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Load Balancing
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Today’s Network

• Need diverse policies for different purposes 

• However... 
• Per-device configuration 
• Limited policy support 
• Expensive devices 

• An F5 Load balancer costs $50K
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Our Goals
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Software-Defined Networks

• Decoupled control and data plane 
– Use standard protocols to program 

switch rule-tables 

• Centralized control 
– network-wide view 

• Flexible switch rules 
– diverse policies

Data Plane

Control Plane

Routing 
Access Control 

QoS
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Redesign enterprise network management
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Commodity Switches in SDN

• Unified open interfaces introduce 
competition to the market 
– 90% off the market price of vendor switches[1] 

• Commodity switches require the controller 
to directly deal with hardware constraints
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[1] Byan Larish, “Software-Defined Networking at the National Security Agency”



Switch Rule-table

• Each rule contains a match and an action 
– Match 
• e.g., exact, prefix or wildcard 

– Action 
• e.g., forward, drop, rewrite headers 

– E.g., (src_ip = *2, dst_ip = 1.1.1.1): fwd to port 2 

• Packets are processed by the 1st matching rule

14



TCAM

• Wildcard matching on multiple header fields 
– Used for QoS, ACL and routing[1]

15[1] Cisco Catalyst 3750 Series Switches. http://www.cisco.com/c/en/us/support/
docs/switches/catalyst-3750-series-switches/44921-swdatabase-3750ss-44921.html



Small Rule-table

• A typical TCAM can hold 500 – 4000 rules[1] 

• Power-hungry  
• Limited throughput 
– Need parallel TCAM for greater throughput 
– Greater throughput means smaller table

16[1] OpenFlow Switches in GENI. https://www.youtube.com/watch?v=RRiOcjAvIsg
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My proposal (One-Big-Switch)
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My proposal (Attribute-Carrying IP)
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One Big Switch

Alpaca: 
Attribute-Carrying IP

DHCP Services



My proposal (One-Big-Server)
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Attribute-Carrying IP
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Server Load Balancing
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Thesis Overview

Name Abstraction Publication

One-Big-Switch Configure One-Big-Switch CoNEXT’13

Niagara Configure One-Big-Server CoNEXT’15

Alpaca Enforce attribute-based network policies CoNEXT’15



Niagara: Efficient Traffic Splitting on 
Commodity Switches

Nanxi Kang, Monia Ghobadi, 
John Reumann, Alexander Shraer, 

Jennifer Rexford

23



Service load balancing

• A network hosts many services (Virtual-IPs) 
• Each service is replicated for greater throughput 
• A load balancer spreads traffic over service instances

Load Balancer

VIP1                               VIP2
24

> Appliances: costly 
> Software: limited throughputX



Hierarchical Load Balancer

• Modern LB scales out with a hierarchy[1][2] 
– A hardware switch split traffic over SLBs 
– SLBs direct requests to servers 
– SLBs track connections and monitor health of servers 

• Traffic split at the switch is the key to scalability

[1]: Duet (SIGCOMM’14) 
[2]: Ananta (SIGCOMM’13)

Hardware switch Software LB (SLB)
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Load Balancer



Accurate Weighted Split

• SLBs are weighted in the traffic split 
– Throughput of SLB  
– Deployment of VIP 
– Failures, or recovery
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Symmetry

Asymmetry of server deployment

Asymmetry of LB

Asymmetry across VIPs



Existing hash-based split

• Hash-based ECMP 
– Hash 5-tuple header fields of packets 
– Dst_SLB =  Hash_value mod #SLBs

ECMP Mod Action

1 0 Forward to 1

1 1 Forward to 2

… … …

DstIP Action
1.1.1.1 Hash, ECMP Group 1

… …

Equal split over two SLBs



Existing hash-based split

• Hash-based ECMP 
– Hash 5-tuple header fields of packets 
– Dst_SLB =  Hash_value mod #SLBs 

• WCMP gives unequal split by repeating

ECMP Mod Action

1 0 Forward to 1

1 1 Forward to 2

1 2 Forward to 2

… … …

DstIP Action
1.1.1.1 Hash, ECMP Group 1

… …

(1/3, 2/3) is achieved by adding the second SLB twice



Existing hash-based split

• ECMP and WCMP only split the flowspace equally 
– WCMP cannot scale to many VIPs, due to the rule-table 

constraint 
– e.g., (1/8, 7/8) takes 8 rules

ECMP Mod Action

1 0 Forward to 1

1 1 Forward to 2

1 2 Forward to 2

… … …

DstIP Action
1.1.1.1 Hash, ECMP Group 1

… …



A wildcard-matching approach

• OpenFlow + TCAM 
– OpenFlow : program rules at switches 
– TCAM :  support wildcard matching on packet headers 

