50% target load. Figure 4.15(a) shows the load of one of

the backends. ECMP gives extremely unbalanced backend loads as part of the flow space

contributes more traffic than the rest. On average, 80% of the load is absorbed by this

backend and the total imbalance is 80%� 50% = 30%. In contrast, Niagara achieves a

roughly balanced load with 1% imbalance. Figure 4.15(b) presents the CDF of imbalance

for all VIPs. Even for uniform load balancing, ECMP still has a much longer imbalance tail

than Niagara, because it merely splits the flow space equally regardless of the actual traffic

distribution.

Rule Efficiency and Scalability

Next, we focus our attention to server load balancing in large-scale data center network

setting (such as Duet [28] and Ananta [63]) with tens of thousands of VIPs, where hardware

switches forward VIP requests to SLBs, which further distribute requests over backend

servers (Figure 4.14(b)).

125

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
D

F

#Rules

Niagara
Naive Approach

WCMP

(a) CDF of #Rules per VIP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000

T
o

ta
l

im
b

a
la

n
ce

Rule-table size

Pick Next-hop
Bimodal

Gaussian

(b) 500 VIPs with default rules

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000

T
o

ta
l

im
b

a
la

n
ce

Rule-table size

100 groups
300 groups
500 groups

(c) Group sizes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000

T
o

ta
l

im
b

a
la

n
ce

Rule-table size

Pick Next-hop
Bimodal

Gaussian

(d) Grouping 10000 VIPs

Figure 4.16: Weighted server load balancing for multiple VIPs.

Approximate weights for a single VIP. We examine the number of rules needed to

approximate the target weights of a single VIP assuming a balanced distribution of traffic

over flow space. We randomly generate 100000 distinct sets of 8 weights (i.e., 8 SLBs)

with error tolerance e = 0.001. Figure 4.16(a) compares the CDF of the performance of

three strategies (Section 4.4.1): WCMP, which repeats next-hop entries in ECMP, Naive

approach, which rounds weights to the nearest multiples of powers of two and Niagara,

which uses expansions of power-of-two terms to approximate weights. WCMP performs

the worst and needs as many as; 288 rules to reach the error tolerance. Its performance is

very sensitive to the values of the target weights. A slight change of weights (e.g., from 0.1

to 0.11) may cause a dramatic change in number of rules. In fact, we see similar results

for less tight error tolerance as well. The naive approach performs slightly better with a

median of 38 rules, but still uses more rules (61 in the worst case) compared to Niagara.

126

In comparison, Niagara generates the fewest rules (median is 14) with small variation.

Niagara’s performance is largely due to using both power-of-two terms and exploiting rule

priorities to have both additive and subtractive terms.

Load balance multiple VIPs. Moving on to multiple VIPs, we use 16 weights per

VIP (i.e., 16 SLBs) and draw weights from the three synthetic models. We assume all VIPs

share a set of uniform default rules. Figure 4.16(b) shows the total imbalance achieved

by packing and sharing default rules for 500 VIPs, as a function of rule-table size. The

leftmost point on each curve shows the imbalance given by the default rules (i.e., ECMP).

The initial imbalance for Gaussian, Bimodal and Pick Next-hop are 10%,30% and 53%

respectively. With Niagara, as the rule-table size increases, the imbalance drops nearly

exponentially, reaching 3.3% at 4000 rules for Pick Next-hop model. This performance

is due to the packing algorithm prioritizing “heavy-flows” when bumping up against rule-

table capacity. Allocating rules to heavier-traffic sections of flow-space naturally minimizes

imbalance given a fixed number of rules.

Our grouping technique (Section 4.5.2) groups VIPs with similar weight vectors. The

maximal number of VIP groups affects approximation accuracy. When the VIPs are clas-

sified into more groups, the distance between each VIP’s target weight vector and the cen-

troid vector of its group is reduced, thus creating more groups containing only VIPs of more

similar weights. However, as soon as rule capacity is reached, finer-grained VIP groups ac-

tually reduce overall performance because each group can push a small number of rules

into the switch. Depending on number of groups, there is a tradeoff between grouping ac-

curacy and approximation accuracy. When the VIPs are classified into more groups, the

distance between each VIP’s target weight vector and the centroid vector of its group is

reduced, making the grouping more accurate. However, the approximation is less accurate

for a bigger number of groups given limited rule capacity. Figure 4.16(c) illustrates this

tradeoff by comparing the imbalance of classifying 10000 VIPs into 100, 300, and 500

groups. When there are less than 500 rules, classifying the VIPs into 100 groups performs

127

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Churn

Minimum
Update (1% imb)
Update (eps imb)

Recomputation

(a) Update strategies

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
h

u
rn

#Weights(N)

ECMP hash

Minimum churn

Niagara

(b) Compare ECMP and Niagara

Figure 4.17: Incremental Update.

best, because it is easier to pack 100 groups and the centroids of groups still give a reason-

able approximation for aggregates. As rule-table sizes increase, using more fine-grained

VIP groupings is advantageous, since the distance between each aggregate and its group’s

centroid, which “represents” the aggregate during packing, decreases. For example, given

1500 rules, 300-group outperforms 100-group.

