
Flexible Enterprise Network
Management on Commodity Switches

Nanxi Kang
Committee: Jennifer Rexford (advisor),

Nick Feamster, Sanjay Rao,
David Walker and Mike Freedman

1

Manage a Network

2

Switches

Hosts

Address Assignment

3DHCP

Routing

4DHCP

Access Control

5CharlieDHCP Bob

Alice Alice->Bob: permit
Alice->Charlie: deny

Quality-of-Service

DHCP 6
Bob

Charlie

Alice Alice->Bob: permit
Alice->Charlie: deny High priority Video

Call

Low priority P2P

Load Balancing

DHCP 7Charlie

Alice

Bob

Alice->Bob: permit
Alice->Charlie: deny High priority Video

Call

Low priority P2P

1/3

1/3

1/3

7

Today’s Network

• Need diverse policies for different purposes

• However...
• Per-device configuration
• Limited policy support
• Expensive devices

• An F5 Load balancer costs $50K

8

Our Goals

Diverse
Policies

9

Simple
Management

Commodity
Switches

Support diverse policies with simple
management on commodity switches

Our Goals

Diverse
Policies

10

Simple
Management

Commodity
Switches

Support diverse policies with simple
management on commodity switches

Software-Defined Networks

• Decoupled control and data plane
– Use standard protocols to program

switch rule-tables

• Centralized control
– network-wide view

• Flexible switch rules
– diverse policies

Data Plane

Control Plane

Routing
Access Control

QoS

11
Redesign enterprise network management

Our Goals

Diverse
Policies

12

Simple
Management

Commodity
Switches

Support diverse policies with simple
management on commodity switches

Commodity Switches in SDN

• Unified open interfaces introduce
competition to the market
– 90% off the market price of vendor switches[1]

• Commodity switches require the controller
to directly deal with hardware constraints

13

[1] Byan Larish, “Software-Defined Networking at the National Security Agency”

Switch Rule-table

• Each rule contains a match and an action
– Match
• e.g., exact, prefix or wildcard

– Action
• e.g., forward, drop, rewrite headers

– E.g., (src_ip = *2, dst_ip = 1.1.1.1): fwd to port 2

• Packets are processed by the 1st matching rule

14

TCAM

• Wildcard matching on multiple header fields
– Used for QoS, ACL and routing[1]

15[1] Cisco Catalyst 3750 Series Switches. http://www.cisco.com/c/en/us/support/
docs/switches/catalyst-3750-series-switches/44921-swdatabase-3750ss-44921.html

Small Rule-table

• A typical TCAM can hold 500 – 4000 rules[1]

• Power-hungry
• Limited throughput
– Need parallel TCAM for greater throughput
– Greater throughput means smaller table

16[1] OpenFlow Switches in GENI. https://www.youtube.com/watch?v=RRiOcjAvIsg

Contributions

Diverse
Policies

Simple
Management

17

Commodity
Switches

#1: Abstraction #2: Algorithm

Support diverse policies with simple
management on commodity switches

My proposal (One-Big-Switch)

18

My proposal (One-Big-Switch)

One Big Switch

19

My proposal (Attribute-Carrying IP)

20

One Big Switch

Alpaca:
Attribute-Carrying IP

DHCP Services

My proposal (One-Big-Server)

21

One Big Switch

Alpaca:
Attribute-Carrying IP

DHCP Services

One-Big-Server

Niagara:
Server Load Balancing

22

Thesis Overview

Name Abstraction Publication

One-Big-Switch Configure One-Big-Switch CoNEXT’13

Niagara Configure One-Big-Server CoNEXT’15

Alpaca Enforce attribute-based network policies CoNEXT’15

Niagara: Efficient Traffic Splitting on
Commodity Switches

Nanxi Kang, Monia Ghobadi,
John Reumann, Alexander Shraer,

Jennifer Rexford

23

Service load balancing

• A network hosts many services (Virtual-IPs)
• Each service is replicated for greater throughput
• A load balancer spreads traffic over service instances

Load Balancer

VIP1 VIP2
24

> Appliances: costly
> Software: limited throughputX

Hierarchical Load Balancer

• Modern LB scales out with a hierarchy[1][2]
– A hardware switch split traffic over SLBs
– SLBs direct requests to servers
– SLBs track connections and monitor health of servers