• A starting example 
– Single service : VIP = 1.1.1.1 
–Weight vector: (1/4, 1/4, 1/2)

Match 
(dst_ip, src_ip)

Action

1.1.1.1 *00 Forward to 1

1.1.1.1 *01 Forward to 2

1.1.1.1 * Forward to 3

30

1/4 
1/4 

1/2 



Challenges: Accuracy

• How rules achieve the weight vector of a VIP? 
– Arbitrary weights 
–Non-uniform traffic distribution over flowspace 

31

?
1/6 
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Challenges: Accuracy

• How rules achieve the weight vector of a VIP? 
– Arbitrary weights 
–Non-uniform traffic distribution over flowspace 

• How VIPs (100 -10k) share a rule table (~4,000)?

?

Niagara: rule generation algorithms! 32

1/6   1/4 
1/3   1/4 

1/2   1/2 

2. Packing rules for multiple VIPs  
3. Sharing default rules 
4. Grouping similar VIPs

1. Approximate weights with rules



Challenges: Accuracy

• How rules achieve the weight vector of a VIP? 
– Arbitrary weights 
–Non-uniform traffic distribution over flowspace 

• How VIPs (100 -10k) share a rule table (~4,000)?
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1/3   1/4 
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1. Approximate weights with rules

2. Packing rules for multiple VIPs  
3. Sharing default rules 
4. Grouping similar VIPs



Basic ideas

• Uniform traffic distribution 
– e.g., *000 represents 1/8 traffic 

• “Approximation” of the weight vector? 
– Header matching discretizes portions of traffic 
– Use error bound to quantify approximations 

• 1/3 ≈ 1/8 + 1/4
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?
1/6 
1/3 

1/2 

Match Action
   *100 Forward to 1
    *10 Forward to 1



Naïve solution

• Bin pack suffixes 
– Round weights to multiples of 1/2k  

– When k = 3, (1/6, 1/3, 1/2) ≈ (1/8, 3/8, 4/8) 

• Observation 
– 1/3 ≈ 3/8 = 1/2 - 1/8 saves one rule 
– Use subtraction and rule priority

*000 Fwd to 1

*100 Fwd to 2

*10 Fwd to 2
*1 Fwd to 3

*000 Fwd to 1

*0 Fwd to 2

* Fwd to 3
35



Approximation with 1/2k

• Approximate a weight with powers-of-two terms 
– 1/2, 1/4, 1/8, … 

• Start with

36

# Weight
w

Approx 
v

Error 
v - w

1 1/6 0 -1/6

2 1/3 0 -1/3

3 1/2 1 1/2



Approximation with 1/2k 

• Reduce errors iteratively 
• In each round, move 1/2k from an over-approximated 

weight to an under-approximation weight
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# Weight
w

Approx 
v

Error 
v - w

1 1/6 0 -1/6

2 1/3 0 -1/3

3 1/2 1 1/2

1 1/6 0 -1/6

2 1/3 1/2 -1/3 + 1/2 = 1/6

3 1/2 1 - 1/2 1/2 - 1/2 = 0



Initial approximation
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# Weight Approx Error

1 1/6 0 -1/6

2 1/3 0 -1/3

3 1/2 1 1/2

    

        

           * Fwd to 3



Move 1/2 from W3 to W2
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# Weight Approx Error

1 1/6 0 -1/6

2 1/3 1/2 1/6

3 1/2 1 -1/2 0

    

        *0 Fwd to 2

           * Fwd to 3



Final result
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*00100 Fwd to 1

    *000 Fwd to 1

        *0 Fwd to 2

           * Fwd to 3

# Weight Approx

1 1/6 1/8 +1/32

2 1/3 1/2 -1/8 -1/32

3 1/2 1 -1/2

Reduce errors 
exponentially!



Truncation
• Limited rule-table size? 
– Truncation, i.e., stop iterations earlier 

• Imbalance: Σ |errori| / 2 
– Total over-approximation

*00100 Fwd to 1
    *000 Fwd to 1
        *0 Fwd to 2

           * Fwd to 3

    *000 Fwd to 1
        *0 Fwd to 2

           * Fwd to 3

Full rules 
Imbalance = 1%

Rules after truncation 
Imbalance = 4%

41



Stairstep: #Rules v.s. Imbalance
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Multiple VIPs

• How rules achieve the weight vector of a VIP? 
– Arbitrary weights 
–Non-uniform traffic distribution over flowspace 

• How VIPs (100-10k) share a rule table (~4,000)?