Figure 4.16(d) shows the effectiveness of grouping for different weight models. Given

the number of rules, we classify the VIPs into 100, 300, or 500 groups (picking the option

which yields the smallest imbalance). At 4000 rules, we reach 2.8% and 6.7% imbalance

for the Gaussian and Bimodal Gaussian models respectively, and 11.1% imbalance for

Pick Next-hop, which is much tougher to group. In contrast, ECMP incurs imbalance of

9.6%,29.1% and 53.2% (the leftmost point), respectively.

Time. The algorithm performs well on a standard Ubuntu server (Intel Xeon E5620,

2.4 GHz, 4 core, 12MB cache). The prototype single-threaded C++ implementation com-

pletes the computation of the stairstep curves for a 16-weight vector (e = 0.001) in 10ms.

The time of packing grows linearly with the number of aggregates and is dominated by the

computation of stairstep curve, which could be parallelized. The grouping function using

k-means clustering takes at most 8 sec. to complete. If the traffic distribution is skewed and

VIPs use similar weight distributions the algorithm tends to converge faster and requires

fewer iterations. We do not expect to update aggregate groups frequently: if two aggregates

128

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
D

F

Imbalance

LocalFlow
MicroTE

Niagara
ECMP

(a) Symmetric topology (Imb)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
D

F

Imbalance

Niagara
MicroTE

LocalFlow
WCMP

(b) Asymmetric topology (Imb)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

LocalFlow MicroTE Niagara

#
R

u
le

s

(c) Rules for one dst prefix

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

A8-C25
A16-C49

A24-C72
A32-C115

A40-C127

#
R

u
le

s

WCMP
Niagara_no_share

Niagara_share

(d) Rules for multiple prefixes

Figure 4.18: Multipathing

are grouped together, they must have similar deployment in the network and are unlikely

to be changed dramatically in a short term.

Incremental Update

We evaluate the churn and imbalance caused by Niagara’s incremental update strat-

egy. Given the old weight vector, we randomly clear one non-zero weight and renormalize

the rest to obtain new weights, or vice versa, simulating a server failure or addition. The

minimum churn is the weight of the failed (or added) server.

Incremental update with low churn and imbalance. Our performance baseline is an

approach where the load balancer recomputes all forwarding rules from scratch in response

to a weight change. This baseline approach completely ignores churn and prior assign-

ments by recalculating all rules. This strategy does minimize the number of rules, however

129

at the expense of incurring unnecessary traffic churn. In contrast, the incremental update

algorithm in Niagara is aware of the cost of switching flows from one next-hop to an-

other and tries to minimize churn. It keeps partial rules from the old rule-set and computes

a small number of new rules to achieve the new weights while staying within bounded

rule-space capacity. Figure 4.17(a) plots the CDF of the churn among 5000 weight vec-

tors drawn from Bimodal distribution. The full recomputation approach (pink curve) incurs

about 70% churn in 50% of test cases while Niagara’s incremental update approach (black

curve) only incurs 20% churn for half of test cases. This suggests that Niagara’s intuition

that an old rule-set serves as a good approximation for updated weights holds up in practice.

Furthermore, this observation holds across the weight models used in this study.

Although Niagara’s strategy explained above already reduces churn, it can be further

improved by allowing a small margin for imbalance. The above strategy ignores larger

rules-sets (than the minimum) that gives less churn. Based on this observation, we evaluate

an alternative update strategy which installs truncated rules of larger rule-sets with up to

1% imbalance. The resulting curve (blue line in Figure 4.17(a)) almost overlaps with the

curve of minimum churn (red). This confirms that an allowance for small imbalance will

greatly reduce churn during updates.

Comparison with hash-based approaches. The theoretical lower bound of churn for

ECMP, i.e., assuming a perfect balanced traffic distribution over the flow space, is 1
4 +

1
4N

for removing one member from a N-sized group (or adding one member to (N� 1)-sized

group) contrasting to the minimum churn of 1
N [37, 77]. We compare the churn of ECMP

and Niagara using a uniform weight distribution, e.g., N weights of 1
N . We create ran-

dom server failure and additions as described in the previous experiment. For each value

of N, Niagara generates the rule-set with minimum churn, while (1) staying within the

number of rules needed by recomputation and (2) incurring less than 1% imbalance. Fig-

ure 4.17(b) presents the comparison of Niagara and ECMP. Niagara’s performance (the

blue line with diamonds) closely follows the curve of minimum churn; the fluctuation in

130

performance (e.g., N = 24,28) is due to the differences in approximating 1
N . Niagara gives

a much smaller churn than ECMP for N � 5. When N = 32, Niagara reduces the churn by

87.5% compared to ECMP.

Time. Given a rule-set of 30 rules, if we enumerate the number of lower-priority rules

kept in the new rule-set, the incremental computation takes about 30⇥ 10ms = 300ms to

complete, which is in the same order of magnitude as rule insertion and modification on

switches (3.3ms to 18ms [42, 48]). This is sufficient for updates on the timescale of man-

agement tasks. For planned updates, we can also pre-compute the new rule-set in advance.

Connection Affinity

We evaluate our rule update mechanism for connection affinity in our prototype. The

setup includes one HWS, two SWSs (SW1 and SW2), and two BEs (BE1 and BE2) serving

a single VIP v. We connect BE1 to SW1 and BE2 to SW2. Thus, BE1 is the only backend

of SW1 and similarly for SW2. Each SWS sends all requests to its only backend unless the

packets should be deflected. We inject client traffic destined to VIP v into the network, and

monitor the bytes received at BEs as well as packet deflection.

