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Abstract

Software-defined networking (SDN) promises flexible control of computer networks by or-

chestrating switches in the network dataplane through a centralized controller. However,

despite this promise, operators used to fast and fault-tolerant routing using traditional proto-

cols face three important problems while deploying SDN. One, the control plane timescales

are too slow to enforce effective load balancing in order to efficiently use the available net-

work capacity. Second, the commodity SDN switches have limited memory to enforce

fine-grained policy rules which undermines the promise of flexible control. Third, the cen-

tralized controller itself is a single point of failure, which is unacceptable for operators used

to running distributed fault-tolerant network protocols.

This thesis aims to mitigate these problems using novel algorithms that exploit advanced

data plane capabilities and enhancements to the control plane software. At the same time,

we also provide simple abstractions on top of these systems so that network operators

writing control programs need not worry about low-level details of the underlying imple-

mentation mechanisms.

First, we propose HULA, which gives the abstraction of one big efficient non-blocking

switch. Instead of asking the control plane to choose the best path for each new flow, HULA

efficiently routes traffic on least congested paths in the network. HULA uses advanced

hardware data plane capabilities to infer global congestion information and uses that infor-

mation to do fine-grained load balancing at RTT timescales. HULA is congestion-aware,

scales to large topologies, and is robust to topology failures.

Second, we propose CacheFlow, which helps enforce fine-grained policies by proposing

the abstraction of a switch with logically infinite rule space. CacheFlow uses a combination

of software and hardware data paths to bring the best of both worlds to policy enforcement.

By dynamically caching a small number of heavy hitting rules in the hardware switch and

the rest of the rules in the software data path, it achieves both high throughput and high rule
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capacity. Since cross-rule dependencies make rule caching difficult, CacheFlow uses novel

algorithms to do dependency-aware, efficient rule caching that is transparent to control

applications.

Finally, we propose Ravana, which gives the abstraction of one logically centralized con-

troller. Given this abstraction, the network operator only writes programs for one controller

and the Ravana runtime takes care of replicating the control logic for fault-tolerance. Since

network switches carry additional state external to the controller state, Ravana uses an

enhanced version of traditional replicated state machine protocols to ensure ordered and

exactly-once execution of network events.

Together these systems propose a new SDN paradigm where basic routing is done effi-

ciently at dataplane timescales, policy enforcement is done scalably with the help of soft-

ware data planes, and the control plane is fault-tolerant. This new architecture has the

properties of fast routing and fault-tolerance of traditional networks while delivering the

promise of efficient enforcement of fine-grained control policies.
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Chapter 1

Introduction

1.1 Traditional Networks

Traditionally, network operators ran distributed network protocols like OSPF [6], RIP [11],

etc. in order to discover routes between network end points. An important hallmark of these

protocols that was appealing to network operators was that these protocols ensure reliable

routing in the face of network failures which is an important abstraction for the applications

running at the end hosts. For example, switches running the OSPF protocol periodically

send local link state information to all the other switches in the network. This information

is then collected and processed by software running on switch CPUs to calculate global

routes. When a network link fails, the protocol propagates updated link state information

to calculate the new set of routes within seconds.

However, over the past few decades, while reliable routing was widely adopted, these

protocols forced the operators to build their networks around rigid objectives and increas-

ingly lose visibility into their networks. The key reason for this is that the protocols them-

selves are implemented as ossified software with hundreds of thousands of lines of opaque

code written by multiple vendors. These implementations were proprietary and network
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operators could neither access the internals for visibility, nor could they modify these im-

plementations to achieve customized routing goals.

Traditional network switches have tightly coupled two important but separate functional

components — switches discover network routes using distributed protocols in the control

plane and use the computed routes to forward packets in the fast data plane. Most propri-

etary implementations had both these components baked into really expensive black box

switch hardware that was the only choice for network operators. In addition, network op-

erators had to manually login to each individual switch through an arcane CLI to configure

them with thousands of parameters so that the overall distributed protocol discovered rout-

ing correctly. This meant the operator neither had a high level abstract view of the network

nor did she have a high level interface to configure routing directly at that level of abstrac-

tion. Thus the overall network behavior was very opaque to the network operator which in

turn made it difficult to either change this behavior (to achieve flexibility of routing pack-

ets based on different objectives, like traffic engineering etc.) or to debug deviation from

expected behavior (like packet losses, routing loops etc.).

In recent years, the rise of geo-distributed data centers exacerbated these problems of

lack of visibility and flexibility. The rapidly increasing demand on datacenter workloads

meant that the datacenter network had to be fast enough to accommodate ever increasing

compute capacity on short notice. In addition, the volatile nature of datacenter workloads

meant that the operators had to quickly identify bottleneck network links and route data

traffic around them at rapid timescales in order to fully exploit network capacity without

cost prohibitive over-provisioning . This meant that network operators were willing to trade

these protocol implementations for alternative architectures that are more manageable i.e.,

those that tackle the twin problems of lack of visibility and flexibility.
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(a) Traditional Networking

(b) Software-Defined Networking

Figure 1.1: While traditional networking relies on running ossified distributed protocols,
Software-Defined Networking separates the control plane from switches and unifies it in a
centralized controller

1.2 Software-Defined Networking: A New Paradigm

In the place of ossified and opaque network protocols, the paradigm of Software-Defined

Networking (SDN) proposes cleanly separating the control plane from network switches

into a centralized server called a controller. The switches simply forward packets in the

dataplane using commands sent by the controller. In addition, the switches may send events

to the controller regarding the arrival of specific packets, flow counters, etc. The controller

typically sends commands to switches in response to these events.

This decoupling of the data plane and control plane is the key to better network man-

agement in SDN. There are three important architectural changes that this separation en-

ables. First, the operator gets a centralized view and control of the entire network from

one place, the controller, instead of having to configure or poll each switch independently

using different interfaces. Second, the functionality of the switches is abstracted into a

much simpler match-action dataplane model (which dictates how to classify packets based

on their header match) instead of having to worry about the code complexity that comes

with running distributed protocols. Third, the separation and simplification of the dataplane

enables a simple, unified and vendor-agnostic control interface like OpenFlow [89] across

a heterogenous set of network elements from different equipment vendors.
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Based on the above architectural changes, SDN promises two important properties —

flexibility and efficiency. Instead of tweaking the protocols to indirectly do her bidding, the

network operator can use the central controller to customize the network behavior accord-

ing to her needs. This means she can flexibly route network traffic on specific paths. She

can perform various actions on packets like packet forwarding, header modifications, etc.

without having to use a separate protocol for each such function. In addition, the global

network visibility and a unified control interface across multiple devices makes for much

more efficient decision making.

Overall, SDN is seen today as a promising alternative to traditional distributed protocol

implementations because of the increased flexibility and visibility. For example, Google’s

Software-defined WAN called B4 [63] is a result of the frustration with rigid and opaque

vendor switching solutions. One of the key appeals of B4 for Google was the ability to rely

on a central control software that can be flexibly customized to their needs (e.g., a WAN

traffic engineering solution), the ability to efficiently change control at software speeds,

and the ability to simply rely on control software testing before ensuring that the network

behaves as expected when deployed in production. Over the years, in addition to large

service providers like Google who built their own SDN switches, the SDN paradigm is also

adopted by switching vendors like Cisco, Juniper, etc. which started rolling out support for

OpenFlow-style control interface to their switches.

1.3 SDN Meets Reality: Challenges

While SDN is an attractive paradigm for network design, the practice of SDN is fraught

with many challenges. While some challenges arise due to architectural shifts forcing a

rethink about how specific objectives like reliability and efficiency should be achieved,

some are due to unforeseen deployment issues with the new promises like flexibility.
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Regardless, these challenges warrant a relook at the best practices for networking at many

levels in an SDN — control plane, data plane, and the intertwining control interface. In this

section, we focus on three important aspects of SDN that needed a fresh study recently —

dataplane efficiency, control interface flexibility, and control plane reliability.

1.3.1 Efficient Network Utilization

Networks today typically have multiple paths connecting the network end points to avoid

congestion when run at high utilization. Datacenter networks in particular have multi-

rooted tree topologies with many equal cost paths that must be used effectively in order to

exploit the high bisection bandwidth. This is why operators typically employ network load

balancing schemes that spread incoming traffic load on the multiple paths in the network.

Traditionally, even before the advent of SDN, operators used a data-plane load-balancing

technique called equal-cost multi-path routing (ECMP), which spreads traffic by assigning

each flow to one of several paths at random. However, ECMP suffers from degraded perfor-

mance [23,31,38,68,112] if two long-running flows are assigned to the same path. ECMP

also doesn’t react well to link failures and leaves the network underutilized or congested in

asymmetric topologies.

The paradigm of SDN gives a new opportunity to look at dataplane efficiency by us-

ing the controller to deploy sophisticated traffic engineering algorithms. In particular, a

controller can exploit global visibility into the congestion levels on various paths (say, by

polling switch flow counters) and then can push commands to switches that steer traffic

along multiple paths optimally. For example, schemes such as Hedera [23], SWAN [57],

and B4 [63] use switch monitoring techniques to collect flow counters, solve the traffic

engineering (TE) problem centrally at the controller given this information and then push

routing rules to switches.

However, compared to ECMP, which would make load balancing decisions in the data-

plane at line rate, control plane timescales are too slow to implement load balancing that ef-
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Figure 1.2: Example Switch Rule Table

ficiently uses the available network capacity. The controller-based centralized TE schemes

take on the order of minutes [57, 63] to react to changing network conditions, which is

too slow for networks running volatile traffic. For example, in datacenters, most flows are

short-lived, interactive, mice flows whose lifetimes span a few milliseconds. In this case,

the flows either have to delayed till the central TE decision is enforced or simply use stale

paths in the dataplane, both of which adversely effect application responsiveness.

This warrants a new look at designing effective load balancing schemes for SDN that

are (i) responsive to volatile traffic at dataplane timescales in order to be effective and (ii)

adhere to SDN principles of visibility and flexibility without resorting to opaque and rigid

vendor-specific ASIC implementations.

1.3.2 Flexibility

As mentioned earlier, SDN achieves one of its fundamental objectives of flexible control

by sending prioritized match-action rules to the switches using an interface like Open-

Flow [89]. The match part describes the header pattern of packets that should be used to

process this rule. The corresponding action may be either to forward the packet out of

a switch port or to change certain header fields, or to drop it entirely, etc. The rules are

prioritized in order to disambiguate when a packet matches multiple rules in the table. Fig-

ure 1.2 shows an example OpenFlow table with prioritized rules having match patterns and

corresponding actions.

In modern hardware switches, these rules are stored in special hardware memory called

Ternary Content Addressable Memory (TCAM) [16]. A TCAM can compare an incoming

packet to the patterns in all of the rules at the same time, at line rate. However, commodity
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switches support relatively few rules, in the small thousands or tens of thousands [117].

This is an order of magnitude less than the typical number of forwarding rules pushed to

switches today. For example, around 500k IPv4 forwarding rules are stored in routers of

the internet today.

Undoubtedly, future switches will support larger rule tables [34, 100], but TCAMs still

introduce a fundamental trade-off between rule-table size and other concerns like cost and

power. TCAMs introduce around 100 times greater cost [15] and 100 times greater power

consumption [116], compared to conventional RAM. Plus, updating the rules in TCAM is

a slow process—today’s hardware switches only support around 40 to 50 rule-table updates

per second [59, 66], which could easily constrain a large network with dynamic policies.

Therefore, commodity SDN switches have limited space to enforce fine-grained policy

rules which undermines the promise of flexible control. The challenge here is to come

up with a solution that works transparently with current controllers and switches without

having to wait for the next generation of advances in switch hardware.

1.3.3 Reliability

Traditionally, network operators had to do a lot of work to manually configure various

routers in the network with a myriad of parameters to run distributed routing protocols.

However, once configured, switches running these protocols can discover link failures and

automatically adjust routing around them. In contrast, the centralized controller in SDN is

a single point of failure, which is unacceptable. Now, they need to understand and deal with

the myriad issues related to consistent replication and fault-tolerance of controller instances

in order to implement a logically centralized controller.

Additionally, one cannot simply deploy traditional software replication techniques di-

rectly. Maintaining consistent controller state is only part of the solution. To provide a

logically centralized controller, one must also ensure that the switch state is handled consis-

tently during controller failures. This is because the switch has state related to match-action
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rule tables, packet buffers, link failures, etc. Broadly speaking, existing systems do not rea-

son about this switch state; they have not rigorously studied the semantics of processing

switch events and executing switch commands under failures.

For example, while the system could roll back the controller state, the switches cannot

easily “roll back” to a safe checkpoint. After all, what does it mean to rollback a packet that

was already sent? The alternative is for the new master to simply repeat commands, but

these commands are not necessarily idempotent (per §4.2). Since an event from one switch

can trigger commands to other switches, simultaneous failure of the master controller and

a switch can cause inconsistency in the rest of the network. If these issues are not carefully

handled, the network can witness erratic behavior like performance degradation or security

breaches.

At the same time, running a consensus protocol involving the switches for every event

would be prohibitively expensive, given the demand for high-speed packet processing in

switches. On the other hand, using distributed storage to replicate controller state alone

(for performance reasons) does not capture the switch state precisely. Therefore, after a

controller crash, the new master may not know where to resume reconfiguring switch state.

Simply reading the switch forwarding state would not provide enough information about

all the commands sent by the old master (e.g., PacketOuts, StatRequests).

Given this, the challenge is to build a fault-tolerant controller runtime that takes care

of guaranteeing transactional semantics to the entire control loop that involves gathering

events, processing them and subsequent issue of commands. This way, even under failures,

the physically replicated control instances behave as one logical controller. An additional

challenge is to remove the burden from the network operator of having to reason about

failure and consistency issues and instead write control programs for just one controller

while the runtime takes care of correctly replicating it to multiple instances.
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1.4 Opportunities for Handling Challenges

While there are several challenges plaguing the current implementations of SDN, there is

little doubt that the basic architectural vision behind SDN is sound and desirable in practice.

In this section, we discuss how we can take advantage of recent advances in hardware and

software dataplanes and past techniques from replicated state machines to tackle the three

challenges mentioned earlier — efficiency, flexiblity and reliability.

1.4.1 Programmable Dataplanes for Efficient Utilization

In order to have efficient data plane forwarding that exploits multiple network paths, we

need to be able to infer global congestion information and then be able to react to it at

dataplane timescales. This means we need the ability to export and process link level

utilization information in the dataplane itself instead of using the switch CPU. In addition,

we need the ability to dynamically split traffic flows at fine granularity (in order to avoid

adverse effects of collisions) and route them instantaneously based on previously gathered

information.

In this context, the recent rise of programmable hardware dataplanes fits our require-

ments perfectly. As opposed to a programmable control plane which dictates which rules

to send to switches, programmable dataplanes allow the operator to specify how hardware

resources like TCAM, SRAM, packet buffers, etc. should be distributed into multiple ta-

bles and registers in a packet processing pipeline. This way, the operator can not only

customize the match-action rules but also every stage of the packet processing pipeline in

the dataplane. This results in a dataplane that provides a sophisticated hardware platform

that can be customized ‘in the field’ for a wide variety of dataplane algorithms without

having to wait for vendor approved ASIC upgrades.

In a programmable dataplane, as shown in Figure 1.3, the switch consists of a pro-

grammable parser that parses packets from bits on the wire. Then the packets enter an
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Figure 1.3: Programmable dataplane model

ingress pipeline containing a series of match-action tables that modify packets if they match

on specific packet header fields. The most important aspect of the model that is of interest

to us is that each table can access stateful memory registers that can be used to read and

write state at line rate. This feature can be used to export network utilization values onto

packets flowing through a switch. The neighboring switches that receive this packet can

then store this information in their own local memory and use it to decide where to send

the next set of packets flowing through them.

In this thesis, we will try to exploit such dataplane architectures that allow for global

congestion visibility and stateful packet processing entirely in the dataplane. This will

mean much faster reaction times for a load balancing scheme, on the order hundreds of

microseconds, which matches the round trip time in modern datacenter networks. At the

same time, we aim to configure the dataplane using a vendor-agnostic programming inter-

face that can customize a heterogenous set of dataplane targets in a way that adheres to the

basic principles of SDN - visibility and flexibility.
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1.4.2 Software Switching for Fine-Grained Policies

Limited TCAM availability in switch hardware leads to difficulties implementing a truly

flexible control policy. Fortunately, traffic tends to follow a Zipf distribution, where the

vast majority of traffic matches a relatively small fraction of the rules [110]. Hence, we

could leverage a small TCAM to forward the vast majority of traffic, and rely on alternative

datapaths for processing the remaining traffic.

Recent advances in software switching provide one such attractive alternative. Running

on commodity servers, software switches can process packets at around 40 Gbps on a

quad-core machine [14, 45, 55, 104] and can store large rule tables in main memory and

(to a lesser extent) in the L1 and L2 cache. In addition, software switches can update the

rule table more than ten times faster than hardware switches [59]. But, supporting wildcard

rules that match on many header fields is taxing for software switches, which must resort

to slow processing in user space to handle the first packet of each flow [104]. As a result,

they cannot match the “horsepower” of hardware switches that provide hundreds of Gbps

of packet processing (and high port density).

Thus, based on the Zipf nature of the amount of traffic matching switch rules, we will try

to use a combination of hardware and software switching to bring the best of both worlds –

high throughput and large rule space. In addition, we need to carefully distribute one rule

table into multiple tables spanning across heterogenous datapaths so that the semantics of

the single-switch rule table are preserved in the distributed implementation.

1.4.3 Replicated State Machines for Reliable Control

In order to provide reliable control in the face of controller failures, we need to design

failover protocols that not only handle controller state but also the switch state. In addition,

we need to provide a simple programming abstraction where the network operator need

only write a program for a single controller while the runtime manages proper replication.
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In this context, a natural choice for such a simple abstraction is that of a replicated state

machine where a single state machine is replicated across multiple physical instances for

fault tolerance. An example protocol that implements such an abstraction is the View-

stamped Replication protocol [101], a replication technique that handles crash failures

using a three stage request processing protocol and a view change protocol that on node

failures, depends on a quorum to reconstruct the committed requests.

In the case of SDN controller failure, we need to adopt such replicated state machine pro-

tocols for control state replication and then add mechanisms for ensuring the consistency of

switch state. In particular, we need the protocol to provide transactional semantics for the

entire control loop that is triggered for each network event: event input replication, event

processing at each instance and executing resulting commands at the switch. Instead of

involving all switches in a consensus protocol, we need to design a light weight replication

protocol that keeps the overhead on the switch runtime low while ensuring correctness of

the transactional semantics.

1.5 Contributions

As discussed so far, this thesis aims to deal with three important issues related to the prac-

tice of Software-Defined Networking. This thesis aims to tackle dataplane efficiency and

controller reliability, two issues that arise out of architectural changes imposed by SDN,

and it aims to tackle policy flexibility, an issue arising out of constraints posed by switch

hardware resources. The solutions proposed in this thesis aim to handle these problems

at the appropriate layer in the SDN stack and at acceptable response time scales while

keeping the programming abstraction simple to use. Therefore, we make three important

contributions as solutions proposed for each of the three problems discussed earlier.

First, I will present HULA [74], which gives the abstraction of an efficient non-blocking

switch. Instead of asking the control plane to choose the best path for each new flow, HULA
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Figure 1.4: Thesis contributions

efficiently routes traffic on least congested paths in the network. HULA uses advanced

hardware data plane capabilities to infer global congestion information and uses that infor-

mation to do fine-grained load balancing at RTT timescales. HULA is congestion-aware,

scales to large topologies, and is robust to topology failures.

Second, I will present CacheFlow [73] which helps users implement fine-grained poli-

cies by proposing the abstraction of a switch with logically infinite rule space. CacheFlow

uses a combination of software and hardware data paths to bring the best of both worlds to

policy enforcement. By dynamically caching a small number of heavy hitting rules in the

hardware switch and the rest of the rules in the software data path, it achieves both high

throughput and high rule capacity. Since cross-rule dependencies make rule caching diffi-

cult, CacheFlow uses novel algorithms to do dependency-aware, efficient and transparent

rule caching.

Finally, I will present Ravana [75] which gives users the abstraction of one logically

centralized controller. Given this abstraction, the network operator only writes programs

for one controller and the Ravana runtime takes care of replicating the control logic for

fault-tolerance. Since network switches carry additional state external to the controller
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state, Ravana uses an enhanced version of traditional replicated state machine protocols to

ensure ordered and exactly-once execution of network events.

Taken together, the these three abstractions help operators build network applications

on top of a new network architecture where basic routing is done efficiently at dataplane

timescales, policy enforcement is done scalably with the help of software data planes, and

the control plane is fault-tolerant.
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Chapter 2

HULA: Scalable Load Balancing Using

Programmable Data Planes

Datacenter networks employ multi-rooted topologies (e.g., Leaf-Spine, Fat-Tree) to pro-

vide large bisection bandwidth. These topologies use a large degree of multipathing, and

need a data-plane load-balancing mechanism to effectively utilize their bisection band-

width. The canonical load-balancing mechanism is equal-cost multi-path routing (ECMP),

which spreads traffic uniformly across multiple paths. Motivated by ECMP’s shortcom-

ings, congestion-aware load-balancing techniques such as CONGA have been developed.

These techniques have two limitations. First, because switch memory is limited, they can

only maintain a small amount of congestion-tracking state at the edge switches, and do not

scale to large topologies. Second, because they are implemented in custom hardware, they

cannot be modified in the field.

This chapter presents HULA, a data-plane load-balancing algorithm that overcomes both

limitations. First, instead of having the leaf switches track congestion on all paths to a

destination, each HULA switch tracks congestion for the best path to a destination through

a neighboring switch . Second, we design HULA for emerging programmable switches and

program it in P4 to demonstrate that HULA could be run on such programmable chipsets,
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without requiring custom hardware. We evaluate HULA extensively in simulation, showing

that it outperforms a scalable extension to CONGA in average flow completion time (1.6×

at 50% load, 3× at 90% load).

2.1 Introduction

Data-center networks today have multi-rooted topologies (Fat-Tree, Leaf-Spine) to provide

large bisection bandwidth. These topologies are characterized by a large degree of multi-

pathing, where there are several routes between any two endpoints. Effectively balancing

traffic load across multiple paths in the data plane is critical to fully utilizing the available

bisection bandwith. Load balancing also provides the abstraction of a single large output-

queued switch for the entire network [24, 69, 103], which in turn simplifies bandwidth

allocation across tenants [64, 105], flows [27], or groups of flows [41].

