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Abstract

As network traffic grows in volume and diversity, operators increasingly require

real-time, in-network control over packets. Tasks such as rate-limiting large flows,

identifying heavy downloaders, and dropping unsolicited packets demand stateful

processing at line rate—capabilities absent in traditional fixed-function switches. The

advent of programmable data planes has made such control feasible, allowing custom

stateful logic to run directly in the network.

However, programming traffic control remains challenging. Data planes impose

strict memory constraints, making conventional data structures impractical. Instead,

operators rely on approximate data structures like Bloom filters and hash tables,

trading accuracy for efficiency. Selecting and configuring these structures requires

expertise, as poor choices can lead to excessive errors or wasted resources.

To address this, we developed Network Approximate Programming (NAP), a high-

level language centered on a versatile approximate dictionary abstraction. This ab-

straction captures a broad range of compact data structures while allowing program-

mers to specify the types of errors an application can tolerate. The NAP compiler

automatically selects and configures the appropriate structure to optimize hardware

utilization and compiles to P4, the native programming language for data planes—

significantly simplifying development.

Ensuring correctness of approximate data structures in P4 poses additional chal-

lenges. While research has advanced new streaming algorithms, little attention has

been paid to adapting them systematically to data-plane constraints and refreshing

them at runtime. Moreover, these practical concerns may introduce subtle bugs. To

address these concerns, we developed general synthesis and verification frameworks.

We deployed an approximate sliding-window Bloom filter on Intel Tofino and veri-

fied its correctness, demonstrating how to build P4 data structures with correctness

guarantees.
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Finally, P4 itself presents foundational challenges: its low-level design, ambiguous

specification, and lack of formal semantics make stateful programming error-prone.

To provide a rigorous foundation, we developed a formal semantics for P4 based on its

two-phase evaluation model. Our mechanized formalization precisely defines language

constructs, including stateful externs on Intel Tofino. By adhering to P4’s intended

behavior, our work uncovered previously undocumented ambiguities and contributed

improvements to the specification.

Together, these efforts form a cohesive framework for enabling robust network

control in programmable data planes.
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Chapter 1

Introduction

The rapid growth of digital services has led to an unprecedented surge in network

traffic, both in volume and variety. Applications such as cloud computing, video

streaming, and online gaming generate massive amounts of data that must be trans-

ported across networks with minimal delay to ensure seamless performance. At the

same time, the wide adoption of mobile devices, Internet of Things (IoT) systems,

and hyperscale data centers has introduced highly dynamic and unpredictable traffic

patterns. Unlike traditional workloads, which often followed simple and predictable

traffic patterns, modern network traffic is characterized by frequent bursts, asymmet-

ric data exchanges, and varying quality-of-service requirements.

These trends place immense pressure on network infrastructure, requiring it not

only to handle higher throughput but also to adapt to fast-changing conditions in

real time. To meet application-level expectations—such as low latency, fairness, and

security—networks need to track flow-specific state across packets, make per-flow

decisions on the fly, and respond immediately to changes in traffic behavior. This

demands the ability to dynamically track the state of traffic flows and apply fine-

grained control to each flow at line rate.
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Traditional network devices, primarily designed for simple packet forwarding, lack

the flexibility and responsiveness needed to support these capabilities. In response, a

new generation of programmable switches has emerged, allowing networks to execute

custom, stateful packet processing directly within the data plane. These switches

enable operators to define custom processing logic, maintain state at line rate, and

dynamically control traffic behavior. However, leveraging these capabilities effectively

requires novel programming abstractions and optimization techniques to ensure scal-

ability and correctness.

In the following sections, we examine categories of network control applications

(Section 1.1), the limitations of traditional networking approaches (Section 1.2), and

the challenges of modernizing networks through programmable architectures (Sec-

tion 1.3), data structures (Section 1.4), and programming languages (Section 1.5).

We conclude with a summary of contributions (Section 1.6) and an outline of the

dissertation roadmap (Section 1.7).

1.1 Network Control Applications

As networks continue to evolve, the need for fine-grained real-time control over traffic

has grown significantly. Network control applications enable operators to actively

monitor the network state, maintain historical context for traffic flows, and make

intelligent decisions on packet processing. This ability to update and query state at

line rate is essential for enforcing control policies.

Network control applications can be broadly categorized into three main areas:

• Traffic management and quality of service. Ensuring efficient traffic flow

is critical in modern networks, where applications impose strict requirements

on latency and bandwidth. To meet these demands, network operators deploy

control applications that dynamically adjust routing decisions based on network
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conditions. For example, load balancers [1, 18, 31] distribute traffic across

multiple paths to optimize resource utilization, requiring the system to maintain

state on past routing decisions to ensure consistency. Active queue management

mechanisms [6, 29, 51] track flow sizes and service classes, probabilistically

dropping large flows to prevent bottlenecks or deprioritizing less time-sensitive

traffic to improve service quality. These control applications rely on real-time

state tracking to adapt to traffic patterns without introducing excessive delays.

• Security and access control. As network attacks become more sophisticated,

real-time threat detection and mitigation are increasingly embedded directly

into network infrastructure. Stateful firewalls [28, 52], for example, track active

connections to enforce security policies, blocking unauthorized access attempts

and filtering malicious traffic based on historical flow data. Similarly, DNS am-

plification mitigation systems [43, 33] monitor outgoing DNS requests, keeping

state on previous DNS requests to identify and discard excessive responses. The

ability to store and rapidly update state enables networks to react instantly to

evolving threats without waiting for centralized control-plane intervention.

• Network monitoring. Real-time visibility into network performance is cru-

cial for diagnosing issues, optimizing resource allocation, and maintaining ser-

vice reliability. Modern telemetry applications continuously collect and ana-

lyze network statistics at line rate, triggering alerts when anomalies or per-

formance degradations are detected. These applications include flow monitor-

ing systems [50, 21] that maintain per-flow statistics, packet sampling mecha-

nisms [13, 17] for in-depth traffic analysis, and event-driven logging [55, 27] for

rapid fault detection. By embedding telemetry directly into network devices and

maintaining information on traffic patterns, operators can proactively identify

and resolve issues, reducing downtime and improving network efficiency.
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These network control applications must operate at high speed and scale to sup-

port millions of users while maintaining minimal processing overhead. Implementing

them directly within the network, rather than relying solely on centralized control

or end hosts, can significantly enhance overall efficiency in responding to dynamic

conditions.

1.2 Limitations of Traditional Network Devices

Traditional network devices were primarily designed for packet forwarding based on

preconfigured rules, offering limited flexibility and programmability. These devices

fall into two main categories: fixed-function switches and software-defined networking

(SDN). While both have enabled large-scale networking, neither supports real-time,

stateful traffic control.

Fixed-function switches: inflexibility and vendor dependence

Fixed-function switches have long been the backbone of network infrastructure, de-

signed for high-speed packet forwarding with minimal processing. They operate using

predefined protocols, leaving operators with little control over packet processing be-

yond basic header-based forwarding.

In early networks, this approach was sufficient, as complex traffic control was of-

floaded to end hosts or centralized controllers. However, modern control applications

increasingly require in-network computation (Section 1.1), making fixed-function

switches a limitation. Updating their functionality typically requires hardware

modifications or vendor-supplied firmware updates, a slow and rigid process that

limits adaptability to evolving traffic patterns and deployment of customized network

applications.
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Software-defined networking: overhead and scalability constraints

Software-defined networking (SDN) [34] improves programmability by decoupling the

data plane from the control plane. A software controller program collects network

state, computes forwarding rules, and installs them on the data plane via protocols

like OpenFlow. Despite its increased flexibility, SDN still faces several key limitations:

• Latency: Stateful processing, such as connection tracking, is offloaded to the

controller, introducing an external control loop with inherent delays. These

delays can cause inaccuracies in policy enforcement, making some time-sensitive

applications infeasible.

• Scalability: Relying on a centralized controller to update rules introduces

overhead, particularly at high traffic volumes. Processing packets in software

is too slow to match modern link speeds, leading to throughput bottlenecks in

large-scale deployments.

• Security risks: Many security applications, such as denial-of-service (DoS)

mitigation, require real-time traffic monitoring. Forwarding packets to the con-

troller for analysis in SDN-based architectures increases the exposure to attacks

due to delays in updating rules.

These limitations make SDN generally insufficient for stateful, per-packet decision-

making at high speeds.

1.3 Programmable Data Plane

To overcome the limitations of traditional network devices, modern programmable

switches [23, 12, 26] adopt a fundamentally different design: they integrate both

packet and state processing entirely within the data plane. This enables fine-grained

control at line rate, eliminating delays and throughput bottlenecks at their source.
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Figure 1.1: Protocol-Independent Switch Architecture.

1.3.1 Data Plane Architecture

High-speed network devices rely on specialized architectures. A widely adopted model

is the Protocol-Independent Switch Architecture (PISA) [9], shown in Fig-

ure 1.1, which organizes packet processing into three core components:

• Parser: Extracts structured header fields using a state machine and stores

them in a Packet Header Vector (PHV) unique to each packet. Each PHV

holds parsed fields (e.g., source IP, TCP port), metadata (e.g., ingress port,

arrival timestamp), and intermediate results.

• Match-action pipeline: A sequence of processing stages, each performing a

limited number of parallel operations on the PHV and accesses to local state.

Each stage includes:

– Match-action tables: Match PHV fields to invoke actions based on in-

stalled rules.

– Stateless ALUs: Perform actions that apply arithmetic and logic opera-

tions to PHV.

– Runtime state: Stores data across packets for stateful processing.
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– Stateful ALUs: Perform actions that interact with the runtime state.

– Hash units: Compute functions (e.g., CRC, identity, random) for index-

ing into runtime state.

• Deparser: Reconstructs outgoing packets by serializing modified headers and

payloads from the PHV into a bitstream.

Both match-action tables and runtime state hold persistent state—information

that persists across packets—but they differ significantly. Table rules store mappings

from match keys to actions and are managed exclusively by the control plane. Only

the control plane can update entries, while packets can only read them in the data

plane. In contrast, runtime state is directly mutable by packets in the data plane,

enabling stateful behavior.

Together, these architectural components allow programmable switches to support

a wide range of network control applications directly in the data plane.

1.3.2 Data Plane Constraints

Programmable switches must balance flexibility with performance, imposing strict

hardware constraints. Unlike software-based systems, which scale with additional

resources, data plane programs must fit within the fixed limits of switch hardware.

Computational constraints

• Bounded computation per packet: The match-action pipeline has a fixed

number of stages, each with a limited number of stateless ALUs, restricting the

total number of operations that can be applied to a packet. Packet recirculation

can extend computation, but at the cost of reducing throughput.

• Shallow per-stage computation: To ensure consistent packet processing

speed, each stage must complete within a fixed number of clock cycles. Conse-
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quently, operations within a stage must run independently in parallel—typically

one per PHV container—and any dependent operations must be split across

stages.

• Limited intermediate storage: Each packet has a fixed-size PHV, consist-

ing of a few hundred fixed-width containers. This imposes tight limits on the

temporary storage available for computation.

• Restricted instruction set: Only primitive operations (e.g., addition, bitwise

AND) are supported. Complex operations (e.g., division, modulus, floating-

point arithmetic) are unavailable due to performance cost.

Memory constraints

• Limited on-chip memory: The data plane has limited static random-access

memory (SRAM), shared between match-action tables and runtime state. For

example, Intel Tofino [23] provides only tens of megabytes in total, distributed

across all stages.

• Partitioned runtime state: Runtime state is partitioned across stages and

mapped one-to-one to stateful ALUs, with each stateful ALU accessing only its

own local runtime state object. As a packet traverses the pipeline, it can access

only the runtime state local to the current stage via the corresponding stateful

ALU. These constraints ensure isolation and prevent data hazards.

• Constrained state access: Each stateful ALU can typically access only a sin-

gle memory location in its associated runtime state object, with limited compu-

tation allowed during access. For example, Intel Tofino supports read-modify-

write operations, but the modification step is highly restricted. Like stateless

ALUs, all stateful ALUs operate independently in parallel to maintain line-rate

processing.
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• No external storage: To minimize overhead, switches avoid offloading data to

external memory, requiring all data structures to reside within the data plane.

These hardware constraints enforce a very different programming mindset for net-

work operators. They need to have a deep understanding of the architectural, com-

putational, and memory constraints in order to take full advantage of the switch

programmability.

1.4 Approximation in the Data Plane

Programmable data planes enable powerful in-network processing but operate under

strict computational and memory constraints. These limitations make maintaining

exact per-packet (or even per-flow) state infeasible, necessitating approximation tech-

niques to efficiently store and process traffic data.

1.4.1 Approximate Data Structures

Many network control applications require taking different actions on individual traffic

flows, but the data plane lacks sufficient memory to store per-flow state for potentially

millions of flows. For example, an Intel Tofino switch provides only tens of megabytes

of SRAM, whereas a layer-4 load balancer may require hundreds of megabytes for

precise connection tracking.

This gap between memory availability and application demands forces network

operators to turn to approximate data structures, which trade accuracy for efficiency

while still enabling essential functionality. These data structures reduce memory con-

sumption by allowing controlled errors, with their accuracy determined by available

resources. Some commonly used examples include:

• Bloom filter [7]: A probabilistic data structure for set membership that allows

false positives but never false negatives.
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• Count-min sketch [15]: A space-efficient frequency estimation data structure

that may overestimate (but never underestimate) counts due to hash collisions.

• Hash table: A key-value store that retains frequently accessed entries while

evicting others based on capacity constraints.

• Hash table with fingerprinting: A variation that stores only fingerprints of

keys to reduce space usage, introducing occasional false lookups.

Beyond these classic structures, researchers have developed data structures specif-

ically tailored to the PISA model. Examples include Fridges [54], BeauCoup [11],

NitroSketch [30], and CocoSketch [53], all of which demonstrate the feasibility of

implementing efficient approximations in hardware-constrained environments.

While approximate data structures help address resource limitations, their effec-

tiveness depends on how well they align with application requirements. This leads to

an important question: do control applications tolerate approximation?

1.4.2 Approximate Traffic Control

While approximation is often a necessity, its impact on control applications varies.

Some applications require precise state maintenance, while others can tolerate con-

trolled errors without significantly affecting functionality. Many packet-processing

applications fall into the latter category, where approximation enables scalable solu-

tions while preserving essential behavior.

A classic example of approximation in action is NetCache [25], which is a key-

value store that uses a Count-Min Sketch to estimate frequencies of querying keys.

While it may overestimate counts for less popular keys, it remains space-efficient

and ensures that frequently accessed items are kept in cache. To resolve queries

efficiently, NetCache pairs its Count-Min Sketch with a hash table, which retains

values for popular keys while occasionally evicting others.
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Another critical example, which we will revisit throughout this thesis, is stateful

firewalls [42], which drop unsolicited incoming traffic by tracking recent outgoing

connections.

In an ideal implementation, a stateful firewall allows all outgoing packets and the

solicited incoming packets. In other words, it permits incoming packets only if they

match a key from recent outgoing traffic (e.g., internal/external IP pairs recorded

within the last 60 seconds). However, due to limited hardware memory and high

traffic rates, exact state tracking is impractical, making approximation necessary.

Importantly, different applications have different tolerances for approximation er-

rors. For example, in an enterprise network, it may be preferable for a stateful firewall

to occasionally allow unsolicited packets rather than risk blocking legitimate traffic.

This trade-off is acceptable because additional security mechanisms—such as intru-

sion prevention systems or endpoint security filters—can mitigate the small fraction

of unwanted traffic that bypasses the firewall. Conversely, incorrectly blocking legiti-

mate traffic can disrupt critical services, making false negatives far more problematic

than false positives.

The choice of approximate data structure plays a crucial role in how well the

firewall balances security and performance. Specifically, for an approximate stateful

firewall,

• A Bloom filter is a natural fit since it never produces false negatives, ensuring

that all recorded connections remain valid. This guarantees that legitimate

traffic is never mistakenly blocked.

• A hash table, on the other hand, is not suitable, as valid connections may be

evicted, leading to false negatives where legitimate packets are wrongly dropped.

This example highlights a broader challenge in programmable data planes: choosing

the right approximation technique and tuning it for optimal performance.
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1.4.3 Challenges: Selecting & Sizing Data Structures

The stateful firewall example illustrates a key insight: while approximate data struc-

tures enable efficient traffic control under resource constraints, selecting the right data

structure and tuning its parameters remain significant challenges.

Challenge 1: selecting the data structure

As more approximate data structures are developed, choosing the most suitable one

becomes increasingly difficult. Each structure has its own trade-offs, and selecting

the best one requires a deep understanding of application-specific requirements.

For example, while the original NetCache implementation uses a Count-Min

Sketch to track popular keys, an alternative approach could employ a basic hash

table to count as many keys as possible. Choosing the suitable data structure requires

a deep understanding of the available options and their trade-offs, especially when

memory resources are limited.

Challenge 2: sizing the data structure

Once a data structure is selected, optimizing its size is another challenge. The goal

is to minimize approximation error while staying within hardware constraints. Pro-

grammable switches like the Intel Tofino offer extremely limited memory, making

precise allocation critical. Overprovisioning wastes resources, while underprovision-

ing degrades accuracy and performance.

Unlike conventional software environment where memory allocation can be ad-

justed dynamically, data-plane programs must predefine resource usage at compile

time. Current compilers for programmable switches do not efficiently search the im-

plementation space, forcing developers to manually tune parameters through trial and

error. This process requires significant expertise, time, and iterative experimentation.
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Ultimately, achieving the right balance between accuracy and efficiency remains a

fundamental challenge in deploying approximation techniques on programmable data

planes.

1.5 P4 Language

Programming the specialized architectures of the data plane requires a language tai-

lored to its unique constraints. General-purpose languages like C, which rely on

dynamic memory allocation, are ill-suited for this task. Unlike software programs

that execute arbitrary logic, data-plane programs operate within a structured packet-

processing pipeline: the packet moves through predefined stages, each with access

only to local state and no heap memory. Given this strictly linear execution model,

conventional programming constructs, such as pointers, are unnecessary.

To address these constraints while enabling programmable packet processing,

P4 [8, 37] was developed as a domain-specific language. P4 is both target-aware

and domain-specific, serving two key roles:

• Specification language (Section 1.5.1): Hardware vendors define device-

specific constraints and capabilities.

• Programming language (Section 1.5.2): Developers implement packet-

processing logic, including parsing, match-action pipelines, and deparsing.

1.5.1 Specification Language

Each programmable target—whether a high-performance switch like Intel Tofino or

a software-based model—provides an architecture file that dictates how P4 programs

interact with the hardware. This file serves as a contract between the P4 program

and the underlying hardware, specifying:
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• Switch model: Defines the programmable components that must be declared

and instantiated to form a complete switch model:

– Parser: Extracts headers from incoming packets.

– Control: Implements a packet-processing pipeline, modifying header

fields, metadata, and runtime state.

– Deparser: Reassembles headers and payload into packets.

• Target-specific externs: Provides vendor-defined functions and classes that

extend P4’s capabilities beyond its core constructs.

For example, the Very Simple Switch (VSS) architecture [37] (Figure 1.2) defines

a package type called Switch, which represents the switch model (lines 14-16). To

target this architecture, a P4 program must instantiate a Switch named main by sup-

plying instances of programmable components whose type signatures match Parser,

Pipe, and Deparser. This ensures that the program adheres to the processing model

defined by the VSS architecture.

Additionally, the VSS architecture defines a Checksum16 extern class (lines 20-28)

and a min extern function (line 30). The imported core.p4 library also provides

extern classes such as packet in and packet out, which are passed into parsers and

deparsers to extract packet headers from incoming bitstreams and reassemble headers

back into packets, respectively (lines 9, 11). While externs provide flexibility, they also

introduce implicit constraints. For instance, Checksum16 may only be instantiated

in the parser and deparser for packet validity checks. Such restrictions are often

undocumented in architecture files, forcing developers to consult vendor manuals or

infer correct usage through experimentation.

Beyond checksum computations, P4 supports many other externs. As introduced

in Section 1.1, runtime state is fundamental to modern network control, yet P4 lacks
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1 #include <core.p4>

2

3 struct standard_metadata_t {

4 bit <4> in_port;

5 bit <4> out_port;

6 }

7

8 /* Programmable components */

9 parser Parser <H>( packet_in pkt , out H hdr);

10 control Pipe <H>( inout H hdr , inout standard_metadata_t md);

11 control Deparser <H>( packet_out pkt , inout H hdr);

12

13 /* Switch model */

14 package Switch <H>(Parser <H> parser ,

15 Pipe <H> pipe ,

16 Deparser <H> deparser);

17

18 /* Target -specific externs */

19 // Extern class

20 extern Checksum16 {

21 // Constructor

22 Checksum16 ();

23 // Methods

24 void clear (); // clear the added data

25 void update <T>(in T data); // add data to checksum

26 void remove <T>(in T data); // remove data from existing checksum

27 bit <16> get(); // get checksum for existing data

28 }

29 // Extern function

30 extern T min <T>(in T t1 , in T t2);

Figure 1.2: A very simplified switch (VSS) architecture vss.p4.

native support for it. Instead, architectures may expose runtime state through ex-

terns, with certain externs dedicated to storing and accessing such state. This design

reflects the reality that state storage and access are highly hardware-dependent, mak-

ing it impractical to standardize these features in the core P4 language.