In the experiment, we transition from weights {wv1 =
3
4 ,wv2 =

1
4} to weights {wv1 =

1
4 ,wv2 =

3
4}. Both the old policy and the new policy achieve weights using hardware rules.

The old policy map ⇤00 to BE2 and the rest to BE1; the new policy. change the mapping of

⇤01 and ⇤10 to BE2. During the update, the existing connections of ⇤01 and ⇤10 should be

pinned to BE1, but new connections should be directed to BE2. We start eight TCP connec-

tions to VIP v matching patterns 000,001, . . . ,111, where connections end asynchronously

and new connections of the same pattern start afterwards. Then, we update switches and

keep recording the packets received by BEs and traffic churn during the update.

Figure 4.19 shows three runs of the experiment, where the only difference is the timing

of HWS update:

131

Update HWS and SWSs together (top): At the beginning, the eight TCP connec-

tions create 3 : 1 throughput ratio at BE1 and BE2. No packets are deflected. At 90 sec.

we update HWS and both SWSs. As a consequence, for active flows 001, 010, 101, and

110, HWS sends their packets to SW2 and SW2 directs them to BE1. Therefore, although

the throughputs of BEs do not change, we see a sudden increase in traffic churn consist-

ing of old flows. This traffic churn gradually disappears, as these flows finish. Finally, the

throughput ratio at BE1 and BE2 becomes 1 : 3.

Update HWS after all old flows end (center): If we update HWS after all old flows

end, we see no traffic churn immediately after updating SWSs (at 90 sec.), since packets

from old flows still hit their original SWSs. However, churn increases as new flows arrive.

For example, when a new flow 001 starts, HWS sends its packets to SW1 based on the

old rules; SW1 applies the new rules, and redirects packets to BE2. Eventually, HWS is

updated after old flows end (160 sec.), stopping the deflection of new flows.

Update HWS at an optimized time (bottom): Since new flows keeps expanding and

old flows are shrinking, we can find a “sweet-spot” that minimizes the traffic churn. In the

example, we update HWS at 125 sec. The churn contains only new flows before the update

and old flows afterwards.

4.8.2 Niagara for Multi-pathing

This section presents Niagara’s performance for splitting traffic over multiple equiva-

lent outgoing links by simulating real data center traces [12] on both symmetric and asym-

metric topologies [88].

Metrics. We calculate imbalance mp as

Â
i

max(0,Fi�
Wi

Âk Wk
)

132

0

1

2

3

4

Churn of old flows
Churn of new flows

Received at BE1
Received at BE2

0

1

2

3

4

M
B

/s
ec

0

1

2

3

4

0 50 100 150 200 250
Time(sec)

Figure 4.19: Top: update of SWSs and HWS together; Center: update HWS after old flows
finish; Bottom: update HWS at an optimized time.

where Fi is the fraction of traffic sent on i-th link and Wi is the weight of i-th link (i.e., the

relative bandwidth capacity). It characterizes the total oversubscription when the switch

operates at its full bandwidth capacity.

Accuracy in symmetric topology. We simulate 1-hour real packet traces [12] to a

popular /16 prefix on a single switch with 4 equal-capacity outgoing links. We slice the

trace into 30-second time frames and calculate the imbalance within each time frame.

We compare the splitting performance of Niagara, ECMP, MicroTE [13] and Lo-

calFlow [70]. As MicroTE schedules forwarding paths for ToR-to-ToR flows, we assume

that each /24 prefix in the traces correspond to a ToR and compute the utilization and im-

balance accordingly. Figure 4.18(a) shows the CDFs. ECMP performs much worse than

Niagara, as it only splits the flow space equally without taking into account the actual flow

sizes. ECMP gives < 10% imbalance in around 10% of the time frames. In comparison,

133

��OLQNV

��OLQN

1$

1&

��OLQNV

��OLQN

Figure 4.20: Topology: NC = 3,NA = 4,LC = 6,LA = 4

Niagara achieves < 10% imbalance in 61% of the time frames. MicroTE and Niagara offer

similar splitting performance. We notice that Niagara incurs high imbalance for some of the

time frames (e.g., 15% time frames have > 20% imbalance). Upon close examination of the

traces, we found that these time frames contain large “elephant” flows; Niagara could not

achieve balanced split as it does not split a single flow over multiple links to avoid packet

reordering. This also explains why LocalFlow, which splits flows, performs the best.

Accuracy in asymmetric topology. We experiment with a simple asymmetric topol-

ogy in Figure 4.20, where there are three core switches and four aggregation switches with

4 links each. We look at the traffic splitting at A1. A1 can split traffic destined to A2 evenly

on the 4 uplinks, as A1 and A2 have the same bandwidth capacity to all core switches. For

traffic to A3, although A1 has two links connected to C1, it cannot send more traffic to C1

than C2 or C3, because C1 only has one link to A3. Therefore, A1 should split traffic destined

to A3 in proportion to 1
2 : 1

2 : 1 : 1 (i.e., w = (1
6 ,

1
6 ,

1
3 ,

1
3)) over the 4 uplinks.

Figure 4.18(b) shows the imbalance CDF for splitting traffic for A3 at A1. It is no

surprise that Niagara gives a much better result than WCMP. Niagara offers similar per-

formance to MicroTE. For smaller imbalance (< 2%), Niagara performs slightly worse

than MicroTE, because it schedules bulks of flows (matching wildcard patterns) rather than

ToR-to-ToR flows. This allows Niagara to use much fewer rules than MicroTE. Both Nia-

gara and MicroTE offer < 10% imbalance for 82% of timeframes. LocalFlow’s imbalance

is steady at 16.6%, as it always splits traffic evenly.