The most commonly used data-plane load-balancing technique is equal-cost multi-path

routing (ECMP), which spreads traffic by assigning each flow to one of several paths at ran-

dom. However, ECMP suffers from degraded performance [23,31,38,68,112] if two long-

running flows are assigned to the same path. ECMP also doesn’t react well to link failures

and leaves the network underutilized or congested in asymmetric topologies. CONGA [25]

is a recent data-plane load-balancing technique that overcomes ECMP’s limitations by us-

ing link utilization information to balance load across paths. Unlike prior work such as

Hedera [23], SWAN [57], and B4 [63], which use a central controller to balance load every

few minutes, CONGA is more responsive because it operates in the data plane, permitting

it to make load-balancing decisions every few microseconds.

This responsiveness, however, comes at a significant implementation cost. First, CONGA

is implemented in custom silicon on a switching chip, requiring several months of hardware

design and verification effort. Consequently, once implemented, the CONGA algorithm

cannot be modified. Second, memory on a switching chip is at a premium, implying that
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CONGA’s technique of maintaining per-path congestion state at the leaf switches limits its

usage to topologies with a small number of paths. This hampers CONGA’s scalability and

as such, it is designed only for two-tier Leaf-Spine topologies.

This chapter presents HULA (Hop-by-hop Utilization-aware Load balancing Architec-

ture), a data-plane load-balancing algorithm that addresses both issues.

First, HULA is more scalable relative to CONGA in two ways. One, each HULA switch

only picks the next hop, in contrast to CONGA’s leaf switches that determine the entire

path, obviating the need to maintain forwarding state for a large number of tunnels (one

for each path). Two, because HULA switches only choose the best next hop along what is

globally the instantaneous best path to a destination, HULA switches only need to maintain

congestion state for the best next hop per destination, not all paths to a destination.

Second, HULA is specifically designed for a programmable switch architecture such as

the RMT [35], FlexPipe [4], or XPliant [2] architectures. To illustrate this, we prototype

HULA in the recently proposed P4 language [33] that explicitly targets such programmable

data planes. This allows the HULA algorithm to be inspected and modified as desired by

the network operator, without the rigidity of a silicon implementation.

Concretely, HULA uses special probes (separate from the data packets) to gather global

link utilization information. These probes travel periodically throughout the network and

cover all desired paths for load balancing. This information is summarized and stored at

each switch as a table that gives the best next hop towards any destination. Subsequently,

each switch updates the HULA probe with its view of the best downstream path (where the

best path is the one that minimizes the maximum utilization of all links along a path) and

sends it to other upstream switches. This leads to the dissemination of best path information

in the entire network similar to a distance vector protocol. In order to avoid packet reorder-

ing, HULA load balances at the granularity of flowlets [68]— bursts of packets separated

by a significant time interval.
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To compare HULA with other load-balancing algorithms, we implemented HULA in

the network simulator ns-2 [62]. We find that HULA is effective in reducing switch state

and in obtaining better flow-completion times compared to alternative schemes on a 3-tier

topology. We also introduce asymmetry by bringing down one of the core links and study

how HULA adapts to these changes. Our experiments show that HULA performs better

than comparative schemes in both symmetric and asymmetric topologies.

In summary, we make the following two key contributions.

• We propose HULA, a scalable data-plane load-balancing scheme. To our knowl-

edge, HULA is the first load balancing scheme to be explicitly designed for a pro-

grammable switch data plane.

• We implement HULA in the ns-2 packet-level simulator and evaluate it on a Fat-Tree

topology [98] to show that it delivers between 1.6 to 3.3 times better flow completion

times than state-of-the-art congestion-aware load balancing schemes at high network

load.

2.2 Design Challenges for HULA

Large datacenter networks [21] are designed as multi-tier Fat-Tree topologies. These

topologies typically consist of 2-tier Leaf-Spine pods connected by additional tiers of

spines. These additional layers connecting the pods can be arbitrarily deep depending on

the datacenter bandwidth capacity needed. Load balancing in such large datacenter topolo-

gies poses scalability challenges because the explosion of the number of paths between any

pair of Top of Rack switches (ToRs) causes three important challenges.

Large path utilization matrix: Table 1 shows the number of paths between any pair

of ToRs as the radix of a Fat-Tree topology increases. If a sender ToR needs to track link

utilization on all desired paths1 to a destination ToR in a Fat-Tree topology with radix k,

1A path’s utilization is the maximum utilization across all its links.
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Topology # Paths between pair of
ToRs

# Max forwarding entries
per switch

Fat-Tree (8) 16 944
Fat-Tree (16) 64 15,808
Fat-Tree (32) 256 257,792
Fat-Tree (64) 1024 4,160,512

Table 2.1: Number of paths and forwarding entries in 3-tier Fat-Tree topologies [58]

then it needs to track k2 paths for each destination ToR. If there are m such leaf ToRs, then

it needs to keep track of m ∗ k2 entries , which can be prohibitively large. For example,

CONGA [25] maintains around 48K bits of memory (512 ToRs, 16 uplinks, and 3 bits

for utilization) to store the path-utilization matrix. In a topology with 10K ToRs and with

10K paths between each pair, the ASIC would require 600M bits of memory, which is

prohibitively expensive (by comparison the packet data buffer of a shallow-buffered switch

such as the Broadcom Trident [3] is 96 Mbits). For the ASIC to be viable and scale with

large topologies, it is imperative to reduce the amount of congestion-tracking state stored

in any switch.

Large forwarding state: In addition to maintaining per-path utilization at each ToR, ex-

isting approaches also need to maintain large forwarding tables in each switch to support a

leaf-to-leaf tunnel for each path that it needs to route packets over. In particular, a Fat-Tree

topology with radix 64 supports a total of 70K ToRs and requires 4 million entries [58]

per switch as shown in Table 1. The situation is equally bad [58] in other topologies like

VL2 [53] and BCube [54]. To remedy this, recent techniques like Xpath [58] have been de-

signed to reduce the number of entries using compression techniques that exploit symmetry

in the network. However, since these techniques rely on the control plane to update and

compress the forwarding entries, they are slow to react to failures and topology asymmetry,

which are common in large topologies.

Discovering uncongested paths: If the number of paths is large, when new flows enter,

it takes time for reactive load balancing schemes to discover an uncongested path especially

19



when the network utilization is high. This increases the flow completion times of short

flows because these flows finish before the load balancer can find an uncongested path.

Thus, it is useful to have the utilization information conveyed to the sender in a proactive

manner, before a short flow even commences.

Programmability: In addition to these challenges, implementing data-plane load-

balancing schemes in hardware can be a tedious process that involves significant design

and verification effort. The end product is a one-size-fits-all piece of hardware that network

operators have to deploy without the ability to modify the load balancer. The operator has

to wait for the next product cycle (which can be a few years) if she wants a modification

or an additional feature in the load balancer. An example of such a modification is to load

balance based on queue occupancy as in backpressure routing [28, 29] as opposed to link

utilization.

The recent rise of programmable packet-processing pipelines [4, 35] provides an oppor-

tunity to rethink this design process. These data-plane architectures can be configured

through a common programming language like P4 [33], which allow operators to program

stateful data-plane packet processing at line rate. Once a load balancing scheme is written

in P4, the operator can modify the program so that it fits her deployment scenario and then

compile it to the underlying hardware. In the context of programmable data planes, the

load-balancing scheme must be simple enough so that it can be compiled to the instruction

set provided by a specific programmable switch.

2.3 HULA Overview: Scalable, Proactive, Adaptive, and

Programmable

HULA combines distributed network routing with congestion-aware load balancing thus

making it tunnel-free, scalable, and adaptive. Similar to how traditional distance-vector

routing uses periodic messages between routers to update their routing tables, HULA uses
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periodic probes that proactively update the network switches with the best path to any given

leaf ToR. However, these probes are processed at line rate entirely in the data plane unlike

how routers process control packets. This is done frequently enough to reflect the instanta-

neous global congestion in the network so that the switches make timely and effective for-

warding decisions for volatile datacenter traffic. Also, unlike traditional routing, to achieve

fine-grained load balancing, switches split flows into flowlets [68] whenever an inter-packet

gap of an RTT (network round trip time) is seen within a flow. This minimizes receive-side

packet-reordering when a HULA switch sends different flowlets on different paths that

were deemed best at the time of their arrival respectively. HULA’s basic mechanism of

probe-informed forwarding and flowlet switching enables several desirable features, which

we list below.

Maintaining compact path utilization: Instead of maintaining path utilization for all

paths to a destination ToR, a HULA switch only maintains a table that maps the destination

ToR to the best next hop as measured by path utilization. Upon receiving multiple probes

coming from different paths to a destination ToR, a switch picks the hop that saw the probe

with the minimum path utilization. Subsequently it sends its view of the best path to a ToR

to its neighbors. Thus, even if there are multiple paths to a ToR, HULA does not need to

maintain per-path utilization information for each ToR. This reduces the utilization state on

any switch to the order of the number of ToRs (as opposed to the number of ToRs times the

number of paths to these ToRs from the switch), effectively removing the pressure of path

explosion on switch memory. Thus, HULA distributes the necessary global congestion

information to enable scalable local routing.

Scalable and adaptive routing: HULA’s best hop table eliminates the need for separate

source routing in order to exploit multiple network paths. This is because in HULA, unlike

other source-routing schemes such as CONGA [25] and XPath [58], the sender ToR isn’t re-

sponsible for selecting optimal paths for data packets. Each switch independently chooses

the best next hop to the destination. This has the additional advantage that switches do not
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need separate forwarding-table entries to track tunnels that are necessary for source-routing

schemes [58]. This switch memory could be instead be used for supporting more ToRs in

the HULA best hop table. Since the best hop table is updated by probes frequently at data-

plane speeds, the packet forwarding in HULA quickly adapts to datacenter dynamics, such

as flow arrivals and departures.

Automatic discovery of failures: HULA relies on the periodic arrival of probes as a

keep-alive heartbeat from its neighboring switches. If a switch does not receive a probe

from a neighboring switch for more than a certain threshold of time, then it ages the net-

work utilization for that hop, making sure that hop is not chosen as the best hop for any

destination ToR. Since the switch will pass this information to the upstream switches, the

information about the broken path will reach all the relevant switches within an RTT. Sim-

ilarly, if the failed link recovers, the next time a probe is received on the link, the hop will

become a best hop candidate for the reachable destinations. This makes for a very fast

adaptive forwarding technique that is robust to network topology changes and an attractive

alternative to slow routing schemes orchestrated by the control plane.

Proactive path discovery: In HULA, probes are sent separately from data packets in-

stead of piggybacking on them. This lets congestion information be propagated on paths

independent of the flow of data packets, unlike alternatives such as CONGA. HULA lever-

ages this to send periodic probes on paths that are not currently used by any switch. This

way, switches can instanteously pick an uncongested path on the arrival of a new flowlet

without having to first explore congested paths. In HULA, the switches on the path con-

nected to the bottleneck link are bound to divert the flowlet onto a less-congested link and

hence a less-congested path. This ensures short flows quickly get diverted to uncongested

paths without spending too much time on path exploration.

Programmability: Processing a packet in a HULA switch involves switch state updates

at line rate in the packet processing pipeline. In particular, processing a probe involves

updating the best hop table and replicating the probe to neighboring switches. Processing
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a data packet involves reading the best hop table and updating a flowlet table if necessary.

We demonstrate in section 2.5 that these operations can be naturally expressed in terms of

reads and writes to match-action tables and register arrays in programmable data planes [7].

Topology and transport oblivious: HULA is not designed for a specific topology.

It does not restrict the number of tiers in the network topology nor does it restrict the

number of hops or the number of paths between any given pair of ToRs. However, as

the topology becomes larger, the probe overhead can also be high and we discuss ways

to minimize this overhead in section 2.4. Unlike load-balancing schemes that work best

with symmetric topologies, HULA handles topology asymmetry very effectively as we

demonstrate in section 3.6. This also makes incremental deployment plausible because

HULA can be applied to either a subset of switches or a subset of the network traffic.

HULA is also oblivious to the end-host application transport layer and hence does not

require any changes to the host TCP stack.

2.4 HULA Design: Probes and Flowlets

The probes in HULA help proactively disseminate network utilization information to all

switches. Probes originate at the leaf ToRs and switches replicate them as they travel

through the network. This replication mechanism is governed by multicast groups set up

once by the control plane. When a probe arrives on an incoming port, switches update the

best path for flowlets traveling in the opposite direction. The probes also help discover and

adapt to topology changes. HULA does all this while making sure the probe overhead is

minimal.

In this section, we explain the probe replication mechanism (§2.4.1), the logic behind pro-

cessing probe feedback (§2.4.2), how the feedback is used for flowlet routing (§2.4.3), how

HULA adapts to topology changes (§2.4.4), and finally an estimate of the probe overhead

on the network traffic and ways to minimize it (§2.4.5).
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We assume that the network topology has the notion of upstream and downstream

switches. Most datacenter network topologies have this notion built in them (with switches

laid out in multiple tiers) and hence the notion can be exploited naturally. If a switch is

in tier i, then the switches directly connected to it in tiers less than i are its downstream

switches and the switches directly connected to it in tiers greater than i are its upstream

switches. For example, in Figure 2.1, T 1, T 2 are the downstream switches for A1 and S1,

S2 are its upstream switches.

2.4.1 Origin and Replication of HULA Probes

Every ToR sends HULA probes on all the uplinks that connect it to the datacenter network.

The probes can be generated by either the ToR CPU, the switch data plane (if the hardware

supports a packet generator), or a server attached to the ToR. These probes are sent once

every Tp seconds, which is referred to as the probe frequency hereafter in this chapter. For

example, in Figure 2.1, probes are sent by ToR T 1, one on each of the uplinks connecting

it to the aggregate switch A1.

Once the probes reach A1, it will forward the probe to all the other downstream ToRs (T 2)

and all the upstream spines (S1, S2). The spine S1 replicates the received probe onto all the

other downstream aggregate switches. However, when the switch A4 receives a probe from

S3, it replicates it to all its downstream ToRs (but not to other upstream spines — S4). This

makes sure that all paths in the network are covered by the probes. This also makes sure

that no probe loops forever.2 Once a probe reaches another ToR, it ends its journey.

The control plane sets up multicast group tables in the data plane to enable the replication

of probes. This is a one-time operation and does not have to deal with link failures and

recoveries. This makes it easy to incrementally add switches to an existing set of multi-

cast groups for replication. When a new switch is connected to the network, the control

plane only needs to add the switch port to multicast groups on the adjacent upstream and

2Where the notion of upstream/downstream switches is ambiguous [107], mechanisms like TTL expiry
can also be leveraged to make sure HULA probes do not loop forever.
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Figure 2.1: HULA probe replication logic

downstream switches, in addition to setting up the multicast mechanism on the new switch

itself.

2.4.2 Processing Probes to Update Best Path

A HULA probe packet is a minimum-sized packet of 64 bytes that contains a HULA header

in addition to the normal Ethernet and IP headers. The HULA header has two fields:

• torID (24 bits): The leaf ToR at which the probe originated. This is the destina-

tion ToR for which the probe is carrying downstream path utilization in the opposite

direction.

• minUtil (8 bits): The utilization of the best path if the packet were to travel in the

opposite direction of the probe.

Link utilization: Every switch maintains a link utilization estimator per switch port.

This is based on an exponential moving average generator (EWMA) of the form U = D+

U ∗ (1− ∆t
τ
) where U is the link utilization estimator and D is the size of the outgoing

packet that triggered the update for the estimator. ∆t is the amount of time passed since

the last update to the estimator and τ is a time constant that is at least twice the HULA

probe frequency. In steady state, this estimator is equal to C× τ where C is the outgoing
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link bandwidth. As discussed in section 2.5, this is a low pass filter similar to the DRE

estimator used in CONGA [25]. We assume that a probe can access the TX (packets sent)

utilization of the port that it enters.

A switch uses the information on the probe header and the local link utilization to update

switch state in the data plane before replicating the probe to other switches. Every switch

maintains a best path utilization table (pathUtil) and a best hop table bestHop as shown

in Figure 2.2. Both the tables are indexed by a ToR ID. An entry in the pathUtil table

gives the utilization of the best path from the switch to a destination ToR. An entry in

the bestHop table is the next hop that has the minimum path utilization for the ToR in the

pathUtil table. When a probe with the tuple (torID, probeUtil) enters a switch on interface

i, the switch calculates the min-max path utilization as follows:

• The switch calculates the maximum of probeUtil and the TX link utilization of port

i and assigns it to maxUtil.

• The switch then calculates the minimum of this maxUtil and the pathUtil table entry

indexed by torID.

• If maxUtil is the minimum, then it updates the pathUtil entry with the newly de-

termined best path utilization value maxUtil and also updates the bestHop entry for

torID to i.

• The probe header is updated with the latest pathUtil entry for torID.

• The updated probe is then sent to the multicast table that replicates the probe to the

appropriate neighboring switches as described earlier.

The above procedure carries out a distance-vector-like propagation of best path utilization

information along all the paths destined to a particular ToR (from which the probes origi-

nate). The procedure involves each switch updating its local state and then propagating a
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Figure 2.2: HULA probe processing logic

summary of the update to the neighboring switches. This way any switch only knows the

utilization of the best path that can be reached via a best next hop and does not need to keep

track of the utilization of all the paths. The probe propagation procedure ensures that if the

best path changes downstream, then that information will be propagated to all the relevant

upstream switches on that path.

Maintaining best hop at line rate: Ideally, we would want to maintain a path utilization

matrix that is indexed by both the ToR ID and a next hop. This way, the best next hop for

a destination ToR can be calculated by taking the minimum of all the next hop utilizations

from this matrix. However, programmable data planes cannot calculate the minimum or

maximum over an array of entries at line rate [113]. For this reason, instead of calculating

the minimum over all hops, we maintain a current best hop and replace it in place when a

better probe update is received.

This could lead to transient sub-optimal choices for the best hop entries – since HULA

only tracks the current best path utilization, which could potentially go up in the future

until a utilization update for the current best hop is received, HULA has no way of tracking

other next hop alternatives with lower utilization that were also received within this window
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of time. However, we observe that this suboptimal choice can only be transient and will

eventually converge to the best choice within a few windows of probe circulation. This

approximation also reduces the amount of state maintained per destination from the order

of number of neighboring hops to just one hop entry.

2.4.3 Flowlet Forwarding on Best Paths

HULA load balances at the granularity of flowlets in order to avoid packet reordering in

TCP. As discussed earlier, a flowlet is detected by a switch whenever the inter-packet gap

(time interval between the arrival of two consecutive packets) in a flow is greater than a

flowlet threshold Tf . All subsequent packets, until a similar inter-packet gap is detected,

are considered part of a new flowlet. The idea here is that the time gap between consecutive

flowlets will absorb any delays caused by congested paths when the flowlets are sent on

different paths. This will ensure that the flowlets will still arrive in order at the receiver

and thereby not cause packet reordering. Typically, Tf is of the order of the network round

trip time (RTT). In datacenter networks, Tf is typically of the order of a few hundreds of

microseconds but could be larger in topologies with many hops.

HULA uses a flowlet hash table to record two pieces of information:the last time a packet

was seen for the flowlet, and the best hop assigned to that flowlet. When the first packet for

a flow arrives at a switch, it computes the hash of the flow’s 5-tuple and creates an entry in

the flowlet table indexed by the hash. In order to choose the best next hop for this flowlet,

the switch looks up the bestHop table for the destination ToR of the packet. This best hop

is stored in the flowlet table and will be used for all subsequent packets of the flowlet. For

example, when the second packet of a flowlet arrives, the switch looks up the flowlet entry

for the flow and checks that the inter-packet gap is below Tf . If that is the case, it will

use the best hop recorded in the flowlet table. Otherwise, a new flowlet is detected and it

replaces the old flowlet entry with the current best hop, which will be used for forwarding

the new flowlet.
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Flowlet detection and path selection happens at every hop in the network. Every switch

selects only the best next hop for a flowlet. This way, HULA avoids an explicit source

routing mechanism for forwarding of packets. The only forwarding state required is already

part of the bestHop table, which itself is periodically updated to reflect congestion in the

entire network.

Bootstrapping forwarding: To begin with, we assume that the path utilization is infinity

(a large number in practice) on all paths to all ToRs . This gets corrected once the initial set

of probes are processed by the switch. This means that if there is no probe from a certain

ToR on a certain hop, then HULA will always choose a hop on which it actually received

a probe. Thereafter, once the probes begin circulating in the network before sending any

data packets, valid routes are automatically discovered.

2.4.4 Data-Plane Adaptation to Failures

In addition to learning the best forwarding routes from the probes, HULA also learns about

link failures from the absence of probes. In particular, the data plane implements an ag-

ing mechanism for the entries in the bestHop table. HULA tracks the last time bestHop

was updated using an updateTime table. If a bestHop entry for a destination ToR is not

refreshed within the last Tf ail (a threshold for detecting failures), then any other probe that

carries information about this ToR (from a different hop) will simply replace the bestHop

and pathUtil entries for the ToR. When this information about the change in the best path

utilization is propagated further up the path, the switches may decide to choose a com-

pletely disjoint path if necessary to avoid the bottleneck link.

This way, HULA does not need to rely on the control plane to detect and adapt to failures.

Instead HULA’s failure-recovery mechanism is much faster than control-plane-orchestrated

recovery, and happens at network RTT timescales. Also, note that this mechanism is bet-

ter than having pre-coded backup routes because the flowlets immediately get forwarded

on the next best alternative path as opposed to congestion-oblivious pre-installed backup
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paths. This in turn helps avoid sending flowlets on failed network paths and results in better

network utilization and flow-completion times.

2.4.5 Probe Overhead and Optimization

The ToRs in the network need to send HULA probes frequently enough so that the network

receives fine-grained information about global congestion state. However, the frequency

should be low enough so that the network is not overwhelmed by probe traffic alone.