• Traffic split at the switch is the key to scalability

[1]: Duet (SIGCOMM’14)
[2]: Ananta (SIGCOMM’13)

Hardware switch Software LB (SLB)

25

Load Balancer

Accurate Weighted Split

• SLBs are weighted in the traffic split
– Throughput of SLB
– Deployment of VIP
– Failures, or recovery

26

Symmetry

Asymmetry of server deployment

Asymmetry of LB

Asymmetry across VIPs

Existing hash-based split

• Hash-based ECMP
– Hash 5-tuple header fields of packets
– Dst_SLB = Hash_value mod #SLBs

ECMP Mod Action

1 0 Forward to 1

1 1 Forward to 2

… … …

DstIP Action
1.1.1.1 Hash, ECMP Group 1

… …

Equal split over two SLBs

Existing hash-based split

• Hash-based ECMP
– Hash 5-tuple header fields of packets
– Dst_SLB = Hash_value mod #SLBs

• WCMP gives unequal split by repeating

ECMP Mod Action

1 0 Forward to 1

1 1 Forward to 2

1 2 Forward to 2

… … …

DstIP Action
1.1.1.1 Hash, ECMP Group 1

… …

(1/3, 2/3) is achieved by adding the second SLB twice

Existing hash-based split

• ECMP and WCMP only split the flowspace equally
– WCMP cannot scale to many VIPs, due to the rule-table

constraint
– e.g., (1/8, 7/8) takes 8 rules

ECMP Mod Action

1 0 Forward to 1

1 1 Forward to 2

1 2 Forward to 2

… … …

DstIP Action
1.1.1.1 Hash, ECMP Group 1

… …

A wildcard-matching approach

• OpenFlow + TCAM
– OpenFlow : program rules at switches
– TCAM : support wildcard matching on packet headers

• A starting example
– Single service : VIP = 1.1.1.1
–Weight vector: (1/4, 1/4, 1/2)

Match
(dst_ip, src_ip)

Action

1.1.1.1 *00 Forward to 1

1.1.1.1 *01 Forward to 2

1.1.1.1 * Forward to 3

30

1/4
1/4

1/2

Challenges: Accuracy

• How rules achieve the weight vector of a VIP?
– Arbitrary weights
–Non-uniform traffic distribution over flowspace

31

?
1/6
1/3

1/2

Challenges: Accuracy

• How rules achieve the weight vector of a VIP?
– Arbitrary weights
–Non-uniform traffic distribution over flowspace

• How VIPs (100 -10k) share a rule table (~4,000)?

?

Niagara: rule generation algorithms! 32

1/6 1/4
1/3 1/4

1/2 1/2

2. Packing rules for multiple VIPs
3. Sharing default rules
4. Grouping similar VIPs

1. Approximate weights with rules

Challenges: Accuracy

• How rules achieve the weight vector of a VIP?
– Arbitrary weights
–Non-uniform traffic distribution over flowspace

• How VIPs (100 -10k) share a rule table (~4,000)?

?

Niagara: rule generation algorithms! 33

1/6 1/4
1/3 1/4

1/2 1/2

1. Approximate weights with rules

2. Packing rules for multiple VIPs
3. Sharing default rules
4. Grouping similar VIPs

Basic ideas

• Uniform traffic distribution
– e.g., *000 represents 1/8 traffic

• “Approximation” of the weight vector?
– Header matching discretizes portions of traffic
– Use error bound to quantify approximations

• 1/3 ≈ 1/8 + 1/4

34

?
1/6
1/3

1/2

Match Action
 *100 Forward to 1
 *10 Forward to 1

Naïve solution

• Bin pack suffixes
– Round weights to multiples of 1/2k

– When k = 3, (1/6, 1/3, 1/2) ≈ (1/8, 3/8, 4/8)

• Observation
– 1/3 ≈ 3/8 = 1/2 - 1/8 saves one rule
– Use subtraction and rule priority