134

Rule efficiency. We compare the number of rules generated by Niagara, MicroTE

and LocalFlow to split the flows of a single destination prefix evenly (Figure 4.18(c)). Lo-

calFlow uses the most rules: 743 on average and 854 in the worst case, because it needs

finer-grained rules, which even match on bits outside 5-tuple for splitting a single flow, to

balance link loads. MicroTE uses fewer rules (149 rules on average and 198 in the worst

case) but still significantly more than Niagara, because it schedules ToR-to-ToR traffic.

Niagara uses an average of 9 rules (59 in the worst case), which is 1.2% of the rule con-

sumption of LocalFlow and 6% of MicroTE. In fact, the rule consumption of MicroTE and

LocalFlow heavily depends on the traffic pattern (e.g., active flows and active ToR pairs),

making them hard to scale and less accurate when splitting multiple destination prefixes is

needed. Consider a rule-table with 4000 rules, LocalFlow and MicroTE can at most handle

5 and 26 flow aggregates given similar traffic patterns. In contrast, Niagara can handle more

than 400 aggregates.

To compare the number of rules needed to balance multiple flow aggregates between

Niagara and WCMP we generate large, asymmetric topologies to examine the total number

of rules installed at an aggregation switch. A typical asymmetric topology contains two

layers of switches: NC core switches and NA aggregation switches. Each core switch has

at most LC links to the aggregation layer; each aggregation switch has at most LA links

to the core layer. The connection algorithm in [88] is used to interconnect two layers of

switches. The result is an asymmetric topology that maximizes bisection bandwidth among

aggregation switches. We set LC = 64 and LA = 192 and vary the values of NC 2 [1,LA] and

NA = 8,16,24,32. Figure 4.18(d) compares the number of rules generated by (1) WCMP,

(2) Niagara no share, where there is no shared default rules and (3) Niagara shared, where

uniform default rules are used. We found that Niagara share always outperforms WCMP.

This figure also shows the rule-saving benefits of shared default rules.

135

4.9 Conclusion

Niagara advances the state-of-the-art in traffic splitting on switches by demonstrating

a new approach that takes a resourceful approach to install carefully optimized flow-rules

into hardware switches to closely approximate the desired load distribution and minimize

traffic churn during weight changes given the limited rule table capacity.

136

Chapter 5

Conclusion

Today, managing enterprise networks is complicated, as a result of lacking high-

level management abstractions and open configuration to devices. Leveraging the evolv-

ing technologies—SDN, we present a novel management system for enterprise networks.

The new management abstractions shield operators from low-level details about hosts and

switches and enable flexible network policies using commodity devices. In this chapter, we

summarize our research contributions, discuss the issues on the deployment of our system

and remark on the future work.

5.1 Summary of Contributions

We revisit our design principles and summarize our contributions.

New abstractions. We propose three abstractions for flexible network management:

One Big Switch, Attribute-Carrying IP Addresses and One Big Server. All these abstrac-

tions relieve the operators from manual low-level management tasks and provide them

intuitive yet powerful control on how to handle network traffic. One Big Switch decouples

specification of the endpoint policies and the routing policies, shielding operators from rea-

soning about per-device configuration and dependencies among policies. With Attribute-

Carrying IP Addresses, operators can efficiently group hosts with the same attribute infor-

137

mation and specify flexible network policies for host groups. Finally, One Big Server offers

operators precise control on server loads using commodity devices.

Efficient algorithms. We design algorithms to automate the realization of these ab-

stractions. The core challenges of realizing the abstractions are the limited rule-table sizes

of switches. The algorithms must deal with the constraints of multiple switches simulta-

neously and handle frequent updates to policies gracefully. For One Big Switch, our rule

placement algorithms intelligently partition endpoint policies to fit into individual switches

while respecting the routing policy. For ACIPs, our Alpaca algorithms compute address

assignment to efficiently encode host attributes using limited address space and minimize

the rules to represent attributes. For One Big Server, our Niagara algorithms generate traffic

splitting rules given the target load on servers, the traffic distribution and the available rule

space on switches.

Realistic evaluations and prototype. We evaluate the performance of our algorithms

using real and synthetic data. Our evaluation demonstrates that the rule placement algo-

rithm can effectively realize real campus access control policies on “One Big Switch” con-

sisting of hundreds of physical switches. Alpaca not only substantially reduces the existing

switch configuration rules by up to 68%, but also shows potential reduction by an order of

magnitude for futuristic network policies compared to the state of the art. Finally, Niagara

scales to tens of thousands of services using a few thousand switch rules.

5.2 Deployment of the Management System

In this section, we discuss benefits of combining Alpaca, Niagara and One Big Switch

in a network.

138

5.2.1 Deploy Niagara and One Big Switch

Niagara generates traffic-splitting rules for a single switch given the load balancing

weights of VIPs over backend servers. Our “One Big Switch” algorithms place the rules

of the endpoint policy according to the routing policy. Combining both works, we are able

to build a powerful virtual hardware load balancer with a very big rule-table, out from a

distributed collection of switches with small rule-tables.