Setting probe frequency: We observe that even though network feedback is received

on every packet, CONGA [25] makes flowlet routing decisions with probe feedback that

is stale by an RTT because it takes a round trip time for the (receiver-reflected) feedback

to reach the sender. In addition to this, the network switches only use the congestion

information to make load balancing decisions when a new flowlet arrives at the switch. For

a flow scheduled between any pair of ToRs, the best path information between these ToRs

is used only when a new flowlet is seen in the flow, which happens at most once every

Tf seconds. While it is true that flowlets for different flows arrive at different times, any

flowlet routing decision is still made with probe feedback that is stale by at least an RTT.

Thus, a reasonable sweet spot is to set the probe frequency to the order of the network RTT.

In this case, the HULA probe information will be stale by at most a few RTTs and will still

be useful for making quick decisions.

Optimization for probe replication: HULA also optimizes the number of probes sent

from any switch A to an adjacent switch B. In the naive probe replication model, A sends

a probe to neighbor B whenever it receives a probe on another incoming interface. So in

a time window of length Tp (probe frequency), there can be multiple probes from A to B

carrying the best path utilization information for a given ToR T , if there are multiple paths

from T to A. HULA suppresses this redundancy to make sure that for any given ToR T ,

only one probe is sent by A to B within a time window of Tp. HULA maintains a lastSent

table indexed by ToR IDs. A replicates a probe update for a ToR T to B only if the last
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probe for T was sent more than Tp seconds ago. Note that this operation is similar to the

calculation of a flowlet gap and can be done in constant time in the data plane.3 Thus, by

making sure that on any link, only one probe is sent per destination ToR within this time

window, the total number of probes that are sent on any link is proportional to the number

of ToRs in the network alone and is not dependent on the number of possible paths the

probes may take.

Overhead: Given the above parameter setting for the probe frequency and the

optimization for probe replication, the probe overhead on any given network link is

probeSize∗numToRs∗100
probeFreq∗linkBandwidth where probeSize is 64 bytes, numTors is the total number of leaf

ToRs supported in the network and probeFreq is the HULA probe frequency. Therefore,

in a network with 40G links supporting a total of 1000 ToRs, with probe frequency of 1ms,

the overhead comes to be 1.28%.

2.5 Programming HULA in P4

2.5.1 Introduction to P4

P4 is a packet-processing language designed for programmable data-plane architectures

like RMT [35], Intel Flexpipe [4], and Cavium Xpliant [2]. The language is based on an

abstract forwarding model called protocol-independent switch archtecture (PISA) [9]. In

this model, the switch consists of a programmable parser that parses packets from bits on

the wire. Then the packets enter an ingress pipeline containing a series of match-action

tables that modify packets if they match on specific packet header fields. The packets

are then switched to the output ports. Subsequently, the packets are processed by another

sequence of match-action tables in the egress pipeline before they are serialized into bytes

and transmitted.
3 If a probe arrives with the latest best path (after this bit is set), we are still assured that this best path

information will be replicated (and propagated) in the next window assuming it still remains the best path.
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A P4 program specifies the the protocol header format, a parse graph for the various

headers, the definitions of tables with their match and action formats and finally the control

flow that defines the order in which these tables process packets. This program defines

the configuration of the hardware at compile time. At runtime, the tables are populated

with entries by the control plane and network packets are processed using these rules. The

programmer writes P4 programs in the syntax described by the P4 specification [7].

Programming HULA in P4 allows a network operator to compile HULA to any P4 sup-

ported hardware target. Additionally, network operators have the flexibility to modify and

recompile their HULA P4 program as desired (changing parameters and the core HULA

logic) without having to invest in new hardware. The wide industry interest in P4 [5]

suggests that many switch vendors will soon have P4 compilers from P4 to their switch

hardware, permitting operators to program HULA on such switches in the future.

2.5.2 HULA in P4

We describe the HULA packet processing pipeline using version 1.1 of P4 [7]. We make

two minor modifications to the specification for the purpose of programming HULA.

1. We assume that the link utilization for any output port is available in the ingress

pipeline. This link utilization can be computed using a low-pass filter applied to

packets leaving a particular output port, similar to the Discounting Rate Estimator

(DRE) used by CONGA [25]. At the language level, a link utilization object is

syntactically similar to counter/meter objects in P4.

2. Based on recent proposals [8] to modify P4, we assume support for the conditional

operator within P4 actions.4

4For ease of exposition, we replace conditional operators with equivalent if-else statements in Figure 2.4.
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header_type hula_header {
    fields{
        dst_tor : 24;
        path_util : 8;

     }
}

header_type metadata{
fields{

       nxt_hop : 8;
self_id : 32;

dst_tor : 32;
}

}

control ingress {
apply(get_dst_tor)
apply(hula_logic)

if(ipv4.protocol == PROTO_HULA){
apply(hula_mcast);

}
else if(metadata.dst_tor 

=== metadata.self_id) {
apply(send_to_host);

}

}	
	
	
	
	 Figure 2.3: HULA header format and control flow

We now describe various components of the HULA P4 program in Figure 2.4. The P4

program has two main components: one, the HULA probe header format and parser speci-

fication, and two, packet control flow, which describes the main HULA logic.

Header format and parsing: We define the P4 header format for the probe packet

and the parser state machine as shown in Figure 2.4(a). The header consists of two fields

and is of size 4 bytes. The parser parses the HULA header immediately after the IPv4

header based on the special HULA protocol number in the IPv4 protocol field. Thereafter,

the header fields are accessible in the pipeline through the header instance. The metadata

header is used to access packet fields that have special meaning to a switch pipeline (e.g.,

the next hop) and local variables to be carried across multiple tables (e.g, a data packet’s

destination ToR or the current switch ID).

The control flow in Figure 2.4(a) shows that the processing pipeline first finds the ToR that

the incoming packet is destined to. This is done by the get dst tor table that matches on

the destination IP address and retrieves the destination ToR ID. Then the packet is processed

by the hula logic table whose actions are defined in Figure 2.4(b). Subsequently, the
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1  action hula_logic{
2    if(ipv4_header.protocol == IP_PROTOCOLS_HULA){

3      /*HULA Probe Processing
4      if(hula_hdr.path_util < tx_util)
5  hula_hdr.path_util = tx_util; 
6  if(hula_hdr.path_util < min_path_util[hula_hdr.dst_tor] || 
7  curr_time - update_time[dst_tor] > KEEP_ALIVE_THRESH)
8  {

9  min_path_util[dst_tor] = hula_hdr.path_util;
10  best_hop[dst_tor] = metadata.in_port;
11  update_time[dst_tor] = curr_time;
12  }
13  hula_header.path_util = min_path_util[hula_hdr.dst_tor];
14   }

15   else { /*Flowlet routing of data */
16  if(curr_time – flowlet_time[flow_hash]> FLOWLET_TOUT) {
17  flowlet_hop[flow_hash] = best_hop[metadata.dst_tor];
18  }
19  metadata.nxt_hop = flowlet_hop[flow_hash];
20  flowlet_time[flow_hash] = curr_time;
21   }

22  }

R

R

min_path_util

update_time

best_hop

Flowlet_hop

W	

W	

W	

Flowlet_time

R

W
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Figure 2.4: HULA stateful packet process in P4

probe is sent to the hula mcast table that matches on the in port the probe came in and

then assigns the appropriate set of multicast ports for replication.

HULA pipeline logic: Figure 2.4(b) shows the main HULA table where a series of

actions perform two important pieces of HULA logic — (i) Processing HULA probes and

(ii) Flowlet forwarding for data packets. We briefly describe how these two are expressed in

P4. At a high level, the hula logic table reads and writes to five register data structures

shown in Figure 2.4(b) — path util, best hop, update time, flowlet hop and

flowlet time. The reads and writes performed by each action are color coded in the

figure. For example, the red colored write tagging line 9 indicates that the action makes a

write access to the best hop register array.

1. Processing HULA probes: In step 1, the path utilization being carried by the HULA

probe is updated (lines 4-5) with the the maximum of the local link utilization (tx util)

and the probe utilization. This gives the path utilization across all the hops including the
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link connecting the switch to its next hop. Subsequently, the current best path utilization

value for the ToR is read from the min path util register into a temporary metadata

variable (line 5).

In the next step, if either the probe utilization is less than the current best path utilization

(line 6) or if the best hop was not refreshed in the last failure detection window (line 7), then

three updates take place - (i) The best path utilization is updated with the probe utilization

(line 9), (ii) the best hop value is updated with the incoming interface of the probe (line

10), and (iii) the best hop refresh time is updated with the current timestamp (line 11).

Finally, the probe utilization itself is updated with the final best hop utilization (line 13).

Subsequently the probe is processed by the hula mcast match-action table that matches

on the probe’s input port and then assigns the appropriate multicast group for replication.

2. Flowlet forwarding: If the incoming packet is a data packet (line 15), first we detect

new flowlets by checking if the inter-packet gap for that flow is above the flowlet threshold

(line 16). If that is the case, then we use the current best hop to reach the destination ToR

(line 17). Subsequently, we populate the next hop metadata with the final flowlet hop (line

19). Finally, the arrival time of the packet is noted as the last seen time for the flowlet (line

20).

The benefits of programmability: Writing a HULA program in P4 gives multiple

advantages to a network operator compared to a dedicated ASIC implementation. The

operator could modify the sizes of various registers according to her workload demands.

For example, she could change the sizes of the best hop and flowlet register arrays

based on her requirements. More importantly, she could change the way the algorithm

works by modifying the HULA header to carry and process queue occupancy instead of

link utilization to implement backpressure routing [28, 29].
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2.5.3 Feasibility of P4 Primitives at Line Rate

In the P4 program shown in Figure 2.4, we require both stateless (i.e., operations that only

read or write packet fields) and stateful (i.e., operations that may also maniupulate switch

state in addition to packet fields) operations to program HULA’s logic. We briefly comment

on the hardware feasibility of each kind of operation below.

The stateless operations used in the program (like the assignment operation in line 4) are

relatively easy to implement and have been discussed before [35]. In particular, Table 1

of the RMT paper [35] lists many stateless operations that are feasible on a programmable

switch architecture with forwarding performance competitive with the highest-end fixed-

function switches.

For determining the feasibility of stateful operations, we use techniques developed in

Domino [113], a recent system that allows stateful data-plane algorithms such as HULA

to be compiled to line-rate switches. The Domino compiler takes as inputs a data-plane

algorithm and a set of atoms, which represent a programmable switch’s instruction set.

Based on the atoms supported by a programmable switch, Domino determines if a data-

plane algorithm can be run on a line-rate switch. The same paper also proposes atoms

that are expressive enough for a variety of data-plane algorithms, while incurring < 15%

estimated chip area overhead. Table 3 of the Domino paper [113] lists these atoms.

We now discuss how the stateful operations required by each of HULA’s five state vari-

ables min path util, best hop, update time, flowlet hop, and flowlet time,

can be supported by Domino’s atoms (the atom names used here are from Table 3 of the

Domino paper [113]).

1. Both flowlet time and update time track the last time at which some event

happened, and require only a simply read/write capability to a state variable (the

Read/Write atom).
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2. The flowlet hop variable is conditionally updated whenever the flowlet threshold

is exceeded. This requires the ability to predicate a write to a state variable based on

some condition (the PRAW atom).

3. The variables min path util and best hop are mutually dependent on one an-

other: min path util (the utilization on the best hop) needs to be updated if a new

probe is received for the current best hop (the variable tracking the best next hop)

; conversely, the best hop variable needs to be updated if a probe for another path

indicates a utilization lesser than the current min path util. This mutually de-

pendence requires hardware support for updating a pair of state variables depending

on the previous values of the pair (the Pairs atom).

The most complex of these three atoms (Read/Write, PRAW, and Pairs) is the Pairs atom.

However, even the Pairs atom only incurs modest estimated chip area overhead based on

synthesis results from a 32 nm standard-cell library. Further, this atom is useful for other

algorithms besides HULA as well (Table 4 of the Domino paper describes several more ex-

amples). We conclude based on these results that it is feasible to implement the instructions

required by HULA without sacrificing the performance of a line-rate switch.

2.6 Evaluation

In this section, we illustrate the effectiveness of the HULA load balancer by implementing

it in the ns-2 discrete event simulator and comparing it with the following alternative load

balancing schemes:

1. ECMP: Each flow’s next hop is determined by taking a hash of the flow’s five tuple

(src IP, dest IP, src port, dest port, protocol).

2. CONGA’: CONGA [25] is the closest alternative to HULA for congestion-aware

data-plane load balancing. However, CONGA is designed specifically for 2-tier
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Figure 2.5: Topology used in evaluation

Leaf-Spine topologies. However, according to the authors [1], if CONGA is to be

extended to larger topologies, CONGA should be applied within each pod and for

cross-pod traffic, ECMP should be applied at the flowlet level. This method involves

taking a hash of the six tuple that includes the flow’s five tuple and the flowlet ID

(which is incremented every time a new flowlet is detected at a switch). This hash

is subsequently used by all the switches in the network to find the next hop for each

flowlet. We refer to this load balancing scheme as CONGA’ in our evaluation results.

We use our experiments to answer the following questions:

• How does HULA perform in the baseline topology compared to other schemes?

• How does HULA perform when there is asymmetry in the network?

• How quickly does HULA adapt to changes in the network like link failures?

• How robust is HULA to various parameters settings?

Topology: We simulated a 3-tier Fat-Tree topology as shown in Figure 2.5, with two

spines (S1 and S2) connecting two pods. Each pod contains two aggregate switches con-

nected to two leaf ToRs with 40G links. Each ToR is connected to 8 servers with 10G

links. This ensures that the network is not oversubscribed: the 16 servers in one pod can
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Figure 2.6: Empirical traffic distribution used in evaluation

together use the 160G bandwidth available for traffic across the two pods. In this topology,

even though there are only two uplinks from any given ToR, there are a total of 8 different

paths available between a pair of ToRs sitting in different pods. To simulate asymmetry in

the baseline symmetric topology, we disable the 40G link connecting the spine S2 with the

aggregate switch A4.

Empirical workload: We use two realistic workloads to generate traffic for our exper-

iments - (i) A Web-search workload [26] and (ii) a data-mining workload [53]. Both of

these workloads are obtained from production datacenters. Figure 2.6 shows the cumula-

tive distribution of flow sizes seen in these two workloads. Note that flow sizes in the CDF

are in log scale. Both the workloads are heavy tailed: most flows are small, while a small

number of large flows contribute to a substantial portion of the traffic. For example, in the

data mining workload, 80% of the flows are of size less than 10KB.

We simulate a simple client-server communication model where each client chooses a

server at random and initiates three persistent TCP connections to the server. The client

sends a flow with size drawn from the empirical CDF of one of the two workloads. The

inter-arrival rate of the flows on a connection is also taken from an exponential distribution

whose mean is tuned to achieve a desired load on the network. Similar to previous work [25,

27], we look at the average flow completion time (FCT) as the overall performance metric
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Figure 2.7: Average flow completion times for the Web-search and data-mining workload
on the symmetric topology.

so that all flows including the majority of small flows are given equal consideration. We

run each experiment with three random seeds and then measure the average of the three

runs.

Parameters: In our experimental setting, there are two important parameters that de-

termine the system behavior. First, the flowlet inter-packet gap, as is recommended in

previous work [25, 68], is set to be of the order of the network RTT so that packet reorder-

ing at the receiver is minimized. In our experiments, we used a flowlet gap of 100 µs . The

second parameter is the probe frequency, which (as mentioned in §2.4.5) is set to few times

the RTT so that it is frequent enough to quickly react to congestion but does not overwhelm

the network. In our experiments, unless stated explicitly, the probe frequency was set to

200 µs.

2.6.1 Symmetric 3-tier Fat-Tree Topology

Figure 2.7 shows the average completion time for all flows as the load on the network is

varied. HULA performs better than ECMP and CONGA’ for both the workloads at higher

loads. At lower loads, the performance of all three load balancing schemes is nearly the

same because when there is enough bandwidth available in the network, there is a greater
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tolerance for congestion-oblivious path forwarding. However, as the network load becomes

higher, the flows have to be carefully assigned to paths such that collisions do not occur.

Given that flow characteristics change frequently, at high network load, the load balancing

scheme has to adapt quickly to changes in link utilizations throughout the network.

ECMP performs the worst because it performs congestion-oblivious load balancing at

a very coarse granularity. CONGA’ does slightly better because it still does congestion-

oblivious ECMP (across pods) but at the granularity of flowlets. In particular, flows sent

on congested paths see more inter-flowlet gaps being created due to the delay caused by

queue growth. Hence, compared to ECMP, CONGA’ has additional opportunities to find

an uncongested path when new flowlets are hashed. HULA performs the best because of

its fine-grained congestion-aware load balancing. For the Web-search workload, HULA

achieves 3.7x lower FCT (better performance) compared to ECMP and 2.7x better com-

pared to CONGA’ at 70% network load. The performance of HULA is slightly less ap-

parent in the data mining workload because a vast portion of the flows in the workload are

really small (50% are just 1 packet flows) and HULA does not often get a chance to better

load balance large flows with multiple flowlets. Nevertheless, HULA achieves 1.35x better

performance than ECMP at 80% network load.

2.6.2 Handling Topology Asymmetry

When the link between the spine switch S2 and switch A4 is removed, the effective band-

width of the network drops by 25% for traffic going across the pods. This means that the

load balancing schemes have to carefully balance paths at even lower network loads com-

pared to the baseline topology scenario. In particular, the load balancing scheme has to

make sure that the bottleneck link connecting S2 to A3 is not overwhelmed with a dispro-

portionate amount of traffic.

Figure 2.8 shows how various schemes perform with the Web-search workload as the

network load is varied. The overall FCT for ECMP rises quickly and goes off the charts

41



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60  70  80  90

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

HULA

CONGA’

ECMP

(a) Overall Average FCT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60  70  80  90

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

HULA

CONGA’

ECMP

(b) Small Flows (of size <100KB)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 10  20  30  40  50  60  70  80  90

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

HULA

CONGA’

ECMP

(c) Large Flows (of size >10MB)

Figure 2.8: Average FCT for the Web-search workload on the asymmetric topology.
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beyond a 60% network load. Once the network load reaches 50%, the bottleneck link incurs

pressure from the flows hashed to go through S2. This is why ECMP and CONGA’ have bad

performance at high network loads. CONGA’ does slightly better than ECMP here because

the network sees more flowlets being created on congested paths (due to the delays caused

by queue growth) and hence has a slightly higher chance of finding the uncongested paths

for new flowlets. Because of this, CONGA’ is 3x better than ECMP at 60% load. However,

HULA performs the best because of its proactive utilization-aware path selection, which

avoids pressure on the bottleneck link. This helps HULA achieve 8x better performance at

60% network load.

Figure 2.8(b) shows the average FCTs for small flows of size less than 100KB and Fig-

ure 2.8(c) shows the average FCTs for large flows of size greater than 10MB. HULA’s

gains are most pronounced on the large number of small flows where it does 10x better

than ECMP at 60% load. Even for large flows, HULA is 4x better than ECMP at 60% load.

HULA prevents queue growth: The superior performance of HULA can be under-

stood by looking at the growth of switch queues. As described earlier, in the link failure

scenario, all the traffic that crosses the pod through the spine S2 has to go through the link

connecting it to A3, which becomes the bottleneck link at high network load. Figure 2.10c

shows the CDF of queue depth at the bottleneck link. The queue was monitored every 100

microseconds and the instantaneous queue depth was plotted. ECMP has high depth most

of the time and frequently sees packet drops as well. HULA on the other hand maintains

zero queue depth 90% of the time and sees no packet drops. In addition, the 95th percentile

queue depth for HULA is 8x smaller compared to CONGA’ and 19x smaller compared to

ECMP.

Figure 2.9 shows that HULA’s gains are less pronounced with the data mining workload

similar to what was seen with the baseline topology. Due to the extremely large number of

small flows, the effect of congestion-aware load balancing is less pronounced. Neverthe-

less, HULA does the best with small flows having 1.53x better performance than ECMP at
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Figure 2.9: Average FCT for the data mining workload on the asymmetric topology.
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80% load. With large flows, it does 1.35x better than ECMP. Overall, HULA does 1.52x

better than ECMP and 1.17x better than CONGA’.

HULA achieves better tail latency: In addition to performing better on average FCT,

HULA also achieves good tail latency for both workloads. Figure 2.10 shows the 99th

percentile FCT for all the flows. For the Web-search workload, HULA achieves 10x better

99th percentile FCT compared to ECMP and 3x better compared to CONGA’ at 60% load.

For the data mining workload, HULA achieves 1.53x better tail latency compared to ECMP.

2.6.3 Stability

In order to study HULA’s stability in response to topology changes, we monitored the link

utilization of the links that connect the spine to the aggregate switches in the asymmetric

topology while the Web-search workload is running. We then brought down the bottleneck

link at 0.2 milliseconds from the beginning of the experiment. As Figure 4.8c(a) shows,

HULA quickly adapts to the failure and redistributes the load onto the two links going

through S1 within a millisecond. Then when the failed link comes up later, HULA quickly

goes back to the original utilization values on all the links. This demonstrates that HULA is

robust to changes in the network topology and also shows that the load is distributed almost

equally on all the available paths at any given time regardless of the topology.

Figure 4.8c(b) shows a similar experiment but run with long-running flows as opposed to

the empirical workload. Long-running flows allow us to study HULA’s stability better than

empirical workloads, because in an empricial workload the link utilizations may fluctuate

depending on flow arrivals and departures. As the figure shows, when the link connecting

a spine to an aggregate switch fails, HULA quickly deflects the affected flows onto another

available path within half a millisecond. Further, while doing this, it does not disturb the

bottleneck link and cause instability in the network.
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Figure 2.10: 99th percentile FCTs and queue growth on the asymmetric topology
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Figure 2.11: HULA resilience to link failures and probe frequency settings
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2.6.4 Robustness of probe frequency

As discussed earlier, carrying probes too frequently can reduce the effective network band-

width available for data traffic. While we argued that the ideal frequency is of the order

of the network RTT, we found that HULA is robust to change in probe frequency. Fig-

ure 4.8c(c) shows the average FCT with the Web-search workload running on the asym-

metric topology. When the network load is below 70%, increasing the probe frequency to

10 times its ideal has no effect on the performance. Even at 90% load, the average FCT for

10x frequency is only 1.15x higher. In addition, compared with ECMP and CONGA’, these

numbers are much better. Therefore, we believe HULA probes can be circulated with mod-

erately low frequency so that the effective bandwidth is not affected while still achieving

utilization-aware load balancing.