Overall, the target-dependent nature of P4 complicates stateful traffic control,

as developers must navigate architecture files and vendor-specific documentation to

correctly implement applications.
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1.5.2 Programming Language

Beyond defining the architecture interface, P4 is also a programming language. De-

velopers must implement the programmable components specified as parameters to

the switch model.

One fundamental component is the parser, organized as a state machine with

a designated start state and two terminal states: accept and reject. A parser

comprises two main elements:

• Declarations: constants, variables, parser instances, extern instances, and

parser states.

• Implicit execution flow: defined by transitions between parser states.

Each parser state specifies a sequence of statements—such as calling methods on ex-

tern instances, invoking the apply method of another parser instance, or transitioning

to a new state—that process the packet bitstream into structured headers. Execution

of a parser instance always begins at the start state and proceeds according to the

state transitions.

Figure 1.3 illustrates a typical layer 3 parser targeting the VSS architecture. It

extracts Ethernet and IPv4 headers and verifies the IPv4 checksum. The parser

transitions to the accept state only if all header extractions succeed and the checksum

is valid; otherwise, it transitions to reject.

Another key component is the control. A control consists of a list of declara-

tions and an apply block that defines its execution flow. Declarations fall into four

categories:

• Constants and variables: Declare immutable or mutable identifiers of base

types (e.g., int, struct), providing local storage within the control. These can

be referenced in actions, tables, and the apply block, similarly to parameters.
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1 #include <vss.p4>

2 #include <headers.p4>

3

4 /* Headers */

5 struct header_t {

6 eth_h ethernet;

7 ipv4_h ipv4;

8 }

9 /* Parser */

10 parser IPParser(packet_in p, out header_t h) {

11 Checksum16 () ck; // instantiate a checksum

12 state start {

13 transition parse_ethernet;

14 }

15 state parse_ethernet {

16 p.extract(h.ethernet);

17 transition select(h.ethernet.ether_type) {

18 ETHERTYPE_IPV4 : parse_ipv4;

19 _ : reject;

20 }

21 }

22 state parse_ipv4 {

23 p.extract(h.ipv4);

24 ck.clear();

25 ck.update(h.ipv4);

26 verify(ck.get() == 0, error.IPv4ChecksumError);

27 transition accept;

28 }

29 }

Figure 1.3: An IPv4 packet parser on the VSS architecture.

• Actions: Define sequences of statements that manipulate variables, call top-

level functions, or invoke methods of extern instances. Actions are directly

invocable.

• Tables: Define match keys and associate them with actions to execute upon a

match. Tables expose an apply method that is invoked to perform the match-

action mapping.

• Instantiations: Instantiate controls or extern classes using constructors. Ex-

tern instances expose architecture-defined methods available for invocation; con-

trol instances expose an apply method that can be invoked to execute their

apply block.
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30 /* Top -level ordinary function */

31 bit <8> decr(in bit <8> x) {

32 return x - 1;

33 }

34 /* Control */

35 control IPForwarder(inout header_t h, inout standard_metadata_t m) {

36 /* Declarations */

37 bit <32> next_ip_;

38 action act_forward(bit <32> next_ip , bit <4> port) {

39 next_ip_ = next_ip; // variables are in scope

40 m.out_port = port;

41 h.ipv4.ttl = decr(h.ipv4.ttl);

42 }

43 action act_drop () {

44 m.out_port = DROP_PORT;

45 }

46 table tbl_forward {

47 key = { h.ipv4.dst_ip: lpm; } // parameters are in scope

48 actions = { act_forward (); act_drop (); }

49 default_action = act_drop ();

50 }

51 ...

52 /* Apply block */

53 apply {

54 if (h.ipv4.ttl <= 1) {

55 act_drop ();

56 } else {

57 tbl_forward.apply ();

58 ...

59 }

60 }

61 }

Figure 1.4: A simple IP forwarding control targeting the VSS architecture.

The apply block defines the control’s execution flow by invoking its actions and

the methods available on its tables and instances. In addition to these locally de-

clared entities, the apply block may also invoke methods of top-level extern instances

and call top-level functions—namely, extern functions and ordinary functions.1 This

explicit execution flow contrasts with the parser’s implicit transitions between states.

Figure 1.4 presents a simple IP forwarding control targeting the VSS architecture.

A top-level ordinary function decrements a value by 1. The control declares a local

variable for the next-hop IP address, two actions for forwarding and dropping packets,

1P4 supports functions in the conventional sense, which can only be defined at the top level.
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and a forwarding table that matches on the destination IP address. The apply block

checks the packet’s TTL, drops packets if the TTL has expired, and otherwise applies

the forwarding logic via the table.

Finally, it is worth noting that deparsers, though treated as a distinct pro-

grammable component at the architectural level, are implemented as controls in P4.

Like regular controls, a deparser consists of declarations and an apply block. Its

primary role, however, is to reassemble headers into a packet, typically by invoking

the emit method of the packet out extern.

Through these constructs, P4 provides a specialized yet flexible framework for cus-

tomizing switch behavior and implementing sophisticated network applications. How-

ever, the P4 specification [37] remains lengthy and informal, and its domain-specific

constructs often introduce subtleties that complicate correct usage. We discuss these

challenges further in Section 1.5.3.

1.5.3 Challenges: P4 Semantics & Adapting Data Structures

In Section 1.4.3, we discuss the complexities of selecting and sizing data structures

for traffic control in the data plane. However, choosing the right data structures is

only the beginning. Implementing them correctly in P4 requires navigating two ad-

ditional obstacles: adapting data structures to the target architecture, and reasoning

precisely about program behavior in P4, a language that lacks a formal semantics.

A formal semantics defines, with mathematical rigor, how programs behave—what

each construct means and how it executes. Without such a foundation, it becomes

difficult to reason about correctness.
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Challenge 3: adapting data structures correctly

Beyond selecting the appropriate data structures, P4 programmers must also tailor

them to the architectural constraints and specialized state mechanisms of the under-

lying hardware.

• Memory access constraints: Conventional data structures often assume un-

restricted access to a single block of memory during method calls, but the data

plane distributes memory across stages and imposes strict access constraints

(Section 1.3.2). To implement such data structures efficiently, developers must

redesign them to respect these limitations.

• Lack of native time-based eviction: Many data structures rely on time

windows to discard stale information. However, the PISA pipeline architecture

lacks native time-based eviction mechanisms, forcing developers to implement

workarounds that increase complexity.

• Implicit hardware constraints: In addition to documented limitations, hard-

ware targets impose subtle, undocumented constraints that impact performance

and correctness (Section 1.5.1). These constraints often require extensive study

of vendor documentation and empirical testing.

Adapting data structures for P4 is not a straightforward task. Without deep

expertise in both P4 and the target hardware, implementing such structures from

scratch is error-prone and difficult to debug.

Challenge 4: lack of P4 formal semantics

Unlike many general-purpose languages, P4 lacks a formal execution model, making

its semantics difficult to reason about. Several factors contribute to this issue:
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• Specialized constructs: While P4 is a low-level language, it introduces unique

primitives, such as match-action tables and externs, that differ significantly from

conventional imperative programming paradigms. Developers must understand

these constructs to write correct and efficient programs.

• Target-dependent execution: Stateful externs like registers behave differ-

ently across hardware targets. Their exact semantics are often only partially

specified in architecture files, with additional details informally documented

in comments and vendor manuals. This lack of standardization complicates

portability and correctness.

• Ambiguous specifications: The P4 specification, written in natural language,

is prone to ambiguities and potential inconsistencies. Developers frequently

resort to compiler experimentation to infer intended behavior, which introduces

uncertainty into the programming process.

These challenges raise a fundamental question: What does a P4 program truly

mean? Without a well-defined and rigorous semantics, reasoning about correctness

and debugging unexpected behaviors remain significant obstacles.

1.6 Contributions

This dissertation addresses the four key challenges in programming traffic control in

the data plane, presented in reverse order—from low-level foundations to high-level

abstractions—to reflect their dependency hierarchy:

• Challenge 4: lack of formal semantics

Introduces a formal semantics for P4 in Chapter 2, improving clarity, cor-

rectness, and standardization across different P4 targets.
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• Challenge 3: deployment and verification of data structures

Develops a synthesis framework for systematically adapting approximate

data structures to P4 and a verification framework for rigorous correctness

verification in Chapter 3.

• Challenge 2 & 1: selection and sizing of data structures

Designs NAP, a high-level Network Approximate Programming Lan-

guage that automates data structure selection and parameter tuning, in Chap-

ter 4, eliminating the need for manual optimization.

Together, these contributions advance the research of verifiable, efficient, and prac-

tical data-plane programming, laying a foundation for future innovations in network

control applications.

1.6.1 Formal Semantics for P4

P4 programming lacks a well-defined formal semantics, making it difficult to rea-

son about program behavior, ensure correctness, and standardize implementations

across targets. The language’s reliance on specialized constructs, target-dependent

execution, and ambiguous specifications further complicates its semantics.

This dissertation introduces a rigorous two-phase execution model for P4:

• Instantiation phase: Models the static resource allocation of the compiler,

generating an environment that maps P4 variables into compile-time known

values.

• Execution phase: Defines how packets are processed and state is modified

within the static environment.

This model aligns naturally with the static allocation of P4, offering a clear frame-

work for reasoning about the behavior of the program. For the purpose of demonstra-

tion, we have formalized the semantics of stateful externs on Intel Tofino switches.
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However, our semantics is readily extendable to other architectures and extern func-

tionalities.

Beyond theoretical clarity, this formalization also has tangible impact: it identified

23 errors or ambiguities in the official P4 standards, 17 of which have been corrected

in the latest version of the specifications and the compiler implementations. The

execution model serves as a reference for compiler developers and switch vendors,

enabling more predictable and reliable P4 program execution.

1.6.2 Verifiable Approximate Data Structures

Even with formal semantics, programming stateful applications in P4 remains chal-

lenging. Approximate data structures provide a practical way to manage state under

strict memory constraints but introduce two major difficulties:

• Hardware adaptation: Mapping the data structures to P4 without violating

architectural limitations.

• Verification: Ensuring functional correctness despite approximations.

To address the first challenge, we developed a synthesis framework for imple-

menting approximate data structures in P4. We generalize techniques for adapting

data structures so that they can operate efficiently within the constrained pipelined

architecture of the data plane. The implementation in P4 consists of three key steps:

• Preprocessing: Establishes cleaning mechanisms to periodically clear out-

dated entries from the data structure.

• State operations: Operates on the data structure distributed across stages.

• Postprocessing: Merges results across stages to generate query responses.

To verify the correctness of an implementation, we also adopted a layered verifi-

cation framework:
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• Concrete functional model: A parameterized functional model that closely

aligns with implementation of data structures in P4.

• Abstract functional model: A high-level functional model that specifies the

intended functionality of the data structure.

This layered approach separates concerns across different levels of abstraction.

Rather than directly verifying the P4 implementation—a complex and error-prone

task—we prove that the P4 program correctly implements the concrete model, which

in turn refines the abstract model. This composition yields an end-to-end correctness

guarantee: the P4 program satisfies the high-level properties captured by the abstract

model.

As a proof of concept, this dissertation presents a verified deployment of an ap-

proximate sliding-window Bloom filter, ensuring it satisfies the no-false-negative prop-

erty. This work bridges formal verification and real-world P4 applications, offering

correctness guarantees for stateful network programs.

1.6.3 A High-Level Network Control Language

Despite these advances in P4 semantics and data structure implementations, pro-

gramming traffic control in P4 remains tedious and error-prone. Developers must

manually select data structures and configure size parameters, as these decisions di-

rectly affect approximation accuracy and hardware feasibility. P4 compilers offer no

support in these tasks, leaving developers to rely on repetitive trial and error.

To address this challenge, this dissertation introduces Network Approximate Pro-

gramming (NAP), a high-level language that lifts developers above the low-level intri-

cacies of data structure selection, configuration, and implementation, enabling them

to write concise network control programs.
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The central abstraction in NAP is the approximate dictionary, a generic key-

value store where the key identifies a flow and the value encodes application-specific

state. Packets are inserted under their flow keys to update state and queried to re-

trieve state for flow-level control decisions. This interface captures a common pattern

across many network control tasks and provides a unifying abstraction over diverse

approximate data structures. To model practical approximation behavior, NAP char-

acterizes the approximate dictionary along two dimensions:

• Inclusion dimension: The key-value mapping may overapproximate or un-

derapproximate the state associated with each key.

• Temporal dimension: The dictionary retains state only over a recent time

window, rather than supporting arbitrary queries.

With these abstractions, developers express control intent at a high level, while

the NAP compiler automatically selects, configures, and implements the underlying

data structures. It searches the parameter space to find configurations that minimize

approximation error while satisfying the hardware constraints. Although such con-

straints restrict how data structures can be implemented, they also help narrow the

search space, enabling the compiler to solve the resulting constrained optimization

problem efficiently—typically in under a second. Building on our synthesis framework,

which provides verifiable modular data structure templates, the compiler generates

complete P4 programs that are directly deployable on the Intel Tofino.

As a proof of concept, we extend the Lucid language with support [42] for approx-

imate dictionaries and demonstrate NAP’s expressiveness through three reusable dic-

tionary classes—ExistDict, CountDict, and FoldDict. These abstractions are used

to implement a range of traffic control applications, achieving concise NAP programs

that exhibit approximation behavior matching the compiler’s analytical predictions.
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1.7 Dissertation Organization

This dissertation addresses key challenges in traffic control via three contributions:

• Chapter 2 introduces a formal semantics for P4 that improves the clarity and

correctness of P4 programming. This work was published in [47] and conducted

jointly with Qinshi Wang, with artifacts in [44].

• Chapter 3 presents frameworks for synthesizing and verifying approximate

data structures. Sections 3.1 and 3.2, published in [39], are the author’s work

with assistance from Hyojoon Kim, with artifacts in [40]. Sections 3.3 and 3.4,

published in [47], were developed jointly with Qinshi Wang, Shengyi Wang, and

Lennart Beringer, with artifacts in [45].

• Chapter 4 describes a high-level language for automating the selection and

configuration of data structures. This work was published in [39] and developed

by the author with assistance from Hyojoon Kim, with artifacts in [40].

Together, these contributions enable verifiable, efficient, and practical traffic con-

trol in programmable data planes, laying a foundation for future innovations in net-

work control applications.
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Chapter 2

P4 Semantics Formalization

P4 is a domain-specific language for programmable packet processing, designed to

offer flexible control over how network devices handle packets. To rigorously capture

the meaning of P4 programs, this chapter presents a mechanized formalization of the

P4 semantics in Coq.

As discussed in Section 1.5, P4 combines high-level programmability with target-

specific constraints. Accordingly, we divide its semantics into two components. The

core semantics define the behavior of the language independent of any hardware,

covering constructs such as controls, tables, and actions. The architecture seman-

tics describe interactions with target-specific components, such as externs and switch

models.

A formal understanding of a programming language requires a precise definition of

its evaluation model (Section 2.1)—that is, how a program should be interpreted.

For P4, this is especially important because execution is split into two distinct phases.

First, the program is evaluated at compile time, where all resources are allocated and

initialized. Then, at runtime, each packet is processed using these pre-instantiated

resources. Our semantics reflects this two-phase model by separating evaluation into

the instantiation phase (Section 2.2) and the execution phase (Section 2.3). This
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separation closely matches the evaluation model described in the P4 specification,

reflecting how P4 programs are compiled and run in the data plane in practice.

Previous efforts to formalize P4—most notably Petr4 [16]—borrowed techniques

from functional programming language semantics, such as function closures and dy-

namic allocation. While classic, these abstractions diverge from P4’s evaluation model

and can obscure core semantics. In contrast, our semantics closely follows the spec-

ification, offering a direct and transparent account of program behavior. Section 2.4

compares our approach to Petr4, highlighting improvements in clarity, modularity,

and fidelity.

To support multiple hardware targets, we define architecture semantics as modular

extensions. Section 2.5 demonstrates this by formalizing the switch behavior for the

VSS architecture and the extern behavior for the Intel Tofino architecture.

Finally, our formalization process systematically uncovered ambiguities and in-

consistencies in the P4 specification. Throughout this effort, we engaged with the P4

Language Design Working Group to help clarify and address these issues. Section 2.6

documents our findings and shows how formal semantics can contribute not only to

program reasoning, but also to language design and standardization.

2.1 P4 Evaluation Model

To support line-rate processing, programmable data planes are designed with rigid

architectures and limited hardware resources (Section 1.3). In particular, each hard-

ware component must be statically allocated, assigned to at most one P4 entity,

and accessed at most once per packet, prohibiting dynamic reallocation at runtime.

Reflecting this constraint, the P4 specification [37] defines an abstract model that

evaluates programs in two distinct stages:
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• Static instantiation: At compile time, all instantiations are evaluated with

compile-time-known constructor parameters.

• Dynamic execution: At runtime, each incoming packet executes invocations

using packet-specific runtime parameters to completion.

This two-phase model imposes a fundamental restriction: P4 forbids dynamic in-

stance creation at runtime. Controls, parsers, and extern classes must be instantiated

during compilation. As a result, many techniques from general-purpose programming,

such as dynamic memory allocation and higher-order functions, are not applicable to

P4.

Understanding this two-phase evaluation model is critical for developing a faithful

formal semantics for P4. In this section, we illustrate the hierarchical instantiation

process through a concrete example targeting the Intel Tofino architecture.

2.1.1 Hierarchical Instantiation on Intel Tofino

In Chapter 1.5, we introduced the VSS architecture to explain core P4 constructs.

To illustrate real-world instantiation behaviors, we now turn to the Intel Tofino ar-

chitecture [24], which provides a richer set of externs, including externs for runtime

state.

Figure 2.1 shows a fragment of the Tofino architecture. It defines its switch model

as a Switch package, parameterized by one or more Pipeline instances (line 13),

each requiring a parser, control, and deparser instance for ingress and egress packet

processing (line 9). The architecture also exposes two extern classes: Register, which

provides runtime state (lines 16-23), and RegisterAction, which enables user-defined

state accesses on registers (lines 24-31).

Figure 2.2 shows a P4 program targeting this architecture. The program,

count forward.p4, defines two controls: CountForwarder (lines 17-32), which
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1 # include <core.p4>

2

3 /* Programmable components */

4 parser IngressParserT <H, ..>( packet_in pkt , out H hdr , ..);

5 control IngressT <H, ..>( inout H hdr , ..);

6 control IngressDeparserT <H, ..>( packet_out pkt , inout H hdr , ..);

7

8 /* Switch model */

9 package Pipeline <IH , ..>( IngressParserT <IH , ..> ingress_parser ,

10 IngressT <IH , ..> ingress ,

11 IngressDeparserT <IH, ..> ingress_deparser ,

12 ..);

13 package Switch <..>( Pipeline <..> pipe0 , ..);

14

15 /* Target -specific extern classes for state and state access */

16 extern Register <T, I> {

17 // Constructor

18 Register(bit <32> size);

19 Register(bit <32> size , T initial_value);

20 // Methods

21 T read(in I index);

22 void write(in I index , in T value);

23 }

24 extern RegisterAction <T, I, U> {

25 // Constructor

26 RegisterAction(Register <T, I> reg);

27 // Methods

28 U execute(in I index);

29 abstract void apply(inout T value , optional out U rv);

30 ..

31 }

32 ..

Figure 2.1: Snippet from the Intel Tofino architecture tna.p4.

counts and forwards packets, and Ingress (lines 33-46), which dispatches packets to

the appropriate counter based on the transport protocol. Inside Ingress, two inde-

pendent instances of CountForwarder are created to separately count and forward

TCP and UDP traffic. Controls may have optional constructor parameters, such as

pbr in this example, which determines whether policy-based routing applies to TCP

and UDP traffic. Both the register state used for counting packets and the table

state used for storing forwarding mappings are independent across the two instances.

This setup illustrates how each instantiation produces its own copy of constructor

parameters and internal stateful entities: registers, register actions, and tables.
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1 #include <tna.p4>

2 #include <headers.p4>

3

4 parser Layer4Parser (..) { // call start parser state

5 state start {..}

6 state parse_ethernet {..}

7 ..