We abstract the set of commodity switches, which connect external networks (e.g., In-

ternet) and backend servers, as a single “One Big Switch”. On one hand, the routing policy

lays down paths between all pairs of endpoints through the commodity switches, taking

care of network bandwidth and latency. On the other hand, the high-level load balancing

goal, i.e., the splitting weights of VIP requests, is the endpoint policy, defining how packets

coming from one endpoint (e.g., the external network) should be modified (e.g., rewritten

to a DIP) and distributed across other endpoints (e.g., the backend servers). Niagara algo-

rithms can generate rules for this endpoint policy, which is divided across the underlying

commodity switches by running the rule placement algorithm.

The rule placement algorithm guarantees that the resulting “One Big Switch” has a

much larger rule capacity than any of the hardware switches. Meanwhile, with the in-

creasing rule capacity, Niagara is able to balance service requests more accurately over the

backend servers. These two works together present a design of an elastic load balancer ar-

chitecture using commodity components. The design offers operators flexible choices from

handling a small number of services to hosting a large number of services with hundreds

of switches.

5.2.2 Deploy Alpaca and One Big Switch

Alpaca manages IP address assignment to hosts. The address assignment is computed

such that address of hosts with the same attribute can be aggregated into a small number

139

of address patterns (e.g., wildcard matches). These patterns are used to “compile” a policy

defined on host attributes to a set of “match-and-action” switch rules.

While Alpaca can be deployed alone, instructing DHCP server and working with

drivers to install rules for individual switches (Figure 3.1), it can collaborate with the “One

Big Switch” to provide more powerful network control. Given a high-level endpoint policy

(e.g., access control) defined on host attributes, Alpaca can compute an address assignment

so as to minimize the resulting switch rules to realize the policy. These switch rules define

the end-to-end actions applied to packets, and can be distributed to the underlying physical

switches using the rule placement algorithms.

Initially, Alpaca is designed to minimize the number of patterns to represent host at-

tributes, regardless of how these attributes are used by different policies. When individual

switches have their own policies (i.e., per-switch configuration), each of which may be

defined on different sets of host attributes, it is hard for Alpaca to generate the minimum

number of patterns for all attributes or to generate patterns such that each resulting rule-set

fits into the corresponding rule table. With the One Big Switch abstraction, the optimization

goal of Alpaca is simplified. The endpoint policy is global. Alpaca only needs to optimize

the address assignment with regard to the single network-wide policy. The rule placement

algorithm will take care of distributing the optimized resulting endpoint rules to individual

switches.

5.3 Concluding Remarks

Today, most SDN research works focuses on data-center networks and private back-

bone networks, where the network owners also control the endpoints and innovate the man-

agement systems. Unlike these companies which are specialized in managing their own

networks, most enterprises do not innovate (or develop) their own network management

systems and therefore very limited to the prior complicated management approaches. Fur-

140

thermore, enterprise networks connect many diverse hosts that are not fully controlled by

the enterprise (e.g., personal laptops, mobile phones and printers). Hence, operators have

more desire to enforce diverse and flexible policies.

This thesis presents a novel management system for enterprise networks. It leverages

the architecture of Software Defined Networks and revisits how operators should manage

an enterprise network. We present a series of management abstractions for operators to

define diverse network policies, such as access control and load balancing. Our system

automates the enforcement of the network-wide policies on commodity hardware switches.

We notice that our system only deals with a limited types of network policies such

as access control, routing and load balancing. A complete system for managing enterprise

networks should also support (i) traffic monitoring which collects live packets to analyze

traffic patterns, record usage and detect anomaly, (ii) advanced QoS which provides better

performance to critical traffic and rate limits hosts’ traffic to avoid congestion, and (iii)

debugging tools which help operators to quickly localize faulty devices and troubleshoots

the performance issues. A promising future research direction is to build a framework that

incorporates these functionality for the enterprise network management.

141

Bibliography

[1] GLIF 2014 demos. http://www.glif.is/meetings/2014/demos.

[2] POX. http://www.noxrepo.org/pox/about-pox/.

[3] Production quality, multilayer open virtual switch. http://openvswitch.org/.

[4] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commod-
ity data center network architecture. In SIGCOMM, 2008.

[5] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang,
and Amin Vahdat. Hedera: Dynamic flow scheduling for data center networks. In
NSDI, 2010.

[6] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan,
Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus, Rong Pan, Navindra Ya-
dav, and George Varghese. CONGA: Distributed congestion-aware load balancing for
datacenters. In SIGCOMM, 2014.

[7] James W. Anderson, Ryan Braud, Rishi Kapoor, George Porter, and Amin Vahdat.
xOMB: Extensible Open Middleboxes with Commodity Servers. In ANCS, 2012.

[8] Michiel Appelman and Maikel DE Boer. Performance analysis of OpenFlow hard-
ware. Technical report, University of Amsterdam, 2012. http://www.delaat.net/
rp/2011-2012/p18/report.pdf.

[9] David L. Applegate, Gruia Calinescu, David S. Johnson, Howard Karloff, Katrina
Ligett, and Jia Wang. Compressing rectilinear pictures and minimizing access control
lists. In ACM-SIAM SODA, 2007.

[10] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

[11] Theophilus Benson, Aditya Akella, and David A Maltz. Mining policies from enter-
prise network configuration. In IMC, 2009.

[12] Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic characteris-
tics of data centers in the wild. In IMC, 2010.

[13] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. MicroTE: Fine
grained traffic engineering for data centers. In CoNEXT, 2011.