2.7 Related Work

Stateless or local load balancing: Equal-Cost Multi-Path routing (ECMP) is a sim-

ple hash-based load-balancing scheme that is implemented widely in switch ASICs today.

However, it is congestion-agnostic and only splits traffic at the flow level, which causes

collisions at high network load. Further, ECMP is shown to have degraded performance

during link failures that cause asymmetric topologies [25]. DRB [38] is a per-packet load

balancing scheme that sprays packets effectively in a round robin fashion. More recently,

PRESTO [56] proposed splitting flows into TSO (TCP Segment Offload) segments of size

64KB and sending them on multiple paths. On the receive side GRO (General Receive Of-

fload), the packets are buffered temporarily to prevent reordering. Neither DRB nor Presto

is congestion aware, which causes degraded performance during link failures. Flare [68]

and Localflow [112] discuss switch-local solutions that balance the load on all switch ports

but do not take global congestion information into account.
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Centralized load balancing: B4 [63] and SWAN [57] propose centralized load bal-

ancing for wide-area networks connecting their data centers. They collect statistics from

network switches at a central controller and push forwarding rules to balance network load.

The control plane operates at the timescale of minutes because of relatively predictable

traffic patterns. Hedera [23] and MicroTE [31] propose similar solutions for datacenter

networks but still suffer from high control-loop latency in the critical path and cannot han-

dle highly volatile datacenter traffic in time.

Modified transport layer: MPTCP [108] is a modified version of TCP that uses mul-

tiple subflows to split traffic over different paths. However, the multiple subflows cause

burstiness and perform poorly under Incast-like conditions [25]. In addition, it is difficult

to deploy MPTCP in datacenters because it requires change to all the tenant VMs, each

of which might be running a different operating system. DCTCP [26], pFabric [27] and

PIAS [30] reduce the tail flow completion times using modified end-host transport stacks

but do not focus on load balancing. DeTail [125] proposes a per-packet adaptive load

balancing scheme that adapts to topology asymmetry but requires a complex cross-layer

network stack including end-host modifications.

Global utilization-aware load balancing: TeXCP [67] and MATE [47] are adaptive

traffic-engineering proposals that load balance across multiple ingress-egress paths in a

wide-area network based on per-path congestion metrics. TeXCP also does load balancing

at the granularity of flowlets but uses router software to collect utilization information and

uses a modified transport layer to react to this information. HALO [92], inspired by a long

line of work beginning with Minimum Delay Routing [50], studies load-sensitive adaptive

routing as an optimization problem and implements it in the router software. Relative to

these systems, HULA is a routing mechanism that balances load at finer granularity and is

simple enough to be implemented entirely in the data plane.

As discussed earlier, CONGA [25] is the closest alternative to HULA for global

congestion-aware fine-grained load balancing. However, it is designed for specific 2-
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tier Leaf-Spine topologies in a custom ASIC. HULA, on the other hand, scales better

than CONGA by distributing the relevant utilization information across all switches. In

addition, unlike CONGA, HULA reacts to topology changes like link failures almost

instantaneously using data-plane mechanisms. Lastly, HULA’s design is tailored towards

programmable switches—a first for data-plane load balancing schemes.

2.8 Conclusion

In this chapter, we design HULA (Hop-by-hop Utilization-aware Load balancing Archi-

tecture), a scalable load-balancing scheme designed for programmable data planes. HULA

uses periodic probes to perform a distance-vector style distribution of network utilization

information to switches in the network. Switches track the next hop for the best path and

its corresponding utilization for a given destination, instead of maintaining per-path uti-

lization congestion information for each destination. Further, because HULA performs

forwarding locally by determining the next hop and not an entire path, it eliminates the

need for a separate source routing mechanism (and the associated forwarding table state

required to maintain source routing tunnels). When failures occur, utilization information

is automatically updated so that broken paths are avoided.

We evaluate HULA against existing load balancing schemes and find that it is more ef-

fective and scalable. While HULA is effective enough to quickly adapt to the volatility of

datacenter workloads, it is also simple enough to be implemented at line rate in the data

plane on emerging programmable switch architectures. While the performance and stabil-

ity of HULA is studied empirically in this chapter, an analytical study of its optimality and

stability will provide further insights into its dynamic behavior.
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Chapter 3

CacheFlow: Dependency-Aware

Rule-Caching for Software-Defined

Networks

Software-Defined Networking (SDN) allows control applications to install fine-grained for-

warding policies in the underlying switches. While Ternary Content Addressable Memory

(TCAM) enables fast lookups in hardware switches with flexible wildcard rule patterns, the

cost and power requirements limit the number of rules the switches can support. To make

matters worse, these hardware switches cannot sustain a high rate of updates to the rule

table.

In this chapter, we show how to give applications the illusion of high-speed forward-

ing, large rule tables, and fast updates by combining the best of hardware and software

processing. Our CacheFlow system “caches” the most popular rules in the small TCAM,

while relying on software to handle the small amount of “cache miss” traffic. However, we

cannot blindly apply existing cache-replacement algorithms, because of dependencies be-

tween rules with overlapping patterns. Rather than cache large chains of dependent rules,

we “splice” long dependency chains to cache smaller groups of rules while preserving the
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semantics of the policy. Experiments with our CacheFlow prototype—on both real and

synthetic workloads and policies—demonstrate that rule splicing makes effective use of

limited TCAM space, while adapting quickly to changes in the policy and the traffic de-

mands.

3.1 Introduction

In a Software-Defined Network (SDN), a logically centralized controller manages the flow

of traffic by installing simple packet-processing rules in the underlying switches. These

rules can match on a wide variety of packet-header fields, and perform simple actions such

as forwarding, flooding, modifying the headers, and directing packets to the controller.

This flexibility allows SDN-enabled switches to behave as firewalls, server load balancers,

network address translators, Ethernet switches, routers, or anything in between. However,

fine-grained forwarding policies lead to a large number of rules in the underlying switches.

In modern hardware switches, these rules are stored in Ternary Content Addressable

Memory (TCAM) [16]. A TCAM can compare an incoming packet to the patterns in

all of the rules at the same time, at line rate. However, commodity switches support rel-

atively few rules, in the small thousands or tens of thousands [117]. Undoubtedly, future

switches will support larger rule tables, but TCAMs still introduce a fundamental trade-off

between rule-table size and other concerns like cost and power. TCAMs introduce around

100 times greater cost [15] and 100 times greater power consumption [116], compared to

conventional RAM. Plus, updating the rules in TCAM is a slow process—today’s hardware

switches only support around 40 to 50 rule-table updates per second [59, 66], which could

easily constrain a large network with dynamic policies.
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Software switches may seem like an attractive alternative. Running on commodity

servers, software switches can process packets at around 40 Gbps on a quad-core ma-

chine [14, 45, 55, 104] and can store large rule tables in main memory and (to a lesser

extent) in the L1 and L2 cache. In addition, software switches can update the rule table

more than ten times faster than hardware switches [59]. But, supporting wildcard rules

that match on many header fields is taxing for software switches, which must resort to

slow processing (such as a linear scan) in user space to handle the first packet of each

flow [104]. So, they cannot match the “horsepower” of hardware switches that provide

hundreds of Gbps of packet processing (and high port density).

Fortunately, traffic tends to follow a Zipf distribution, where the vast majority of traf-

fic matches a relatively small fraction of the rules [110]. Hence, we could leverage a small

TCAM to forward the vast majority of traffic, and rely on software switches for the remain-

ing traffic. For example, an 800 Gbps hardware switch, together with a single 40 Gbps soft-

ware packet processor could easily handle traffic with a 5% “miss rate” in the TCAM. In

addition, most rule-table updates could go to the slow-path components, while promoting

very popular rules to hardware relatively infrequently. Together, the hardware and software

processing would give controller applications the illusion of high-speed packet forwarding,

large rule tables, and fast rule updates.

Our CacheFlow architecture consists of a TCAM and a sharded collection of software

switches, as shown in Figure 3.1. The software switches can run on CPUs in the data plane

(e.g., network processors), as part of the software agent on the hardware switch, or on sep-

arate servers. CacheFlow consists of a CacheMaster module that receives OpenFlow com-

mands from an unmodified SDN controller. CacheMaster preserves the semantics of the

OpenFlow interface, including the ability to update rules, query counters, etc. CacheMas-

ter uses the OpenFlow protocol to distribute rules to unmodified commodity hardware and

software switches. CacheMaster is a purely control-plane component, with control sessions

shown as dashed lines and data-plane forwarding shown by solid lines.
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Figure 3.1: CacheFlow architecture

As the name suggests, CacheFlow treats the TCAM as a cache that stores the most popular

rules. However, we cannot simply apply existing cache-replacement algorithms, because

the rules can match on overlapping sets of packets, leading to dependencies between mul-

tiple rules. Indeed, the switch we used for our experiments makes just this mistake (See

§5)—a bug now addressed by our new system! Moreover, while earlier work on IP route

caching [48, 79, 85, 110] considered rule dependencies, IP prefixes only have simple “con-

tainment” relationships, rather than patterns that partially overlap. The partial overlaps

can also lead to long dependency chains, and this problem is exacerbated by applications

that combine multiple functions (like server load balancing and routing, as can be done in

Frenetic [49] and CoVisor [65]) to generate many more rules.

To handle rule dependencies, we construct a compact representation of the given prior-

itized list of rules as an annotated directed acyclic graph (DAG), and design incremental

algorithms for adding and removing rules to this data structure. Our cache-replacement al-

gorithms use the DAG to decide which rules to place in the TCAM. To preserve rule-table

space for the rules that match a large fraction of the traffic, we design a novel “splicing”

technique that breaks long dependency chains. Splicing creates a few new rules that “cover”
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a large number of unpopular rules, to avoid polluting the cache. The technique extends to

handle changes in the rules, as well as changes in their popularity over time.

In summary, we make the following key technical contributions:

• Incremental rule-dependency analysis: We develop an algorithm for incrementally

analyzing and maintaining rule dependencies.

• Novel cache-replacement strategies: We develop new algorithms that only cache

heavy-hitting rules along with a small set of dependencies.

• Implementation and evaluation: We discuss how CacheFlow preserves the seman-

tics of the OpenFlow interface. Our experiments on both synthetic and real workloads

show a cache-hit rate of 90% of the traffic by caching less than 5% of the rules.

A preliminary version of this work appeared as a workshop paper [72] which briefly dis-

cussed ideas about rule dependencies and caching algorithms. In this chapter, we develop

novel algorithms that help efficiently deal with practical deployment constraints like incre-

mental updates to policies and high TCAM update times. We also evaluate CacheFlow by

implementing large policies on actual hardware.

3.2 Identifying Rule Dependencies

In this section, we show how rule dependencies affect the correctness of rule-caching tech-

niques and where such dependencies occur. We show how to represent cross-rule depen-

dencies as a graph, and present efficient algorithms for incrementally computing the graph.

3.2.1 Rule Dependencies

The OpenFlow policy on a switch consists of a set of packet-processing rules. Each rule

has a pattern, a priority, a set of actions, and counters. When a packet arrives, the switch

identifies the highest-priority matching rules, performs the associated actions and incre-
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(a) Example rule table

(b) Incremental DAG insert (c) Incremental DAG delete

Figure 3.2: Constructing the rule dependency graph (edges annotated with reachable pack-
ets)

ments the counters. CacheFlow implements these policies by splitting the set of rules into

two groups—one residing in the TCAM and another in a software switch.

The semantics of CacheFlow is that (1) the highest-priority matching rule in the TCAM

is applied, if such a rule exists, and (2) if no matching rule exists in the TCAM, then the

highest-priority rule in the software switch is applied. As such, not all splits of the set

of rules lead to valid implementations. If we do not cache rules in the TCAM correctly,

packets that should hit rules in the software switch may instead hit a cached rule in the

TCAM, leading to incorrect processing.

In particular, dependencies may exist between rules with differing priorities, as shown

in the example in Figure 3.2(a). If the TCAM can store four rules, we cannot select the

four rules with highest traffic volume (i.e., R2, R3, R5, and R6), because packets that should

match R1 (with pattern 000) would match R2 (with pattern 00*); similarly, some packets

56



(say with header 110) that should match R4 would match R5 (with pattern 1*0). That

is, rules R2 and R5 depend on rules R1 and R4, respectively. In other words, there is a

dependency from rule R1 to R2 and from rule R4 to R5. If R2 is cached in the TCAM, R1

should also be cached to preserve the semantics of the policy, similarly with R5 and R4.

A direct dependency exists between two rules if the patterns in the rules intersect (e.g.,

R2 is dependent on R1). When a rule is cached in the TCAM, the corresponding dependent

rules should also move to the TCAM. However, simply checking for intersecting patterns

does not capture all of the policy dependencies. For example, going by this definition, the

rule R6 only depends on rule R5. However, if the TCAM stored only R5 and R6, packets

(with header 110) that should match R4 would inadvertently match R5 and hence would be

incorrectly processed by the switch. In this case, R6 also depends indirectly on R4 (even

though the matches of R4 and R6 do not intersect), because the match for R4 overlaps with

that of R5. Therefore we need to define carefully what constitutes a dependency to handle

such cases properly.

3.2.2 Where do complex dependencies arise?

Partial overlaps. Complex dependencies do not arise in traditional destination prefix for-

warding because a prefix is dependent only on prefixes that are strict subsets of itself (noth-

ing else). However, in an OpenFlow rule table, where rules have priorities and can match

on multiple header fields, indirect dependencies occur because of partial overlaps between

rules—both R4 and R6 only partially overlap with R5. Hence, even though R4 and R6 do not

have a direct dependency, they have an indirect dependency due to R5’s own dependence

on R6. The second column of Figure 3.2(a) illustrates such a situation. Here, one might

interpret the first two bits of R4, R5, and R6 as matching a destination IP, and the last bit

as matching a port. Note that it is not possible to simply transform these rules into large

FIB tables that are supported by today’s switches because FIB lookups match on a single
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(a) Reanzz Rule Table (b) Reanzz Subgraph

(c) CoVisor Example (d) CoVisor Graph

Figure 3.3: Dependent-set vs. cover-set algorithms (L0 cache rules in red)

header field. Even if one were to somehow split a wild card rule into multiple FIB rules, it

does not preserve counters.

Policy composition. Frenetic [49], Pyretic [96], CoVisor [65] and other high-level SDN

programming platforms support abstractions for constructing complex network policies

from a collection of simpler components. While the separate components may exhibit few

dependencies, when they are compiled together, the composite rule tables may contain

many complex dependencies. For instance, Figure 3.3(c) presents an illustrative rule table

drawn from the CoVisor project [65]. The corresponding dependency graph for the rules is

shown in Figure 3.3(d). Here, the dependency between rules R3 and R4 was not seen in the
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two separate components that defined the high-level policy, but does arise when they are

composed.

Dependencies in REANNZ policies. We also analyzed a number of policies drawn from

real networks to determine the nature of the dependencies they exhibit. As an example,

Figure 3.3(a) shows part of an OF policy in use at the REANNZ research network [10].

The corresponding dependency graph can be seen in Figure 3.3(b). Now, one might con-

jecture that a network operator could manually rewrite the policy to reduce the number of

dependencies and thereby facilitate caching. However, doing so is bound to be extremely

tedious and highly error prone. Moreover, a good split may depend on the dynamic prop-

erties of network traffic. We argue that such tasks are much better left to algorithms, such

as the ones we propose in this chapter. An expert can develop a single caching algorithm,

validate it and then deploy it on any policy. Such a solution is bound to be more reliable

than asking operators to manually rewrite policies.

Is this a temporary problem? Even if the TCAM available on future switches grows,

network operators will only become greedier in utilizing these resources—in the same

way that with increasing amounts of DRAM, user applications have begun to consume

increasing amounts of memory in conventional computers. Newer switches have multi-

table pipelines [34] that can help avoid rule blowup from policy composition but the num-

ber of rules is still limited by the available TCAM. Our algorithms can be used to cache

rules independently in each table (which maximizes the cache-hit traffic across all tables).

Further, even high-end software switches like the OpenVSwitch (OVS) spend consider-

able effort [104] to cache popular OpenFlow rules in the kernel so that majority of the

traffic does not get processed by the user-level classifier which is very slow. Thus, the

rise of software switches may not completely avoid the problem of correctly splitting rule

dependencies to cache them in the faster classifier process. Thus we believe our efforts

are widely applicable and are going to be relevant in the long term despite the near term

industry trends.
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3.2.3 Constructing the Dependency DAG

Algorithm 1: Building the dependency graph
// Add dependency edges

1 func addParents(R:Rule, P:Parents) begin
2 deps = ( /0);

// p.o : priority order
3 packets = R.match;
4 for each R j in P in descending p.o: do
5 if (packets ∩ R j.match) != /0 then
6 deps = deps ∪ {(R,R j)};
7 reaches(R,R j) = packets ∩ R j;
8 packets = packets - R j.match;

9 return deps;

10 for each R:Rule in Pol:Policy do
11 potentialParents = [R j in Pol — R j.p.o ≤ R.p.o];
12 addParentEdges(R, potentialParents);

A concise way to capture all the dependencies in a rule table is to construct a directed

graph where each rule is a node, and each edge captures a direct dependency between a

pair of rules as shown in Figure 3.2(b). A direct dependency exists between a child rule Ri

and a parent rule R j under the following condition—if Ri is removed from the rule table,

packets that are supposed to hit Ri will now hit rule R j. The edge between the rules in

the graph is annotated by the set of packets that reach the parent from the child. Then,

the dependencies of a rule consist of all descendants of that rule (e.g., R1 and R2 are the

dependencies for R3). The rule R0 is the default match-all rule (matches all packets with

priority 0) added to maintain a connected rooted graph without altering the overall policy.

To identify the edges in the graph, for any given child rule R, we need to find out all

the parent rules that the packets matching R can reach. This can be done by taking the

symbolic set of packets matching R and iterating them through all of the rules with lower

priority than R that the packets might hit.
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To find the rules that depend directly on R, Algorithm 1 scans the rules Ri with lower

priority than R (line 14) in order of decreasing priority. The algorithm keeps track of the

set of packets that can reach each successive rule (the variable packets). For each such

new rule, it determines whether the predicate associated with that rule intersects1 the set of

packets that can reach that rule (line 5). If it does, there is a dependency. The arrow in the

dependency edge points from the child R to the parent Ri. In line 7, the dependency edge

also stores the packet space that actually reaches the parent Ri. In line 8, before searching

for the next parent, because the rule Ri will now occlude some packets from the current

reaches set, we subtract Ri’s predicate from it.

This compact data structure captures all dependencies because we track the flow of all

the packets that are processed by any rule in the rule table. The data structure is a directed

acyclic graph (DAG) because if there is an edge from Ri to R j then the priority of Ri is

always strictly greater than priority of R j. Note that the DAG described here is not a

topological sort (we are not imposing a total order on vertices of a graph but are computing

the edges themselves). Once such a dependency graph is constructed, if a rule R is to be

cached in the TCAM, then all the descendants of R in the dependency graph should also be

cached for correctness.

3.2.4 Incrementally Updating The DAG

Algorithm 1 runs in O(n2) time where n is the number of rules. As we show in Section 3.6,

running the static algorithm on a real policy with 180K rules takes around 15 minutes,

which is unacceptable if the network needs to push a rule into the switches as quickly as

possible (say, to mitigate a DDoS attack). Hence we describe an incremental algorithm that

has considerably smaller running time in most practical scenarios—just a few milliseconds

for the policy with 180K rules.

1Symbolic intersection and subtraction of packets can be done using existing techniques [76].
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Figure 3.2(b) shows the changes in the dependency graph when the rule R5 is inserted.

All the changes occur only in the right half of the DAG because the left half is not affected

by the packets that hit the new rule. A rule insertion results in three sets of updates to the

DAG: (i) existing dependencies (like (R4,R0)) change because packets defining an existing

dependency are impacted by the newly inserted rule, (ii) creation of dependencies with the

new rule as the parent (like (R4,R5)) because packets from old rules (R4) are now hitting

the new rule (R5), and (iii) creation of dependencies (like (R5,R6)) because the packets

from the new rule (R5) are now hitting an old rule (R6). Algorithm 1 takes care of all

three dependencies by it rebuilding all dependencies from scratch. The challenge for the

incremental algorithm is to do the same set of updates without touching the irrelevant parts

of the DAG — In the example, the left half of the DAG is not affected by packets that hit

the newly inserted rule.

Incremental Insert

In the incremental algorithm, the intuition is to use the reaches variable (packets reach-

ing the parent from the child) cached for each existing edge to recursively traverse only the

necessary edges that need to be updated. Algorithm 2 proceeds in three phases:

(i) Updating existing edges (lines 1–10): While finding the affected edges, the algo-

rithm recursively traverses the dependency graph beginning with the default rule R0. It

checks if the newRule intersects any edge between the current node and its children. It

updates the intersecting edge and adds it to the set of affected edges (line 4). However, if

newRule is higher in the priority chain, then the recursion proceeds exploring the edges of

the next level (line 9). It also collects the rules that could potentially be the parents as it

climbs up the graph (line 8). This way, we end up only exploring the relevant edges and

rules in the graph.

(ii) Adding directly dependent children (lines 11-15): In the second phase, the set of

affected edges collected in the first phase are grouped by their children. For each child, an
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Algorithm 2: Incremental DAG insert
1 func FindAffectedEdges(rule, newRule) begin
2 for each C in Children(rule) do
3 if Priority(C) > priority(newRule) then
4 if reaches(C,rule) ∩ newRule.match != /0 then
5 reaches(C, rule) -= newRule.match;
6 add (C, Node) to affEdges

7 else
8 if Pred(C) ∪ newRule.match != /0 then
9 add C to potentialParents;

10 FindAffectedEdges(C, newRule);

11 func processAffectedEdges(affEdges) begin
12 for each childList in groupByChild(affEdges) do
13 deps = deps ∪ {(child, newRule)};
14 edgeList = sortByParent(childList);
15 reaches(child, newRule) = reaches(edgeList[0]);

16 func Insert(G=(V, E), newNode) begin
17 affEdges = { };
18 potentialParents = [R0];
19 FindAffectedEdges(R0, newNode);
20 ProcessAffectedEdges(affEdges);
21 addParents(newNode, potentialParents);

edge is created from the child to the newRule using the packets from the child that used

to reach its highest priority parent (line 14). Thus all the edges from the new rule to its

children are created.