8 }

9 parser IngressParser(packet_in p, out header_t h, ..) {

10 /* Instantiate a parser */

11 Layer4Parser () layer4_parser;

12 state start {

13 layer4_parser.apply (..); // call parser ’s apply method

14 transition accept;

15 }

16 }

17 control CountForwarder (..) // runtime parameters

18 (bool pbr){ // constructor parameters

19 bit <32> num_pkts;

20 /* Instantiate extern classes */

21 Register <.. >(..) reg_cnt;

22 RegisterAction <..>( reg_cnt) ra_incr = {..};

23 action act_incr {

24 num_pkts = ra_incr.execute (0); // call extern ’s method

25 }

26 /* Instantiate a table implicitly */

27 table tbl_forward {..}

28 apply {

29 act_incr (); // call action

30 if (pbr) { tbl_forward.apply(); } // call table ’s apply method

31 }

32 }

33 control Ingress(inout header_t h, ..) {

34 /* Instantiate controls */

35 CountForwarder(true) tcp_ctrl;

36 CountForwarder(true) udp_ctrl;

37 table tbl_forward {..}

38 apply {

39 tbl_forward.apply ();

40 if (h.tcp.isValid ()) {

41 tcp_ctrl.apply (..); // call control ’s apply method

42 } else {

43 udp_ctrl.apply (..); // call control ’s apply method

44 }

45 }

46 }

47 control IngressDeparser(packet_out p, inout header_t h, ..) { .. }

48 .. // egress parser , control and deparser

49 Pipeline(IngressParser (), Ingress (), IngressDeparser (), ..) pipe;

50 Switch(pipe) main;

Figure 2.2: Instantiations and invocations in count forward.p4 on Intel Tofino.
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This program reflects a broader principle: in P4, parsers, controls, and ex-

tern classes must be explicitly instantiated. These entities behave like classes in

object-oriented programming: instances are created using constructors, and their

methods are invoked on those instances. Controls and parsers each expose a single

apply method, which, when called, executes their corresponding execution flow [Sec-

tion 13.10; Section 14.4 [37]].1 Tables are unique: although they encapsulate stateful

mappings, they are implicitly instantiated when defined, since a table is intended to

be used only once by its enclosing control instance. Like controls and parsers, tables

expose an apply method that triggers the table’s match-action evaluation when

invoked [Section 6.6.2 [37]]. In contrast, parser states, actions, extern functions,

and ordinary functions can be regarded as functions: they lack constructors and are

directly invokable.

Throughout this thesis, we use the term class to refer to declarations of parsers,

controls, and extern classes, and the term instance to refer to their instantiated

copies. We use the term function to refer to actions, tables, parser states, extern

functions, and ordinary functions. We collectively refer to methods and functions as

invocables. Instantiation in P4 is recursive: instantiating a class recursively instan-

tiates all classes and tables declared within it, ensuring isolation between instances.

Table 2.1 summarizes the properties of these different kinds of invocables, with further

discussion in the referenced sections.

2.1.2 Toward a Two-Phase Semantics

Our formal semantics adopts P4’s two-phase evaluation model, distinguishing:

1Conceptually, a parser may be regarded as providing an implicit apply method that consists
of a single statement invoking the start parser state.
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Entity Parser Control
Extern
Class

Table
Parser
State

Action
Ordinary
Function

Extern
Function

Type Class Function

Invocable Entity Method Self

Non-Extern
Invocable (§2.2.2) ✓ ✓ ✓ ✓ ✓ ✓

Procedural
Invocable (§2.3.4) ✓ ✓ ✓ ✓ ✓

Scope Path (§2.3.1) Curr. Inst. Curr. Inst. Curr. Inst. Encl. Inst. Encl. Inst. Encl. Inst. Top level Top level

Declared In
(§1.5.2) Top-Level Top-Level Top-Level Control Parser Control Top-Level Top-Level

Instantiated In
(§1.5.2)

Parser,
Packagea

Control,
Packagea

Parser,
Control,
Packagea,
Top-Level

Control — — — —

Invoked In
(§1.5.2) Parser state Apply block

Parser state,
Apply block,

Action
Apply block Parser state

Apply block,
Action

Parser state,
Apply block,

Action,
Ordin. Func.

Parser state,
Apply block,

Action

a Packages can be instantiated but not programmed. Controls, parsers, and externs can be
instantiated anonymously as constructor parameters to packages [Appendix F, [36]].

Table 2.1: Properties of classes and functions in our semantics after preprocessing.

• Instantiation phase (Section 2.2): Initializes persistent state and constructs a

static environment from declarations, binding globally unique paths to compile-

time-known entities such as code definitions, constants, and extern metadata.

• Execution phase (Section 2.3): Models runtime packet processing by eval-

uating statements along the control flow, with lookups performed against the

static environment.

This separation mirrors statically allocated structures in C and module instanti-

ation in hardware description languages like Verilog [38], where reusable modules are

replicated and bound to fixed hardware resources at compile time.

To support this separation, we design an intermediate language, P4light, that

cleanly separates declarations from statements. We generate type-annotated P4light

abstract syntax trees (ASTs) from P4 source programs using a front end adapted from

Petr4 [16]. The AST is implemented in the Coq proof assistant as a family of inductive

types, with distinct types for syntactic entities such as expressions, statements, and

declarations.
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To prepare the ASTs for the two-phase semantics, we introduce a preprocessing

pass that hoists the results of function calls and other side-effectful subexpressions

into temporary variables, preserving evaluation order while simplifying statements.

Additionally, all control flow is confined to statements by converting the initializers of

variable declarations into initialization statements inserted at the start of the control

flow.

For example, an assignment declared in a control block:

a = f(x + g(y)) + z;

is normalized to:

t1 = g(y);

t2 = f(x + t1);

a = t2 + z;

where the local variable a is initialized at the beginning of the apply block.

This normalization enforces a strict separation: declarations describe only

compile-time-known constructs, while runtime computation is expressed as a flat

sequence of statements. This design simplifies the semantics and aligns with P4’s op-

erational constraints. The resulting AST provides a formal foundation for specifying

the instantiation and execution phases, detailed in the following sections.

2.2 Instantiation Phase

The instantiation phase consists of two critical tasks: recording static information and

initializing persistent state. First, it establishes a naming scheme, assigning globally

unique paths and locally unique locators based on the program’s namespace

hierarchy. Then, it binds the globally unique paths of constants, instances, and

invocables to their corresponding compile-time known information, including constant
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values, instance references, extern metadata, and code definitions. Collectively, these

bindings form the static environment. In parallel, the instantiation phase initializes

the internal state of extern instances, such as registers, ensuring isolation across

instances. Once constructed, the static environment is passed unchanged into the

execution phase, providing the complete foundation for evaluating the P4 program,

with the initialized state serving as its starting point.

2.2.1 Globally Unique Paths and Locally Unique Locators

To support the instantiation and execution phases, our semantics assigns a globally

unique path to every P4 entity and a locator to every name in a P4 program. We

distinguish two related naming mechanisms:

• Globally unique paths: Fully qualified paths used for entries in static envi-

ronment and persistent state.

• Locally unique locators: Partial paths relative to their enclosing scope used

for stack frame addressing during execution.

This subsection focuses on how globally unique paths and locally unique locators are

constructed during the instantiation phase. Their usage will be discussed later in

Section 2.2.2 and Section 2.3.1.

Globally unique paths

According to the P4 specification [Section 18.3, [37]], the control plane uses fully

qualified names to uniquely configure entities such as registers and tables at runtime.

We adopt this naming scheme directly: in our semantics, control-plane names serve

as the globally unique paths for all P4 entities—classes, instances, invocables, tables,

variables, and constants.
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Paths are allocated based on the hierarchical structure of P4 namespaces, following

these rules:

• Top-level declarations: Classes, instances, functions, and constants declared

at the top level use their local identifiers as globally unique paths. For example,

in Figure 2.2, the package instance created by Switch(pipe, ..) main is

named main, and the control class defined by control CountForwarder(..)

is named CountForwarder.

• Nameless instantiations: When an instance is constructed inline as an argu-

ment, its globally unique path is derived by appending the parameter name to

the enclosing instance’s path. In the example above, the Ingress() instance

passed to the Pipeline constructor is named pipe.ingress, where ingress is

the parameter name defined in the architecture (see Figure 2.1, line 9).

• Nested declarations: Instances and variables declared within a class are

named by concatenating the enclosing instance’s path with the local name.

Likewise, invocables defined within a class are named by appending the local

name to the enclosing class’s path. Tables receive their instance paths and

class paths in the same way. For example, in Figure 2.2, the tcp ctrl in-

stance declared inside the Ingress control is named pipe.ingress.tcp ctrl.

Similarly, the table tbl forward inside the tcp ctrl instance has an instance

path pipe.ingress.tcp ctrl.tbl forward, and its apply method is named

CountForwarder.tbl forward.apply.

This hierarchical naming scheme guarantees global uniqueness by relying on lo-

cal uniqueness within each scope. It also preserves structural information: entities

created under the same parent share a common prefix, while instances produced by

instantiation share a common suffix.
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Locally unique locators

To statically distinguish between different bindings of the same identifier across

scopes, we annotate every name in the abstract syntax tree with a locator after pars-

ing and type checking. Locators compactly and uniquely identify variables within the

current namespace, enabling efficient access during execution without dynamic name

lookup. Locators come in two forms:

• LGlobal p: for names defined in the top-level scope.

• LInstance p: for names defined within a class scope.

Here, p is a path relative to its current scope. Specifically, for LInstance p, p

refers to the suffix of the globally unique path after removing the enclosing parser,

control, or extern instance’s prefix. For example, a local variable x declared inside

a control is annotated as LInstance x, while a variable x defined inside an action

act within the same control is annotated as LInstance act.x. Since P4 places strict

restrictions on where classes and functions may be declared (Table 2.1), the resulting

locator hierarchy remains shallow.

1 Definition loc_to_path (this : path) (loc : Locator) : path :=

2 match loc with

3 | LGlobal p => p

4 | LInstance p => this ++ p

5 end.

Figure 2.3: Converting locators to globally unique paths in Coq.

As shown in Figure 2.3, globally unique paths can be reconstructed from locators

by maintaining the current scope during execution. For an LGlobal p locator, the

globally unique path is simply p. For an LInstance p locator, it is obtained by

appending the relative path to the enclosing scope. For example, in Figure 2.2, the

register declared inside CountForwarder has the locator LInstance reg cnt; when
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accessed within the current path pipe.ingress.tcp ctrl, its globally unique path

resolves to pipe.ingress.tcp ctrl.reg cnt.

Together, globally unique paths and locally unique locators form the naming

scheme in our semantics. Paths uniquely identify all P4 entities in the static environ-

ment (Section 2.2.2) and the persistent state (Section 2.3.1), while locators serve as

static locations in the stack frame (Section 2.3.1).

2.2.2 Static Environment

With globally unique paths in place, the instantiation phase constructs the static

environment: a mapping from paths to compile-time known information, includ-

ing references, code definitions, extern metadata, constants, and types. In particu-

lar, it captures the code definitions of non-extern invocables—that is, invocables

programmed without reliance on architecture-specific semantics (i.e., all invocables

except extern methods and extern functions). Once constructed, this environment re-

mains unchanged throughout the execution phase. The static environment Γ consists

of the following components:

• Γdef : Maps paths of non-extern invocables to their code definitions.

• Γinst: Maps paths of instances to pairs of class names and instance locations.

• Γext: Maps paths of extern instances to their metadata (e.g., register size).

• Γconst: Maps paths of constants to compile-time known constant values, includ-

ing constructor parameters and constant declarations.

• Γtyp: Maps paths to compile-time known type definitions.

• Γsenum: Maps paths of serializable enum members to their numeric values.
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Among these, Γdef , Γinst, and Γext record static information about classes, instances,

and functions, while Γconst, Γtyp, and Γsenum record compile-time known values and

types.

For example, consider the tcp ctrl instance declared in Figure 2.2. Here,

Γconst stores its constructor parameter at pipe.ingress.tcp ctrl.pbr. Γinst maps

pipe.ingress.tcp ctrl to (CountForwarder, pipe.ingress.tcp ctrl), while

Γdef maps CountForwarder.apply to the apply block spanning lines 28–31. If

an alias to this instance is introduced, such as copy ctrl, then Γinst contains

an additional entry mapping pipe.ingress.copy ctrl to (CountForwarder,

pipe.ingress.tcp ctrl). This ensures references are correctly resolved.

As another example, a register instance in the Intel Tofino architecture is repre-

sented in Γext as a tuple (IndexWidth × ElementType × RegisterSize). These

metadata are supplied as constructor parameters and stored for use during subsequent

execution of the extern instance.

By separating code definitions, reference paths, and extern metadata, this design

avoids redundancy and supports modular analysis of classes and functions.

2.2.3 Static Instantiation and Initialization

Of the six components of the static environment, Γdef , Γtyp, and Γsenum can be

constructed directly by collecting relevant information in a single pass. In particular,

code definitions are inserted into Γdef by recursively traversing declarations. Figure 2.4

presents simplified pseudocode for the instantiation process, focusing on how the

remaining components—Γinst, Γconst, and Γext—are built. It also shows how the initial

persistent state of extern instances, spst, is populated; we will discuss this further in

Section 2.3.1.

In the pseudocode, the instantiate prog procedure iterates over top-level dec-

larations. Controls and parsers are recorded into decl env for later lookup when
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1 global Γinst, Γconst, Γext, spst, decl_env := []

2

3 procedure update(curr_path , local_env_r , local_env_w , decl) :=

4 next_path := curr_path ++ (decl.name)

5 if decl is an instantiation then

6 instantiate(next_path , local_env_r , decl)

7 else if decl is a constant then

8 v := evaluate(local_env_r , decl)

9 local_env_w := local_env_w[decl.name -> v]

10 if v is a value then

11 Γconst := Γconst[next_path -> v]

12 else // a constant instance reference

13 Γinst := Γinst[next_path -> v]

14

15 procedure instantiate(prev_path , local_env , decl) :=

16 class_name := decl.class_name

17 curr_path := prev_path ++ (decl.name)

18 local_env_init := local_env

19 for each param in decl.params

20 decl ’ := to_decl(param)

21 update(curr_path , local_env_init , local_env , decl ’)

22 Γinst := Γinst[curr_path -> (class_name , curr_path)]

23 if class_name is an extern then

24 args := local_env(decl.params)

25 (vstatic, vinit) := construct_extern(Γext, spst, class_name , args)

26 Γext := Γext[curr_path -> vstatic]
27 spst := spst[curr_path -> vinit]
28 else // class_name is a parser or control

29 body := decl_env[class_name]

30 for each decl ’ in body

31 update(curr_path , local_env , local_env , decl ’)

32

33 procedure instantiate_prog(prog) :=

34 local_env := []

35 for each decl in prog

36 if decl is a class then

37 decl_env := decl_env(decl.name -> decl)

38 else

39 if decl is an instantiation then

40 instantiate(ϵ, local_env , decl)

41 v := (decl.class_name , decl.name)

42 else

43 v := evalutate(local_env , decl)

44 local_env := local_env[decl.name -> v]

Figure 2.4: Pseudocode for instantiation and initialization.
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their instances are encountered (line 37)2. Meanwhile, local env tracks compile-time

known values for evaluating constants (line 44). For each instantiation declaration,

instantiate is invoked at the top-level path ϵ (line 40).

The instantiate procedure takes an instantiation and the enclosing scope. It

computes the current instance’s globally unique path by appending its local name to

the scope and adds an entry to Γinst (lines 17–22). For extern instances, a backend-

specific construct extern function updates their static configuration in Γext and

initializes their runtime state in spst (lines 23–27) (see Section 2.5.2).

Constructor parameters are first converted into declarations via to decl and then

processed by update, which either evaluates their constant values or recursively in-

stantiates them (lines 19–21). Evaluated values are stored in Γconst (line 11), while

references to instances are recorded in Γinst (line 13). For control and parser instances,

their inner declarations are similarly evaluated or instantiated (lines 28–31).

2.3 Execution Phase

Building on the static environment established during the instantiation phase, we

now turn to the execution phase, where we formally define the runtime behavior of

a P4 program during packet processing. This phase interprets statements using the

static environment as a guide and operates over a formal notion of program state,

which captures all information relevant to execution.

Unlike general-purpose programming languages, P4 is designed with hardware

constraints in mind—most notably, the absence of loops and recursion guarantees

that all P4 programs terminate. Consequently, we adopt a big-step operational

semantics to model execution: each P4 construct is evaluated in a single, inductive

step from an initial to a final program state.

2decl env is an environment mapping class names to closures, where each closure contains the
code definition and an environment to resolve free names.
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This section introduces the key components of P4 execution semantics:

• Section 2.3.1: formal definition of program state;

• Section 2.3.2: operational rules governing program evaluation;

• Section 2.3.3: nondeterminism in semantics arising from uninitialized bits;

• Section 2.3.4: semantics of invocation, which lie at the heart of the evaluation

model, demonstrating how the static environment is utilized during execution.

2.3.1 Program State

Before diving into presenting the operational semantics, we first define the structure

over which execution operates: the program state. This state represents a snapshot

of all variables and persistent state relevant to a packet’s traversal through a P4

program. Here, “program state” refers specifically to the programming language

concept, distinct from notions like data-plane state or traffic state.

Formally, a program state is a pair of two maps:

State := StackFrame× PersistentState

StackFrame := Locator → StorableValue

PersistentState := Path → StateObject

• StackFrame (slocal) maps locators to storable values, representing all local

variables in the current scope. These variables are specific to each packet,

so a fresh StackFrame is created for every packet. Since P4 does not support

dynamic pointers, variables are accessed directly via syntactic paths rather than

memory addresses. (See Section 2.3.3 for details on “storable values.”)
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• PersistentState (spst) maps globally unique paths to state objects. These ob-

jects represent persistent state shared across packets, so a single PersistentState

is maintained for all packets. For example, Tofino registers are modeled as ar-

rays stored in PersistentState, initialized during instantiation (Section 2.2.3)

and updated during execution.

Local variables are accessed through LInstance p locators in the stack frame.

These relative paths remain locally unique within the current scope. To ensure correct

scoping and variable lifetimes, the stack frame is either preserved when entering a

new scope or refreshed on entry and restored on exit. Specifically, invoking a table,

action, or parser state reuses the current stack frame, since these constructs access

variables declared in the enclosing parser or control instance and must preserve their

updates after returning. Variables declared within these invocables remain stored

in the stack frame but are inaccessible outside their scope due to their pre-assigned

locators. In contrast, invoking a new parser, control, extern instance, or top-level

function allocates a fresh stack frame at the callee’s scope, which is discarded upon

return (see Section 1.5.2 and Figure 1.4).3

Stateful entities such as tables and extern instances need to be uniquely identified

across packets and scopes. Therefore, unlike local variables, state objects are always

keyed by their globally unique paths in the persistent state. This design ensures

consistent access across scopes and packets, mirroring the conventions used in the

static environment.

This distinction between transient state and persistent state provides a clean foun-

dation for defining the operational semantics.

3A top-level function is scoped at ϵ as all its local variables are annotated with LGlobal locators
(see Section 2.2.1).
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2.3.2 Operational Semantics

Having defined the structure of the program state, we now present the operational

semantics for P4 execution. We adopt a big-step operational semantics, evaluating

each language construct in a single inductive step. In contrast to small-step seman-

tics, which decomposes execution into fine-grained transitions suited for modeling

nontermination, big-step semantics provides a more concise and natural framework

for P4. Since P4 programs are guaranteed to terminate, big-step semantics aligns

well with the language’s execution model.

The semantics is defined with respect to three key inputs: the static environment

Γ, the path p of the current scope, and the program state s. We adopt several nota-

tional conventions in the semantic rules. Variables—such as expressions exp, state-

ments stmt, and storable values v—are written in italics, while constants are typeset

in roman. A semicolon is appended to stmt to emphasize its role as a statement, and

an overline denotes a list of elements (e.g., vin for a list of input arguments).

Execution is formalized by the following core judgments, which define the seman-

tics of statements, call expressions, and invocable execution:

Γ, p, s ⊢ stmt;⇓ (s′, sig) (statement, 16 rules)

Γ, p, s ⊢ expcall(exparg) ⇓ (s′, sig) (call-expression, 3 rules)

Γ, p, s ⊢ (def, vin) ⇓ (s′, vout, sig) (invocable execution, 3 rules)

These judgments capture the high-level relations that govern invocation of func-

tions and methods according to the control flow in a P4 program. Each judgment is

defined by concrete inference rules, which describe the evaluation behavior inductively

based on the syntactic form being processed.
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Evaluation of the core judgments relies on the following six auxiliary judgments,

which handle expression evaluation, l-value operations, and invocable resolution:

s ⊢ lv ⇓read v (l-value read, 6 rules)

s ⊢ lv := v ⇓write s
′ (l-value write, 9 rules)

Γ, p, s ⊢ exp ⇓ v (expression, 18 rules)

Γ, p, s ⊢ exp ⇓ (lv, sig) (l-expression, 5 rules)

Γ, p, s ⊢ (dir, exparg) ⇓ (v, lv) (argument list, 5 rules)

Γ, p ⊢ expcall ⇓lookup (pscope, pdef) (invocable lookup, 5 rules)

These auxiliary judgments provide the underlying mechanisms for interpreting the

statement and invocation semantics.