142

http://www.glif.is/meetings/2014/demos
http://www.noxrepo.org/pox/about-pox/
http://openvswitch.org/
http://www.delaat.net/rp/2011-2012/p18/report.pdf
http://www.delaat.net/rp/2011-2012/p18/report.pdf

[14] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,
Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker.
P4: Programming protocol-independent packet processors. SIGCOMM CCR, 2014.

[15] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin
Izzard, Ferndando Mujica, and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN. In SIGCOMM, 2013.

[16] Broadcom. High capacity StrataXGS Trident II Ethernet switch book-
title. http://www.broadcom.com/products/Switching/Data-Center/

BCM56850-booktitle.

[17] Kenneth Calvert, Matthew B. Doar, Ascom Nexion, and Ellen W. Zegura. Modeling
Internet topology. IEEE Communications Magazine, 1997.

[18] Jiaxin Cao, Rui Xia, Pengkun Yang, Chuanxiong Guo, Guohan Lu, Lihua Yuan, Yixin
Zheng, Haitao Wu, Yongqiang Xiong, and Dave Maltz. Per-packet load-balanced,
low-latency routing for Clos-based data center networks. In CoNEXT, 2013.

[19] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Natasha Gude, Nick
McKeown, and Scott Shenker. Rethinking enterprise network control. ToN, 2009.

[20] Martı́n Casado, Teemu Koponen, Rajiv Ramanathan, and Scott Shenker. Virtualizing
the network forwarding plane. In PRESTO, 2010.

[21] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet
Sharma, and Sujata Banerjee. DevoFlow: Scaling flow management for high-
performance networks. In SIGCOMM, 2011.

[22] Sean Donovan and Nick Feamster. NetAssay: Providing new monitoring primitives
for network operators. In ACM HotNets, 2014.

[23] Richard Draves, Christopher King, Srinivasan Venkatachary, and Brian Zill. Con-
structing optimal IP routing tables. In INFOCOM, 1999.

[24] David Erickson. The Beacon OpenFlow controller. In HotSDN, 2013.

[25] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and Jeffrey C.
Mogul. Enforcing network-wide policies in the presence of dynamic middlebox ac-
tions using FlowTags. In NSDI, 2014.

[26] FlowScale. http://www.openflowhub.org/display/FlowScale.

[27] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. Frenetic: A network programming language.
In ICFP, 2011.

[28] Rohan Gandhi, Hongqiang Liu, Yu Hu, Guohan Lu, Jitu Padhye, Lihua Yuan, and
Ming Zhang. Duet: Cloud scale load balancing with hardware and software. In
SIGCOMM, 2014.

143

http://www.broadcom.com/products/Switching/Data-Center/BCM56850-booktitle
http://www.broadcom.com/products/Switching/Data-Center/BCM56850-booktitle
http://www.openflowhub.org/display/FlowScale

[29] Aaron Gember, Aditya Akella, Ashok Anand, Theophilus Benson, and Robert Grandl.
Stratos: Virtual Middleboxes as First-Class Entities. Technical Report TR1771, Uni-
versity of Wisconsin-Madison, 2012.

[30] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon
Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta. VL2: A
scalable and flexible data center network. In SIGCOMM, 2009.

[31] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n Casado, Nick McK-
eown, and Scott Shenker. NOX: Towards an operating system for networks. SIG-
COMM CCR, 2008.

[32] Pankaj Gupta and Nick McKeown. Packet classification on multiple fields. In SIG-
COMM, 1999.

[33] Nikhil Handigol, Mario Flajslik, Srini Seetharaman, Ramesh Johari, and Nick McK-
eown. Aster*x: Load-balancing as a network primitive. In ACLD, 2010.

[34] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick Mck-
eown. Reproducible network experiments using container based emulation. In
CoNEXT, 2012.

[35] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and Nick
McKeown. I know what your packet did last hop: Using packet histories to trou-
bleshoot networks. In NSDI, 2014.

[36] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. Achieving High Utilization with Software-Driven
WAN. In SIGCOMM, 2013.

[37] C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992, 2000.

[38] Danny Yuxing Huang, Kenneth Yocum, and Alex C. Snoeren. High-fidelity switch
models for software-defined network emulation. In HotSDN, 2013.

[39] Sotiris Ioannidis, Angelos D. Keromytis, Steve M. Bellovin, and Jonathan M. Smith.
Implementing a distributed firewall. In CCS, 2000.

[40] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experience with a globally-deployed
software defined WAN. In SIGCOMM, 2013.

[41] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford. SoftCell: Scalable and
flexible cellular core network architecture. In ACM CoNEXT, 2013.

[42] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, Jennifer Rexford, and Roger Wattenhofer. Dynamic scheduling of net-
work updates. In SIGCOMM, 2014.

144

[43] Abdul Kabbani, Balajee Vamanan, Jahangir Hasan, and Fabien Duchene. FlowBen-
der: Flow-level adaptive routing for improved latency and throughput in datacenter
networks. In CoNEXT, 2014.

[44] Srikanth Kandula, Dina Katabi, Shan Sinha, and Arthur W. Berger. Flare: Responsive
Load Balancing Without Packet Reordering. In SIGCOMM CCR, 2007.

[45] Yossi Kanizo, David Hay, and Isaac Keslassy. Palette: Distributing tables in Software-
Defined Networks. In IEEE INFOCOMM Mini-conference, 2013.