(iii) Adding directly dependent parents (line 21): In the third phase, all the edges

that have newRule as the child are created using the addParents method described in

Algorithm 1 on all the potential parents collected in the first phase.

In terms of the example, in phase 1, the edge (R4, R0) is the affected edge and is updated

with reaches that is equal to 111 (11* - 1*0). The rules R0 and R6 are added to the new

rule’s potential parents. In phase 2, the edge (R4, R5) is created. In phase 3, the function

addParents is executed on parents R6 and R0. This results in the creation of edges (R5,

R6) and (R5, R0).
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Algorithm 3: Incremental DAG delete
1 func Delete(G=(V, E), oldRule) begin
2 for each c in Children(oldRule) do
3 potentialParents = Parents(c) - {oldRule};
4 for each p in Parents(oldRule) do
5 if reaches(c, oldRule) ∩ p.match != /0 then
6 add p to potentialParents

7 addParents(C, potentialParents)

8 Remove all edges involving oldRule

Running Time: Algorithm 2 clearly avoids traversing the left half of the graph which is

not relevant to the new rule. While in the worst case, the running time is linear in the

number of edges in the graph, for most practical policies, the running time is linear in the

number of closely related dependency groups2.

Incremental Delete

The deletion of a rule leads to three sets of updates to a dependency graph: (i) new edges are

created between other rules whose packets used to hit the removed rule, (ii) existing edges

are updated because more packets are reaching this dependency because of the absence of

the removed rule, and (iii) finally, old edges having the removed rule as a direct dependency

are deleted.

For the example shown in Figure 3.2(c), where the rule R5 is deleted from the DAG,

existing edges (like (R4, R0)) are updated and all three involving R5 are created. In this

example, however, no new edge is created. But it is potentially possible in other cases

(consider the case where rule R2 is deleted which would result in a new edge between R1

and R3).

An important observation is that unlike an incremental insertion (where we recursively

traverse the DAG beginning with R0), incremental deletion of a rule can be done local to

the rule being removed. This is because all three sets of updates involve only the children

2Since the dependency graph usually has a wide bush of isolated prefix dependency chains—like the left
half and right half in the example DAG—which makes the insertion cost equal to the number of such chains.
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or parents of the removed rule. For example, a new edge can only be created between a

child and a parent of the removed rule3.

Algorithm 3 incrementally updates the graph when a new rule is deleted. First, in lines

2-6, the algorithm checks if there is a new edge possible between any child-parent pair by

checking whether the packets on the edge (child, oldRule) reach any parent of oldRule (line

5). Second, in lines 3 and 7, the algorithm also collects the parents of all the existing edges

that may have to be updated (line 3). It finally constructs the new set of edges by running

the addParents method described in Algorithm 1 to find the exact edges between the

child c and its parents (line 7). Third, in line 8, the rules involving the removed rule as

either a parent or a child are removed from the DAG.

Running time: This algorithm is dominated by the two for loops (in lines 2 and 4) and

may also have a worst case O(n2) running time (where n is the number of rules) but in most

practical policy scenarios, the running time is much smaller (owing to the small number of

children/parents for any given rule in the DAG).

3.3 Caching Algorithms

In this section, we present CacheFlow’s algorithm for placing rules in a TCAM with lim-

ited space. CacheFlow selects a set of important rules from among the rules given by the

controller to be cached in the TCAM, while redirecting the cache misses to the software

switches.

We first present a simple strawman algorithm to build intuition, and then present new al-

gorithms that avoids caching low-weight rules. Each rule is assigned a “cost” correspond-

ing to the number of rules that must be installed together and a “weight” corresponding to

the number of packets expected to hit that rule 4. Continuing with the running example

3In the example where R2 is deleted, a new rule can only appear between R1 and R3. Similarly when R5
is deleted, a new rule could have appeared between R4 and R6 but does not because the rules do not overlap.

4In practice, weights for rules are updated in an online fashion based on the packet count in a sliding
window of time.
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from the previous section, R6 depends on R4 and R5, leading to a cost of 3, as shown in

Figure 3.4(a). In this situation, R2 and R6 hold the majority of the weight, but cannot be

installed simultaneously on a TCAM with capacity 4, as installing R6 has a cost of 3 and

R2 bears a cost of 2. Hence together they do not fit. The best we can do is to install rules

R1,R4,R5, and R6 which maximizes total weight, subject to respecting all dependencies.

3.3.1 Optimization: NP Hardness

The input to the rule-caching problem is a dependency graph of n rules R1,R2, . . . , Rn,

where rule Ri has higher priority than rule R j for i < j. Each rule has a match and action,

and a weight wi that captures the volume of traffic matching the rule. There are depen-

dency edges between pairs of rules as defined in the previous section. The output is a

prioritized list of C rules to store in the TCAM5. The objective is to maximize the sum of

the weights for traffic that “hits” in the TCAM, while processing “hit” packets according

to the semantics of the original rule table.

Maximize
n

∑
i=1

wici

subject to
n

∑
i=1

ci ≤C; ci ∈ {0,1}

ci− c j ≥ 0 if Ri.is descendant(R j)

The above optimization problem is NP-hard in n and k. It can be reduced from the densest

k-subgraph problem which is known to be NP-hard. We outline a sketch of the reduction

here between the decision versions of the two problems. Consider the decision problem

for the caching problem: Is there a subset of C rules from the rule table which respect the

directed dependencies and have a combined weight of atleast W . The decision problem for

the densest k-subgraph problem is to ask if there is a subgraph incident on k vertices that
5Note that CacheFlow does not simply install rules on a cache miss. Instead, CacheFlow makes decisions

based on traffic measurements over the recent past. This is important to defend against cache-thrashing
attacks where an adversary generates low-volume traffic spread across the rules.
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(a) Dependent Set Algo.

(b) Cover Set Algo.

(c) Mixed Set Algo

Figure 3.4: Dependent-set vs. cover-set algorithms (L0 cache rules in red)
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Figure 3.5: Reduction from densest k-subgraph

has at least d edges in a given undirected graph G=(V,E) (This generalizes the well known

CLIQUE problem for d=
(k

2

)
, hence is hard).

Consider the reduction shown in Figure 3.5. For a given instance of the densest

k-subgraph problem with parameters k and d, we construct an instance of the cache-

optimization problem in the following manner. Let the vertices of G′ be nodes indexed

by the vertices and edges of G. The edges of G′ are constructed as follows: for every

undirected edge e = (vi,v j) in G, there is a directed edge from e to vi and v j. This way, if e

is chosen to include in the cache, vi and v j should also be chosen. Now we assign weights

to nodes in V ′ as follows : w(v) = 1 for all v ∈ V and w(e) = n+ 1 for all e ∈ E. Now

let C = k+ d and W = d(n+ 1). If you can solve this instance of the cache optimization

problem, then you have to choose at least d of the edges e ∈ E because you cannot reach

the weight threshold with less than d edge nodes (since their weight is much larger than

nodes indexed by V ). Since C cannot exceed d + k, because of dependencies, one will also

end up choosing less than k vertices v ∈V to include in the cache. Thus this will solve the

densest k-subgraph instance.

3.3.2 Dependent-Set: Caching Dependent Rules

No polynomial time approximation scheme (PTAS) is known yet for the densest k-subgraph

problem. It is also not clear whether a PTAS for our optimization problem can be derived

directly from a PTAS for the densest subgraph problem. Hence, we use a heuristic that is
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(a) Dep. Set Cost (b) Cover Set Cost

Figure 3.6: Dependent-set vs. cover-set Cost

modeled on a greedy PTAS for the Budgeted Maximum Coverage problem [77] which is

similar to the formulation of our problem. In our greedy heuristic, at each stage, the algo-

rithm chooses a set of rules that maximizes the ratio of combined rule weight to combined

rule cost (∆W
∆C ), until the total cost reaches k. This algorithm runs in O(nk) time.

On the example rule table in Figure 3.4(a), the greedy algorithm selects R6 first (and its

dependent set {R4,R5}), and then R1 which brings the total cost to 4. Thus the set of rules

in the TCAM are R1,R4,R5, and R6 which is the optimal. We refer to this algorithm as the

dependent-set algorithm.

3.3.3 Cover-Set: Splicing Dependency Chains

Respecting rule dependencies can lead to high costs, especially if a high-weight rule de-

pends on many low-weight rules. For example, consider a firewall that has a single low-

priority “accept” rule that depends on many high-priority “deny” rules that match relatively

little traffic. Caching the one “accept” rule would require caching many “deny” rules. We

can do better than past algorithms by modifying the rules in various semantics-preserving

ways, instead of simply packing the existing rules into the available space—this is the key

observation that leads to our superior algorithm. In particular, we “splice” the dependency

69



chain by creating a small number of new rules that cover many low-weight rules and send

the affected packets to the software switch.

For the example in Figure 3.4(a), instead of selecting all dependent rules for R6, we

calculate new rules that cover the packets that would otherwise incorrectly hit R6. The

extra rules direct these packets to the software switches, thereby breaking the dependency

chain. For example, we can install a high-priority rule R∗5 with match 1*1* and action

forward to Soft switch,6 along with the low-priority rule R6. Similarly, we can

create a new rule R∗1 to break dependencies on R2. We avoid installing higher-priority, low-

weight rules like R4, and instead have the high-weight rules R2 and R6 inhabit the cache

simultaneously, as shown in Figure 3.4(b).

More generally, the algorithm must calculate the cover set for each rule R. To do so, we

find the immediate ancestors of R in the dependency graph and replace the actions in these

rules with a forward to Soft Switch action. For example, the cover set for rule R6

is the rule R∗5 in Figure 3.4(b); similarly, R∗1 is the cover set for R2. The rules defining these

forward to Soft switch actions may also be merged, if necessary.7 The cardinality

of the cover set defines the new cost value for each chosen rule. This new cost is strictly

less than or equal to the cost in the dependent set algorithm. The new cost value is much

less for rules with long chains of dependencies. For example, the old dependent set cost

for the rule R6 in Figure 3.4(a) is 3 as shown in the rule cost table whereas the cost for the

new cover set for R6 in Figure 3.4(b) is only 2 since we only need to cache R∗5 and R6. To

take a more general case, the old cost for the red rule in Figure 3.6(a) was the entire set of

ancestors (in light red), but the new cost (in Figure 3.6(b)) is defined just by the immediate

ancestors (in light red).

6This is just a standard forwarding action out some port connected to a software switch.
7To preserve OpenFlow semantics pertaining to hardware packet counters, policy rules cannot be com-

pressed. However, we can compress the intermediary rules used for forwarding cache misses, since the
software switch can track the per-rule traffic counters.
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3.3.4 Mixed-Set: An Optimal Mixture

Despite decreasing the cost of caching a rule, the cover-set algorithm may also decrease the

weight by redirecting the spliced traffic to the software switch. For example, for caching the

rule R2 in Figure 3.4(c), the dependent-set algorithm is a better choice because the traffic

volume processed by the dependent set in the TCAM is higher, while the cost is the same

as a cover set. In general, as shown in Figure 3.6(b), cover set seems to be a better choice

for caching a higher dependency rule (like the red node) compared to a lower dependency

rule (like the blue node).

In order to deal with cases where one algorithm may do better than the other, we designed

a heuristic that chooses the best of the two alternatives at each iteration. As such, we

consider a metric that chooses the best of the two sets i.e., max(∆Wdep
∆Cdep

, ∆Wcover
∆Ccover

). Then we

can apply the same greedy covering algorithm with this new metric to choose the best set

of candidate rules to cache. We refer to this version as the mixed-set algorithm.

3.3.5 Updating the TCAM Incrementally

As the traffic distribution over the rules changes over time, the set of cached rules chosen

by our caching algorithms also change. This would mean periodically updating the TCAM

with a new version of the policy cache. Simply deleting the old cache and inserting the new

cache from scratch is not an option because of the enormous TCAM rule insertion time. It

is important to minimize the churn in the TCAM when we periodically update the cached

rules.

Updating just the difference will not work Simply taking the difference between the

two sets of cached rules—and replacing the stale rules in the TCAM with new rules (while

retaining the common set of rules)—can result in incorrect policy snapshots on the TCAM

during the transition. This is mainly because TCAM rule update takes time and hence

packets can be processed incorrectly by an incomplete policy snapshot during transition.
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For example, consider the case where the mixed-set algorithm decides to change the cover-

set of rule R6 to its dependent set. If we simply remove the cover rule (R∗5) and then install

the dependent rules (R5,R4), there will be a time period when only the rule R6 is in the

TCAM without either its cover rules or the dependent rules. This is a policy snapshot that

can incorrectly process packets while the transition is going on.

Exploiting composition of mixed sets A key property of the algorithms discussed so far

is that each chosen rule along with its mixed (cover or dependent) set can be added/removed

from the TCAM independently of the rest of the rules. In other words, the mixed-sets for

any two rules are easily composable and decomposable. For example, in Figure 3.6(b),

the red rule and its cover set can be easily added/removed without disturbing the blue rule

and its dependent set. In order to push the new cache in to the TCAM, we first decom-

pose/remove the old mixed-sets (that are not cached anymore) from the TCAM and then

compose the TCAM with the new mixed sets. We also maintain reference counts from var-

ious mixed sets to the rules on TCAM so that we can track rules in overlapping mixed sets.

Composing two candidate rules to build a cache would simply involve merging their cor-

responding mixed-sets (and incrementing appropriate reference counters for each rule) and

decomposing would involve checking the reference counters before removing a rule from

the TCAM 8. In the example discussed above, if we want to change the cover-set of rule R6

to its dependent set on the TCAM, we first delete the entire cover-set rules (including rule

R6) and then install the entire dependent-set of R6, in priority order.

3.4 CacheMaster Design

As shown in Figure 3.1, CacheFlow has a CacheMaster module that implements its control-

plane logic. In this section, we describe how CacheMaster directs “cache-miss” packets

8The intuition is that if a rule has a positive reference count, then either its dependent-set or the cover-set
is also present on the TCAM and hence is safe to leave behind during the decomposition phase
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from the TCAM to the software switches, using existing switch mechanisms and preserves

the semantics of OpenFlow.

3.4.1 Scalable Processing of Cache Misses

CacheMaster runs the algorithms in Section 3.3 to compute the rules to cache in the TCAM.

The cache misses are sent to one of the software switches, which each store a copy of the

entire policy. CacheMaster can shard the cache-miss load over the software switches.

Using the group tables in OpenFlow 1.1+, the hardware switch can apply a simple load-

balancing policy. Thus the forward to SW switch action (used in Figure 3.4) for-

wards the cache-miss traffic—say, matching a low-priority “catch-all” rule—to this load-

balancing group table in the switch pipeline, whereupon the cache-miss traffic can be dis-

tributed over the software switches.

3.4.2 Preserving OpenFlow Semantics

To work with unmodified controllers and switches, CacheFlow preserves semantics of

the OpenFlow interface, including rule priorities and counters, as well as features like

packet ins, barriers, and rule timeouts.

Preserving inports and outports: CacheMaster installs three kinds of rules in the

hardware switch: (i) fine-grained rules that apply the cached part of the policy (cache-

hit rules), (ii) coarse-grained rules that forward packets to a software switch (cache-miss

rules), and (iii) coarse-grained rules that handle return traffic from the software switches,

similar to mechanisms used in DIFANE [123]. In addition to matching on packet-header

fields, an OpenFlow policy may match on the inport where the packet arrives. Therefore,

the hardware switch tags cache-miss packets with the input port (e.g., using a VLAN tag)

so that the software switches can apply rules that depend on the inport9. The rules in

9Tagging the cache-miss packets with the inport can lead to extra rules in the hardware switch. In several
practical settings, the extra rules are not necessary. For example, in a switch used only for layer-3 processing,
the destination MAC address uniquely identifies the input port, obviating the need for a separate tag. Newer
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the software switches apply any “drop” or “modify” actions, tag the packets for proper

forwarding at the hardware switch, and direct the packet back to the hardware switch.

Upon receiving the return packet, the hardware switch simply matches on the tag, pops the

tag, and forwards to the designated output port(s).

Packet-in messages: If a rule in the TCAM has an action that sends the packet to the con-

troller, CacheMaster simply forwards the the packet in message to the controller. How-

ever, for rules on the software switch, CacheMaster must transform the packet in mes-

sage by (i) copying the inport from the packet tag into the inport field of the packet in

message and (ii) stripping the tag from the packet before sending to the controller.

Traffic counts, barrier messages, and rule timeouts: CacheFlow preserves the seman-

tics of OpenFlow constructs like queries on traffic statistics, barrier messages, and rule

timeouts by having CacheMaster emulate these features. For example, CacheMaster main-

tains packet and byte counts for each rule installed by the controller, updating its local infor-

mation each time a rule moves to a different part of the “cache hierarchy.” The CacheMaster

maintains three counters per rule. A hardware counter periodically polls and maintains the

current TCAM counter for the rule if it cached. Similarly, a software counter maintains the

current software switch counters. A persistent hardware count accumulates the hardware

counter whenever the rule is removed from the hardware cache and resets the hardware

counter to zero. Thus, when an application asks for a rule counter, CacheMaster simply

returns the sum of the three counters associated with that rule.

Similarly, CacheMaster emulates [51] rule timeouts by installing rules without timeouts,

and explicitly removing the rules when the software timeout expires. For barrier messages,

CacheMaster first sends a barrier request to all the switches, and waits for all of them to

respond before sending a barrier reply to the controller. In the meantime, CacheMaster

buffers all messages from the controller before distributing them among the switches.

version of OpenFlow support switches with multiple stages of tables, allowing us to use one table to push the
tag and another to apply the (cached) policy.
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Figure 3.7: TCAM Update Time

3.5 Commodity Switch as the Cache

The hardware switch used as a cache in our system is a Pronto-Pica8 3290 switch running

PicOS 2.1.3 supporting OpenFlow. We uncovered several limitations of the switch that we

had to address in our experiments:

Incorrect handling of large rule tables: The switch has an ASIC that can hold 2000

OpenFlow rules. If more than 2000 rules are sent to the switch, 2000 of the rules are

installed in the TCAM and the rest in the software agent. However, the switch does not

respect the cross-rule dependencies when updating the TCAM, leading to incorrect for-

warding behavior! Since we cannot modify the (proprietary) software agent, we simply

avoid triggering this bug by assuming the rule capacity is limited to 2000 rules. Interest-

ingly, the techniques presented in this chapter are exactly what the software agent can use

to fix this issue.

Slow processing of control commands: The switch is slow at updating the TCAM and

querying the traffic counters. The time required to update the TCAM is a non-linear func-

tion of the number of rules being added or deleted, as shown in Figure 3.7. While the

first 500 rules take 6 seconds to add, the next 1500 rules takes almost 2 minutes to install.

During this time, querying the switch counters easily led to the switch CPU hitting 100%

utilization and, subsequently, to the switch disconnecting from the controller. In order to
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get around this, we wait till the set of installed rules is relatively stable to start querying the

counters at regular intervals and rely on counters in the software switch in the meantime.

3.6 Prototype and Evaluation

We implemented a prototype of CacheFlow in Python using the Ryu controller library

so that it speaks OpenFlow to the switches. On the north side, CacheFlow provides an

interface which control applications can use to send FlowMods to CacheFlow, which then

distributes them to the switches. At the moment, our prototype supports the semantics of

the OpenFlow 1.0 features mentioned earlier (except for rule timeouts) transparently to

both the control applications and the switches.

We use the Pica8 switch as the hardware cache, connected to an Open vSwitch 2.1.2 mul-

tithread software switch running on an AMD 8-core machine with 6GB RAM. To generate

data traffic, we connected two host machines to the Pica8 switch and use tcpreplay to

send packets from one host to the other.

3.6.1 Cache-hit Rate

We evaluate our prototype against three policies and their corresponding packet traces:

(i) A publicly available packet trace from a real data center and a synthetic policy, (ii)

An educational campus network routing policy and a synthetic packet trace, and (iii) a

real OpenFlow policy and the corresponding packet trace from an Internet eXchange Point

(IXP). We measure the cache-hit rate achieved on these policies using three caching algo-

rithms (dependent-set, cover-set, and mixed-set). The cache misses are measured by using

ifconfig on the software switch port and then the cache hits are calculated by subtract-

ing the cache misses from the total packets sent as reported by tcpreplay. All the results

reported here are made by running the Python code using PyPy to make the code run faster.

REANNZ. Figure 3.8(a) shows results for an SDN-enabled IXP that supported the RE-

ANNZ research and education network [10]. This real-world policy has 460 OpenFlow 1.0
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(c) CAIDA packet trace

Figure 3.8: Cache-hit rate vs. TCAM size for three algorithms and three policies (with
x-axis on log scale)

rules matching on multiple packet headers like inport, dst ip, eth type, src mac,

etc. Most dependency chains have depth 1 (some lightweight rules have complex depen-

dencies as shown in Figure 3.3(b)). We replayed a two-day traffic trace from the IXP, and

updated the cache every two minutes and measured the cache-hit rate over the two-day

period. Because of the many shallow dependencies, all three algorithms have the same
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performance. The mixed-set algorithm sees a cache hit rate of 84% with a hardware cache

of just 2% of the rules; with just 10% of the rules, the cache hit rate increases to as much

as 97%.

Stanford Backbone. Figure 3.8(b) shows results for a real-world Cisco router configura-

tion on a Stanford backbone router [12]. which we transformed into an OpenFlow policy.

The policy has 180K OpenFlow 1.0 rules that match on the destination IP address, with

dependency chains varying in depth from 1 to 8. We generated a packet trace matching the

routing policy by assigning traffic volume to each rule drawn from a Zipf [110] distribu-

tion. The resulting packet trace had around 30 million packets randomly shuffled over 15

minutes. The mixed-set algorithm does the best among all three and dependent-set does

the worst because there is a mixture of shallow and deep dependencies. While there are

differences in the cache-hit rate, all three algorithms achieve at least 88% hit rate at the to-

tal capacity of 2000 rules (which is just 1.1% of the total rule table). Note that CacheFlow

was able to react effectively to changes in the traffic distribution for such a large number of

rules (180K in total) and the software switch was also able to process all the cache misses at

line rate. Note that installing the same number of rules in the TCAM of a hardware switch,

assuming that TCAMs are 80 times more expensive than DRAMs, requires one to spend

14 times more money on the memory unit.