?

Minimize   Σ traffic_volumej x Σ |errorij| / 2 43

1/6   1/4 
1/3   1/4 

1/2   1/2 



• Popularity : Traffic Volume 

• Easy-to-approximate : Stairsteps 

Characteristics of VIPs

55%

45%
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Stairsteps

• Each stairstep is scaled by its traffic volume
VIP1 55% (1/6, 1/3, 1/2)

VIP2 45% (1/4, 1/4, 1/2)
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Rule allocation
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Packing result for table 
capacity C = 5 
VIP 1: 2 rules 
VIP 2: 3 rules 

Total imbalance = 9.17%



Pack Result
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Match (dst, src) Action

VIP 1,   *0 Fwd to 2

VIP 1,     * Fwd to 3

VIP 2, *00 Fwd to 1

VIP 2, *01 Fwd to 2

VIP 2,     * Fwd to 3

Packing result for table 
capacity C = 5 
VIP 1: 2 rules 
VIP 2: 3 rules 

Total imbalance = 9.17%



Sharing default rules 

• Build default split for ALL VIPs

1/6     1/4  
1/3     1/4 

1/2     1/2

 1/6       1/4  
-1/6     -1/4 

    0          0

 0 
1/2 
1/2

VIP 1,  *00100 Fwd to 1

VIP 1,     *000 Fwd to 1

VIP 2,       *00 Fwd to 1

                 *0 Fwd to 2

                  * Fwd to 3

         Weights Default Delta

VIP 1,    *0 Fwd to 2

VIP 1,     * Fwd to 3

VIP 2,  *00 Fwd to 1

VIP 2,  *01 Fwd to 2

VIP 2,     * Fwd to 3

Imbalance = 0.55%Imbalance = 9.17%

V.S.
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Load Balance 10,000 VIPs

• Weights 
– Gaussian: equal weights 
– Bimodal: big (4x) and small weights 
– Pick_Next-hop: big(4x), small and zero-value weights 
– 16 weights per VIP
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Niagara Summary

• Wildcard matches approximate weights well 
• Exponential drop in errors 

• Prioritized packing reduces imbalance sharply 
• Default rules serve as a good starting point 

• Full algorithms 
• Multiple VIP Grouping 
• Incremental update 
• reduce “churn”, multi-stage update, flow consistency 

• Niagara for multi-pathing

51



Alpaca: Compact Network Policies 
with Attribute-Carrying Addresses

Nanxi Kang, Ori Rottenstreich,  
Sanjay Rao, Jennifer Rexford
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Attribute-Carrying IP

53

One Big Switch

Alpaca: 
Attribute-Carrying IP

DHCP Services

One-Big-Server

Niagara:
Server Load Balancing



Attribute-based Network Policies

• Policies are defined based on host attributes 
– Permit CS hosts to a database 
– Rate limit student hosts’ traffic to 50Mbps 

• We surveyed policies in 22 campus networks 
– ACL and QoS consider Departments and Roles 
– ACL may ban particular OS  
– QoS may give different priorities based on Usage

54



Dimensions and Attributes

• Dimensions: orthogonal categorization 
• Attributes: values in a dimension

Dimension Example Attributes

Department CS, EE

Role Faculty, Students

Security Level Deny all, Permit web (80), Permit SSH

Status In service, In testing

Location -

Usage Research, Teaching, Infrastructure

CS_owned Yes, No

OS MacOS, Windows
55



Attribute-Carrying IP (ACIP)

• Embed attribute information 
• Do once when hosts join the network 

• Reduce rule space usage 
• Aggregate addresses

56

1.1.2.1
1.1.1.*->1.1.2.* : permit

1.1.1.1



57

ACIP Allocation

Alpaca Algorithm

Host attributes

Host Owner role Department

Alice Faculty EE

Bob Student CS

Charlie Student CS

Permit Faculty SSH 
Deny Student 80Permit EE Faculty SSH 

Deny CS Student SSH

Attribute-based policies

ACIP allocation

Alice   : 1.1.1.1 
Bob     : 1.2.2.1 
Charlie: 1.2.2.2

1.1.1.*, SSH : permit 
1.2.2.*, SSH : deny

1.*.1.* : Faculty 
1.*.2.* : Students

1.1.*.* : EE 
1.2.*.* : CS

Classification  rules



Solutions: Use 2k

• An address pattern with k *s represent 2k hosts 
– e.g., 00** represents 22 = 4 hosts 