As an illustrative example, the judgment Γ, p, s ⊢ stmt;⇓ (s′, sig) reads: “With

the static environment Γ, current scope p, and initial state s, execution of statement

stmt; produces a new state s′ and a signal sig.” The signal sig captures control

flow effects to handle return and exit statements in addition to normal completion.

Figure 2.5 shows a selection of inference rules for the statement judgment. In each

rule, the premises (above the line) must be satisfied in order to derive the conclusion

(below the line).

• E-StmtSeq1: If the first statement completes normally, execution proceeds

with the second statement.

• E-StmtSeq2: If the first statement yields an abnormal control signal (e.g.,

return), the second statement is skipped.

• E-StmtReturn: A return statement evaluates its expression and emits a

return signal.
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Γ, p, s ⊢ stmt1 ⇓ (s′, normal) Γ, p, s′ ⊢ stmt2 ⇓ (s′′, sig)

Γ, p, s ⊢ stmt1; stmt2;⇓ (s′′, sig)
E-StmtSeq1

Γ, p, s ⊢ stmt1 ⇓ (s′, sig) sig ̸= normal

Γ, p, s ⊢ stmt1; stmt2;⇓ (s′, sig)
E-StmtSeq2

Γ, p, s ⊢ exp ⇓ v

Γ, p, s ⊢ return exp;⇓ (s, return v)
E-StmtReturn

Γ, p, s ⊢ expcall(exparg) ⇓ (s′, sig)

Γ, p, s ⊢ expcall(exparg);⇓ (s′, sig)
E-StmtCall

Figure 2.5: Selected semantic rules for statements.

• E-StmtCall: A call expression is evaluated by delegating to the call-

expression judgment (explained in Section 2.3.4).

These rules exemplify the recursive nature of big-step semantics: evaluating a com-

pound construct involves recursively evaluating its components, potentially invoking

other core or auxiliary judgments.

2.3.3 Nondeterministic Semantics

One subtle, yet important, aspect of P4 execution is the nondeterminism introduced

by uninitialized bits. This arises from hardware constraints and optimization strate-

gies employed by P4 compilers.

In programmable data planes, uninitialized variables often share PHV containers

with initialized ones. Since fixed-width ALUs operate on entire containers, uninitial-

ized bits may be unintentionally altered by operations on neighboring fields. While

isolating uninitialized bits would avoid this issue, it is generally infeasible: switches

like Intel Tofino provide only 200–300 fixed-width containers, and such separation

would quickly exhaust temporary storage. As a result, reading from an uninitialized

variable yields an unspecified value, and subsequent reads may produce different re-
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1 /* Reading an uninitialized variable */

2 bit <8> x, y, z;

3 y = x;

4 z = x; // z may differ from y

5 /* Partially initializing a variable */

6 x[6:0] = 0; // Top bit is uninitialized; x may read as 0 or 128

7 x = x << 1; // Fully initialized; x reads as 0

Figure 2.6: Nondeterminism in reading P4 uninitialized variables.

sults (see Figure 2.6). This behavior is acceptable in P4, as well-defined programs

are not expected to rely on the contents of uninitialized variables.

To model this formally, we introduce storable values whose bits may be 0 or 1

when initialized, or ⊥ when uninitialized. Rather than marking an entire value as

uninitialized, we adopt this bit-level representation to support operations like shifting

or slicing that may partially propagate undefined bits (see Figure 2.6). Semantically,

when a variable is declared but not initialized, its storable value is filled with ⊥

bits. When such a variable is evaluated, its unspecified bits are nondeterministically

replaced with either 0 or 1.

While the P4 specification did not specify when this replacement occurs, we clarify

it based on discussions with the P4 Language Design Working Group. For instance,

in our semantics, storable values are determinized before being used as operands in

arithmetic expressions, on the right-hand side of assignments, or as input arguments

to an invocable. Conversely, storing the evaluation results back into the stack frame

converts two-valued bits back to three-valued storable bits.

Our semantics thus formalizes P4’s inherent nondeterminism, permiting multiple

valid outcomes for the same uninitialized variable. We interpret an abstract judgment

a ⇓ b in our operational semantics as representing one possible outcome, not the

only one. This forms the basis for verification under nondeterminism: a program

satisfies a property if all possible outcomes satisfy that property. In contrast, other

P4 semantics like Petr4, resolve nondeterminism by selecting a single outcome—
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e.g., defaulting uninitialized bits to zero using a “havoc” operator. While this is a

valid interpretation, it is not sufficient for verifying program correctness under full

nondeterminism. For instance, in Figure 2.6, such semantics would force both y and

z to read as 0, masking the fact that uninitialized reads may differ. We elaborate on

this distinction in Section 2.4.4.

2.3.4 Invocation Semantics

The heart of P4 execution lies in the semantics of invocations, which encompass calling

functions and instances’ methods. Invocations serve as the bridge between the control

flow and the invocable entities, relying on the static environment generated during

instantiation.

The call-expression judgment:

Γ, p, s ⊢ expcall(exparg) ⇓ (s′, sig)

dispatches execution based on the invoked entity’s type. There are three rules that

govern this judgment; two are illustrated in Figure 2.7.4

The primary distinction between these two rules lies in the scope of the stack

frame. As discussed in Section 2.3.1, inner functions can access the caller’s local

variables, while instances and top-level functions allocate new stack frames. Apart

from this, evaluation follows four common steps, corresponding to the four lines in

the premises:

1. Invocable lookup: The invocable lookup judgment determines both the

scope of the stack frame and the path of the invocable pdef. If the scope is ⋆, the

caller’s stack frame is reused; otherwise, a new stack frame is allocated. The

code definition def is then retrieved from the static environment Γdef using pdef.

4The omitted rule handles P4 built-in functions and methods such as isValid() (Figure 2.2,
line 40). The evaluation requires no lookup, and a built-in invocable execution judgment is used.
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kind(expcall) ̸= builtin
(1) Γ, p ⊢ expcall ⇓lookup (⋆, pdef) def = Γdef(pdef)

(2) dir = dirs(expcall) Γ, p, s ⊢ (dir, exparg) ⇓ (vin, lv)
(3) Γ, p, s ⊢ (def, vin) ⇓ (s′, vout, sig)

(4) s′ ⊢ lv := vout ⇓write s
′′

Γ, p, s ⊢ expcall(exparg) ⇓ (s′′, sig)
E-ExpCall1

kind(expcall) ̸= builtin
(1) Γ, p ⊢ expcall ⇓lookup (pscope, pdef) def = Γdef(pdef)

(2) dir = dirs(expcall) Γ, p, s ⊢ (dir, exparg) ⇓ (vin, lv)
(3) Γ, pscope, ([ ], spst) ⊢ (def, vin) ⇓ (( , s′pst), vout, sig)

(4) (slocal, s
′
pst) ⊢ lv := vout ⇓write s

′′

Γ, p, (slocal, spst) ⊢ expcall(exparg) ⇓ (s′′, sig)
E-ExpCall2

Figure 2.7: Selected semantic rules for call expressions.

2. Argument evaluation: The argument list judgment evaluates arguments

into storable values and l-values according to parameter directions. P4 employs

a copy-in/copy-out mechanism: in arguments become determinized storable

values that will be copied into parameters in step 3; out arguments become

assignable l-values for receiving output values in step 4; inout arguments serve

both roles. Arguments are thus split into two lists: v for in/inout arguments

and lv for out/inout arguments.

3. Invocable execution: The invocable execution judgment evaluates the

retrieved code definition def with input arguments, producing a new state,

output values, and a return signal.

4. Parameter copying-out: The l-value write judgment assigns output values

back to arguments in the caller’s stack frame and, together with the updated

persistent state, generates the final program state.

Among these steps, the invocable lookup and execution judgments are particularly

critical and hence are detailed below.

49



Invocable lookup judgment

The invocable lookup judgment queries the static environment to resolve the invocable

referenced in a call expression to its stack frame scope and class path. Figure 2.8

presents the semantic rules, using the static environment Γinst to resolve class names

and instance paths. The first two rules handle identifier expressions for function calls,

while the remaining three handle member expressions for method calls. All identifiers

are pre-annotated with locators (n@locator), and · denotes path concatenation.

Γ, p ⊢ n@(glob pfun) ⇓lookup (ε, pfun)
E-LGlob

Γinst(p) = (nclass, p)

Γ, p ⊢ n@(inst pfun) ⇓lookup (⋆, nclass · pfun)
E-LInst

kind(ntbl@(inst ptbl)) = table Γinst(p) = (nclass, p)

Γ, p ⊢ ntbl@(inst ptbl).nmeth ⇓lookup (⋆, nclass · ptbl · nmeth)
E-LTable

kind(ninst@(glob pinst)) ̸= table Γinst(pinst) = (nclass, p
′
inst)

Γ, p ⊢ ninst@(glob pinst).nmeth ⇓lookup (p
′
inst, nclass · nmeth)

E-LMemGlob

kind(ninst@(inst pinst)) ̸= table Γinst(p · pinst) = (nclass, p
′
inst)

Γ, p ⊢ ninst@(inst pinst).nmeth ⇓lookup (p
′
inst, nclass · nmeth)

E-LMemInst

Figure 2.8: Semantic rules for invocable lookup.

• E-LGlob: For top-level extern and ordinary functions, a new stack frame is

allocated at the global scope ϵ.

• E-LInst: For local actions and parser states, the caller’s stack frame is reused.

• E-LTable: For a table’s apply method, the caller’s stack frame is reused.

• E-LMemGlob: For methods of global extern instances, a new stack frame is

allocated at scope p′inst.

• E-LMemInst: For methods of local control, parser, and extern instances, a

new stack frame is allocated at scope p′inst.
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In general, these rules first resolve class names and references of new scope using

Γinst. The full class path is then constructed by appending function and method

names as needed.

Invocable execution judgment

The invocable execution judgment evaluates the code definition retrieved from the

static environment. Semantically, tables are treated differently from other non-extern

invocables: while tables declaratively map keys to actions, other non-extern invoca-

bles specify control flow through a sequence of statements. We refer to the latter as

procedural invocables. To reflect this distinction, the semantics defines separate

rules for procedural invocables, tables, and externs, as shown in Figure 2.9.

s ⊢ pin := vin ⇓write s
′

Γ, p, s′ ⊢ stmt ⇓ (s′′, return v)
s′′ ⊢ pout ⇓read vout

Γ, p, s ⊢ (fproc (pin, pout, stmt), vin) ⇓ (s′′, vout, return v)
E-FProc

Γ, p, s ⊢ key ⇓ v spst(p.ntable) = entry

(v, kind, entry) ⇓match naction(exp2) (naction, exp1) ∈ action
Γ, p, s ⊢ naction(exp1, exp2) ⇓ (s′, return null)

Γ, p, s ⊢ (ftable(ntable, key, kind, action), [ ]) ⇓ (s′, [ ], return naction)
E-FTable

dvin := [vin]v Γ, p, spst ⊢ (nclass, nmeth, dvin) ⇓ext (s
′
pst, dvout, sig)

Γ, p, (slocal, spst) ⊢ (fextern (nclass, nmeth), vin) ⇓ ((slocal, s
′
pst), [dvout]sv, sig)

E-FExt

Figure 2.9: Semantic rules for invocable execution.

• E-FProc: Applies to procedural invocables. Evaluation copies input argu-

ments into parameters in the stack frame, executes the body statement, and

finally reads output parameters.

• E-FTable: Applies to tables. Key expressions are evaluated to values; ta-

ble entries are retrieved from the persistent state spst. A matching entry is
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selected based on the key values, invoking the corresponding action via the

call-expression judgment.

• E-FExt: Applies to extern functions and methods. Evaluation is delegated

to a backend-specific extern judgment. Since nondeterminism arises from core

P4 semantics, the extern judgment operates over plain values, requiring value

conversions before and after evaluation.

In summary, invocation semantics bridge static instantiation and dynamic execu-

tion, precisely capturing the interaction between compile-time program structure and

runtime behavior.

2.4 Comparison with Petr4

Petr4 [16] introduced the first formal semantics for P4, consisting of a pen-and-paper

semantics for a subset of the core language and an executable OCaml interpreter.

Although these two artifacts were designed to be consistent, they are not formally

connected by mechanized proofs. In contrast, our semantics is fully mechanized in the

Coq proof assistant, and our reference interpreter—an executable OCaml program—

is extracted directly from the operational semantics. The interpreter shares code with

the formal relations and is proven correct with respect to them.

Beyond these implementation differences, the two approaches reflect a deeper

divergence in semantic design philosophy. Petr4 evaluates P4 programs by mixing

instantiation and execution, adopting techniques from general-purpose languages such

as dynamic memory allocation, instantiation, and initialization. In contrast, our

semantics leverages P4’s domain-specific constraints to cleanly separate instantiation

from execution. Specifically, our instantiation phase:

• assigns static locators and paths, eliminating dynamic memory allocation,
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• builds a static environment, eliminating dynamic instantiation, and

• initializes state objects, eliminating dynamic initialization.

In the following subsections, we compare the two semantics in detail.

2.4.1 Allocation of Memory Locations

In Petr4’s core semantics, the execution state consists of two maps:

Environment ϵ := Name → Location

Store σ := Location → Value

The environment ϵ maps names to dynamically allocated memory locations, and the

store σ maps locations to runtime values, including both data (such as variables and

state objects) and code (such as closures for functions).

Memory locations in Petr4 are allocated at runtime in two cases:

• Names of state objects use their control-plane names as locations.

• All other names—including variables, instances, classes, and functions—allocate

fresh locations dynamically, typically managed by an incrementing counter.

Accessing a name thus requires a two-step lookup: first through the environment ϵ

to find the location, and then through the store σ to retrieve or update the value.

In contrast, our program state stores only runtime data. Code definitions, con-

stants, and types are stored separately in the static environment Γ.

Our semantics eliminates dynamic memory allocation entirely by assigning all

locations statically during the instantiation phase (Section 2.2.1). Variables and state

objects are each assigned unique locators and paths. As a result, our program state

no longer keeps track of unused locations nor maintains a dynamic mapping from
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names to locations, as Petr4 does. Instead, variables and state objects are accessed

directly through their statically assigned locations, eliminating a layer of indirection.

This design not only simplifies the operational semantics but also aligns with the

P4 compilation process, where memory layouts are determined statically.

2.4.2 Initialization of State Objects

State objects maintain architecture-defined or user-defined state that persists across

packets. While both Petr4 and our semantics associate state objects with control-

plane names for consistent identification, their initialization strategies differ:

• Petr4: State objects are initialized dynamically at runtime. Each access checks

whether the object has been initialized: if not, a new object is created on the

spot; otherwise, the existing object is reused. This dynamic check introduces

an asymmetry between the first and subsequent accesses, complicating the ex-

ecution semantics by requiring conditional branches.

• Our semantics: State objects are initialized statically during the instantia-

tion phase (Section 2.2.3). Precomputing state objects before packet execution

ensures that they are available at the start of processing, mirroring how externs

are preconfigured in the data plane. This design guarantees uniform execution

across packets and simplifies both reasoning and implementation.

2.4.3 Instantiation of Non-Extern Classes

Since Petr4 uses a single-phase execution model that interleaves instantiation and

execution, it evaluates non-extern class declarations, class instantiations, and invoca-

ble declarations at runtime by constructing closures. Formally, a closure is a record

containing:

• the code definition (both declarations and statements), and
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• an environment ϵ capturing the variable bindings in scope at closure creation.

Capturing the environment ϵ ensures that updates to free variables remain visible

when the closure is eventually used for execution.

Closures in Petr4 take several forms:

• Declaring a control stores a constructor closure in the store σ.5

• Instantiating a control or declaring a non-extern invocable stores a general clo-

sure in the store σ.

• Declaring a table stores a table closure in the store σ.

value val ::= cclos(ϵ, ctrl(d x : τ)(xc : τc){decl stmt}) (constructor closure)

| clos(ϵ,X, d x : τ , τ, decl stmt) (general closure)

| table ℓ(ϵ, key, act) (table closure)

| . . .

For example, when a control is instantiated from its constructor closure, Petr4

evaluates the constructor parameters xc, stores their values in the store σ and the

closure’s environment ϵ, and stores the resulting general closure—all at fresh memory

locations to ensure instance isolation. Later, invoking the control’s apply method

retrieves the closure, restores closure’s environment ϵ, and executes the stored code.

While closure-passing mirrors techniques from functional programming, it adds

runtime complexity: closures and runtime values intermingle in the store σ, and code

definitions are duplicated across instances.

In contrast, our semantics handles class instantiation and function definitions

statically:

• Instantiation records each instance’s path and class name in the static environ-

ment Γinst, resolving any references. Constructor parameters and constants are

evaluated and stored in Γconst.

5Petr4 does not support parsers, but they would likely be handled analogously.
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• Code definitions for non-extern invocables are stored once in Γfun. Since decla-

rations are fully processed during instantiation, only statements are retained in

Γfun.

• At runtime, our semantics manage variable scope through stack frames using

the invocable lookup judgment (Section 2.3.4), without storing environments of

free variables dynamically.

This static approach eliminates closure-passing, reduces runtime complexity, and

enables modular reasoning about classes and functions.

2.4.4 Handling of Uninitialized Bits

Both Petr4 and our semantics acknowledge that reading uninitialized bits can yield

nondeterministic behavior. However, they handle this nondeterminism differently:

• Petr4: Models uninitialized reads using a “havoc” operator that can produce

arbitrary sequences of values. The operator can be parameterized to allow

target-specific behavior. However, the interpreter concretizes a single sequence

per execution, limiting systematic exploration of nondeterminism.

• Our semantics: Represents uninitialized bits explicitly as ⊥, with nondeter-

ministic operational rules that admit all possible behaviors (Section 2.3.3). This

systematic treatment allows reasoning about all possible outcomes, faithfully

capturing hardware-level nondeterminism.

The fundamental differences between Petr4 and our semantics stem from our de-

sign choices aimed at improving clarity, aligning with P4’s compilation model, and

enabling mechanized verification. Specifically, our semantics:

• separates instantiation from execution,
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• eliminates dynamic memory allocation,

• pre-initializes state objects,

• avoids dynamic instantiation and closure-passing, and

• systematically models nondeterminism.

These features provide a simpler foundation that aligns with the P4 language

specification and supports building verification systems for P4—a broader objective

explored in Wang’s dissertation [46].

2.5 Architecture Semantics

Although architecture is not part of P4’s core semantics, it is essential for formalizing

program evaluation. Each P4 architecture semantics defines:

• Switch model (Section 2.5.1): execution flow over programmable components.

• Extern semantics (Section 2.5.2): behavior of architecture-specific externs.

Our semantics is parameterized over an architecture, providing modular support

across hardware targets. This parameterization is formalized through the Target class

(Figure 2.10), where exec prog defines the switch model as an inductive relation, and

extern sem defines the extern semantics as a class. Supporting a new architecture

requires supplying a Target instance specifying both components.

2.5.1 Switch Model

P4 program execution begins with the top-level package instance main, parameterized

by the architecture’s parser, control, and deparser components. The switch model

semantics governs how these components are invoked and connected to process each

packet.
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1 Class Target := {

2 exec_prog: ..;

3 extern_sem: ExternSem;

4 }.

5 Class ExternSem := {

6 extern_info: Type;

7 extern_env := PathMap.t extern_info;

8 state_object: Type;

9 persistent_state := PathMap.t state_object;

10 construct_extern: ..;

11 exec_extern: ..;

12 }.

Figure 2.10: Coq interface for architecture semantics.

Formally, execution is described by a relation linking the input packet and initial

persistent state to the output packet and final persistent state. Figure 2.11 illustrates

this inductive relation for the VSS architecture.

spst 1 := spst 0[main.parser.pkt 7→ pktin;main.deparser.pkt 7→ [ ]] md:= {portin; 0}
Γ, ϵ, ([ md], spst 1) ⊢ main.parser.apply( hdr) ⇓ (s2, normal)

Γ, ϵ, s2 ⊢ main.pipe.apply( hdr, md)) ⇓ (s3, normal)
Γ, ϵ, s3 ⊢ main.deparser.apply( hdr)) ⇓ (( , spst 4), normal)

pktout := spst 4(main.deparser.pkt)

Γ, spst 0, pktin, portin ⊢ Switch(..) main ⇓ (spst 4, pktout)

Figure 2.11: Inductive relation for the switch model in the VSS architecture.

This relation updates the persistent state with the input packet pktin and initial-

izes the stack frame with architecture-specific metadata md. It sequentially invokes

the parser, pipe, and deparser using the call-expression judgment, wiring param-

eters between them. For example, the parser outputs the extracted header ( hdr)

as an out parameter, which is passed as an inout parameter to the pipeline and de-

parser.6 In effect, the switch model orchestrates parameter preparation, coordinates

6The packet in and packet out parameters are not passed explicitly; as directionless parame-
ters, they must be compile-time-known and are treated as constructor parameters, not part of the
runtime call.
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the invocation of main’s components, and produces the final output packet pktout,

maintaining persistent state across execution.