*000 Fwd to 1

*100 Fwd to 2

*10 Fwd to 2
*1 Fwd to 3

*000 Fwd to 1

*0 Fwd to 2

* Fwd to 3
35

Approximation with 1/2k

• Approximate a weight with powers-of-two terms
– 1/2, 1/4, 1/8, …

• Start with

36

Weight
w

Approx
v

Error
v - w

1 1/6 0 -1/6

2 1/3 0 -1/3

3 1/2 1 1/2

Approximation with 1/2k

• Reduce errors iteratively
• In each round, move 1/2k from an over-approximated

weight to an under-approximation weight

37

Weight
w

Approx
v

Error
v - w

1 1/6 0 -1/6

2 1/3 0 -1/3

3 1/2 1 1/2

1 1/6 0 -1/6

2 1/3 1/2 -1/3 + 1/2 = 1/6

3 1/2 1 - 1/2 1/2 - 1/2 = 0

Initial approximation

38

Weight Approx Error

1 1/6 0 -1/6

2 1/3 0 -1/3

3 1/2 1 1/2

 * Fwd to 3

Move 1/2 from W3 to W2

39

Weight Approx Error

1 1/6 0 -1/6

2 1/3 1/2 1/6

3 1/2 1 -1/2 0

 *0 Fwd to 2

 * Fwd to 3

Final result

40

*00100 Fwd to 1

 *000 Fwd to 1

 *0 Fwd to 2

 * Fwd to 3

Weight Approx

1 1/6 1/8 +1/32

2 1/3 1/2 -1/8 -1/32

3 1/2 1 -1/2

Reduce errors
exponentially!

Truncation
• Limited rule-table size?
– Truncation, i.e., stop iterations earlier

• Imbalance: Σ |errori| / 2
– Total over-approximation

*00100 Fwd to 1
 *000 Fwd to 1
 *0 Fwd to 2

 * Fwd to 3

 *000 Fwd to 1
 *0 Fwd to 2

 * Fwd to 3

Full rules
Imbalance = 1%

Rules after truncation
Imbalance = 4%

41

Stairstep: #Rules v.s. Imbalance

42

Diminishing
Return

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5

Im
ba

la
nc

e

#Rules

(1, 50%)

(2, 16.7%)

(3, 4.17%) (4, 1%)

Multiple VIPs

• How rules achieve the weight vector of a VIP?
– Arbitrary weights
–Non-uniform traffic distribution over flowspace

• How VIPs (100-10k) share a rule table (~4,000)?

?

Minimize Σ traffic_volumej x Σ |errorij| / 2 43

1/6 1/4
1/3 1/4

1/2 1/2

• Popularity : Traffic Volume

• Easy-to-approximate : Stairsteps

Characteristics of VIPs

55%

45%

44 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5

Im
ba

la
nc

e

#Rules

(1, 50%)

(2, 16.7%)

(3, 4.17%) (4, 1%)

1/6 1/4
1/3 1/4

1/2 1/2

Stairsteps

• Each stairstep is scaled by its traffic volume
VIP1 55% (1/6, 1/3, 1/2)

VIP2 45% (1/4, 1/4, 1/2)

45

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5

Im
ba

la
nc

e

#Rules

(1, 27.5%)

(2, 9.17%)

(3, 2.29%)
(4, 0.55%)

(1, 22.5%)

(2, 11.25%)

(3, 0%)

VIP1
VIP2

Rule allocation

46

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5

Im
ba

la
nc

e

#Rules

(1, 27.5%)

(2, 9.17%)

(3, 2.29%)
(4, 0.55%)

(1, 22.5%)

(2, 11.25%)

(3, 0%)

VIP1
VIP2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5

Im
ba

la
nc

e

#Rules

(1, 27.5%)

(2, 9.17%)

(3, 2.29%)
(4, 0.55%)

(1, 22.5%)

(2, 11.25%)

(3, 0%)