CAIDA. The third experiment was done using the publicly available CAIDA packet trace

taken from the Equinix datacenter in Chicago [99]. The packet trace had a total of 610

million packets sent over 30 minutes. Since CAIDA does not publish the policy used

to process these packets, we built a policy by extracting forwarding rules based on the

destination IP addresses of the packets in the trace. We obtained around 14000 /20 IP

destination based forwarding rules. This was then sequentially composed [96] with an

access-control policy that matches on fields other than just the destination IP address. The

ACL was a chain of 5 rules that match on the source IP, the destination TCP port and inport

of the packets which introduce a dependency chain of depth 5 for each destination IP prefix.
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Figure 3.9: Cache-Miss Latency Overhead

This composition resulted in a total of 70K OpenFlow rules that match on multiple header

fields. This experiment is meant to show the dependencies that arise from matching on

various fields of a packet and also the explosion of dependencies that may arise out of more

sophisticated policies. Figure 3.8(c) shows the cache-hit percentage under various TCAM

rule capacity restrictions. The mixed-set and cover-set algorithms have similar cache-hit

rates and do much better than the dependent-set algorithm consistently because they splice

every single dependency chain in the policy. For any given TCAM size, mixed-set seems

to have at least 9% lead on the cache-hit rate. While mixed-set and cover-set have a hit rate

of around 94% at the full capacity of 2000 rules (which is just 3% of the total rule table),

all three algorithms achieve at least an 85% cache-hit rate.

Latency overhead. Figure 3.9 shows the latency incurred on a cache-hit versus a cache-

miss. The latency was measured by attaching two extra hosts to the switch while the pre-

viously CAIDA packet trace was being run. Extra rules initialized with heavy volume

were added to the policy to process the ping packets in the TCAM. The average round-trip

latency when the ping packets were cache-hits in both directions was 0.71ms while the la-

tency for 1-way cache miss was 0.81ms. Thus, the cost of a 1-way cache miss was 100µs;

for comparison, a hardware switch adds 25µs [94] to the 1-way latency of the packets.
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Figure 3.10: Performance of Incremental Algorithms for DAG and TCAM update

If an application cannot accept the additional cost of going to the software switch, it can

request the CacheMaster to install its rules in the fast path. The CacheMaster can do this

by assigning “infinite” weight to these rules.
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3.6.2 Incremental Algorithms

In order to measure the effectiveness of the incremental update algorithms, we conducted

two experiments designed to evaluate (i) the algorithms to incrementally update the depen-

dency graph on insertion or deletion of rules and (ii) algorithms to incrementally update

the TCAM when traffic distribution shifts over time.

Figure 3.10(a) shows the time taken to insert/delete rules incrementally on top of the Stan-

ford routing policy of 180K rules. While an incremental insert takes about 15 milliseconds

on average to update the dependency graph, an incremental delete takes around 3.7 mil-

liseconds on average. As the linear graphs show, at least for about a few thousand inserts

and deletes, the amount of time taken is strictly proportional to the number of flowmods.

Also, an incremental delete is about 4 times faster on average owing to the very local set

of dependency changes that occur on deletion of a rule while an insert has to explore a lot

more branches starting with the root to find the correct position to insert the rule. We also

measured the time taken to statically build the graph on a rule insertion which took around

16 minutes for 180K rules. Thus, the incremental versions for updating the dependency

graph are ∼60000 times faster than the static version.

In order to measure the advantage of using the incremental TCAM update algorithms, we

measured the cache-hit rate for mixed-set algorithm using the two options for updating the

TCAM. Figure 3.10(b) shows that the cache-hit rate for the incremental algorithm is sub-

stantially higher as the TCAM size grows towards 2000 rules. For 2000 rules in the TCAM,

while the incremental update achieves 93% cache-hit rate, the nuclear update achieves only

53% cache-hit rate. As expected, the nuclear update mechanism sees diminishing returns

beyond 1000 rules because of the high rule installation time required to install more than

1000 rules as shown earlier in Figure 3.7.

Figure 3.10(c) shows how the cache-hit rate is affected by the naive version of doing a

nuclear update on the TCAM whenever CacheFlow decides to update the cache. The figure
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shows the number of cache misses seen over time when the CAIDA packet trace is replayed

at 330k packets per second. The incremental update algorithm stabilizes quite quickly and

achieves a cache-hit rate of 95% in about 3 minutes. However, the nuclear update version

that deletes all the old rules and inserts the new cache periodically suffers a lot of cache-

misses while it is updating the TCAM. While the cache-hits go up to 90% once the new

cache is fully installed, the hit rate goes down to near 0% every time the rules are deleted

and it takes around 2 minutes to get back to the high cache-hit rate. This instability in the

cache-miss rate makes the nuclear installation a bad option for updating the TCAM.

3.7 Related Work

While route caching is discussed widely in the context of IP destination prefix forwarding,

SDN introduces new constraints on rule caching. We divide the route caching literature

into three wide areas: (i) IP route Caching (ii) TCAM optimization, and (iii) SDN rule

caching.

IP Route Caching. Earlier work on traditional IP route caching [48,79,85,86,110] talks

about storing only a small number of IP prefixes in the switch line cards and storing the

rest in inexpensive slow memory. Most of them exploit the fact that IP traffic exhibits both

temporal and spatial locality to implement route caching. For example, Sarrar et.al [110]

show that packets hitting IP routes collected at an ISP follow a Zipf distribution resulting

in effective caching of small number of heavy hitter routes. However, most of them do

not deal with cross-rule dependencies and none of them deal with complex multidimen-

sional packet-classification. For example, Liu et.al [86] talk about efficient FIB caching

while handling the problem of cache-hiding for IP prefixes. However, their solution cannot

handle multiple header fields or wildcards and does not have the notion of packet coun-

ters associated with rules. This chapter, on the other hand, deals with the analogue of the

cache-hiding problem for more general and complex packet-classification patterns and also

preserves packet counters associated with these rules.
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TCAM Rule Optimization. The TCAM Razor [84, 90, 91] line of work compresses

multi-dimensional packet-classification rules to minimal TCAM rules using decision trees

and multi-dimensional topological transformation. Dong et. al. [46] propose a caching

technique for ternary rules by constructing compressed rules for evolving flows. Their

solution requires special hardware and does not preserve counters. In general, these tech-

niques that use compression to reduce TCAM space also suffer from not being able to make

incremental changes quickly to their data-structures.

DAG for TCAM Rule Updates. The idea of using DAGs for representing TCAM

rule dependencies is discussed in the literature in the context of efficient TCAM rule up-

dates [115, 120]. In particular, their aim was to optimize the time taken to install a TCAM

rule by minimizing the number of existing entries that need to be reshuffled to make way

for a new rule. They do so by building a DAG that captures how different rules are placed

in different TCAM banks for reducing the update churn. However, the resulting DAG is

not suitable for caching purposes as it is difficult to answer the question we ask: if a rule

is to be cached, which other rules should go along with it? Our DAG data structure on the

other hand is constructed in such a way that given any rule, the corresponding cover set to

be cached can be inferred easily. This also leads to novel incremental algorithms that keep

track of additional metadata for each edge in the DAG, which is absent in existing work.

SDN Rule Caching. There is some recent work on dealing with limited switch rule space

in the SDN community. DIFANE [123] advocates caching of ternary rules, but uses more

TCAM to handle cache misses—leading to a TCAM-hungry solution. Other work [70, 71,

97] shows how to distribute rules over multiple switches along a path, but cannot handle

rule sets larger than the aggregate table size. Devoflow [43] introduces the idea of rule

“cloning” to reduce the volume of traffic processed by the TCAM, by having each match in

the TCAM trigger the creation of an exact-match rules (in SRAM) the handle the remaining

packets of that microflow. However, Devoflow does not address the limitations on the

total size of the TCAM. Lu et.al. [87] use the switch CPU as a traffic co-processing unit
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where the ASIC is used as a cache but they only handle microflow rules and hence do not

handle complex dependencies. The Open vSwitch [104] caches “megaflows” (derived from

wildcard rules) to avoid the slow lookup time in the user space classifier. However, their

technique does not assume high-throughput wildcard lookup in the fast path and hence

cannot be used directly for optimal caching in TCAMs.

3.8 Conclusion

In this chapter, we define a hardware-software hybrid switch design called CacheFlow that

relies on rule caching to provide large rule tables at low cost. Unlike traditional caching

solutions, we neither cache individual rules (to respect rule dependencies) nor compress

rules (to preserve the per-rule traffic counts). Instead we “splice” long dependency chains

to cache smaller groups of rules while preserving the semantics of the network policy.

Our design satisfies four core criteria: (1) elasticity (combining the best of hardware and

software switches), (2) transparency (faithfully supporting native OpenFlow semantics, in-

cluding traffic counters), (3) fine-grained rule caching (placing popular rules in the TCAM,

despite dependencies on less-popular rules), and (4) adaptability (to enable incremental

changes to the rule caching as the policy changes).
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Chapter 4

Ravana: Controller Fault-Tolerance in

Software-Defined Networking

Software-defined networking (SDN) offers greater flexibility than traditional distributed

architectures, at the risk of the controller being a single point-of-failure. Unfortunately,

existing fault-tolerance techniques, such as replicated state machine, are insufficient to en-

sure correct network behavior under controller failures. The challenge is that, in addition

to the application state of the controllers, the switches maintain hard state that must be han-

dled consistently. Thus, it is necessary to incorporate switch state into the system model to

correctly offer a “logically centralized” controller.

In this chapter, we introduce Ravana, a fault-tolerant SDN controller platform that pro-

cesses the control messages transactionally and exactly once (at both the controllers and

the switches). Ravana maintains these guarantees in the face of both controller and switch

crashes. The key insight in Ravana is that replicated state machines can be extended

with lightweight switch-side mechanisms to guarantee correctness, without involving the

switches in an elaborate consensus protocol. Our prototype implementation of Ravana en-

ables unmodified controller applications to execute in a fault-tolerant fashion. Experiments
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show that Ravana achieves high throughput with reasonable overhead, compared to a single

controller, with a failover time under 100ms.

4.1 Introduction

In Software-Defined Networking (SDN), a logically centralized controller orchestrates a

distributed set of switches to provide higher-level networking services to end-host applica-

tions. The controller can reconfigure the switches (though commands) to adapt to traffic

demands and equipment failures (observed through events). For example, an SDN con-

troller receives events concerning topology changes, traffic statistics, and packets requir-

ing special attention, and it responds with commands that install new forwarding rules on

the switches. Global visibility of network events and direct control over the switch logic

enables easy implementation of policies like globally optimal traffic engineering, load bal-

ancing, and security applications on commodity switches.

Despite the conceptual simplicity of centralized control, a single controller easily be-

comes a single point of failure, leading to service disruptions or incorrect packet process-

ing [39,111]. In this chapter, we study SDN fault-tolerance under crash (fail-stop) failures.

Ideally, a fault-tolerant SDN should behave the same way as a fault-free SDN from the

viewpoint of controller applications and end-hosts. This ensures that controller failures do

not adversely affect the network administrator’s goals or the end users. Further, the right

abstractions and protocols should free controller applications from the burden of handling

controller crashes.

It may be tempting to simply apply established techniques from the distributed systems

literature. For example, multiple controllers could utilize a distributed storage system to

replicate durable state (e.g., either via protocols like two-phase commit or simple prima-

ry/backup methods with journaling and rollback), as done by Onix [82] and ONOS [32].

Or, they could model each controller as a replicated state machine (RSM) and instead con-
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sistently replicate the set of inputs to each controller. Provided each replicated controller

executes these inputs deterministically and in an identical order, their internal state would

remain consistent.

But maintaining consistent controller state is only part of the solution. To provide a

logically centralized controller, one must also ensure that the switch state is handled con-

sistently during controller failures. And the semantics of switch state, as well as the in-

teractions between controllers and switches, is complicated. Broadly speaking, existing

systems do not reason about switch state; they have not rigorously studied the semantics of

processing switch events and executing switch commands under failures.

Yet one cannot simply extend traditional replication techniques to include the network

switches. For example, running a consensus protocol involving the switches for every

event would be prohibitively expensive, given the demand for high-speed packet processing

in switches. On the other hand, using distributed storage to replicate controller state alone

(for performance reasons) does not capture the switch state precisely. Therefore, after a

controller crash, the new master may not know where to resume reconfiguring switch state.

Simply reading the switch forwarding state would not provide enough information about

all the commands sent by the old master (e.g., PacketOuts, StatRequests).

In addition, while the system could roll back the controller state, the switches cannot

easily “roll back” to a safe checkpoint. After all, what does it mean to rollback a packet

that was already sent? The alternative is for the new master to simply repeat commands, but

these commands are not necessarily idempotent (per §4.2). Since an event from one switch

can trigger commands to other switches, simultaneous failure of the master controller and

a switch can cause inconsistency in the rest of the network. We believe that these issues

can lead to erratic behavior in existing SDN platforms.

Ravana. In this chapter, we present Ravana, an SDN controller platform that offers the

abstraction of a fault-free centralized controller to control applications. Instead of just

keeping the controller state consistent, we handle the entire event-processing cycle (includ-
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ing event delivery from switches, event processing on controllers, and command execution

on switches) as a transaction—either all or none of the components of this transaction are

executed. Ravana ensures that transactions are totally ordered across replicas and executed

exactly once across the entire system. This enables Ravana to correctly handle switch state,

without resorting to rollbacks or repeated execution of commands.

Ravana adopts replicated state machines for control state replication and adds mecha-

nisms for ensuring the consistency of switch state. Ravana uses a two-stage replication

protocol across the controllers. The master replica decides the total order in which input

events are received in the first stage and then indicates which events were processed in the

second stage. On failover, the new master resumes transactions for “unprocessed” events

from a shared log. The two stages isolate the effects of a switch failure on the execu-

tion of a transaction on other switches—a setting unique to SDN. Instead of involving all

switches in a consensus protocol, Ravana extends the OpenFlow interface with techniques

like explicit acknowledgment, retransmission, and filtering from traditional RPC protocols

to ensure that any event transaction is executed exactly once on the switches.

While the various techniques we adopt are well known in distributed systems literature,

ours is the first system that applies these techniques comprehensively in the SDN setting

to design a correct, faul-tolerant controller. We also describe the safety and liveness guar-

antees provided by the Ravana protocol and argue that it ensures observational indistin-

guishability (per §4.4) between an ideal central controller and a replicated controller plat-

form. Our prototype implementation allows unmodified control applications, written for a

single controller, to run in a replicated and fault-tolerant manner. Our prototype achieves

these properties with low overhead on controller throughput, latency, and failover time.

Contributions. Our fault-tolerant controller system makes the following technical contri-

butions:
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Figure 4.1: SDN system model

• We propose a two-phase replication protocol that extends replicated state machines

to handle consistency of external switch state under controller failures.

• We propose extensions to the OpenFlow interface that are necessary to handle con-

troller failures like RPC-level ACKs, retransmission of un-ACKed events and filter-

ing of duplicate commands.

• We precisely define correctness properties of a logically centralized controller and

argue that the Ravana protocol provides these guarantees.

• We present a prototype of a transparent Ravana runtime and demonstrate our solution

has low overhead.

4.2 Controller Failures in SDN

Figure 4.1 shows the normal execution of an SDN in the absence of controller failures.

Recent versions of OpenFlow [89], the widely used control channel protocol between con-

trollers and switches, have some limited mechanisms for supporting multiple controllers.

In particular, a controller can register with a switch in the role of master or slave, which de-

fines the types of events and commands exchanged between the controller and the switch.

A switch sends all events to the master and executes all commands received from the mas-

ter, while it sends only a limited set of events (for example, switch features) to slaves

and does not accept commands from them.

Combining existing OpenFlow protocols with traditional techniques for replicating con-

trollers does not ensure correct network behavior, however. This section illustrates the

reasons with concrete experiments. The results are summarized in Table 4.2.
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Figure 4.2: Examples demonstrating different correctness properties maintained by Ravana
and corresponding experimental results. t1 and t2 indicate the time when the old master
controller crashes and when the new master is elected, respectively. In (f), the delivery of
commands is slowed down to measure the traffic leakage effect.

4.2.1 Inconsistent Event Ordering

OpenFlow 1.3 allows switches to connect to multiple controllers. If we directly use the pro-

tocol to have switches broadcast their events to every controller replica independently, each

replica builds application state based on the stream of events it receives. Aside from the

additional overhead this places on switches, controller replicas would have an inconsistent
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ordering of events from different switches. This can lead to incorrect packet-processing

decisions, as illustrated in the following example:

Experiment 1: In Figure 4.2a, consider a controller application that allocates incoming

flow requests to paths in order. There are two disjoint paths in the network; each has

a bandwidth of 2Mbps. Assume that two flows, with a demand of 2Mbps and 1Mbps

respectively, arrive at the controller replicas in different order (due to network latencies).

If the replicas assign paths to flows in the order they arrive, each replica will end up with

1Mbps free bandwidth but on different paths. Now, consider that the master crashes and the

slave becomes the new master. If a new flow with 1Mbps arrives, the new master assigns

the flow to the path which it thinks has 1Mbps free. But this congests an already fully

utilized path, as the new master’s view of the network diverged from its actual state (as

dictated by the old master).

Figure 4.2b compares the measured flow bandwidths for the switch-broadcast and Ravana

solutions. Ravana keeps consistent state in controller replicas, and the new master can

install the flows in an optimal manner. Drawing a lesson from this experiment, a fault-

tolerant control platform should offer the following design goal:

Total Event Ordering: Controller replicas should process events in the same order and

subsequently all controller application instances should reach the same internal state.

Note that while in this specific example, the newly elected master can try to query the

flow state from switches after failure; in general, simply reading switch state is not enough

to infer sophisticated application state. This also defeats the argument for transparency

because the programmer has to explicitly define how application state is related to switch

state under failures. Also, information about PacketOuts and events lost during failures

cannot be inferred by simply querying switch state.
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Property Description Mechanism

At least once events Switch events are not lost Buffering and retransmission of
switch events

At most once events No event is processed more than
once

Event IDs and filtering in the log

Total event order Replicas process events in same
order

Master serializes events to a
shared log

Replicated control state Replicas build same internal
state

Two-stage replication and deter-
ministic replay of event log

At least once commands Controller commands are not
lost

RPC acknowledgments from
switches

At most once commands Commands are not executed re-
peatedly

Command IDs and filtering at
switches

Table 4.1: Ravana design goals and mechanisms

4.2.2 Unreliable Event Delivery

Two existing approaches can ensure a consistent ordering of events in replicated controllers:

(i) The master can store shared application state in an external consistent storage system

(e.g., as in Onix and ONOS), or (ii) the controller’s internal state can be kept consistent

via replicated state machine (RSM) protocols. However, the former approach may fail to

persist the controller state when the master fails during the event processing, and the latter

approach may fail to log an event when the master fails right after receiving it. These

scenarios may cause serious problems.

Experiment 2: Consider a controller program that runs a shortest-path routing algorithm,

as shown in Figure 4.2c. Assume the master installed a flow on path p1, and after a while

the link between s1 and s2 fails. The incident switches send a linkdown event to the

master. Suppose the master crashes before replicating this event. If the controller replicas

are using a traditional RSM protocol with unmodified OpenFlow switches, the event is lost

and will never be seen by the slave. Upon becoming the new master, the slave will have

an inconsistent view of the network, and cannot promptly update the switches to reroute

packets around the failed link.
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Figure 4.2d compares the measured bandwidth for the flow h1→ h2 with an unmodified

OpenFlow switch and with Ravana. With an unmodified switch, the controller loses the

link failure event which leads to throughput loss, and it is sustained even after the new

master is elected. In contrast, with Ravana, events are reliably delivered to all replicas even

during failures, ensuring that the new master switches to the alternate path, as shown by

the blue curve. From this experiment, we see that it is important to ensure reliable event

delivery. Similarly, event repetition will also lead to inconsistent network views, which can

further result in erroneous network behaviors. This leads to our second design goal:

Exactly-Once Event Processing: All the events are processed, and are neither lost nor

processed repeatedly.

4.2.3 Repetition of Commands

With traditional RSM or consistent storage approaches, a newly elected master may send

repeated commands to the switches because the old master sent some commands but

crashed before telling the slaves about its progress. As a result, these approaches cannot

guarantee that commands are executed exactly once, leading to serious problems when

commands are not idempotent.

Experiment 3: Consider a controller application that installs rules with overlapping

patterns. The rule that a packet matches depends on the presence or absence of other

higher-priority rules. As shown in Figure 4.2e, the switch starts with a forwarding table

with two rules that both match on the source address and forward packets to host h2.

Suppose host h1 has address 10.0.0.21, which matches the first rule. Now assume that the

master sends a set of three commands to the switch to redirect traffic from the /16 subnet

to h3. After these commands, the rule table becomes the following:

3 10.0.0.21/32 fwd(2)

2 10.0.0.0/16 fwd(3)
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1 10.0.0.0/8 fwd(2)

If the master crashes before replicating the information about commands it already issued,

the new master would repeat these commands. When that happens, the switch first removes

the first rule in the new table. Before the switch executes the second command, traffic sent

by h1 can match the rule for 10.0.0.0/16 and be forwarded erroneously to h3. If there

is no controller failure and the set of commands are executed exactly once, h3 would never

have received traffic from h1; thus, in the failure case, the correctness property is violated.

The duration of this erratic behavior may be large owing to the slow rule-installation times

on switches. Leaking traffic to an unexpected receiver h3 could lead to security or privacy

problems.

Figure 4.2f shows the traffic received by h2 and h3 when sending traffic from h1 at a

constant rate. When commands are repeated by the new master, h3 starts receiving packets

from h1. No traffic leakage occurs under Ravana. While missing commands will obviously

cause trouble in the network, from this experiment we see that command repetition can

also lead to unexpected behaviors. As a result, a correct protocol must meet the third

design goal:

Exactly-Once Execution of Commands: Any given series of commands are executed

once and only once on the switches.