The VSS architecture is simple: it processes one packet at a time in strict sequence.

By contrast, architectures like Intel Tofino introduce additional mechanisms—such as

packet replication, mirroring, and resubmission—which require modeling extra built-

in pipelines. We explore these architecture-specific complexities in [48].

2.5.2 Extern Semantics

The extern semantics describe the behavior of architecture-defined extern classes and

functions. These are encapsulated in the ExternSem class (Figure 2.10), whose key

components include:

• extern env (Γext): the extern environment (Section 2.2.2), which stores extern

instance metadata, extern info;

• persistent state (spst): the persistent state (Section 2.3.1), which stores state

objects, state object;

• construct extern: the instantiation function (Section 2.2.3), which collects

extern info and initializes state object during the instantiation phase;

• exec extern: the extern judgment (Section 2.3.4), which defines the semantics

of extern method and function calls.

We now focus on the last component, exec extern. Among the roughly 40 extern

classes and functions defined in Intel Tofino, we highlight two key stateful externs:

Register and RegisterAction. As defined in Figure 2.1, a Register holds runtime

state and exposes read and write methods. A RegisterAction wraps a register

and provides an execute method, which performs a read-modify-write sequence by

invoking the user-defined abstract method apply to compute modification.

59



1 Register <bit <32>, bit <1>>(1, 0) reg_cnt;

2 /* Abstract methods are implemented in the initializer block. */

3 RegisterAction <bit <32>, bit <1>, bit <32>>( reg_cnt) ra_incr = {

4 void apply(inout bit <32> value , out bit <32> rv) {

5 value = value + 1;

6 rv = value;

7 }

8 };

Figure 2.12: Register and RegisterAction for counters in count forward.p4.

Abstract methods are essential in Tofino because registers are bound to pipeline

stages and can be accessed only once per packet. As a result, operations requiring

both a read and a write, such as incrementing a counter, must be performed atomically

within a single access. The abstract method provides a programmable mechanism for

specifying these in-place updates.

Figure 2.12 shows the expanded code from count forward.p4 (Figure 2.2), where

a RegisterAction is instantiated to increment the Register instance. Later, invok-

ing ra incr.execute(0) inside the action act incr increments the zeroth register

cell, writes back the result, and returns it to num pkts (line 24, Figure 2.2).

Figure 2.13 presents selected semantic rules formalizing these three behaviors.

width, type, size := Γext(p) reg := spst(p) width(i) = width
v := (0 ≤ i < size) ? reg(i) : [[type]sv]v

Γ, p, spst ⊢ (“Register”, “read”, [i]) ⇓ext (spst, [ ], return v)
E-Tf-RegRead

width, type, size := Γext(p) reg := spst(p) width(i) = width
s′pst := (0 ≤ i < size) ? spst[p 7→ reg[i 7→ v]] : spst

Γ, p, spst ⊢ (“Register”, “write”, [i, v]) ⇓ext (s
′
pst, [ ], return null)

E-Tf-RegWrite

preg := Γext(p) def := Γext(p.apply)
width, type, size := Γext(preg) reg := spst(preg) width(i) = width

vreg := (0 ≤ i < size) ? reg(i) : [[type]sv]v
Γ, p, ([ ], spst) ⊢ (def, [vreg]sv) ⇓ (( , spst), [v

′
reg, vret], return null)

s′pst := (0 ≤ i < size) ? spst[preg 7→ reg[i 7→ v′reg]] : spst

Γ, p, spst ⊢ (“RegisterAction”, “execute”, [i]) ⇓ext (s
′
pst, [ ], return vret)

E-Tf-RActExe

Figure 2.13: Selected semantic rules for extern judgment in Intel Tofino.

60



• E-Tf-RegRead: Reads the register value at index i if valid; otherwise, returns

a nondeterministic value.

• E-Tf-RegWrite: Writes a value to index i if valid; otherwise, leaves the

register unchanged.

• E-Tf-RActExe: Executes a RegisterAction by reading the register at index

i, invoking the apply method, writing back the updated result, and outputting

the return value.

2.6 Clarifying the P4 Specification

Although P4 has gained traction as both a specification and programming language,

its official definition lacks a precise semantic foundation. The P4 specification—a

170-page document maintained by the Language Design Working Group (LDWG)—is

written in a mix of informal prose, code snippets, diagrams, and grammar rules. While

generally well-organized, it omits a formal semantic model, leaving many language

constructs ambiguous or underspecified.

This lack of formal grounding has also led to inconsistencies across the P4 ecosys-

tem. Open-source compilers such as p4c implement the language based on inter-

pretations of the informal specification, resulting in divergences and, in some cases,

bugs.

Our formalization establishes a rigorous semantic foundation for P4 by closely

following the specification (version 1.2.2) [36]. When we encountered omissions, in-

consistencies, or ambiguities, we filed issues in the specification repository and, when

applicable, reported related compiler bugs in the p4c repository. In total, 23 spec-

ification issues were filed, 17 of which have been resolved and incorporated in the

latest version (version 1.2.5) [37]; 4 compiler issues, were filed, all of which have been

addressed. Table 2.2 summarizes these findings.
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Section Issue Git Status p4c Bug

Expr-
ession

8.5, 8.6 Bit slicing index types are not clearly defined. 955 Released No

8.5 Concatenation is incorrectly omitted from the allowed
operations on unsigned bitstrings.

956 Released No

8.5, 8.6 Concatenation is not properly excluded from the binary
operations that require same-type operands.

956 Released No

8.9.2 Concatenation and shift are not properly excluded from
the binary operations that permit implicit casts.

957 Released No

8.9.2 Implicit cast rules for serializable enums are unclear. 958 Released Yes

8.7 Right operand types of shift are not explicitly defined. 959 Released No

8.11,
8.12

Implicit conversions of lists, tuples, structs, and headers
are not clearly specified.

953 Stalled No

8.10-12,
8.14-15

Allowed comparisons between lists, tuples, structs, and
headers are not clearly specified.

960 Stalled Yes

8.10 Explicit casts incorrectly omit derived types. 961 Released No

8.7 Bit slicing of integers is incorrectly unspecified. 1015 Released No

8.22 The determinization when reading uninitialized bits is
vague and confusing.

988 Stalled Maybe

8.13 Allowed types in set operations are underspecified. 969 Released No

Name

17.3 Control plane objects incorrectly omit value sets. 962 Released No

6.8 Name duplication and name shadowing are undefined. 974 Stalled Maybe

6.4 Naming conventions for built-in methods, fields and
keywords are inconsistent.

1004 Stalled Yes

Instan-
tiation

11.3,
App.H

Instantiation is incorrectly permitted as a possible
statement.

975 Released Yes

17.2 Compile-time known values are not clearly specified. 932 Released Maybe

12.10,
13.4

The behavior of local instantiations and variables dur-
ing parser and control instantiation is underspecified.

926 Released No

10.3.1 Abstract methods introduce back doors that may allow
undesired behavior such as recursion and parser invo-
cation in controls.

973,
976,
979

Stalled Maybe

Invocable

App.F Parameter type rules incorrectly omit extern functions
as a possible invocable.

972 Released No

6.7.2 Optional parameters are incorrectly disallowed in
parser and control types.

977 Released No

13.2 Default action does not correctly default to NoAction

when not specified in a table.
933 Released No

13.1 Sources of action data are defined ambiguously. 914 Released No

Table 2.2: Specification issues identified during our formalization of P4 semantics.

Section gives the section number in the P4 specification (version 1.2.2) [36]. Git gives
the issue number in the P4 specification repository [35]. A status of “stalled” means the
issue is acknowledged but unresolved; “released” indicates the fix is included in a
published version. Some issues also reflect p4c compiler bugs.
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Over half of the issues involve expressions such as bit slicing, shifting, and casting.

Because their behavior is described in prose, the specification is often inconsistent or

incomplete. For example, issue 956 concerns the concatenation operator (Figure 2.14):

although the specification claims that concatenation applies to both signed and un-

signed bitstrings, it is listed only under operations for signed bitstrings and omitted

from the list of binary operators that permit mixed signedness.

1 bit <8> x = 8w0x0001;

2 int <4> y = 4s0xFF;

3 bit <16> xx = x ++ x; // 16 w0x00010001

4 int <8> yy = y ++ y; // 8s0xFFFF

5 int <12> xy = y ++ x; // 12 s0xFF0001

6 bit <12> yx = x ++ y; // 12 w0x0001FF

Figure 2.14: ++ concatenates two bitstrings, taking the signedness of the left operand.

Another example, issue 958, highlights ambiguity in the treatment of serializable

enums. The specification permits implicit casts to the enum’s underlying bitstring

type but does not specify where such casts are valid. We clarified this by exhaustively

testing cases in p4c, consulting the LDWG, and submitting a comprehensive enumer-

ation of valid cast scenarios. Discrepancies were reported to the p4c repository.

Beyond expressions, we uncovered more fundamental flaws in the evaluation

model, particularly in instantiations and invocables. Issue 975 revealed that the

grammar erroneously allowed instantiations as statements, despite the fact that

neither p4c nor Tofino supports this. This discrepancy led to a correction of the

grammar. Similarly, issue 933 was resolved by specifying that a table’s default action

defaults to NoAction when unspecified.

While we resolved most issues through pull requests, six remain open. These reflect

deeper challenges in P4’s design and formalization, which fall into three categories:

generalization difficulties, backward compatibility, and hardware constraints.
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Generalization complexities: operations on composite types

Issues 953 and 960 concern implicit conversions between composite types, including

list expressions, tuples, struct-valued expressions, structs, and headers. The specifi-

cation lists a few isolated cases—such as assigning a list to a struct or comparing a

struct-valued expression to a struct—but lacks general rules. In contrast, p4c sup-

ports a broader and more coherent set of conversions that resemble implicit casts.

Ideally, these behaviors would be formalized as implicit casts, but this would require

new types for list and struct-valued expressions, along with support for nested casts.

Moreover, since p4c currently implements these conversions as internal rewrites, align-

ing them with cast-based semantics would entail substantial changes to this compiler.

The LDWG has not yet reached consensus on how to proceed with this redesign.

Backward compatibility: naming rules

Issue 974 notes that the specification does not clearly define name duplication or

shadowing. Formalizing stricter rules would risk breaking legacy code across targets.

Similarly, issue 1004 highlights inconsistent naming conventions: built-in methods

appear in both camelCase (e.g., isValid) and snake case (e.g., push front). Be-

cause many of these names are exposed in control-plane APIs, renaming them would

break compatibility with existing tools.

Hardware constraints: abstract methods and uninitialized bits

Abstract methods, introduced primarily to support Tofino externs such as

RegisterAction, expose two key design dilemmas.

Issue 973 illustrates a tension between expressiveness and safety: allowing ab-

stract methods to call methods of the same instance increases functionality, but risks

enabling recursion—explicitly prohibited by the specification. Issue 976 reflects a

similar trade-off: enabling instantiations alongside abstract method definitions in an
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initializer block increases expressiveness but may inadvertently violate the existing

instantiation restrictions—such as allowing instantiating a control within a parser. In

both cases, added flexibility weakens safety guarantees.

Issue 979 illustrates a different dilemma: abstract methods were originally re-

stricted to top-level variables and its parameters to align with a simple hardware ac-

cess model. However, practical use cases in Tofino require access to variables from the

enclosing scope, which was later enabled via ad hoc annotations like @synchronous.

This retrofit favors pragmatism at the cost of semantic clarity.

These challenges highlight the difficulty of evolving abstract methods into an

architecture-agnostic construct. Given their limited use outside Tofino, it remains

unclear how to develop abstract methods into a robust, architecture-neutral abstrac-

tion.

Issue 988 concerns uninitialized bits. While the specification permits their reads

to return nondeterministic values, it does not specify when such reads occur. Our

semantics clarifies this through a careful discussion with the LDWG (Section 2.3.3),

but the LDWG has not yet converged on a definition that balances semantic clarity

with hardware efficiency.

Reflections

These unresolved issues underscore the difficulty of evolving a domain-specific lan-

guage like P4. Efforts to improve semantic clarity are often constrained by competing

goals: language generality, hardware specificity, and backward compatibility. Many

issues stem from leaning too far in one direction—overgeneralizing the language or

tailoring it too narrowly to hardware use cases.

In summary, our formalization revealed numerous flaws in the P4 specification,

most of which have now been addressed. Others remain open due to fundamental

trade-offs between semantic precision and implementation realities. This experience
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demonstrates the value of mechanized semantics not only for reasoning about pro-

grams, but also for shaping language design.

It is worth noting that other formalization efforts, such as Petr4, have also uncov-

ered specification bugs. However, their focus was on building a working interpreter for

a specific target architecture. As a result, they made simplifying assumptions rather

than questioning specification gaps, and thus did not uncover some of the broader

issues we identified.
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Chapter 3

Verifiable Modular Data Structures

Chapter 2 formalized the semantics of P4, including stateful behavior on the Intel

Tofino architecture. However, enabling stateful network applications in practice re-

quires more than semantic clarity—it demands the ability to design, implement, and

verify the underlying data structures in the data plane.

To maintain per-flow state at line rate under tight resource constraints, pro-

grammable switches commonly use approximate data structures, which trade

accuracy for scalability. Deploying these structures in hardware introduces two key

challenges:

• Design adaptation: Translates a high-level data structure into a hardware-

efficient implementation that both respects architectural constraints and re-

mains up-to-date with fast-changing traffic.

• Correctness assurance: Ensures that the resulting implementation faithfully

preserves the intended properties, despite low-level adaptations.

This chapter addresses both challenges through two key contributions:
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• A modular synthesis framework (Section 3.1): Decomposes a data structure

into modular building blocks for an efficient and scalable P4 implementation;

and

• A layered verification framework (Section 3.3): Connects the low-level im-

plementation to high-level specifications using two models of the data structure

linked by refinement.

The synthesis framework introduces a modular design based on two units: rows,

which shard state across pipeline stages, and panes, which rotate to maintain a

sliding window of data. Each data structure is synthesized by instantiating these

components as control blocks, combined with common preprocessing and postpro-

cessing logic. This modular design improves code clarity, enables parameterized code

generation, and supports semi-modular verification: since rows and panes are reused

across the data structure, their correctness can be verified once and applied through-

out.

Despite the modular design, verifying the correctness of the entire data structure

remains challenging due to low-level behaviors such as distributing operations across

rows and panes and aggregating their results. To bridge this mismatch in abstraction,

we introduce a layered verification framework with two models: a concrete model

that closely reflects the modular structure of the P4 implementation; an abstract

model that captures the high-level logical behavior of the data structure. We prove

that the implementation refines the concrete model, and that the concrete model

refines the abstract model. This layered approach allows correctness properties to

be stated and proved at the abstract level and preserved in the implementation via

refinement. The result is a structured and tractable verification process that ensures

end-to-end correctness.

As a case study, we apply our synthesis and verification frameworks to a sliding-

window Bloom filter on Intel Tofino (Sections 3.2, 3.4). We demonstrate how it can
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be modularly implemented, formally modeled, and verified to uphold its no-false-

negative guarantee. This illustrates how the synthesis and verification frameworks

enable generating a library of reliable and efficient approximate data structures for

the programmable data plane.

3.1 Modular Synthesis Framework

This section presents our modular synthesis principles, which transforms general

data structure designs into implementations compatible with the data plane. While

techniques such as sharding and rotation have been explored in prior works [10, 42],

our key contribution is the systematic organization of them into a modular structure

grounded in the hardware constraints.

This framework is not tied to any particular data structure. Instead, it defines

reusable building blocks—rows and panes—and organizes their behavior across three

well-defined phases: preprocessing, state operations, and postprocessing. This mod-

ular design improves implementation clarity, enables parameterized code generation

(Section 3.2), and supports semi-automated verification (Section 3.4.1).

3.1.1 Sharding and Rotation

The synthesis framework organizes each data structure into modular rows and panes,

which are defined once and instantiated as needed. These two abstractions enable the

framework to generalize many data structures in the data plane. In this subsection,

we describe how sharding into rows enables stage-local access and how rotating

panes over time supports temporal freshness.

As discussed in Section 1.3.2, the programmable data plane imposes strict con-

straints on state access. For instance, the Intel Tofino architecture partitions memory

across 10 to 20 pipeline stages. A runtime state object—conceptualized as a register
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(a) Original (b) Sharding (c) Rotation

Figure 3.1: Turning a Bloom filter into a sliding-window Bloom filter.

extern—must reside entirely within a single stage. It cannot span stages and may

be accessed only once per packet, at the stage that hosts it, via either read/write

operations or associated register actions.

These constraints make it difficult to implement traditional data structures, which

assume free, repeated access to a contiguous memory space. To adapt to this setting, a

common strategy is to shard the data structure into smaller segments and distribute

them across stages. These segments, called rows, enable line-rate performance while

leveraging distributed memory.

Many approximate data structures naturally lend themselves to this decomposi-

tion. Consider the Bloom filter, a classic approximate set membership structure with

two methods: add and query (Figure 3.1a). It uses multiple hash functions to map

each element to several slots in a bit array. The add method performs write oper-

ations to set the corresponding bits; the query method performs read operations to

check those bits, returning “probably yes” if all are set, and “definitely no” otherwise.

Crucially, the Bloom filter guarantee no false negatives: it never misses an element

that was previously added.

However, this access pattern is incompatible with the data plane’s access model.

Repeated memory access is disallowed, and allocating the entire bit array to a single

register wastes memory in other stages. By sharding the Bloom filter into multiple

rows—each with a distinct hash function—we map each element to one slot per row,

aligning with pipeline constraints while preserving the no-false-negative guarantee

(Figure 3.1b).
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In addition to memory layout, temporal freshness presents a second challenge.

Without periodic cleanup, memory will be quickly saturated by the high-rate net-

work traffic. Moreover, many applications—such as network telemetry and anomaly

detection—focus primarily on recent traffic behaviors. This demands mechanisms to

evict stale data.

Conventional approaches maintain an exact sliding time window by associating

a timestamp with each entry and deleting stale ones as a new packet arrives. How-

ever, such deletions are infeasible in data planes due to strict limits on per-packet

computation. In data structures like Bloom filters, deletion is fundamentally unsup-

ported: multiple elements may share the same bits across time, making it impossible

to remove one without affecting others.

To address these limitations, we adopt a hardware-compliant cleanup strategy:

rotation, where two copies of the data structure alternate roles—one active, the other

cleaned in the background. This two-pane design, however, introduces a transient dip

in coverage after each rotation, as the newly activated pane starts empty. To overcome

this, we generalize the design to use N > 2 panes, with each pane representing a

segment of a sliding window.

As shown in Figure 3.2a, under a rotation step of size T , each pane cycles through

three phases: (N − 2)T of writing, T of reading and writing, and T of cleaning. This

multi-pane design maintains continuity: the effective window spans [(N − 2)T, (N −

1)T ), sliding forward with time.

(a) Overlapping panes (b) Disjoint panes

Figure 3.2: Two rotation schemes on a 4-pane data structure.
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This overlapping pane scheme raises a key optimization question: can panes keep

data from disjoint time segments to eliminate redundancy and improve memory ef-

ficiency? For stateful logic that relies on continuity—such as TCP state machines

or out-of-order packet counters—this is infeasible, as fragmented history breaks the

underlying state machine. However, for state that supports temporal aggregation,

the answer is yes.

The Bloom filter illustrates this alternative pane scheme well. Since set mem-

bership within a time window only requires that an element be present in any of its

subintervals, results from disjoint panes can be safely combined via disjunction. This

insight enables a hardware-efficient sliding-window Bloom filter (Figure 3.1c). In

this construction, the add method writes only to the current writing pane, while the

query method reads all (N − 1) active panes and returns their bitwise disjunction

(Figure 3.2b). This design preserves the Bloom filter’s no-false-negative guarantee:

if an element was added during the effective sliding window, it is guaranteed to be

reported as present.

Cleaning a pane involves resetting all its entries. A simple strategy resets one slot

per row in the cleaning pane on each packet arrival. To ensure full cleanup within a

rotation step, this approach relies on a sufficiently dense traffic stream, as formalized

in Section 3.1.3.

While the preceding discussion has assumed a dedicated cleaning pane, an alter-

native strategy is to eliminate that entirely by attaching a timestamp to each slot.

On every read or write, the stored timestamp is compared against the current time to

determine whether the entry is stale. This approach removes the need for a separate

cleaning phase but requires additional bits per slot. It is hence most effective when

the number of panes is small and the slot size is relatively large. For example, in a

2-pane hash table with 32-bit keys and 64-bit values, adding a 32-bit timestamp may

be more memory-efficient than allocating a full third pane for cleaning.
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Together, sharding and rotation allow the synthesis framework to convert abstract

data structures into modular, stage-aware, and time-aware P4 implementations.