[46] Naga Katta, Jennifer Rexford, and David Walker. Infinite CacheFlow in Software-
Defined Networks. Technical Report TR-966-13, Princeton University, 2013.

[47] Kirill Kogan, Sergey I. Nikolenko, Ori Rottenstreich, William Culhane, and Patrick
Eugster. Exploiting order independence for scalable and expressive packet classifica-
tion. ToN, 2015.

[48] Aggelos Lazaris, Daniel Tahara, Xin Huang, Erran Li, Andreas Voellmy, Y Richard
Yang, and Minlan Yu. Tango: Simplifying SDN Control with Automatic Switch Prop-
erty Inference, Abstraction, and Optimization. In CoNEXT, 2014.

[49] Yadi Ma and Suman Banerjee. A smart pre-classifier to reduce power consumption
of TCAMs for multi-dimensional packet classification. In SIGCOMM, 2012.

[50] Rick McGeer and Praveen Yalagandula. Minimizing rulesets for TCAM implemen-
tation. In INFOCOM, 2009.

[51] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling innova-
tion in campus networks. SIGCOMM CCR, 2008.

[52] Chad R. Meiners, Alex X. Liu, and Eric Torng. Topological transformation ap-
proaches to optimizing TCAM-based packet classification systems. In SIGMETRICS,
2009.

[53] Chad R. Meiners, Alex X. Liu, and Eric Torng. TCAM Razor: A systematic approach
towards minimizing packet classifiers in TCAMs. ToN, 2010.

[54] Chad R. Meiners, Alex X. Liu, and Eric Torng. BitWeaving: A non-prefix approach
to compressing packet classifiers in TCAMs. ToN, 2012.

[55] Chad R. Meiners, Alex X. Liu, Eric Torng, and Jignesh Patel. Split: Optimizing space,
power, and throughput for TCAM-based classification. In ANCS, 2011.

[56] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. Composing Software Defined Networks. In NSDI, 2013.

[57] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. DREAM: dy-
namic resource allocation for software-defined measurement. In SIGCOMM, 2014.

145

[58] Masoud Moshref, Minlan Yu, Abhishek Sharma, and Ramesh Govindan. vCRIB:
Virtualized rule management in the cloud. In NSDI, 2013.

[59] Erik Nordström, David Shue, Prem Gopalan, Rob Kiefer, Matvey Arye, Steven Ko,
Jennifer Rexford, and Michael J. Freedman. Serval: An end-host stack for service-
centric networking. In NSDI, 2012.

[60] O. Rottenstreich and I. Keslassy. On the code length of TCAM coding schemes. In
IEEE ISIT, 2010.

[61] Recep Ozdag. Intel®Ethernet Switch FM6000 Series-Software Defined Networking.
Intel Corporation, 2012.

[62] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Dover Publications, 1998.

[63] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Greenberg,
David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu, Changhoon
Kim, and Naveen Karri. Ananta: Cloud scale load balancing. In SIGCOMM, 2013.

[64] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
Abstractions for network update. In SIGCOMM, 2012.

[65] Ori Rottenstreich, Amit Berman, Yuval Cassuto, and Isaac Keslassy. Compression for
fixed-width memories. In IEEE ISIT, 2013.

[66] Ori Rottenstreich, Isaac Keslassy, Avinatan Hassidim, Haim Kaplan, and Ely Porat.
Optimal In/Out TCAM encodings of ranges. ToN, 2015.

[67] Ori Rottenstreich, Marat Radan, Yuval Cassuto, Isaac Keslassy, Carmi Arad, Tal
Mizrahi, Yoram Revah, and Avinatan Hassidim. Compressing forwarding tables for
datacenter scalability. IEEE JSAC, 2014.

[68] Ori Rottenstreich and J’anos Tapolcai. Lossy compression of packet classifiers. In
ANCS, 2015.

[69] SciPass. http://globalnoc.iu.edu/sdn/scipass.html.

[70] Siddhartha Sen, David Shue, Sunghwan Ihm, and Michael J. Freedman. Scalable,
optimal flow routing in datacenters via local link balancing. In CoNEXT, 2013.

[71] Scott Shenker. The future of networking and the past of protocols, 2011. Talk at Open
Networking Summit.

[72] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet classification
using multidimensional cutting. In SIGCOMM, 2003.

[73] Brent Stephens, Alan Cox, Wes Felter, Colin Dixon, and John Carter. PAST: Scalable
ethernet for data centers. In CoNEXT, 2012.

146

http://globalnoc.iu.edu/sdn/scipass.html

[74] Yu-Wei Eric Sung, Sanjay G. Rao, Geoffrey G. Xie, and David A. Maltz. Towards
systematic design of enterprise networks. In CoNEXT, 2008.

[75] S. Suri, T. Sandholm, and P. Warkhede. Compressing two-dimensional routing tables.
Algorithmica, 2003.

[76] David E. Taylor and Jonathan S. Turner. ClassBench: A packet classification bench-
mark. In INFOCOM, 2004.

[77] D. Thaler and C. Hopps. Multipath issues in unicast and multicast next-hop selection.
RFC 2991, 2000.

[78] Balajee Vamanan, Gwendolyn Voskuilen, and T. N. Vijaykumar. EffiCuts: Optimizing
packet classification for memory and throughput. In SIGCOMM, 2010.

[79] V.V. Vazirani. Approximation Algorithms. Springer, 2004.