4.2.4 Handling Switch Failures

Unlike traditional client-server models where the server processes a client request and sends

a reply to the same client, the event-processing cycle is more complex in the SDN context:

when a switch sends an event, the controller may respond by issuing multiple commands

to other switches. As a result, we need additional mechanisms when adapting replication

protocols to build fault-tolerant control platforms.
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Suppose that an event generated at a switch is received at the master controller. Existing

fault-tolerant controller platforms take one of two possible approaches for replication. First,

the master replicates the event to other replicas immediately, leaving the slave replicas

unsure whether the event is completely processed by the master. In fact, when an old

master fails, the new master may not know whether the commands triggered by past events

have been executed on the switches. The second alternative is that the master might choose

to replicate an event only after it is completely processed (i.e., all commands for the event

are executed on the switches). However, if the original switch and later the master fail

while the master is processing the event, some of the commands triggered by the event may

have been executed on several switches, but the new master would never see the original

event (because of the failed switch) and would not know about the affected switches. The

situation could be worse if the old master left these switches in some transitional state

before failing. Therefore, it is necessary to take care of these cases if one were to ensure a

consistent switch state under failures.

In conclusion, the examples show that a correct protocol should meet all the aforemen-

tioned design goals. We further summarize the desired properties and the corresponding

mechanisms to achieve them in Table 4.1.

4.3 Ravana Protocol

Ravana Approach: Ravana makes two main contributions. First, Ravana has a novel two-

phase replication protocol that extends replicated state machines to deal with switch state

consistency. Each phase involves adding event-processing information to a replicated in-

memory log (built using traditional RSM mechanisms like viewstamped replication [101]).

The first stage ensures that every received event is reliably replicated, and the second stage

conveys whether the event-processing transaction has completed. When the master fails,

another replica can use this information to continue processing events where the old master

left off. Since events from a switch can trigger commands to multiple other switches,
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separating the two stages (event reception and event completion) ensures that the failure of

a switch along with the master does not corrupt the state on other switches.

Second, Ravana extends the existing control channel interface between controllers and

switches (the OpenFlow protocol) with mechanisms that mitigate missing or repeated con-

trol messages during controller failures. In particular, (i) to ensure that messages are deliv-

ered at least once under failures, Ravana uses RPC-level acknowledgments and retransmis-

sion mechanisms and (ii) to guarantee at most once messages, Ravana associates messages

with unique IDs, and performs receive-side filtering.

Thus, our protocol adopts well known distributed systems techniques as shown in Ta-

ble 4.1 but combines them in a unique way to maintain consistency of both the controller

and switch state under failures. To our knowledge, this enables Ravana to provide the first

fault-tolerant SDN controller platform with concrete correctness properties. Also, our pro-

tocol employs novel optimizations to execute commands belonging to multiple events in

parallel to decrease overhead, without compromising correctness. In addition, Ravana pro-

vides a transparent programming platform—unmodified control applications written for a

single controller can be made automatically fault-tolerant without the programmer having

to worry about replica failures, as discussed in Section 4.6.

Ravana has two main components—(i) a controller runtime for each controller replica and

(ii) a switch runtime for each switch. These components together make sure that the SDN

is fault-tolerant if at most f of the 2 f + 1 controller replicas crash. This is a direct result

of the fact that each phase of the controller replication protocol in turn uses Viewstamped

Replication [101]. Note that we only handle crash-stop failures of controller replicas and

do not focus on recovery of failed nodes. Similarly we assume that when a failed switch

recovers, it starts afresh on a clean slate and is analogous to a new switch joining the

network. In this section, we describe the steps for processing events in our protocol, and

further discuss how the two runtime components function together to achieve our design

goals.
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4.3.1 Protocol Overview

To illustrate the operation of a protocol, we present an example of handling a specific

event—a packet-in event. A packet arriving at a switch is processed in several steps, as

shown in Figure 4.3. First, we discuss the handling of packets during normal execution

without controller failures:

1. A switch receives a packet and after processing the packet, it may direct the packet

to other switches.

2. If processing the packet triggers an event, the switch runtime buffers the event tem-

porarily, and sends a copy to the master controller runtime.

3. The master runtime stores the event in a replicated in-memory log that imposes a

total order on the logged events. The slave runtimes do not yet release the event to

their application instances for processing.

4. After replicating the event into the log, the master acknowledges the switch. This

implies that the buffered event has been reliably received by the controllers, so the

switch can safely delete it.

5. The master feeds the replicated events in the log order to the controller application,

where they get processed. The application updates the necessary internal state and

responds with zero or more commands.

6. The master runtime sends these commands out to the corresponding switches, and

waits to receive acknowledgments for the commands sent, before informing the repli-

cas that the event is processed.

7. The switch runtimes buffer the received commands, and send acknowledgment mes-

sages back to the master controller. The switches apply the commands subsequently.

8. After all the commands are acknowledged, the master puts an event-processed mes-

sage into the log.
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Figure 4.3: Steps for processing a packet in Ravana.

A slave runtime does not feed an event to its application instance until after the event-

processed message is logged. The slave runtime delivers events to the application in order,

waiting until each event in the log has a corresponding event-processed message before

proceeding. The slave runtimes also filter the outgoing commands from their application

instances, rather than actually sending these commands to switches; that is, the slaves

merely simulate the processing of events to update the internal application state.

When the master controller fails, a standby slave controller will replace it following these

steps:

1. A leader election component running on all the slaves elects one of them to be the

new master.

2. The new master finishes processing any logged events that have their event-processed

messages logged. These events are processed in slave mode to bring its application

state up-to-date without sending any commands.

3. The new master sends role request messages to register with the switches in the role

of the new master. All switches send a role response message as acknowledgment

and then begin sending previously buffered events to the new master.

98



Switch Master  Slave 
2 send_event(e1)

4 ack_event(e1)

7 ack_cmd(c1)

3 write_log(e1r)

send_event(e2)

e1r 

Events Cmds 

5 app_proc (e1)

c1 

c1 

e1 

e2 c1 

6 send_cmd(c1)

8 write_log(e1p)

e1r e1p 

i 

ii 

iii 

iv 

v 

vi 

vii 

Figure 4.4: Sequence diagram of event processing in controllers: steps 2–8 are in accor-
dance with in Figure 4.3.

4. The new master starts to receive events from the switches, and processes events (in-

cluding events logged by the old master without a corresponding event processed

message), in master mode.

4.3.2 Protocol Insights

The Ravana protocol can be viewed as a combination of mechanisms that achieve the de-

sign goals set in the previous section. By exploring the full range of controller crash sce-

narios (cases (i) to (vii) in Figure 4.4), we describe the key insights behind the protocol

mechanisms.

Exactly-Once Event Processing: A combination of temporary event buffering on the

switches and explicit acknowledgment from the controller ensures at-least once delivery of

events. When sending an event e1 to the master, the switch runtime temporarily stores the

event in a local event buffer (Note that this is different from the notion of buffering PacketIn

payloads in OpenFlow switches). If the master crashes before replicating this event in the

shared log (case (i) in Figure 4.4), the failover mechanism ensures that the switch runtime

resends the buffered event to the new master. Thus the events are delivered at least once

to all of the replicas. To suppress repeated events, the replicas keep track of the IDs of
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the logged events. If the master crashes after the event is replicated in the log but before

sending an acknowledgment (case (ii)), the switch retransmits the event to the new master

controller. The new controller’s runtime recognizes the duplicate eventID and filters the

event. Together, these two mechanisms ensure exactly once processing of events at all of

the replicas.

Total Event Ordering: A shared log across the controller replicas (implemented using

viewstamped replication) ensures that the events received at the master are replicated in a

consistent (linearized) order. Even if the old master fails (cases (iii) and (iv)), the new mas-

ter preserves that order and only adds new events to the log. In addition, the controller run-

time ensures exact replication of control program state by propagating information about

non-deterministic primitives like timers as special events in the replicated log.

Exactly-Once Command Execution: The switches explicitly acknowledge the com-

mands to ensure at-least once delivery. This way the controller runtime does not mistak-

enly log the event-processed message (thinking the command was received by the switch),

when it is still sitting in the controller runtime’s network stack (case (iv)). Similarly, if

the command is indeed received by the switch but the master crashes before writing the

event-processed message into the log (cases (v) and (vi)), the new master processes the

event e1 and sends the command c1 again to the switch. At this time, the switch runtime

filters repeated commands by looking up the local command buffer. This ensures at-most

once execution of commands. Together these mechanisms ensure exactly-once execution

of commands.

Consistency Under Joint Switch and Controller Failure: The Ravana protocol relies

on switches retransmitting events and acknowledging commands. Therefore, the protocol

must be aware of switch failure to ensure that faulty switches do not break the Ravana pro-

tocol. If there is no controller failure, the master controller treats a switch failure the same

way a single controller system would treat such a failure – it relays the network port status

updates to the controller application which will route the traffic around the failed switch.
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Note that when a switch fails, the controller does not fail the entire transaction. Since this

is a plausible scenario in the fault-free case, the runtime completes the transaction by exe-

cuting commands on the set of available switches. Specifically, the controller runtime has

timeout mechanisms that ensure a transaction is not stuck because of commands not being

acknowledged by a failed switch. However, the Ravana protocol needs to carefully handle

the case where a switch failure occurs along with a controller failure because it relies on

the switch to retransmit lost events under controller failures.

Suppose the master and a switch fail sometime after the master receives the event from

that switch but before the transaction completes. Ravana must ensure that the new master

sees the event, so the new master can update its internal application state and issue any

remaining commands to the rest of the switches. However, in this case, since the failed

switch is no longer available to retransmit the event, unless the old master reliably logged

the event before issuing any commands, the new master could not take over correctly. This

is the reason why the Ravana protocol involves two stages of replication. The first stage

captures the fact that event e is received by the master. The second stage captures the

fact that the master has completely processed e, which is important to know during fail-

ures to ensure the exactly-once semantics. Thus the event-transaction dependencies across

switches, a property unique to SDN, leads to this two-stage replication protocol.

4.4 Correctness

While the protocol described in the previous section intuitively gives us necessary guaran-

tees for processing of events and execution of commands during controller failures, it is

not clear if they are sufficient to ensure the abstraction of a logically centralized controller.

This is also the question that recent work in this space has left unanswered. This led to

a lot of subtle bugs in their approaches that have erroneous effect on the network state as

illustrated in section 2.
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Figure 4.5: In SDN, control applications and end hosts both observe system evolution,
while traditional replication techniques treat the switches (S) as observers.

Thus, we strongly believe it is important to concretely define what it means to have a

logically centralized controller and then analyze whether the proposed solution does indeed

guarantee such an abstraction. Ideally, a fault-tolerant SDN should behave the same way

as a fault-free SDN from the viewpoint of all the users of the system.

Observational indistinguishability in SDN: We believe the correctness of a fault-

tolerant SDN relies on the users—the end-host and controller applications—seeing a sys-

tem that always behaves like there is a single, reliable controller, as shown in Figure 4.5.

This is what it means to be a logically centralized controller. Of course, controller fail-

ures could affect performance, in the form of additional delays, packet drops, or the timing

and ordering of future events. But, these kinds of variations can occur even in a fault-free

setting. Instead, our goal is that the fault-tolerant system evolves in a way that could have

happened in a fault-free execution, using observational indistinguishability [93], a common

paradigm for comparing behavior of computer programs:

Definition of observational indistinguishability: If the trace of observations made by users

in the fault-tolerant system is a possible trace in the fault-free system, then the fault-tolerant

system is observationally indistinguishable from a fault-free system.
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An observation describes the interaction between an application and an SDN component.

Typically, SDN exposes two kinds of observations to its users: (i) end hosts observe re-

quests and responses (and use them to evolve their own application state) and (ii) control

applications observe events from switches (and use them to adapt the system to obey a

high-level service policy, such as load-balancing requests over multiple switches). For ex-

ample, as illustrated in section 2, under controller failures, while controllers fail to observe

network failure events, end-hosts observe a drop in packet throughput compared to what is

expected or they observe packets not intended for them.

Commands decide observational indistinguishability: The observations of both kinds

of users (Figure 4.5) are preserved in a fault-tolerant SDN if the series of commands exe-

cuted on the switches are executed just as they could have been executed in the fault-free

system. The reason is that the commands from a controller can (i) modify the switch

(packet processing) logic and (ii) query the switch state. Thus the commands executed

on a switch determine not only what responses an end host receives, but also what events

the control application sees. Hence, we can achieve observational indistinguishability by

ensuring “command trace indistinguishability”. This leads to the following correctness

criteria for a fault-tolerant protocol:

Safety: For any given series of switch events, the resulting series of commands exe-

cuted on the switches in the fault-tolerant system could have been executed in the fault-free

system.

Liveness: Every event sent by a switch is eventually processed by the controller ap-

plication, and every resulting command sent from the controller application is eventually

executed on its corresponding switch.

Transactional and exactly-once event cycle: To ensure the above safety and liveness

properties of observational indistinguishability, we need to guarantee that the controller

replicas output a series of commands “indistinguishable” from that of a fault-free controller

for any given set of input events. Hence, we must ensure that the same input is processed

103



by all the replicas and that no input is missing because of failures. Also, the replicas should

process all input events in the same order, and the commands issued should be neither

missing nor repeated in the event of replica failure.

In other words, Ravana provides transactional semantics to the entire “control loop” of (i)

event delivery, (ii) event ordering, (iii) event processing, and (iv) command execution. (If

the command execution results in more events, the subsequent event-processing cycles are

considered separate transactions.) In addition, we ensure that any given transaction happens

exactly once—it is not aborted or rolled back under controller failures. That is, once an

event is sent by a switch, the entire event-processing cycle is executed till completion,

and the transaction affects the network state exactly once. Therefore, our protocol that is

designed around the goals listed in Table 4.1 will ensure observational indistinguishability

between an ideal fault-free controller and a logically centralized but physically replicated

controller. While we provide an informal argument for correctness, modeling the Ravana

protocol using a formal specification tool and proving formally that the protocol is indeed

sufficient to guarantee the safety and liveness properties is out of scope for this chapter and

is considered part of potential future work.

4.5 Performance Optimizations

In this section, we discuss several approaches that can optimize the performance of the

protocol while retaining its strong correctness guarantees.

Parallel logging of events: Ravana protocol enforces a consistent ordering of all events

among the controller replicas. This is easy if the master were to replicate the events one

after the other sequentially but this approach is too slow when logging tens of thousands

of events. Hence, the Ravana runtime first imposes a total order on the switch events by

giving them monotonically increasing log IDs and then does parallel logging of events

where multiple threads write switch events to the log in parallel. After an event is reliably
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Figure 4.6: Optimizing performance by processing multiple transactions in parallel. The
controller processes events e1 and e2, and the command for e2 is acknowledged before
both the commands for e1 are acknowledged.

logged, the master runtime feeds the event to its application instance, but it still follows

the total order. The slaves infer the total order from the log IDs assigned to the replicated

events by the master.

Processing multiple transactions in parallel: In Ravana, one way to maintain consis-

tency between controller and switch state is to send the commands for each event trans-

action one after the other (and waiting for switches’ acknowledgments) before replicating

the event processed message to the replicas. Since this approach can be too slow, we can

optimize the performance by pipelining multiple commands in parallel without waiting for

the ACKs. The runtime also interleaves commands generated from multiple independent

event transactions. An internal data structure maps the outstanding commands to events

and traces the progress of processing events. Figure 4.6 shows an example of sending

commands for two events in parallel. In this example, the controller runtime sends the

commands resulting from processing e2 while the commands from processing e1 are still

outstanding.

Sending commands in parallel does not break the ordering of event processing. For ex-

ample, the commands from the controller to any given individual switch (the commands

for e1) are ordered by the reliable control-plane channel (e.g., via TCP). Thus at a given

switch, the sequence of commands received from the controller must be consistent with the

order of events processed by the controller. For multiple transactions in parallel, the run-

time buffers the completed events till the events earlier in the total order are also completed.

For example, even though the commands for e2 are acknowledged first, the runtime waits
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till all the commands for e1 are acknowledged and then replicates the event processed mes-

sages for both e1 and e2 in that order. Despite this optimization, since the event processed

messages are written in log order, we make sure that the slaves also process them in the

same order.

Clearing switch buffers: The switch runtime maintains both an event buffer (EBuf)

and a command buffer (CBuf). We add buffer clear messages that help garbage collect

these buffers. As soon as the event is durably replicated in the distributed log, the master

controller sends an EBuf CLEAR message to confirm that the event is persistent. However,

a CBuf CLEAR is sent only when its corresponding event is done processing. An event

processed message is logged only when all processing is done in the current protocol, so a

slave controller gets to know that all the commands associated with the event are received

by switches, and it should never send the commands out again when it becomes a master.

As a result, when an event is logged, the controller sends an event acknowledgment, and at

the same time piggybacks both EBuf CLEAR and CBuf CLEAR.

4.6 Implementation of Ravana

Implementing Ravana in SDN involves changing three important components: (i) instead

of controller applications grappling with controller failures, a controller runtime handles

them transparently, (ii) a switch runtime replays events under controller failures and filters

repeated commands, and (iii) a modified control channel supports additional message types

for event-processing transactions.

4.6.1 Controller Runtime: Failover, Replication

Each replica has a runtime component which handles the controller failure logic transparent

to the application. The same application program runs on all of the replicas. Our prototype

controller runtime uses the Ryu [19] message-parsing library to transform the raw messages

on the wire into corresponding OpenFlow messages.
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Leader election: The controllers elect one of them as master using a leader election

component written using ZooKeeper [61], a synchronization service that exposes an atomic

broadcast protocol. Much like in Google’s use of Chubby [36], Ravana leader election

involves the replicas contending for a ZooKeeper lock; whoever successfully gains the

lock becomes the master. Master failure is detected using the ZooKeeper failure-detection

service which relies on counting missed heartbeat messages. A new master is elected by

having the current slaves retry gaining the master lock.

Event logging: The master saves each event in ZooKeeper’s distributed in-memory log.

Slaves monitor the log by registering a trigger for it. When a new event is propagated to a

slave’s log, the trigger is activated so that the slave can read the newly arrived event locally.

Event batching: Even though its in-memory design makes the distributed log efficient,

latency during event replication can still degrade throughput under high load. In particular,

the master’s write call returns only after it is propagated to more than half of all replicas.

To reduce this overhead, we batch multiple messages into an ordered group and write the

grouped event as a whole to the log. On the other side, a slave unpacks the grouped events

and processes them individually and in order.

4.6.2 Switch Runtime: Event/Command Buffers

We implement our switch runtime by modifying the Open vSwitch (version 1.10) [13],

which is the most widely used software OpenFlow switch. We implement the event and

command buffers as additional data structures in the OVS connection manager. If a master

fails, the connection manager sends events buffered in EBuf to the new master as soon as

it registers its new role. The command buffer CBuf is used by the switch processing loop

to check whether a command received (uniquely identified by its transaction ID) has al-

ready been executed. These transaction IDs are remembered till they can be safely garbage

collected by the corresponding CBuf CLEAR message from the controller.

107



4.6.3 Control Channel Interface: Transactions

Changes to OpenFlow: We modified the OpenFlow 1.3 controller-switch interface to

enable the two parties to exchange additional Ravana-specific metadata: EVENT ACK,

CMD ACK, EBuf CLEAR, and CBuf CLEAR. The ACK messages acknowledge the re-

ceipt of events and commands, while CLEAR help reduce the memory footprint of the

two switch buffers by periodically cleaning them. As in OpenFlow, all messages carry a

transaction ID to specify the event or command to which it should be applied.

Unique transaction IDs: The controller runtime associates every command with a

unique transaction ID (XID). The XIDs are monotonically increasing and identical across

all replicas, so that duplicate commands can be identified. This arises from the controllers’

deterministic ordered operations and does not require an additional agreement protocol.

In addition, the switch also needs to ensure that unique XIDs are assigned to events sent

to the controller. We modified Open vSwitch to increment the XID field whenever a new

event is sent to the controller. Thus, we use 32-bit unique XIDs (with wrap around) for

both events and commands.

4.6.4 Transparent Programming Abstraction

Ravana provides a fault-tolerant controller runtime that is completely transparent to control

applications. The Ravana runtime intercepts all switch events destined to the Ryu applica-

tion, enforces a total order on them, stores them in a distributed in-memory log, and only

then delivers them to the application. The application updates the controller internal state,

and generates one or more commands for each event. Ravana also intercepts the outgo-

ing commands — it keeps track of the set of commands generated for each event in order

to trace the progress of processing each event. After that, the commands are delivered to

the corresponding switches. Since Ravana does all this from inside Ryu, existing single-
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threaded Ryu applications can directly run on Ravana without modifying a single line of

code.

To demonstrate the transparency of programming abstraction, we have tested a variety of

Ryu applications [20]: a MAC learning switch, a simple traffic monitor, a MAC table man-

agement app, a link aggregation (LAG) app, and a spanning tree app. These applications

are written using the Ryu API, and they run on our fault-tolerant control platform without

any changes.

Currently we expect programmers to write controller applications that are single-threaded

and deterministic, similar to most replicated state machine systems available today. An ap-

plication can introduce nondeterminism by using timers and random numbers. Our proto-

type supports timers and random numbers through a standard library interface. The master

runtime treats function calls through this interface as special events and persists the event

metadata (timer begin/end, random seeds, etc.) into the log. The slave runtimes extract this

information from the log so their application instances execute the same way as the mas-

ter’s. State-machine replication with multi-threaded programming has been studied [114],

and supporting it in Ravana is future work.

4.7 Performance Evaluation

To understand Ravana’s performance, we evaluate our prototype to answer the following

questions:

• What is the overhead of Ravana’s fault-tolerant runtime on event-processing through-

put?

• What is the effect of the various optimizations on Ravana’s event-processing through-

put and latency?

• Can Ravana respond quickly to controller failure?
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• What are the throughput and latency trade-offs for various correctness guarantees?

We run experiments on three machines connected by 1Gbps links. Each machine has

12GB memory and an Intel Xeon 2.4GHz CPU. We use ZooKeeper 3.4.6 for event log-

ging and leader election. We use the Ryu 3.8 controller platform as our non-fault-tolerant

baseline.

4.7.1 Measuring Throughput and Latency

We first compare the throughput (in terms of flow responses per second) achieved by the

vanilla Ryu controller and the Ravana prototype we implemented on top of Ryu, in order

to characterize Ravana’s overhead. Measurements are done using the cbench [17] per-

formance test suite: the test program spawns a number of processes that act as OpenFlow

switches. In cbench’s throughput mode, the processes send PacketIn events to the con-

troller as fast as possible. Upon receiving a PacketIn event from a switch, the controller

sends a command with a forwarding decision for this packet. The controller application

is designed to be simple enough to give responses without much computation, so that the

experiment can effectively benchmark the Ravana protocol stack.