3.1.2 Preprocessing and Postprocessing

To coordinate the behavior of rows and panes, the framework inserts a preprocessing

and postprocessing pipeline around the core state operations.

• Preprocessing computes per-row parameters such as pane operations and row

indexes.

• Postprocessing consolidates the results from all rows and panes into a final

output.

This structured control flow enables a clear separation of logic and allows the row

and pane instances to exhibit different behavior based on the parameters.

During preprocessing, pane rotation is managed by a circular timer that resets

after each full rotation period. A näıve implementation extracts a bit from the hard-

ware timestamp and rotates panes whenever that bit flops from 1 to 0 1. For example,

using the 9th bit of a nanosecond-scale timestamp (0-based indexing) yields a ∼ 1 µs

rotation step, while the 29th bit corresponds to ∼ 1 s. However, this approach restricts

timing granularity to powers of two.

To support more flexible rotation intervals, we propose a generalized design where

rotation is triggered by counting bit flops. By setting an arbitrary threshold on the

number of flops at the timer bit before rotation, we can achieve a broader range of

timing options. For instance, combining flops at the 29th bit with an 8-bit counter

yields rotation periods from 1 to 256 seconds, in 1-second increments—offering both

precision and range.

1We use the term flop to refer to a bit change from 1 to 0, and flip for a change from 0 to 1.
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Figure 3.3: Operations dispatch in a 4-pane sliding-window Bloom filter.

Based on the timer value, together with the method invoked on the data structure,

the rotation mechanism assigns a specific operation—write, read, clean, or idle—to

each pane according to its role in the rotation cycle. These operations are dispatched

to the corresponding pane instances and propagated uniformly to all rows within each

pane. Figure 3.3 illustrates this process for a 4-pane SBF.

Each pane instance maintains one or more row instances, each operating at a

particular slot index. For most operations, hash-based indexing ensures uniform

distribution and minimizes contention. For cleaning, incremental indexing is used

to guarantee deterministic coverage of all slots. These indexes are computed during

preprocessing and dispatched alongside the operations.

Together, these preprocessing steps produce for every row a set of parameters—

the operation and the index—that govern its behavior on state. After all pane and

row operations are executed at given indexes, the postprocessing phase aggregates the

intermediate results to produce a final output. Depending on the data structure, this

may involve computing a disjunction, summing values, or selecting a representative

result. This final step consolidates partial results across rows and panes, completing

a method call on the data structure.
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3.1.3 Dense Flow

Because all control logic in our synthesized data structures is packet-driven, time-

sensitive behaviors, such as cleaning and rotation, depend on a sufficiently dense flow

of packets. This subsection analyzes the traffic requirements to ensure correctness.

First, cleaning is performed incrementally: the cleaning pane resets one slot per

row on each incoming packet. If a row contains S slots, at least S packets must arrive

during each rotation step T (in ns) to complete a full cleanup. Otherwise, stale entries

may persist and compromise the assumptions of data freshness.

Second, pane rotation is triggered by observing bit flops in the hardware times-

tamp, which requires also seeing bit flips to reset the last seen bit. If the timer bit

is set to the b-th bit, a flip-flop occurs every 2b ns. To capture all flops, at least one

packet must arrive within that interval; otherwise, the rotation timer may lag behind.

Together, these constraints impose a minimum packet arrival rate of:

max

(
s

T
,
1

2b

)
packets per ns.

When traffic falls below this threshold, a configurable packet generator—a built-in

component of the Intel Tofino—can inject supplemental packets at a controlled rate.

These packets can be engineered to trigger only the clean method of the data structure

to avoid any side effects.

Together, these synthesis principles—rows and panes, proprocessing and post-

processing, dense flows—allow designers to transform abstract data structures into

modular implementations tailored to programmable data planes.
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3.2 Synthesizing a Sliding-Window Bloom Filter

After exploring the general synthesis principles in Section 3.1, we demonstrate the

automation capabilities of our synthesis framework with a concrete example: a sliding-

window Bloom filter. This case study shows how data-structure-specific processing

logic, together with a handful of parameters, can be automatically synthesized into

deployable P4 code.

Each data structure in our framework is defined by a reusable template, parame-

terized by a set of design choices. Only the data-structure-specific logic needs to be

provided in the template—namely, the row state operations and the final aggrega-

tion behavior. While different data structures may require different parameters, most

share the following common ones:

• the number of panes P ,

• the number of rows per pane R,

• the number of slots per row S, and

• the rotation step T .

Figure 3.4: Modular synthesis framework.
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1 control Row(in bit <8> op , in bit <18> index , out bit <8> res) {

2 /* Register */

3 Register <bit <8>, bit <18 > >(262144 , 0) reg_row;

4 /* RegisterAction and action for write operation */

5 RegisterAction <bit <8>, bit <18>, bit <8>>(reg_row) ra_write = {

6 void apply(inout bit <8> value , out bit <8> rv) {

7 value = 1; rv = 1;

8 }

9 };

10 action act_write () { res = ra_write.execute(index); }

11 .. // RegisterAction and action for read and clean operations

12 /* Table for calling operations */

13 table tbl_row {

14 key = { op : exact; }

15 actions = { act_write (); act_read (); act_clean (); NoAction (); }

16 const entries = { WRITE : act_write ();

17 READ : act_read ();

18 CLEAN : act_clean ();

19 IDLE : NoAction (); }

20 }

21 apply {

22 tbl_row.apply();

23 }

24 }

Figure 3.5: The Row control in a sliding-window Bloom filter.

As shown in Figure 3.4, given a template and its parameters, the framework emits

three P4 control blocks, for rows, panes and the data structure.

We begin with the Row control, which defines the per-row behavior of the sliding-

window Bloom filter (Figure 3.5). It takes an operation code op and a slot index

index as input and returns the result res (line 1). The parameter S = 218 = 262144

automatically decides the size of each row’s register reg row 2 (line 3). Meanwhile,

the Bloom filter template fills the register actions for write, read, and clean operations

(line 4-11). Combining the parameter with the template, our synthesis framework can

generate the Row control, triggering the appropriate register action at the given index

based on the operation code op in the table tbl row (line 12-20).

2Although each Bloom filter slot only needs a single bit, the register uses 8-bit values due to
Tofino-specific alignment constraints.
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27 control Pane(inout pane_md_t pane_md) {

28 Row() row_1;

29 Row() row_2;

30 Row() row_3;

31 apply {

32 row_1.apply(pane_md.op, pane_md.index_1 , pane_md.res_1);

33 row_2.apply(pane_md.op, pane_md.index_2 , pane_md.res_2);

34 row_3.apply(pane_md.op, pane_md.index_3 , pane_md.res_3);

35 }

36 }

Figure 3.6: The Pane control in a sliding-window Bloom filter.

Similarly, the Pane control is parameterized by the number of rows per pane R

(Figure 3.6). Here, it instantiates R = 3 Row instances and applies each with the

same operation code op and a distinct index, enabling row-specific processing.

At the top level, the SBF control provides the client-facing interface for a sliding-

window Bloom filter (Figure 3.7). It receives a method code, the method parameter

and the timestamp, and returns the final result in res (line 37-38). Parameterized by

the number of panes P = 4 and the rotation period T = 30 s, it applies four panes,

using preprocessed operations and indexes (line 90-94). The preprocessing logic—

for index computation, timer update, and parameter dispatch—is shared across data

structures and reused through code generation (line 83-89).

The rotation step T , deciding the frequency of panes rotation, is realized with

a timer that counts 1-to-0 flops at the timer bit inside timestamps. The framework

explores two design choices: which bit to monitor (from the 48-bit Tofino timestamp),

and the rotation and reset value in a fixed-width counter (e.g., 16-bit, bounded by

216). For T = 30 s, the framework selects the 21st bit, which flops roughly every 4 ms.

It then emits code that increments a counter on each flop, rotates every 7153 flops,

and resets at 28611—yielding a rotation step of ∼ 30.002 s with negligible error.

As shown in Figure 3.8, the timer is implemented as a pair of 16-bit registers: tb

tracks the timer bit and is updated by every packet, and fc counts the number of

flops and wraps at the period threshold (lines 40–63). This design arises from two
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37 control SBF(in bit <4> method , in key_t key ,

38 in bit <48> timestamp , inout bit <8> res) {

39 ds_md_t ds_md; // Local metadata struct

40 .. // Preprocessing declarations

77 Pane() pane_1;

78 Pane() pane_2;

79 Pane() pane_3;

80 Pane() pane_4;

81 .. // Postprocessing declarations

82 apply {

83 /* Preprocessing */

84 act_hash_index_1 ();

85 act_hash_index_2 ();

86 act_hash_index_3 (); // Compute a hash index per row

87 act_clean_index (); // Increment clean index

88 tbl_timer.apply (); // Update timer

89 tbl_params.apply (); // Dispatch operations & indexes

90 /* State operations */

91 pane_1.apply(ds_md.pane_md_1);

92 pane_2.apply(ds_md.pane_md_2);

93 pane_3.apply(ds_md.pane_md_3);

94 pane_4.apply(ds_md.pane_md_4);

95 /* Postprocessing */

96 tbl_agg_wins.apply(); // Merge rows into final result

97 }

98 }

Figure 3.7: The SBF control for a sliding-window Bloom filter.

constraints: P4 lacks a modulo operator, and Tofino does not allow extracting a single

bit from a timestamp and using it in a register action within the same stage. To work

around these limitations, the timer logic is split into two table entries that execute

different register actions based on the current packet’s timer bit. The framework also

synthesizes the dispatch table tbl params, which matches on both the timer and

method code to assign the appropriate pane operation and row index (lines 64–74).

This example demonstrates how the synthesis framework bridges designs and code.

The automation enabled by this synthesis process forms the basis for a library of ef-

ficient data structures. In Chapter 4, we show how this library is integrated into the

compiler of a high-level language, enabling users to express approximate stateful com-

putations declaratively while relying on synthesized P4 implementations for efficient

hardware execution.
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40 /* Timer update */

41 struct timer_t{bit <16> tb; bit <16> fc;} // timer bit; flop count

42 Register <timer_t , bit <1>>(1, {0, 0}) reg_timer;

43 RegisterAction <timer_t , bit <1>, bit <16>>( reg_timer) ra_flop = {

44 void apply(inout timer_t value , out bit <16> rv) {

45 if (value.tb == 1) { // If timer bit flops ,

46 if (value.fc == 28611) { value.fc = 0; } // reset counter ,

47 else { value.fc = value.fc + 1; } } // or increment counter;

48 value.tb = 0; rv = value.fc; // always update timer bit.

49 }

50 };

51 RegisterAction <timer_t , bit <1>, bit <16>>( reg_timer) ra_flip = {

52 void apply(inout timer_t value , out bit <16> rv) {

53 value.tb = 1; rv = value.fc; // Always update timer bit.

54 }

55 };

56 action act_flop () { ds_md.timer = ra_flop.execute (0); }

57 action act_flip () { ds_md.timer = ra_flip.execute (0); }

58 table tbl_timer {

59 key = { timestamp : ternary; }

60 actions = { act_flop (); act_flip (); }

61 const entries = { 0 &&& 0x200000 : act_flop (); // Timer bit = 0

62 1 &&& 0x200000 : act_flip (); } // Timer bit = 1

63 }

64 /* Parameter dispatch */

65 table tbl_params {

66 key = { method : exact; ds_md.timer : range; }

67 actions = { act_params_1 (); .. }

68 const entries = {

69 (ADD , 0..7152) : act_params_1(WRTIE , CLEAN , IDLE , IDLE);

70 (ADD , 7153..14305) : act_params_2(IDLE , WRTIE , CLEAN , IDLE);

71 (ADD , 14306..21458) : act_params_3(IDLE , IDLE , WRTIE , CLEAN);

72 (ADD , 21459..28611) : act_params_4(CLEAN , IDLE , IDLE , WRTIE);

73 .. }

74 }

75 ..

Figure 3.8: Preprocessing declarations in the SBF control.

3.3 Layered Verification Framework

Verifying data-plane programs is inherently challenging due to the low-level and

domain-specific nature of P4. Synthesizing complex data structures into such pro-

grams introduces additional complexity, as algorithms must be adapted to accommo-

date hardware constraints. To ensure correctness, we adopt a layered verification

strategy—a well-established paradigm in formal methods. By structuring correctness
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proofs across multiple abstraction levels, from a high-level abstract model down to

the synthesized P4 code, we achieve modular, maintainable, and rigorous end-to-end

guarantees.

3.3.1 Abstraction Layers for Verification

Our verification framework is organized into three abstraction layers (Figure 3.9):

• Abstract model: A high-level functional model written in Coq that cap-

tures the intended behavior of the data structure in mathematical terms. This

model abstracts away implementation details and serves as the high-level de-

scription against which correctness is judged. For example, an abstract model

of a sliding-window Bloom filter might be modeled as an approximate set with

pane expiration.

• Concrete model: A low-level functional model written in Coq that mirrors

the algorithmic logic of the synthesized P4 code. It incorporates architecture-

aware details such as fixed-width registers and circular timers while remaining

compact. It serves as the translation of the P4 implementation in a general-

purpose language.

• P4 program: The data structure written in P4 that represents an imperative

implementation for a specific target architecture. This code is parsed into the

Coq representation as a P4light AST (Section 2.1.2) to enable formal reasoning.

Each layer has a well-defined role: the abstract model defines the required be-

havior, the concrete model provides an executable algorithm, and the P4 program

embodies the implementation. Verification proceeds by proving refinement between

adjacent layers: we prove that each layer faithfully implements the more abstract one

above it. Hence, we establish two key refinement lemmas in Coq:
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Figure 3.9: Three-layer composition verifies correctness for P4 data structures.

• Model refinement: The concrete model refines the abstract model. This

involves defining a simulation relation R between internal states of the two

models and proving that all method calls preserve R. This proof relies on

standard Coq techniques such as induction and equational reasoning and does

not involve P4 reasoning.

• P4 refinement: The P4 program implements the concrete model. This is

established using Verifiable P4 [47], a verification framework that allows rea-

soning about P4 programs in Coq (discussed in Section 3.3.2). We show that for

any input and P4 runtime state, the P4 execution produces results consistent

with the concrete model.

These two lemmas compose: if the P4 program refines the concrete model and the

concrete model refines the abstract model, then the P4 program refines the abstract

model. Formally:

P4 program ⊑ concrete model ⊑ abstract model ⇒ P4 program ⊑ abstract model

This composition, a direct consequence of refinement transitivity, yields an end-to-

end correctness theorem: any property verified on the abstract model also holds for

the synthesized P4 implementation.
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Our framework embraces a mechanized verification approach: all model defini-

tions, refinement lemmas, properties, and proofs reside in Coq—a software proof as-

sistant that checks proofs in its trusted kernel. This ensures that the final correctness

theorem is also machine-checked end to end.

A layered verification framework has two major benefits:

• Maintainability: When modifying high-level properties, functional models,

implementation strategies or target architecture, one only needs to update the

corresponding abstraction level and related proofs. This modularity localizes

proof effort.

• Separation of expertise: Experts in data structure design can reason about

models without understanding P4, while P4 engineers can verify implementa-

tion correctness without learning about data structures. Clear model interfaces

facilitate collaboration.

This layered approach has been successfully applied in other domains, including

SHA-256 cryptographic hash function [2], HMAC deterministic random bit genera-

tor [49], forward erasure correction decoding [14], and floating-point arithmetic [3],

where refinement from their C implementations is verified using Verified Software

Toolchain (VST) [4], a verification framework for reasoning about C. Our work ap-

plies similar principles to P4 through Verifiable P4.

3.3.2 Verifiable P4

While the proofs above the concrete model are purely mathematical, the P4 refine-

ment lemma requires reasoning about P4. Chapter 2 introduces our mechanized

semantics for formalizing P4 behavior, on which Verifiable P4 [47] is built to reason

about correctness. It enables users to specify and verify the behavior of a P4 program

in Coq.
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The framework combines three key components:

• Specification: A rich language for expressing the expected behavior of a P4

program, typically as a precondition and a postcondition it must satisfy.

• Program logic rules: A set of inference rules that relate program syntax to

logical assertions, allowing stepwise reasoning over program behavior to prove

specifications.

• Automation tactics: A collection of tactics that automatically apply program

logic rules to simplify Coq proof scripts.

In practice, verifying a P4 program involves specifying the behavior of a function

or control, then starting from a symbolic state described by precondition, applying

program logic rules to step through every syntactic construct (e.g., assignment state-

ments, action invocation) and proving that the resulting symbolic state implies the

expected postcondition. The automation tactics proposed in Verifiable P4 relieves

much of the manual effort by handling routine steps like variable substitution and

logical entailments. Verifiable P4 is foundational: its program logic rules are proven

sound in Coq with respect to the formal semantics. As a consequence, if a specification

can be proven using the program logic, it is guaranteed to hold under all executions

conforming to that semantics. For a detailed discussion of Verifiable P4, please refer

to [46, 47].

By combining layered refinement with Verifiable P4, we achieve end-to-end verifi-

cation for synthesized P4 data structures. This ensures that the final implementation

is not only efficient but also provably faithful to its high-level properties.
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3.4 Verifying a Sliding-Window Bloom Filter

This section demonstrates how to verify the correctness of the sliding-window Bloom

filter synthesized in Section 3.2. We follow the layered verification framework intro-

duced in Section 3.3, which involves defining functional models, specifying refinement

lemmas, and developing Coq proofs. We focus here on the first two tasks, and for

proof scripts and automation tactics, we refer readers to our codebase [45].

We proceed from the bottom up: we first present the concrete functional model

(Section 3.4.1) and its refinement to the P4 program (Section 3.4.2), then the abstract

model (Section 3.4.3) and its relation to the concrete model (Section 3.4.4), and

finally show how high-level correctness properties can be proven and lifted to the P4

implementation (Section 3.4.5).

3.4.1 Concrete Functional Model

Our starting point is a concrete functional model, designed to closely mirror the

structure of the synthesized P4 program (Figure 3.10). This model also organizes

state modularly: a row is an array of booleans (line 10); a pane is an array of rows

(line 14); and an sbf is a record containing an array of panes (sbf panes), a clean

index (sbf ci), and a timer (sbf timer) (line 19). Each method corresponds to a

sequence of functions in the model. For example, sbf add (line 27-37) adds an element

to the data structure by invoking pane write, which writes to a write pane using an

array of hash indexes is by calling row write to set each boolean to true. Query and

clean methods are defined similarly. This structural alignment allows each method

or operation on a control in P4 to be related directly to a corresponding function in

the concrete model, facilitating specification and proof of refinement.

Beyond structural alignment, the functional model benefits from the expressive-

ness of a general-purpose language. Free from P4’s language constraints, the model
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1 Section Con.

2 (* Parameters & Types *)

3 Context (num_panes num_rows num_slots step tb_pos: Z).

4 Definition ff_length := Z.pow 2 tb_pos. (* Flip -flop interval *)

5 Definition flop_length := Z.pow 2 (tb_pos +1). (* Flop interval *)

6 Definition step_flops := step/flop_length. (* Flops/step *)

7 Definition period_flops := num_panes*step_flops. (* Flops/period *)

8 Definition listn (T: Type) size := { l: list T | Zlength l = size }.

9 (* Row *)

10 Definition row := listn bool num_slots.

11 Definition row_write (r: row)(i: Z): row := r.[i := true].

12 ..

13 (* Pane *)

14 Definition pane := listn row num_rows.

15 Definition pane_write (p: pane)(is: listn Z num_rows): pane :=

16 map2 row_write p is.

17 ..

18 (* Sliding -window Bloom filter *)

19 Record sbf := mk_sbf

20 {sbf_panes: listn pane num_panes; sbf_ci: Z; sbf_timer: bool*Z}.

21 Definition update_timer (timer: bool*Z)(tstamp: Z): bool*Z :=

22 let ’(tb , fc) := timer in

23 let curr_tb := Z.odd (tstamp / ff_length) in

24 if tb && (negb curr_tb) then (* If timer bit flops , *)

25 (false , Z.modulo (fc+1) period_flops) (* incr/reset counter; *)

26 else (curr_tb , fc). (* always update timer bit. *)

27 Definition sbf_add (f: sbf)(tstamp: Z)(is: listn Z num_rows): sbf :=

28 let ’(mk_sbf panes ci timer) := f in

29 (* Preprocessing *)

30 let new_ci := Z.modulo (ci+1) num_slots in (* Incr clean index *)

31 let timer := update_timer timer tstamp in (* Update timer *)

32 let cp := snd timer / step_flops in (* Clean pane *)

33 let wp := Z.modulo (cp -1+ num_panes) num_panes in (* Write pane *)

34 (* State operations *)

35 let panes := panes.[cp := pane_clean panes[cp] ci] in

36 let panes := panes.[wp := pane_write panes[wp] is] in

37 mk_sbf panes new_ci timer.

38 ..