[80] Andreas Voellmy and Paul Hudak. Nettle: Functional reactive programming of Open-
Flow networks. In PADL, 2011.

[81] Richard Wang, Dana Butnariu, and Jennifer Rexford. OpenFlow-based server load
balancing gone wild. In Hot-ICE, 2011.

[82] Rihua Wei, Yang Xu, and H. Jonathan Chao. Block permutations in boolean space to
minimize TCAM for packet classification. In INFOCOM, 2012.

[83] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement with
OpenSketch. In NSDI, 2013.

[84] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. Scalable flow-
based networking with DIFANE. In SIGCOMM, 2010.

[85] Minlan Yu, Jennifer Rexford, Xin Sun, Sanjay G. Rao, and Nick Feamster. A survey
of virtual LAN usage in campus networks. IEEE Communications Magazine, 2011.

[86] Lihua Yuan, Jianning Mai, Zhendong Su, Hao Chen, Chen-Nee Chuah, and Prasant
Mohapatra. FIREMAN: A toolkit for firewall modeling and analysis. In IEEE Sym-
posium on Security and Privacy, 2006.

[87] Pamela Zave and Jennifer Rexford. The design space of network mobility. In Recent
Advances in Networking. ACM SIGCOMM, 2013.

[88] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon Poutievski, Arjun
Singh, and Amin Vahdat. WCMP: Weighted cost multipathing for improved fairness
in data centers. In EuroSys, 2014.

[89] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,
Dave Maltz, Lihua Yuan, Ming Zhang, Haitao Zheng, and Y.Ben Zhao. Packet-level
telemetry in large datacenter networks. In SIGCOMM, 2015.

147

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Enterprise Networks
	1.2 Today's Enterprise Network Management
	1.2.1 VLAN-based IP Assignment
	1.2.2 Per-device Configuration
	1.2.3 Limited Policy Support

	1.3 Flexible Network Management with SDN
	1.3.1 Software Defined Networks
	1.3.2 Switch Constraints
	1.3.3 Contributions

	2 Optimize ``One Big Switch'' Abstraction
	2.1 Introduction
	2.2 Rule Placement in One Big Switch
	2.3 Related Work
	2.4 Algorithm Overview
	2.5 Placing Rules Along a Path
	2.5.1 Cover-Pack-and-Replace
	2.5.2 Rectangles Searching
	2.5.3 Algorithm Generalization
	2.5.4 Correctness
	2.5.5 Special Case: Single-Dimension Endpoint Policy

	2.6 Decomposition and Allocation
	2.6.1 Decomposition through Cross-Product
	2.6.2 Rule Allocation through Linear Programming
	2.6.3 Unwanted Traffic Minimization

	2.7 Incremental Updates
	2.7.1 Local Algorithm
	2.7.2 Global Algorithm

	2.8 Performance Evaluation
	2.8.1 Experimental Workloads
	2.8.2 Rule-Space Utilization
	2.8.3 Minimizing Unwanted Traffic
	2.8.4 Comparison with Palette

	2.9 Conclusion

	3 Alpaca: Compact Network Policies with Attribute-Carrying Addresses
	3.1 Introduction
	3.1.1 Enforcing Policies in Today's Enterprises
	3.1.2 Attribute-Carrying IP Addresses

	3.2 Case Study: Diverse Enterprise Policies
	3.2.1 Policies on Multiple Dimensions
	3.2.2 Potential for Concise Rules with ACIPs
	3.2.3 Diverse Attributes and Group Sizes

	3.3 ALPACA Overview
	3.3.1 ACIP allocation with Alpaca
	3.3.2 Problem Formulation
	3.3.3 Overview of Alpaca algorithms

	3.4 ALPACA Algorithms
	3.4.1 Prefix Solution
	3.4.2 Wildcard Solution
	3.4.3 Handle Changes in Host Attributes
	3.4.4 Practical Issues

	3.5 Evaluation
	3.5.1 Benefits with Existing Policies
	3.5.2 Benefits with Futuristic Policies

	3.6 Related Work
	3.7 Conclusion

	4 Niagara: Efficient Traffic Splitting on Commodity Switches
	4.1 Introduction
	4.2 Traffic split background
	4.2.1 Use cases
	4.2.2 Requirements
	4.2.3 Prior Traffic-Splitting Schemes

	4.3 Niagara Overview
	4.3.1 Rule Optimization Problem Formulation
	4.3.2 Overview of Optimization Algorithm

	4.4 Single Aggregate Optimization
	4.4.1 Approximate: Binary Expansion
	4.4.2 Truncate: Fit Rules in the Table

	4.5 Cross Aggregates Optimization
	4.5.1 Pack: Divide Rules Across Aggregates
	4.5.2 Share: Same Rules for Aggregates

	4.6 Graceful rule update
	4.6.1 Incremental Rule Computation
	4.6.2 Multi-stage Updates

	4.7 Niagara Application: Load Balancer
	4.7.1 Preserve Connection Affinity
	4.7.2 Prototype

	4.8 Evaluation
	4.8.1 Niagara for Server Load Balancing
	4.8.2 Niagara for Multi-pathing

	4.9 Conclusion

	5 Conclusion
	5.1 Summary of Contributions
	5.2 Deployment of the Management System
	5.2.1 Deploy Niagara and One Big Switch
	5.2.2 Deploy Alpaca and One Big Switch

	5.3 Concluding Remarks

	Bibliography