VIP1
VIP2

Rule allocation

47

Packing result for table
capacity C = 5
VIP 1: 2 rules
VIP 2: 3 rules

Total imbalance = 9.17%

Pack Result

48

Match (dst, src) Action

VIP 1, *0 Fwd to 2

VIP 1, * Fwd to 3

VIP 2, *00 Fwd to 1

VIP 2, *01 Fwd to 2

VIP 2, * Fwd to 3

Packing result for table
capacity C = 5
VIP 1: 2 rules
VIP 2: 3 rules

Total imbalance = 9.17%

Sharing default rules

• Build default split for ALL VIPs

1/6 1/4
1/3 1/4

1/2 1/2

 1/6 1/4
-1/6 -1/4

 0 0

 0
1/2
1/2

VIP 1, *00100 Fwd to 1

VIP 1, *000 Fwd to 1

VIP 2, *00 Fwd to 1

 *0 Fwd to 2

 * Fwd to 3

 Weights Default Delta

VIP 1, *0 Fwd to 2

VIP 1, * Fwd to 3

VIP 2, *00 Fwd to 1

VIP 2, *01 Fwd to 2

VIP 2, * Fwd to 3

Imbalance = 0.55%Imbalance = 9.17%

V.S.

49

Load Balance 10,000 VIPs

• Weights
– Gaussian: equal weights
– Bimodal: big (4x) and small weights
– Pick_Next-hop: big(4x), small and zero-value weights
– 16 weights per VIP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000

T
o
ta

l
im

b
a
la

n
ce

Rule-table size

Pick Next-hop
Bimodal

Gaussian

Niagara Summary

• Wildcard matches approximate weights well
• Exponential drop in errors

• Prioritized packing reduces imbalance sharply
• Default rules serve as a good starting point

• Full algorithms
• Multiple VIP Grouping
• Incremental update
• reduce “churn”, multi-stage update, flow consistency

• Niagara for multi-pathing

51

Alpaca: Compact Network Policies
with Attribute-Carrying Addresses

Nanxi Kang, Ori Rottenstreich,
Sanjay Rao, Jennifer Rexford

52

Attribute-Carrying IP

53

One Big Switch

Alpaca:
Attribute-Carrying IP

DHCP Services

One-Big-Server

Niagara:
Server Load Balancing

Attribute-based Network Policies

• Policies are defined based on host attributes
– Permit CS hosts to a database
– Rate limit student hosts’ traffic to 50Mbps

• We surveyed policies in 22 campus networks
– ACL and QoS consider Departments and Roles
– ACL may ban particular OS
– QoS may give different priorities based on Usage

54

Dimensions and Attributes

• Dimensions: orthogonal categorization
• Attributes: values in a dimension

Dimension Example Attributes

Department CS, EE

Role Faculty, Students

Security Level Deny all, Permit web (80), Permit SSH

Status In service, In testing

Location -

Usage Research, Teaching, Infrastructure

CS_owned Yes, No

OS MacOS, Windows
55

Attribute-Carrying IP (ACIP)

• Embed attribute information
• Do once when hosts join the network

• Reduce rule space usage
• Aggregate addresses

56

1.1.2.1
1.1.1.*->1.1.2.* : permit

1.1.1.1

57

ACIP Allocation

Alpaca Algorithm

Host attributes

Host Owner role Department

Alice Faculty EE

Bob Student CS

Charlie Student CS

Permit Faculty SSH
Deny Student 80Permit EE Faculty SSH

Deny CS Student SSH

Attribute-based policies

ACIP allocation

Alice : 1.1.1.1
Bob : 1.2.2.1
Charlie: 1.2.2.2

1.1.1.*, SSH : permit
1.2.2.*, SSH : deny

1.*.1.* : Faculty
1.*.2.* : Students

1.1.*.* : EE
1.2.*.* : CS

Classification rules

Solutions: Use 2k

• An address pattern with k *s represent 2k hosts
– e.g., 00** represents 22 = 4 hosts

• Use 2k to represent group sizes
CS EE

Faculty 5 3

Students 2 6

58

(CS, Faculty, 1)

(CS, Faculty, 4)

CS EE

Faculty 1 + 4 1 + 2

Students 2 2 + 4

Solutions: Use 2k

• An address pattern with k *s represent 2k hosts
– e.g., 00** represents 22 = 4 hosts

• Use 2k to represent group sizes
CS EE

Faculty 5 3

Students 2 6

59

(CS, Faculty, 1)

(CS, Faculty, 4)

(EE, Faculty, 1)

(EE, Faculty, 2)

(CS, Students, 2)

(EE, Students, 2)

(EE, Students, 4)

CS EE

Faculty 1 + 4 1 + 2

Students 2 2 + 4

Representation of Attributes

• 8 Faculty hosts
– (CS, F, 1), (CS, F, 4), (EE, F, 1), (EE, F, 2)

60

Worst case: 4 patterns
Can we do better?