39 End Con.

Figure 3.10: Concrete functional model for a sliding-window Bloom filter.

is clearer and more concise. For instance, row write is defined in one line (line 11),

compared to a register action and an action needed to implement the same behavior

in P43. The timer logic, while staying faithful to the same idea of counting bit flops

in the timestamp, is captured by a single update timer function (line 21-26) instead

3See code definition at line 4-10 in Figure 3.5.
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of spanning multiple register actions and actions in P44. With the modulo opera-

tor available in Coq, index wrapping is simplified when updating the clean index,

timer state and pane indices, abstracting away low-level arithmetic manipulations

and making it easier to reason in Coq.

Another advantage of the functional model is its parameterization. Unlike P4,

which hardcodes design parameters, the Coq model is fully parametric. Parameters

like num panes, num rows, and num slots are explicitly introduced (line 3). The

model defines a dependent type listn to define arrays with statically enforced lengths

(line 8), ensuring that components such as row, pane, and sbf panes adhere to

their intended sizes. Hence, functions such as pane write are defined generically

via list combinators like map2—eliminating the need for repeated instantiations and

invocations as seen in P45.

This modular and parametric structure facilitates verification in two ways. First,

model properties can be proved generically for any parameter values. Second, it

enables semi-modular verification of the P4 code: since the data structure in

P4 consists of multiple instances of the same control, once one instance is verified,

specifications and proofs for others can be automatically generated with minimal

modification. Although these copies need to be specified and verified separately, their

structural similarity allows proof scripts to be replayed via shell scripts. The full P4

refinement proof thus scales through a small set of verification templates, aligning

with the modularity of the model and implementation.

In summary, the concrete functional model balances algorithmic fidelity with ab-

straction, serving as an intermediate layer between the P4 implementation and the

abstract model.

4See code definition at line 43-57 in Figure 3.8.
5See code definition in Figure 3.5, 3.6, and 3.7.
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3.4.2 P4 Refinement

We now bridge the bottom two layers by proving that the P4 program refines the con-

crete functional model—that is, the per-packet behavior in P4 matches the behavior

defined by the model. Verifiable P4 allows us to specify behavior for a P4 invoca-

ble6 using pre- and postconditions on the program state7. Verifying each invocable

against its specification contributes to a top-level proof that the P4 data structure

implements the concrete model with hierarchical composition.

Figure 3.11 shows the general form of a Verifiable P4 specification. The structure

consists of context clauses (PATH, MOD), logical variables (WITH), and the main

specification in PRE/POST clauses.

WITH x⃗, PATH p MOD m M
WITH y⃗,

PRE (ARG P⃗ , MEM Q⃗, EXT R⃗)

POST (EX z⃗, RET v, ARG P⃗ ′, MEM Q⃗′, EXT R⃗′)

Figure 3.11: General specification form in Verifiable P4.

• WITH x⃗: Universal variables usable in the entire specification (e.g., a path p).

• PATH p: Identifies the scope7 of the invocable.

• MOD m M : Lists modifiable local variables (m) and runtime state objects7

(M).

• WITH y⃗: Universal variables usable in both pre- and postconditions.

• PRE: Precondition describes the program state before the invocation:

– ARG P⃗ : input arguments.

6See definition in Section 2.1.1.
7See definition in Section 2.3.1.
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– MEM Q⃗: Predicates for local variables in the stack frame7.

– EXT R⃗: Predicates for runtime state objects in the persistent state7.

• POST: Postcondition describes the program state after the invocation:

– EX z⃗: Optional existential variables for predicates.

– ARG RET P⃗ ′ v: output arguments (P⃗ ′) and return value (v).

– MEM Q⃗′: Predicates for local variables in the updated stack frame.

– EXT R⃗′: Predicates for runtime state objects in the updated persistent

state.

In our setting, where the goal is to prove that a P4 implementation refines a

functional model, we write specifications that relate the arguments, local variables,

and runtime state objects in the P4 code to their counterparts in the model. Each

specification thus serves as a contract that connects the behavior of a P4 invocable

with the corresponding function in the model.

1 Definition Con_sbf_add_spec : func_spec :=

2 WITH (* p *),

3 PATH p

4 MOD None [p]

5 WITH (con_sbf : Con.sbf) (key : Val) (tstamp : Z) ,

6 PRE

7 (ARG [P4Bit 8 ADD;

8 val_to_sval key;

9 P4Bit 48 tstamp;

10 P4Bit 8 1]

11 (MEM []

12 (EXT [Con.sbf_repr p con_sbf ])))

13 POST

14 (ARG_RET [P4Bit 8 1] ValBaseNull

15 (MEM []

16 (EXT [Con.sbf_repr p

17 (Con.sbf_add con_sbf tstamp (v_to_hashes key))]))).

Figure 3.12: Specification for the add method on an SBF control instance (e.g.
sbf.apply(ADD, ..)), matched against the concrete model.
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Figure 3.12 shows the specification for the add method on the data structure. It

states that, for any concrete state con sbf, inserted P4 value key, and timestamp

tstamp, if a P4 SBF control instance at path p receives the operation code ADD along

with the other parameters8, and its register represents the concrete state con sbf

via the predicate Con.sbf repr (line 12), then after invocation, the updated regis-

ter represents the new concrete state after calling the add function (line 16). The

representation predicate Con.row repr ensures correspondence between between the

P4 registers and the boolean arrays in the concrete model. The specification essen-

tially defines the preservation of this representation predicate before and after the

add method.

Specifications and representation predicates are defined similarly for each method

across all controls. Because specifications abstract over internal implementations,

the resulting proofs compose hierarchically: changes within a control do not affect

dependent proofs, as long as its specification remains unchanged.

To verify that a P4 invocable satisfies its specification, we apply program logic

rules with the help of automation tactics. For instance, proving that the SBF add

method meets its specification requires applying the verified refinement lemmas for

each of its pane instances. As shown in Figure 3.13, this results in a sequence of

similar tactic calls. Although each pane is explicitly instantiated in the P4 code,

the specifications and proof scripts follow a consistent structure, enabling automatic

generation. While each refinement lemma must still be applied explicitly, the process

remains scalable and semi-automated.

This modular hierarchy allows Verifiable P4 to prove that the P4 data structure

refines the concrete model: the program state represents the model state, and this

representation is preserved across all method calls on the data structure.

8See code definition at lines 37-38 in Figure 3.7.
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1 Lemma Con_sbf_add_ref :

2 func_sound ge sbf_fd nil Con_sbf_add_spec.

3 Proof.

4 ..

5 step_call verify_pane1.Con_pane_ref.

6 ..

7 step_call verify_pane2.Con_pane_ref.

8 ..

9 step_call verify_pane3.Con_pane_ref.

10 ..

11 step_call verify_pane4.Con_pane_ref.

12 ..

13 Qed.

Figure 3.13: P4 refinement lemma and proof for the add method, demonstrating that
the P4 definition sbf def conforms to the concrete model.

3.4.3 Abstract Functional Model

The concrete functional model mirrors the P4 implementation closely, but this tight

coupling makes it ill-suited for reasoning about high-level properties of the data struc-

ture. For example, the classic no-false-negative property of a sliding-window Bloom

filter—which guarantees that any element added during the effective sliding window

is reported as present—depends on two aspects: the precise window range and access

to ground-truth elements. Neither is directly available in the concrete model, which

encodes time via a low-level sbf timer pair and hashes elements in boolean arrays.

To address this, we introduce an abstract functional model that discards imple-

mentation details in favor of a more mathematical presentation. This model explicitly

tracks time, models each pane as a set of added elements, and elevates the dense flow

assumption (Section 3.1.3) from an implicit implementation precondition to explicit

validity checks. As shown in Figure 3.14, the abstract model state is defined by the

Coq record sbf core (line 7), consisting of:

• sbf rotate tstamp: the timestamp of the next pane rotation, which derives the

effective window as [(sbf rotate tstamp− (num panes− 1) · step), tstamp);

• sbf last tstamp: the timestamp of the most recently observed packet;
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1 Section Abs.

2 (* Parameters *)

3 Context {header_t : Set}.

4 Context (num_panes num_rows num_slots step tb_pos: Z).

5 Definition ff_length := Z.pow 2 tb_pos. (* Flip -flop interval *)

6 (* Sliding -window Bloom filter *)

7 Record sbf_core := mk_sbf

8 { sbf_rotate_tstamp: Z; sbf_last_tstamp: Z;

9 sbf_num_cleans: Z; sbf_rw_panes: list (list header_t) }.

10 Definition sbf = option sbf_core.

11 Definition sbf_rotate (f: sbf)(tstamp: Z): sbf :=

12 match f with

13 | None => None

14 | Some (mk_sbf rotate_tstamp last_tstamp num_cleans rw_panes) =>

15 let timer := (last_tstamp <=? tstamp) &&

16 (tstamp <=? last_tstamp + ff_length) in

17 let rotate := tstamp >=? rotate_tstamp in

18 let clean := num_cleans >=? num_slots in

19 match timer , rotate , clean with

20 | false , _, _ => None (* Timer fails => corrupted *)

21 | true , false , _ => Some f (* No rotation needed *)

22 | true , true , false => None (* Cleaning fails => corrupted *)

23 | true , true , true => (* Rotation applied *)

24 let rw_panes := rw_panes .[1 .. (num_panes -2)] ++ [[]] in

25 Some (mk_sbf (rotate_tstamp + step) last_tstamp 0 rw_panes)

26 end.

27 Definition sbf_add (f: sbf)(tstamp:Z)(header:header_t): sbf :=

28 match sbf_rotate f tstamp with (* Apply checks & rotation *)

29 | Some (mk_sbf rotate_tstamp _ num_cleans rw_panes) =>

30 let wp := num_panes - 2 in

31 let rw_panes := rw_panes .[wp := rw_panes .[wp] ++ [header ]] in

32 Some (mk_sbf rotate_tstamp tstamp (num_cleans +1) rw_panes)

33 | None => None

34 end.

35 ..

36 End Abs.

Figure 3.14: Abstract functional model for a sliding-window Bloom filter.

• sbf num cleans: the number of cleans applied to the current clean pane;

• sbf rw panes: a list of (num panes - 1) active panes, ordered from oldest to

newest, each storing an unbounded set of inserted elements.

We omit the clean pane from this list, as it contains only stale data irrelevant to

functional behavior. Tracking the number of clean operations allows us to determine

whether the clean pane is empty upon rotation. The abstract state is wrapped in an
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option type called sbf (line 10): None represents an invalid status where the dense

flow assumption has been violated.

The dense flow assumption, realized by the packet generator, is not enforced in

P4 nor embodied by the concrete model.9 However, that is essential for rotation

and cleaning to function correctly, and we would like to check that when reasoning

about high-level properties. Therefore, the abstract model enforces the assumption

by checking in sbf rotate (line 11-26) the timer and cleaning conditions:

• At least one packet arrives in every flip-flop interval ff length to keep the P4

timer synchronized with time;

• If the packet timestamp exceeds sbf rotate tstamp (i.e., a rotation is due),

the clean pane has received enough clean operations to be emptied.

If either check fails, the filter is invalid and returns None. Otherwise, when rotation is

triggered, the function drops the oldest one from the active panes, appends an empty

one to the end, advances the rotation timestamp, and resets the clean counter. By

making the model validity conditions explicit, we can reason about them in model

properties.

The sbf add method (line 27-34) begins by invoking sbf rotate. If the fil-

ter remains valid, it appends the new element to the newest active pane, updates

sbf last tstamp, increments the clean counter, and returns the updated filter. Other

functions, such as sbf query and sbf clean, follow the same pattern: check and ro-

tate the filter, then apply method-specific logic. Specifically, for queries, we simulate

the data structure behavior by hashing the stored elements in all active panes—

inefficient in practice but convenient for verification.

This abstract model provides a clean, logical view of the sliding-window Bloom

filter. Both time and data are modeled explicitly, and the validity is also checked,

making high-level properties straightforward to state and prove (Section 3.4.5).

9We verify that this assumption is indeed fulfilled by the packet generator in [48].
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3.4.4 Model Refinement

We formalize a refinement relation between the concrete and abstract models, en-

suring that every observable behavior of the concrete model is accounted for by the

abstract model. Analogous to the P4 refinement in Section 3.4.2, where we define

representation predicates to relate program state to concrete model state and prove

their preservation across method calls, we now define a simulation relation sbf sim

that relates concrete state to their abstract counterparts and prove that it is preserved

across all methods.

1 Section Sim.

2 (* Shared parameters *)

3 Context (num_panes num_rows num_slots step tb_pos: Z).

4 Definition ff_length := Z.pow 2 tb_pos. (* Flip -flop interval *)

5 Definition flop_length := Z.pow 2 (tb_pos +1). (* Flop interval *)

6 Definition step_flops := step/flop_length. (* Flops/step *)

7 Definition period_flops := num_panes*step_flops. (* Flops/period *)

8 (* Concrete model *)

9 Variable con_sbf : Con.sbf.

10 Definition con_ci := con_sbf .( sbf_ci).

11 Definition con_panes := con_sbf .( sbf_panes).

12 Definition con_timer := con_sbf .( sbf_timer).

13 (* Derived values from concrete timer *)

14 Definition timer_tb := fst con_timer. (* Timer bit *)

15 Definition timer_fc := snd con_timer. (* Flop counter *)

16 Definition cp := timer_fc / step_flops. (* Clean pane index *)

17 (* Abstract model *)

18 Variable abs_sbf : Abs.sbf_core.

19 Definition abs_num_cleans := abs_sbf .( sbf_num_cleans).

20 Definition abs_rw_panes := abs_sbf .( sbf_rw_panes).

21 Definition abs_last_tstamp := abs_sbf .( sbf_last_tstamp).

22 Definition abs_rotate_tstamp := abs_sbf .( sbf_rotate_tstamp).

23 ...

24 End Sim.

Figure 3.15: Parameters and components used in the simulation relation.

We restrict attention to data structures in valid status by assuming the abstract

state is not None—that is, we operate under the dense flow assumption. Under this

assumption, we relate a concrete state con sbf of type Con.sbf to an abstract state

abs sbf of type Abs.sbf core. Using the aliases defined in Figure 3.15, the simu-
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lation relation sbf sim specifies how each concrete component simulates its abstract

counterpart:

• Clean Pane: The concrete clean pane con panes[cp] simulates the abstract

clean pane by tracking slot-level cleaning progress using a clean index con ci.

The abstract model uses abs num cleans to count the number of cleaned slots,

which must be reflected in the concrete model by ensuring that the same num-

ber of slots immediately preceding con ci, with wrap-around, contain false,

indicating they have been cleaned. If abs num cleans ≥ num slots, then the

entire concrete clean pane must contain only false.

• Active Panes: For each index i ∈ [0..cp-1]++[cp+1..num panes-1], the

concrete active pane con panes[i] simulates the abstract active pane at in-

dex (i-cp-1) mod num panes in abs rw panes. For each such pair, the set

booleans in the concrete pane must match those resulting from adding all ele-

ments of the corresponding abstract pane into a fresh concrete pane.

• Timer: The concrete timer con timer, which is a pair of the timer bit timer tb

and the flop counter timer fc, simulates the two timestamps in the abstract

model, abs last tstamp and abs rotate tstamp:

– Timer bit value: timer tb stores the tb pos-th bit of the last packet’s

timestamp abs last tstamp:

Z.odd (abs last tstamp/ff length) = base bit

– Timer Bit Position: The next rotation timestamp abs rotate tstamp

aligns with the flop granularity determined by the tbit pos-th bit:

flop length | abs rotate tstamp
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– Flop counter: timer fc counts elapsed flops since the start of the current

rotation, consisting of the completed steps and current step in progress:

(cp · step flops)

+(abs last tstamp− (abs rotate tstamp− step))/flop length

=timer fc

• Invariants: Basic bounds must hold for a valid concrete state 10:

con ci ∈ [0, num slots)

timer tb ∈ {0, 1}

timer fc ∈ [0, period flops)

Together, these conditions ensure that the concrete state accurately simulates the

abstract state. To prove model refinement, we show that the simulation relation

sbf sim is preserved by all methods on the data structure. The following lemma

(Figure 3.16) shows preservation for add; similar lemmas are proved for query and

clean, using the Coq proof assistant.

1 Lemma Sbf_add_model_ref :

2 forall con_sbf con_sbf ’ abs_sbf abs_sbf ’ tstamp header ,

3 sbf_sim con_sbf abs_sbf ->

4 Abs.sbf_add .. abs_sbf tstamp header = Some abs_sbf ’ ->

5 Con.sbf_add .. con_sbf tstamp (h_to_hashes header) = con_sbf ’ ->

6 sbf_sim con_sbf ’ abs_sbf ’.

Figure 3.16: Model refinement lemma for the add method, showing preservation of
the simulation relation.

10The length bound for con panes is enforced by the array type.
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3.4.5 End-to-End Correctness

Layered verification of the P4 program enables us to achieve a rigorous end-to-end

correctness guarantee while simplifying the proof structure. By composing the two

verified refinement steps—from the P4 implementation to a concrete model, and from

that concrete model to an abstract model—we obtain an overall refinement from the

P4 program all the way up to a high-level abstract specification. This layered ap-

proach allows us to lift high-level behavioral properties proven at the abstract level

down to the P4 implementation, rather than having to prove those properties di-

rectly on the complex P4 code. We outline this end-to-end refinement composition

and demonstrate how it facilitates proving a key property (the no-false-negative guar-

antee) in a modular way.

Overall refinement.

We compose our P4 refinement and model refinement in our layered verification frame-

work to establish an overall refinement of the P4 implementation against the abstract

model. In other words, any behavior observable in the P4 program is guaranteed to

be permissible under the abstract model.

As discussed in Section 3.4.2, where we state that the P4 program refines the

concrete model with specifications defined in Verifiable P4, here we also define spec-

ifications for the abstract models. Figure 3.17 shows such a specification for the

add method, which mirrors the concrete specification almost exactly, with the key

difference being the representation predicate Abs.sbf repr, which connects the P4

registers to the abstract model state.

Defining Abs.sbf repr directly—by linking inserted elements in the abstract state

to P4 registers—would be challenging to prove in one step. This is precisely why we

advocate for layered verification. By introducing the concrete model as an intermedi-

ate layer, we can now define a layered representation relation Abs.sbf repr between
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1 Definition Abs_sbf_add_spec : func_spec :=

2 WITH (* p *),

3 PATH p

4 MOD None [p]

5 WITH (abs_sbf : Abs.sbf) (header : header_t) (tstamp : Z),

6 PRE

7 (ARG [header_to_sval header;

8 P4Bit 8 ADD;

9 P4Bit 48 tstamp;

10 P4Bit 8 1]

11 (MEM []

12 (EXT [Abs.sbf_repr p abs_sbf ])))

13 POST

14 (ARG_RET [P4Bit 8 1] ValBaseNull

15 (MEM []

16 (EXT [Abs.sbf_repr p (Abs.sbf_add abs_sbf tstamp header)])))

.

Figure 3.17: Specification for the add method, matched against the abstract model.

the abstract state and the P4 state to hold if there exists some concrete state that

both simulates the given abstract state and is represented by the P4 state. That is:

Abs.sbf repr p4 sbf abs sbf := ∃ con sbf. Con.sbf repr p4 sbf con sbf ∧

sbf sim con sbf abs sbf

This layered construction pays off: instead of proving an opaque end-to-end re-

finement in one leap for the add method, we can reuse the P4 refinemene lemma

Con sbf add ref (Figure 3.12) and the model refinement lemmas Sbf add model ref

(Figure 3.16) that we have proved earlier. This structure dramatically simplifies the

verification process and enables scalable verification of realistic P4 programs. This

layered verification approach lets us structure correctness proofs across abstraction

levels, culminating in a guarantee that the P4 program faithfully implements the

abstract functional model.
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1 Context (num_panes step : Z).

2 Definition window_length_lo := step * (num_panes - 2).

3 Lemma Abs_no_false_neg_lemma :

4 forall abs_sbf tstamp tstamp ’ header ,

5 tstamp <= tstamp ’ <= tstamp + window_length_lo ->

6 valid_by abs_sbf tstamp ->

7 Abd.sbf_query

8 (Abd.sbf_add abs_sbf tstamp header)

9 tstamp ’ header = Some true.

Figure 3.18: No-false-negative property for the abstract model.

High-level properties.

A key advantage of the abstract model is its support for high-level reasoning. In

particular, it enables us to formulate and prove correctness properties a clean and

simple setting, and then lift those guarantees to the P4 program.

For the sliding-window Bloom filter, we prove a classic no-false-negative property

here: any element inserted into the filter remains detectable for the duration of a

conservatively defined sliding window. This is formalized in Figure 3.18. The lemma

Abs no false neg lemma states that, for any valid abstract state abs sbf, if an el-

ement header is added at time tstamp, then querying the filter for that element at

any time tstamp’ within the window length lower bound returns true. This property

is proven directly over the abstract model, with no dependency on P4 details.