Figure 4.7a shows the event-processing throughput of the vanilla Ryu controller and our

prototype in a fault-free execution. We used both the standard Python interpreter and PyPy

(version 2.2.1), a fast Just-in-Time interpreter for Python. We enable batching with a buffer

of 1000 events and 0.1s buffer time limit. Using standard Python, the Ryu controller

achieves a throughput of 11.0K responses per second (rps), while the Ravana controller

achieves 9.2K, with an overhead of 16.4%. With PyPy, the event-processing throughput

of Ryu and Ravana are 67.6K rps and 46.4K rps, respectively, with an overhead of 31.4%.

This overhead includes the time of serializing and propagating all the events among the

three controller replicas in a failure-free execution. We consider this as a reasonable over-

head given the correctness guarantee and replication mechanisms Ravana added.
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Figure 4.7: Ravana Event-Processing Throughput and Latency

To evaluate the runtime’s scalability with increasing number of switch connections, we

ran cbench in throughput mode with a large number of simulated switch connections. A

series of throughput measurements are shown in Figure 4.7b. Since the simulated switches

send events at the highest possible rate, as the number of switches become reasonably

large, the controller processing rate saturates but does not go down. The event-processing
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throughput remains high even when we connect over one thousand simulated switches.

The result shows that the controller runtime can manage a large number of parallel switch

connections efficiently.

Figure 4.7c shows the latency CDF of our system when tested with cbench. In this

experiment, we run cbench and the master controller on the same machine, in order to

benchmark the Ravana event-processing time without introducing extra network latency.

The latency distribution is drawn using the average latency calculated by cbench over

100 runs. The figure shows that most of the events can be processed within 12ms.

4.7.2 Sensitivity Analysis for Event Batching

The Ravana controller runtime batches events to reduce the overhead for writing several

events in the ZooKeeper event log. Network operators need to tune the batching size pa-

rameter to achieve the best performance. A batch of events are flushed to the replicated log

either when the batch reaches the size limit or when no event arrives within a certain time

limit.

Figure 4.8a shows the effect of batching sizes on event processing throughput measured

with cbench. As batching size increases, throughput increases due to reduction in the

number of RPC calls needed to replicate events. However, when batching size increases

beyond a certain number, the throughput saturates because the performance is bounded

by other system components (marshalling and unmarshalling OpenFlow messages, event

processing functions, etc.)

While increasing batching size can improve throughput under high demand, it also in-

creases event response latency. Figure 4.8b shows the effect of varying batch sizes on the

latency overhead. The average event processing latency increases almost linearly with the

batching size, due to the time spent in filling the batch before it is written to the log.

The experiment results shown in Figure 4.8a and 4.8b allow network operators to better

understand how to set an appropriate batching size parameter based on different require-

112



0K

10K

20K

30K

40K

50K

 10  100  1000
T

h
ro

u
g

h
p

u
t 

(R
/s

)
Batch Size

(a) Event-Processing Throughput with Batching

0

4

8

12

16

20

 100  500  1000  1500  2000

L
a

te
n

c
y
 (

m
s
)

Batch Size

(b) Event-Processing Latency with Batching

 0

 0.2

 0.4

 0.6

 0.8

 1

 40  60  80  100

C
D

F

Failover Time (ms)

(c) CDF for Ravana Failover Time

Figure 4.8: Variance of Ravana Throughput, Latency and Failover Time

ments. If the application needs to process a large number of events and can tolerant rel-

atively high latency, then a large batch size is helpful; if the events need to be instantly

processed and the number of events is not a big concern, then a small batching size will be

more appropriate.
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4.7.3 Measuring Failover Time

When the master controller crashes, it takes some time for the new controller to take over.

To evaluate the efficiency of Ravana controller failover mechanism, we conducted a series

of tests to measure the failover time distribution, as shown in Figure 4.8c. In this experi-

ment, a software switch connects two hosts which continuously exchange packets that are

processed by the controller in the middle. We bring down the master. The end hosts mea-

sure the time for which no traffic is received during the failover period. The result shows

that the average failover time is 75ms, with a standard deviation of 9ms. This includes

around 40ms to detect failure and elect a new leader (with the help of ZooKeeper), around

25ms to catch up with the old master (can be reduced further with optimistic processing

of the event log at the slave) and around 10ms to register the new role on the switch. The

short failover time ensures that the network events generated during this period will not be

delayed for a long time before getting processed by the new master.

4.7.4 Consistency Levels: Overhead

Our design goals ensure strict correctness in terms of observational indistinguishability for

general SDN policies. However, as show in Figure 4.9, some guarantees are costlier to

ensure (in terms of through/latency) than the others. In particular, we looked at each of the

three design goals that adds overhead to the system compared to the weakest guarantee.

The weakest consistency included in this study is the same as what existing fault-tolerant

controller systems provide — the master immediately processes events once they arrive,

and replicates them lazily in the background. Naturally this avoids the overhead of all the

three design goals we aim for and hence has only a small throughput overhead of 8.4%.

The second consistency level is enabled by guaranteeing exactly-once processing of

switch events received at the controller. This involves making sure that the master syn-
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Figure 4.9: Throughput and Latency Overheads with Varied Levels of Correctness Guar-
antees

chronously logs the events and explicitly sends event ACKs to corresponding switches.

This has an additional throughput overhead of 7.8%.

The third consistency level ensures total event ordering in addition to exactly-once events.

This makes sure that the order in which the events are written to the log is the same as

the order in which the master processes them, and hence involves mechanisms to strictly

synchronize the two. Ensuring this consistency incurs an additional overhead of 5.3%.

The fourth and strongest consistency level ensures exactly-once execution of controller

commands. It requires the switch runtime to explicitly ACK each command from the con-

troller and to filter repeated commands. This adds an additional overhead of 9.7% on the

controller throughput. Thus adding all these mechanisms ensures the strongest collection of

115



correctness guarantees possible under Ravana and the cumulative overhead is 31%. While

some of the overheads shown above can be reduced further with implementation specific

optimizations like cumulative and piggybacked message ACKs, we believe the overheads

related to replicating the log and maintaining total ordering are unavoidable to guarantee

protocol correctness.

Latency. Figure 4.9b shows the CDF for the average time it takes for the controller to

send a command in response to a switch event. Our study reveals that the main contributing

factor to the latency overhead is the synchronization mechanism that ties event logging to

event processing. This means that the master has to wait till a switch event is properly

replicated and only then processes the event. This is why all the consistency levels that do

not involve this guarantee have a latency of around 0.8ms on average but those that involve

the total event ordering guarantee have a latency of 11ms on average.

Relaxed Consistency. The Ravana protocol described in this chapter is oblivious to the

nature of control application state or the various types of control messages processed by

the application. This is what led to the design of a truly transparent runtime that works with

unmodified control applications. However, given the breakdown in terms of throughput and

latency overheads for various correctness guarantees, it is natural to ask if there are control

applications that can benefit from relaxed consistency requirements.

For example, a Valiant load balancing application that processes flow requests (PacketIn

events) from switches and assigns paths to flows randomly is essentially a stateless appli-

cation. So the constraint on total event ordering can be relaxed entirely for this application.

But if this application is run in conjunction with a module that also reacts to topology

changes (PortStatus events), then it makes sense to enable to constraint just for the topol-

ogy events and disable it for the rest of the event types. This way, both the throughput and

latency of the application can be improved significantly.

A complete study of which applications benefit from relaxing which correctness con-

straints and how to enable programmatic control of runtime knobs is out of scope for this
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Total Event Exactly-Once Exactly-Once Transparency
Ordering Events Commands

Distributed Storage X 7 7 7

Switch Broadcast 7 X 7 X
State Replication X 7 7 X
Ravana X X X X

Table 4.2: Comparing different solutions for fault-tolerant controllers

chapter. However, from a preliminary analysis, many applications seem to benefit from ei-

ther completely disabling certain correctness mechanisms or only partially disabling them

for certain kinds of OpenFlow messages.

4.8 Related Work

Distributed SDN control with consistent reliable storage: The Onix [82] distributed

controller partitions application and network state across multiple controllers using dis-

tributed storage. Switch state is stored in a strongly consistent Network Information Base

(NIB). Controllers subscribe to switch events in the NIB and the NIB publishes new events

to subscribed controllers independently and in an eventually consistent manner. This could

violate the total event ordering correctness constraint. Since the paper is underspecified on

some details, it is not clear how Onix handles simultaneous occurrence of controller crashes

and network events (like link/switch failures) that can affect the commands sent to other

switches. In addition, programming control applications is difficult since the applications

have to be conscious of the controller fault-tolerance logic. Onix does however handle

continued distributed control under network partitioning for both scalability and perfor-

mance, while Ravana is concerned only with reliability. ONOS [32] is an experimental

controller platform that provides a distributed, but logically centralized, global network

view; scale-out; and fault tolerance by using a consistent store for replicating application

state. However, owing to its similarities to Onix, it also suffers from reliability guarantees

as Onix does.
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Distributed SDN control with state machine replication: HyperFlow [119] is an SDN

controller where network events are replicated to the controller replicas using a publish-

subscribe messaging paradigm among the controllers. The controller application publishes

and receives events on subscribed channels to other controllers and builds its local state

solely from the network events. In this sense, the approach to building application state

is similar to Ravana but the application model is non-transparent because the application

bears the burden of replicating events. In addition, HyperFlow also does not deal with the

correctness properties related to the switch state.

Distributed SDN with weaker ordering requirements: Early work on software-defined

BGP route control [37, 121] allowed distributed controllers to make routing decisions for

an Autonomous System. These works do not ensure a total ordering on events from dif-

ferent switches, and instead rely on the fact that the final outcome of the BGP decision

process does not depend on the relative ordering of messages from different switches. This

assumption does not hold for arbitrary applications.

Traditional fault-tolerance techniques: A well-known protocol for replicating state ma-

chines in client-server models for reliable service is Viewstamped Replication (VSR) [101].

VSR is not directly applicable in the context of SDN, where switch state is as important

as the controller state. In particular, this leads to missing events or duplicate commands

under controller failures, which can lead to incorrect switch state. Similarly, Paxos [83]

and Raft [102] are distributed consensus protocols that can be used to reach a consensus on

input processed by the replicas but they do not address the effects on state external to the

replicas. Fault-tolerant journaling file systems [106] and database systems [95] assume that

the commands are idempotent and that replicas can replay the log after failure to complete

transactions. However, the commands executed on switches are not idempotent. The au-

thors of [60] discuss strategies for ensuring exactly-once semantics in replicated messaging

systems. These strategies are similar to our mechanisms for exactly-once event semantics
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but they cannot be adopted directly to handle cases where failure of a switch can effect the

dataplane state on other switches.

TCP fault-tolerance: Another approach is to provide fault tolerance within the network

stack using TCP failover techniques [81, 88, 124]. These techniques have a huge overhead

because they involve reliable logging of each packet or low-level TCP segment information,

in both directions. In our approach, much fewer (application-level) events are replicated to

the slaves.

VM fault-tolerance: Remus [42] and Kemari [18] are techniques that provide fault-

tolerant virtualization environments by using live VM migration to maintain availability.

These techniques synchronize all in-memory and on-disk state across the VM replicas.

The domain-agnostic checkpointing can lead to correctness issues for high-performance

controllers. Thus, they impose significant overhead because of the large amount of state

being synchronized.

Observational indistinguishability: Lime [52] uses a similar notion of observational in-

distinguishability, in the context of live switch migration (where multiple switches emulate

a single virtual switch) as opposed to multiple controllers.

Statesman [118] takes the approach of allowing incorrect switch state when a master fails.

Once the new master comes up, it reads the current switch state and incrementally migrates

it to a target switch state determined by the controller application. LegoSDN [40] fo-

cuses on application-level fault-tolerance caused by application software bugs, as opposed

to complete controller crash failures. Akella et. al. [22] tackle the problem of network

availability when the control channel is in-band whereas our approach assumes a separate

out-of-band control channel. The approach is also heavy-handed where every element in

the network including the switches is involved in a distributed snapshot protocol. Bee-

hive [122] describes a programming abstraction that makes writing distributed control ap-

plications for SDN easier. However, while the focus in Beehive is on controller scalability,

they do not discuss consistent handling of the switch state.
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4.9 Conclusion

Ravana is a distributed protocol for reliable control of software-defined networks. In our

future research, we plan to create a formal model of our protocol and use verification tools

to prove its correctness. We also want to extend Ravana to support multi-threaded control

applications, richer failure models (such as Byzantine failures), and more scalable deploy-

ments where each controller manages a smaller subset of switches.
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Chapter 5

Conclusion

The primary appeal of Software-Defined Networking is that the network operator can write

programs on top of simple high-level abstractions in order to achieve her objectives. How-

ever, in practice, the implementation of these abstractions are either (i) inefficient due to

shift in burden to the controller or (ii) inflexible due to incapable switch resources or (iii)

unreliable due to faulty network components. Subsequently, the operator takes on extra

burden in terms of additional low-level mechanisms to handle the various shortcomings.

This results in complicating the use of what are otherwise simple abstractions in SDN.

This thesis proposes runtime mechanisms that achieve the goals of efficiency, flexibility

and reliability in a completely transparent manner. The operator simply builds the network

on top of three simple abstractions — big non-blocking switch, one switch with infinite rule

space, and one logically centralized controller. The underlying runtimes provide an archi-

tecture where basic routing is done efficiently at dataplane timescales, policy enforcement

is done scalably with the help of software data planes and the control plane is fault-tolerant.
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5.1 Summary of Contributions

In our HULA work, we provide the abstraction of one big non-blocking switch with ca-

pacity equivalent to that of the bisection bandwidth of the network. This is achieved by a

dataplane load balancing algorithm that is built on top of recently proposed programmable

dataplanes. HULA uses periodic probes that proactively propagate global utilization in-

formation to all the switches. The switches use this information to track the best path to a

destination through a neighboring switch. Using extensive packet level simulations in NS2,

we show that HULA outperforms state-of-the-art alternatives by 1.6× at 50% load and 3×

at 90% load in terms of end-to-end flow completion times. We also show empirically that

HULA is robust to a wide range of parameter settings and is stable under perturbation. In

addition, we show how to implement HULA in the P4 language that targets a wide va-

riety of programmable dataplanes which in turn decouples HULA from vendor-specific

hardware capabilities in the spirit of SDN.

In CacheFlow, we provide the abstraction of a switch with logically infinite rule space.

We show how to give applications the illusion of high-speed forwarding, large rule tables,

and fast updates by combining the best of hardware and software processing. CacheFlow

“caches” the most popular rules in the small TCAM, while relying on software to handle

the small amount of “cache miss” traffic. However, we cannot blindly apply existing cache-

replacement algorithms, because of dependencies between rules with overlapping patterns.

Rather than cache large chains of dependent rules, we “splice” long dependency chains to

cache smaller groups of rules while preserving the semantics of the policy. We discuss how

CacheFlow preserves the semantics of the OpenFlow interface so that our abstraction works

on top of existing controllers and switches without any changes . Experiments with our

CacheFlow prototype—on both real and synthetic workloads and policies—demonstrate

that CacheFlow achieves a cache-hit rate of 90% of the traffic by caching less than 5% of
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the rules. This proves that rule splicing makes effective use of limited TCAM space, while

adapting quickly to changes in the policy and the traffic demands.

In Ravana, we provide the abstraction of a logically centralized controller. We design

a fault-tolerant SDN controller platform that processes the control messages transaction-

ally and exactly once (at both the controllers and the switches). Ravana maintains these

guarantees in the face of both controller and switch crashes. The key insight in Ravana is

that replicated state machines can be extended with lightweight switch-side mechanisms to

guarantee correctness, without involving the switches in an elaborate consensus protocol.

The Ravana fault-tolerant control protocol ensures observational equivalence between an

ideal centralized controller and a physically replicated controller platform. In addition, our

prototype implementation of Ravana enables unmodified controller applications to execute

in a fault-tolerant fashion. Experiments show that Ravana achieves good performance with

a reasonable 31% throughput overhead, compared to a single controller. We also study

how each of our design goals add to the overhead of the system. Our failover time remains

under 100ms which is acceptable in most modern distributed system settings.

5.2 Future Work

In this section, we discuss where our effort in making SDN more efficient and reliable is

headed. We discuss how to extend the three main ideas proposed in this thesis so that the

underlying abstractions are either more efficient or more flexible or both.

5.2.1 Heterogenous and Incremental HULA

While HULA shows how to design a scalable load balancing in the dataplane, it needs to

be made flexible enough to accomodate a wide variety of devices and objectives in order to

be flexible and incrementally deployable.

Heterogenous objectives. The current version of HULA is designed to achieve an

important network-wide objective — to minimize the bottleneck link utilization in the net-
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work. For this, each switch in HULA maintains local link utilization (based on an ex-

ponential moving average of bytes sent) and tracks the minimum among the global path

utilization values. However, if the objective of the system were to minimize flow latency or

jitter, or to maximize throughput of certain paths, then HULA will have to use a different

sets of local and global metrics and different load balancing schemes.

Heterogenous networks. Currently, HULA assumes that all the switches are in one

administrative domain and that the switches in the network support all the primitive capa-

bilities in a P4 [33] supported target. However, in cloud scale networks, network traffic

typically passes through multiple domains where each domain may have different switch

capabilities and may have different routing policies (like path preferences etc.). For exam-

ple, while intra-domain routing simply may pick shortest paths, inter-domain routing could

depend on route preferences. HULA at that scale will have to handle the heterogeneity of

networks towards the destination in the presence of multiple routing domains.

Incremental deployemnt. When network operators running traditional networks mi-

grate to P4-capable switches, they need a strategy to incrementally deploy HULA with

minimal disruption to ongoing traffic. This means HULA will have to work with some

set of programmable dataplanes and some which run traditional routing protocols. An-

other possibility is that some vendors may just support network monitoring functions like

INT [78] that simply export link utilization and not the other capabilities of P4 like stateful

packet processing. In this case, HULA will have to modify its current distance vector type

load balancing scheme to accomodate such heterogenous capabilities in the ‘underlay’.

Heterogenous applications. Today, HULA does not distinguish between multiple ap-

plications running on top of the underlying network. It treats all of them equally. How-

ever, in large-scale deployments, operators typically require quality-of-service guarantees

expressed in terms of bandwidth or latency guarantees for certain set of applications. Oper-

ators may also express prioritization of applications when the network is congested. While

HULA currently deals only with unicast traffic, multicast applications are in vogue in to-

124



days networks. HULA should be extended to accomodate these wide range of quality of

service requirements.

5.2.2 Cooperative Caching for Efficient Resource Utilization

In CacheFlow, rule caching is performed independently for each switch, considering the

user given switch policy and the local traffic distribution. However, neighboring switches

often have similar rule tables. The similarity arises from the network operator typically

using, say, the same firewall or access control policy on all the switches in the network

(albeit with some small differences to account for the switch’s placement in the topology).

If the rules that are same across switches actually carry a substantial amount of traffic, then

caching the rule in one switch and then asking the neighboring switches to send the match-

ing traffic to this switch would save the cost of installing the said rule and its dependents

on all the switches.

In addition, different switches might see different traffic distributions depending on the

location or the role of the switch in a given topology. However, recent measurements [80]

indicate large intersection between the traffic working sets in multiple switches of the same

network. In this context, it is worth asking if a switch can borrow an adjacent switch’s

TCAM for completing some of its packet classification. Recent work in Difane [123]

describes one such approach where a set of authoritative switches are used as a backup

for classifying cache misses from the edge switches. This shows that keeping packets in

fast hardware datapath typically offers better performance than the slow software datapath,

even though some traffic follows a slightly longer path and imposes additional load on the

links. However, Difane only lets the authoritative switches help the edge switches but not

the other way round. As part of future work for CacheFlow, one can explore the possibility

of switches mutually co-operating with each other for the purpose of rule caching.

Cooperative Caching [44] is a well-studied approach to improve the performance of a

distributed file systems by coordinating the cache policies among clients. To increase the
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total cache hit rate, the cache of one client can serve requests of other clients and design of

the caching policy takes into account the space availability on each cache. Various schemes

requiring different levels of cooperation have been described [109]: Starting from locally

independent caching policies to the ability to serve cache misses of the other cache. In the

context of CacheFlow, It will be intersting to study the applicability of cooperative caching

for rule caching in software-defined networks. Can we allow packets to be forwarded to

other switches for completing the classification process? This way, we increase the ratio of

traffic classified in the data plane while using the switch TCAM resources more efficiently.

5.2.3 Ravana with Runtime Knobs for Consistency Requirements

The Ravana protocol described in this thesis is oblivious to the nature of control application

state or the various types of control messages processed by the application. This is what led

to the design of a truly transparent runtime that works with unmodified control applications.

However, given the breakdown in terms of throughput and latency overheads for various

correctness guarantees, it is natural to ask if there are control applications that can benefit

from relaxed consistency requirements.

For example, a Valiant load balancing application that processes flow requests (PacketIn

events) from switches and assigns paths to flows randomly is essentially a stateless appli-

cation. So the constraint on total event ordering can be relaxed entirely for this application.

But if this application is run in conjunction with a module that also reacts to topology

changes (PortStatus events), then it makes sense to enable the constraint just for the topol-

ogy events and disable it for the rest of the event types. This way, both the throughput and

latency of the application can be improved significantly.

A complete study of which applications benefit from relaxing which correctness con-

straints and how to enable programmatic control of runtime knobs is an interesting ex-

tension to Ravana. However, from a preliminary analysis as shown in chapter 4.7, many
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applications seem to benefit from either completely disabling certain correctness mecha-

nisms or only partially disabling them for certain kinds of OpenFlow messages.

5.3 Concluding Remarks

The systems described in this thesis attempt to solve three pertinent and timely issues with

the practice of software-defined networking. Taken together, these systems portend a new

network architecture where basic routing is done efficiently at dataplane timescales, policy

enforcement is done scalably with the help of software data planes and the control plane

is fault-tolerant. Thus the new architecture has the properties of fast routing and fault-

tolerance of traditional networks while delivering the promise of efficient enforcement of

fine-grained control policies.

This also signals a movement from both of the extremes of system design to a middle ap-

proach where there is a thin software layer on the switches that helps with processing cache

misses and the controller’s burden of load balancing at smaller time scales is lowered.
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