(CS, Faculty, 1)

(CS, Faculty, 4)

(EE, Faculty, 1)

(EE, Faculty, 2)

(CS, Students, 2)

(EE, Students, 2)

(EE, Students, 4)

Flip bits

• Flip one bit for two terms with
• at least one attribute in common
• equal values

61

(CS, Faculty, 1) 0000

(CS, Faculty, 4)

(EE, Faculty, 1) 0001

(EE, Faculty, 2)

(CS, Students, 2)

(EE, Students, 2)

(EE, Students, 4)

000*, (/, Faculty, 2)

Flip bits

• Flip one bit for two terms with
• at least one attribute in common
• equal values

62

000*, (/, Faculty, 2)
(CS, Faculty, 1) 0000

(CS, Faculty, 4) 01**

(EE, Faculty, 1) 0001

(EE, Faculty, 2) 001*

(CS, Students, 2) 100*

(EE, Students, 2) 101*

(EE, Students, 4) 11**

Classification rules

• Role
– Faculty: 0***
– Students: 1***

(CS, Faculty, 1) 0000

(CS, Faculty, 4) 01**

(EE, Faculty, 1) 0001

(EE, Faculty, 2) 001*

(CS, Students, 2) 100*

(EE, Students, 2) 101*

(EE, Students, 4) 11** 63

Classification rules

• Role
• Department
– CS: 0000, 100*, 01**
– EE: 0001, *01*, 11**

(CS, Faculty, 1) 0000

(CS, Faculty, 4) 01**

(EE, Faculty, 1) 0001

(EE, Faculty, 2) 001*

(CS, Students, 2) 100*

(EE, Students, 2) 101*

(EE, Students, 4) 11** 64

Configure Alpaca to compute
prefix or wildcard patterns

Evaluation

• Princeton CS data: 6 dimensions, ~1500 hosts
• Metric: Σ |classification rules for a dimension|
• Compared with

65

SingleDim Classify hosts along “Department”, e.g., VLAN

SD_PFX “Department”: SingleDim
 Others : Optimal prefix compression

SD_WC “Department”: SingleDim
 Others : Wildcard compression heuristics

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

1 2 3 4 5 6

#
R

u
le

s

#Dimensions

SingleDim

SD_PFX

SD_WC

ALP_PFX

ALP_WC

Increased #dimensions

66

SD enumerates hosts

Rule co
mpressio

n helps

Optimize address allocation is more effective!

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

1500 3000 6000 9000 12000 15000

#
R

u
le

s

#Hosts

SingleDim

SD_PFX

SD_WC

ALP_PFX

ALP_WC

Increase #hosts

67

Ru
le

com
pres

sio
n i

s n
ot

en
ou

gh

Alpaca is not impacted by scaled #hosts

Alpaca Summary

• Flip bits to allocate ACIPs to host groups

• Optimize address allocation is more
effective than compression on fixed address
allocation

• Full algorithm:
• Incremental update of ACIP allocation

68

Optimizing the One-Big-Switch
Abstraction in Software-Defined Networks

Nanxi Kang, Zhenming Liu,
Jennifer Rexford, David Walker

69

...

... ...

...

...

Optimize One-Big-Switch Abstraction

Endpoint policy
(e.g., ACL)

Routing policy
(e.g., shortest-path)

Optimization Algorithm

...

70

Put Everthing All Together

71

One Big Switch

Alpaca:
Attribute-Carrying IP

Niagara:
Server Load Balancing

Endpoint policy Routing policy

Contributions

Diverse
Policies

Attribute-Carrying IPs
One-Big-Server
One-Big-Switch

72

Alpaca
Niagara

Optimize OBS

#1: Abstraction #2: Algorithm

Smart algorithms realize simple abstractions!

Thanks!

73