• Use 2k to represent group sizes
CS EE

Faculty 5 3

Students 2 6

58

(CS, Faculty, 1)

(CS, Faculty, 4)

CS EE

Faculty 1 + 4 1 + 2

Students 2 2 + 4



Solutions: Use 2k

• An address pattern with k *s represent 2k hosts 
– e.g., 00** represents 22 = 4 hosts 

• Use 2k to represent group sizes
CS EE

Faculty 5 3

Students 2 6
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(CS, Faculty, 1)

(CS, Faculty, 4)

(EE, Faculty, 1)

(EE, Faculty, 2)

(CS, Students, 2)

(EE, Students, 2)

(EE, Students, 4)

CS EE

Faculty 1 + 4 1 + 2

Students 2 2 + 4



Representation of Attributes

• 8 Faculty hosts 
– (CS, F, 1), (CS, F, 4), (EE, F, 1), (EE, F, 2)

60

Worst case: 4 patterns 
Can we do better?

(CS, Faculty, 1)

(CS, Faculty, 4)

(EE, Faculty, 1)

(EE, Faculty, 2)

(CS, Students, 2)

(EE, Students, 2)

(EE, Students, 4)



Flip bits

• Flip one bit for two terms with  
• at least one attribute in common 
• equal values

61

(CS, Faculty, 1) 0000

(CS, Faculty, 4)

(EE, Faculty, 1) 0001

(EE, Faculty, 2)

(CS, Students, 2)

(EE, Students, 2)

(EE, Students, 4)

000*, (/, Faculty, 2)



Flip bits

• Flip one bit for two terms with  
• at least one attribute in common 
• equal values

62

000*, (/, Faculty, 2)
(CS, Faculty, 1) 0000

(CS, Faculty, 4) 01**

(EE, Faculty, 1) 0001

(EE, Faculty, 2) 001*

(CS, Students, 2) 100*

(EE, Students, 2) 101*

(EE, Students, 4) 11**



Classification rules 

• Role 
– Faculty: 0*** 
– Students: 1***

(CS, Faculty, 1) 0000

(CS, Faculty, 4) 01**

(EE, Faculty, 1) 0001

(EE, Faculty, 2) 001*

(CS, Students, 2) 100*

(EE, Students, 2) 101*

(EE, Students, 4) 11** 63



Classification rules 

• Role 
• Department 
– CS: 0000, 100*, 01** 
– EE: 0001, *01*, 11**

(CS, Faculty, 1) 0000

(CS, Faculty, 4) 01**

(EE, Faculty, 1) 0001

(EE, Faculty, 2) 001*

(CS, Students, 2) 100*

(EE, Students, 2) 101*

(EE, Students, 4) 11** 64

Configure Alpaca to compute  
prefix or wildcard patterns



Evaluation

• Princeton CS data: 6 dimensions, ~1500 hosts  
• Metric: Σ |classification rules for a dimension| 
• Compared with

65

SingleDim Classify hosts along “Department”, e.g., VLAN

SD_PFX “Department”: SingleDim  
  Others         : Optimal prefix compression

SD_WC “Department”: SingleDim  
  Others         : Wildcard compression heuristics
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SD enumerates hosts

Rule co
mpressio

n helps

Optimize address allocation is more effective!
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Alpaca Summary

• Flip bits to allocate ACIPs to host groups 

• Optimize address allocation is more 
effective than compression on fixed address 
allocation  

• Full algorithm: 
• Incremental update of ACIP allocation
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Optimizing the One-Big-Switch 
Abstraction in Software-Defined Networks

Nanxi Kang, Zhenming Liu,  
Jennifer Rexford, David Walker
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...

... ...

...

...

Optimize One-Big-Switch Abstraction

Endpoint policy 
(e.g., ACL)

Routing policy
(e.g., shortest-path)

Optimization Algorithm

...
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Put Everthing All Together
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One Big Switch

Alpaca: 
Attribute-Carrying IP

Niagara:
Server Load Balancing

Endpoint policy Routing policy



Contributions

Diverse
Policies

Attribute-Carrying IPs
One-Big-Server 
One-Big-Switch
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Alpaca
Niagara

Optimize OBS

#1: Abstraction #2: Algorithm

Smart algorithms realize simple abstractions!



Thanks!
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