To lift this property to the P4 implementation, we apply the same layered strat-

egy used in the overall refinement proof. We define a specification for the P4 add

method whose postcondition includes the desired property. Specifically, we introduce

a predicate nfn pred, which holds if there exists some abstract state abs sbf such

that it is represented by the P4 state and it satisfies the no-false-negative condition.

This construction lets us reuse the abstract property lemma Abs no false neg lemma

and the overall refinement lemma Abs sbf add ref, already established in prior

steps, to conclude that the P4 program satisfies the property compositionally. This

completes the end-to-end correctness proof.
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In summary, by layering the verification efforts, we prove a high-level property of

a complex P4 program without having to reason about it directly at the implemen-

tation level. The abstract model provides a clean interface for specifying properties;

the concrete model enables faithful yet tractable bridging to the P4 code; and the

refinements support compositional lifting of correctness results.
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Chapter 4

Traffic Control in the Data Plane

Chapter 3 presented synthesis and verification frameworks that systematically con-

struct and verify approximate data structures for the programmable data plane.

These frameworks guide the implementation process and correctness reasoning, but

they leave open a fundamental question: how can these data structures be effectively

used in real control applications?

In traffic control, correct implementations are only one piece of the puzzle. De-

velopers must choose data structures suited to their application’s needs, configure

parameters such as the number of panes, rows, and slots, and reason about trade-offs

between approximation accuracy and hardware resource constraints. These choices di-

rectly affect approximation behavior—such as the false positive rate—and are tightly

constrained by target architectures—such as per-stage memory.

Making such decisions optimally requires expertise in data structures, approxi-

mation theory, P4 programming, and switch architecture. As the library of available

data structures grows, manually selecting and configuring them becomes increasingly

complex and error-prone.

This chapter presents Network Approximate Programming (NAP), a high-

level language designed to lift developers above these low-level concerns. NAP enables
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developers to write control programs using approximate dictionaries—abstract

data types that capture common design patterns across a variety of approximate

data structures (Section 4.1). Each dictionary behaves as a generic key-value store,

where keys identify flows and values encode per-flow state. It exposes a clean interface

with simple methods like add and query for updating and retrieving per-flow state,

and characterizes approximation behavior along two axes: the set of included keys,

and the duration over which keys remain in state.

To compile NAP programs to P4, we build on the synthesis framework from Chap-

ter 3. The NAP compiler selects a suitable data structure for each dictionary and ex-

plores the parameter space to find configurations that minimize theoretical error while

satisfying architectural constraints (Section 4.2). While these constraints restrict im-

plementation flexibility, they also narrow the search space, enabling a brute-force

search and greedy placement algorithm to solve the optimization problem efficiently—

typically in under a second. Because our synthesis framework generates parameterized

data structure templates, the compiler can specialize them for a given NAP program.

We prototype NAP by extending the Lucid language [42] with features for declar-

ing and invoking approximate dictionaries. We implement three reusable dictionary

classes—ExistDict, CountDict, and FoldDict—and use them to express a range of

traffic control applications (Section 4.3). These NAP programs are 25X–50X shorter

than their P4 equivalents. Finally, we validate NAP through a case study of an ap-

proximate stateful firewall, demonstrating that the generated P4 program achieves

accuracy closely matching the compiler’s theoretical error estimates when deployed

on the Intel Tofino.
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4.1 The NAP Language

Network control applications span a wide spectrum of use cases—from traffic manage-

ment and network security to in-network monitoring—yet they often share a common

structural pattern (Section 1.1). Each application groups traffic into flows, extracts

a key from each packet, and associates that key with an evolving notion of per-flow

state. This insight forms the foundation for a unifying abstraction.

To see the breadth of this pattern, consider three representative examples:

• In an access network, rate limiters identify flows by client IP and count the

number of recent incoming packets to enforce per-user limits.

• In an enterprise network, stateful firewalls track connections between internal

and external hosts (e.g., using internal and external IPs), and allow return traffic

only if it matches a recently observed outgoing connection.

• In a datacenter, in-network caches monitor how frequently specific keys are

requested and store values for the most popular ones based on recent access

patterns.

Though their objectives differ, all these applications manipulate key-value state under

tight resource constraints.

This leads to a central design question: how can we provide a single abstraction

expressive enough to describe these diverse tasks while accounting for approximation

behavior?

We answer this by introducing the notion of an approximate dictionary. An ap-

proximate dictionary offers a key-value interface that captures common functionality

across approximate data structures. It supports classic dictionary operations such as

add and query, but its behavior is governed by two key dimensions of approximation:
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• Inclusion direction: the dictionary may overapproximate (include unintended

keys) or underapproximate (omit valid keys) the stored state.

• Temporal retention: the dictionary maintains state only over a recent time

window, such as a tumbling or sliding window, gradually evicting older entries.

These axes reflect practical trade-offs in control applications. For example, a

stateful firewall may prefer overapproximation to ensure that no legitimate traffic is

blocked, even at the cost of occasionally allowing unsolicited packets (Section 1.4.2).

In contrast, a rate limiter may prefer underapproximation to avoid throttling inno-

cent users. If light flows are overapproximated, they may be mistakenly classified as

heavy and unfairly penalized, risking violations of service-level agreements. Underap-

proximation avoids such false positives: it may miss some violators, but ensures that

compliant users are never misclassified. This tradeoff is often acceptable in practice,

as most systems can tolerate occasional overuse—especially when enforced alongside

global rate limits.

Some applications do not require guarantees in either direction. For example, traf-

fic analytics systems detect anomalies—such as volume spikes or distribution shifts—

over coarse-grained flows to flag subsets of traffic for further inspection. These sys-

tems act as lightweight pre-filters: as long as relative trends across flows are preserved,

committing to a specific error direction is often unnecessary.

In the temporal dimension, most network applications do not require complete

history but instead rely on a bounded view of recent activity—as seen in our examples.

Since querying arbitrary historical windows is infeasible in the data plane, dictionaries

approximate temporal behavior using sliding or tumbling windows.

These insights motivate the core abstractions in the NAP language. Rather than

requiring developers to manually select data structures and configure parameters,

NAP enables them to express control intent declaratively in terms of approximate

dictionaries. In the remainder of this section, we show how this abstraction sim-
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plifies the implementation of real-world traffic control programs. We introduce the

NAP dictionary interface and demonstrate how its clean design supports concise,

approximation-aware control logic.

4.1.1 Approximate Dictionary

The core abstraction in NAP is the approximate dictionary, which generalizes a family

of approximate data structures through a unified key-value interface. Each dictionary

maps a key—typically derived from packet headers or data plane metadata—-to a

value representing flow-level state. A dictionary can be created, keys can be added,

and values can be queried using keys. Some applications may use add query, which

performs both operations simultaneously.

When a key is added, the dictionary either initializes the value if the key is new,

or updates the existing value. When a dictionary is queried, if a value is associated

with the key, it is converted into a numeric result and returned; otherwise, nothing is

done.

Dictionary class.

NAP prototypes three dictionary classes, each representing a distinct category of

state:

• ExistDict stores flow keys and answers existence queries.

• CountDict counts the number of packets associated each key.

• FoldDict allows user-defined logic for initializing, updating, and reading values.

These classes cover a broad range of stateful behaviors in network applications.

The example below shows the first half of an approximate stateful firewall imple-

mented in NAP. Such a firewall may use internal and external IP address pairs as
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flow keys and record keys of outgoing packets to later drop unmatched incoming pack-

ets. This behavior is captured by creating an ExistDict dictionary keyed by the IP

pair (Figure 4.1).

1 type key = {int <32> int_ip; int <32> ext_ip}

2 global ExistDict.t<key > seen =

3 ExistDict.create(over ,

4 within(sec (60), sec (90)),

5 Exist ());

Figure 4.1: Approximate stateful firewall: dictionary creation.

Each approximate dictionary is created with three parameters: error direction,

time window, and value state machine. We begin by discussing the first two, leaving

the last one to Section 4.1.2.

Error direction.

The first parameter characterizes how the dictionary may approximate the mapping

between keys and values, capturing the type of inclusion approximation. Ideally,

dictionaries store an exact 1-to-1 mapping between inserted keys and their associated

values (Figure 4.2a). However, due to resource constraints, approximations may arise:

• Overapproximation: An overapproximate dictionary maps multiple keys to

a single value, causing the value to reflect combined data (Figure 4.2b). This

error direction guarantees that there is always a query result at the cost that it

is an “overestimation” of the true value.

• Underapproximation: An underapproximate dictionary optionally adds a

key: it may be added or it may not (Figure 4.2c). In other words, it ensures

that the query result, if existing, is always exact, at the cost of providing no

information for the rest of the keys.

• Approximation: Both directions of error are permitted (Figure 4.2d).
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(a) Exact (b) Overapprox. (c) Underapprox. (d) Approx.

Figure 4.2: Four types of error directions.

In our stateful firewall example, overapproximation is preferable: allowing unso-

licited flows through is preferable to mistakenly dropping legitimate return traffic.

Hence, the dictionary is configured to overapproximate (Figure 4.1, line 3).

Time window.

The second parameter defines the temporal approximation of dictionaries by specify-

ing how long the state of a packet remains valid. Since the value of stateful information

diminishes over time, most network control applications are primarily concerned with

recent activity.

In stream processing, two primary windowing constructs are commonly used:

• Tumbling window: Time is partitioned into contiguous, disjoint intervals.

• Sliding window: Time is tracked using a fixed-length interval that slides for-

ward with the current timestamp.

As explained in Section 3.1.1, the limited computational resources in the data

plane make it infeasible to maintain an exact sliding window. Instead, NAP introduces

an approximate sliding window, which varies in length but always falls within a

user-defined range. Let curr denote the current time and D the dictionary. NAP

supports the following time windows (Figure 4.3):

• within(lo,hi): a sliding window of any duration t ∈ [lo, hi], ensuring that

∀p ∈ D, 0 ≤ curr − p.time < t.
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current time

intv

lo

hi
...

within(lo, hi)

since(intv)
last(intv)

sliding
windows

tumbling
windows

Figure 4.3: Three types of time windows.

• since(intv): the current tumbling window of duration intv, so that ∀p ∈ D,

0 ≤ curr − p.time < t, where t = curr mod intv.

• last(intv): the most recent completed tumbling window of duration intv, so

that ∀p ∈ D, t ≤ curr − p.time < t+ intv, where t = curr mod intv.

The choice between sliding and tumbling windows depends on the application’s

temporal requirements. For example, a telemetry task that counts out-of-order TCP

packets in each 60-second interval may use since(60) to track the current interval

or last(60) to access the previous one. Tumbling windows avoid overlapping state

across time, making them more memory-efficient than sliding windows when state is

not mergeable, and enabling better approximation accuracy under the same resource

budget. They are well suited for applications where disjoint time intervals suffice.

In contrast, some applications require a continuous view of recent history. In the

stateful firewall example, an incoming packet is considered solicited if it matches the

key of any outgoing packet seen within the last 60 seconds. This requirement imposes

a lower bound on the time window. It is satisfied by a configuration of within(60,

90) (Figure 4.1, line 4): all flows observed in the last 60 seconds are guaranteed

to be retained, while those older than 90 seconds are excluded. The flexibility of

a dynamic window length enables efficient implementation while preserving the 60-

second temporal guarantee.
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Dictionary methods.

NAP exposes a small set of high-level methods on approximate dictionaries. Figure 4.4

shows the second half of the approximate stateful firewall program, where these meth-

ods are invoked within a Lucid packet handler. Outgoing packets are added to the

dictionary (lines 10–12); incoming packets query the dictionary to check whether their

IP pair was recently observed (lines 14–16). If not, the packet is dropped (line 19).

As we can see from this stateful firewall program, the lightweight and expressive

interface of approximate dictionaries allows developers to implement traffic control

logic concisely and declaratively.

6 handle pkt_in(pkt_t p) {

7 bool s = true;

8 if (p.ingress_port == INT_PORT)

9 then {

10 ExistDict.add(seen ,

11 {ext_ip = p.ip.dst;

12 int_ip = p.ip.src}); }

13 else {

14 s = ExistDict.query(seen ,

15 {ext_ip = p.ip.src;

16 int_ip = p.ip.dst}); }

17 if (s)

18 then { p.drop_ctl = NO_DROP; }

19 else { p.drop_ctl = DROP; }

20 }

Figure 4.4: Approximate stateful firewall: dictionary methods.

4.1.2 Value State Machine

The third parameter to an approximate dictionary is a value state machine, which

specifies how per-flow state evolves in response to packets. This abstraction is mo-

tivated by hardware constraints of data planes, which typically allow only a single

state access per packet. As a result, all state changes must be expressed as atomic

functions over the current packet and the prior state. NAP captures this computation

pattern using a structured state machine interface. When a key is added, its value
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is either initialized (if absent) or updated (if present). This behavior is uniformly

described using three functions:

• an initialization function that sets the state based on the packet data;

• an update function that modifies the state using the existing value and the

packet data;

• a read function that extracts a numeric result from the internal state.

This pattern generalizes per-flow state logic and corresponds to the standard Fold

construct in functional programming [32]. A Fold reduces a sequence of elements—

here, packets—into a single value by iteratively applying an update function to accu-

mulate state. This abstraction aligns naturally with data-plane programming, where

each packet incrementally updates per-flow state.

For example, the state machine for an ExistDict—which tracks whether a key has

ever been seen—can be expressed as Fold(init, upd, read), where the component

functions are defined in Figure 4.5. The state is initialized to true on the first packet

and left unchanged thereafter, so the read result always returns true once the key is

added. Since this behavior is shared across all ExistDict instances, it is abbreviated

as Exist() in dictionary creation (Figure 4.1, line 5). A similar fold-based state

machine underlies CountDict, which initializes a counter to one and increments it

with each following packet.

1 type state_t = {bool b}

2 fun state_t init(pkt_t p)

3 { return {b = true}; }

4 fun state_t upd(pkt_t p, state_t s)

5 { return s; }

6 fun bool read(state_t s)

7 { return s.b; }

Figure 4.5: Value state machine for ExistDict.
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Predefined state machines support common cases, but more sophisticated logic

often requires customization. To support this, NAP provides FoldDict, which allows

users to customize the value state machine.

Figure 4.6 defines a FoldDict for tracking out-of-order (OOO) TCP packets. The

state is a pair of 32-bit integers: fst stores the last seen TCP sequence number,

and snd accumulates the OOO count (line 3). The state machine is defined by the

init (lines 4-5), upd (lines 6-9), and read functions (lines 10-11), and assembled at

creation (lines 12-13). On each packet, the update function records the new sequence

number and increments the counter if it is smaller than the previous one. The read

function returns the current OOO count. This FoldDict allows NAP programs to

flag potentially congested flows based on observed reordering.

1 type key_t = {int <32> src_ip; int <32> dst_ip;

2 int <16> src_port; int <16> dst_port}

3 type state_t = {int <32> fst; int <32> snd}

4 fun state_t init(pkt_t p)

5 { return {fst = p.tcp.seq_no; snd = 0}; }

6 fun state_t upd(pkt_t p, state_t s)

7 { return {fst = p.tcp.seq_no;

8 snd = s.snd + 1 if s.fst > p.tcp.seq_no

9 else s.snd}; }

10 fun int <32> read(state_t s)

11 { return s.snd; }

12 global FoldDict.t<key_t > ooo = FoldDict.create

13 (under , since(sec (60)), Fold(init , upd , read));

Figure 4.6: FoldDict for out-of-order packet detection.

Formally, value state machines must compile to state access externs supported

by the target hardware. On architectures like the Intel Tofino, state is manipulated

via register actions, which perform a single read-modify-write sequence using the

underlying stateful ALU. This directly shapes NAP’s design: the syntax of each

function must conform to the computational model of the stateful ALU.
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The update function, for instance, must return the new register entry in a single

return statement, computed as a function of the current packet and the existing

register entry. Its body must satisfy the following constraints:

• The function may use at most two 32-bit fields from the input packet, and the

register entry may store up to two 32-bit values.

• The return statement constructs the new state using either basic expressions or

ternary expressions that select between basic expressions based on comparisons.

• A basic expression consists of an ALU-supported operation over at most one

register value and at most one packet field1.

• Comparisons must conform to the ALU-compatible form2, and each update

function may include at most two unique comparisons.

The initialization function follows the same rules, except it operates only on packet

fields since there is no prior state. The read function returns a single 32-bit register

value extracted from the current register entry.

These syntactic constraints mirror the internal structure of the stateful ALU on

Tofino, which receives up to two 32-bit values from the register and two from the

PHV, and performs gated computation via its comparison and arithmetic units. The

stateful ALU produces an updated register entry and a single 32-bit return value.

Programming register actions in P4 often requires reasoning about how control

logic maps onto these low-level ALU constraints. Developers may need to restructure

seemingly simple logic—e.g., if-else branches—to fit into the stateful ALU’s fixed

data paths. Even experienced P4 programmers often struggle to ensure their register

actions are compilable.

1Supported operations include unary and binary arithmetic and bitwise operations such as ad-
dition and XOR, applied to constants, register values, and packet fields.

2Each comparison must follow the structure reg value + pkt field + const comp op 0,
where comp op is a supported comparison operator.
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NAP alleviates this burden by exposing a carefully chosen subset of the logic

supported by register actions. Its value state machine syntax is designed to balance

expressiveness and regularity: it supports a broad class of practical use cases while

enabling predictable compilation. The NAP compiler statically checks user-defined

state machines against the above constraints. If a state machine is valid, it is guar-

anteed to compile to the hardware. If not, the compiler reports detailed feedback

pinpointing the violation.

While these restrictions rule out some patterns technically supported by the Intel

Tofino—such as falling back to the old state by default—they prioritize simplicity

over completeness. In practice, the current design has proven expressive enough to

support a wide range of applications while significantly reducing the complexity of

writing hardware-compliant state logic.

4.2 Compiling to the Data Plane

To compile NAP programs into executable P4 code, the compiler builds on the modu-

lar synthesis framework from Chapter 3, which provides parameterized templates for

verifiable data structures. The compilation process selects an appropriate data struc-

ture for each dictionary (Section 4.2.1), determines the corresponding time window

implementation (Section 4.2.2), and assigns parameter values to minimize theoreti-

cal error while satisfying hardware constraints (Section 4.2.3). The final output is a

concrete P4 program that runs on the Intel Tofino.

4.2.1 Selecting the Data Structure

Given an approximate dictionary in NAP, the compiler selects an appropriate data

structure based on the dictionary class—ExistDict, CountDict, or FoldDict—and

the specified error direction—exact, over, under, or approx (Table 4.1). Chapter 3
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describes how data structures are generally sharded into rows; here, we show how

different multi-row layouts are applied to the selected data structure.

Exact dictionary.

Exact dictionaries are implemented using exact tables indexed directly by the key. To

support multi-row layouts, the key is sliced into a row index and a slot index, enabling

a partitioned table design across rows. Because this representation maintains an exact

mapping between keys and values, it requires |value| · 2|key| bits of memory, where

|key| and |value| are the bit-widths of the key and value, respectively. If the estimated

memory exceeds the target capacity, the compiler raises an error and recommends

adding approximation.

Overapproximate dictionary.

Overapproximate dictionaries ensure that every key maps to some value in memory.

To achieve this, the key is hashed into a smaller index space within shared registers,

introducing the possibility of collisions. Two types of data structures are used in this

case: hash tables and sketches. Although both use multi-row layouts, they differ in

how keys are mapped and how values are aggregated.

In a multi-row hash table, the key is hashed twice: first to select a row, then to

compute the slot index within that row. Each key maps to a single row and a single

Error
direction

ExistDict CountDict FoldDict

exact exact table
over Bloom filter count-min sketch hash table
under hash table w. full fingerprints

approx

Bloom filter,
all of the rest above,
hash table w. partial
fingerprints

count-min sketch,
all of the rest above,
hash table w. partial
fingerprints

All of above,
hash table w. partial
fingerprints

Table 4.1: Data structure choices.
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slot, where the corresponding value state machine is stored. This data structure is

the choice for an overapproximate FoldDict, since individual values are not easily

mergeable across multiple slots.

In contrast, sketches hash each key into a slot in every row. Each row uses a

different hash function, and query results are aggregated across rows to mitigate the

effects of collisions. This approach is applicable when the value can be combined

across rows to improve accuracy. For instance, a Bloom filter is used for ExistDict

under overapproximation: each row sets a bit to true for the hashed slot during

insertion, and membership queries perform a logical AND across all R rows. Due

to collisions, Bloom filters may report false positives. Similarly, CountDict under

overapproximation uses a count-min sketch, which maintains an array of counters per

row. Each key incrementally updates one slot in each row, and queries return the

minimum counter value to reduce overestimation.

Underapproximate dictionary

Underapproximate dictionaries guarantee that only one key maps to a given value.

This is achieved with a hash table that stores full fingerprints: the entire key is

stored alongside the value to disambiguate collisions. Even if multiple keys hash

to the same index, the original key can be checked during insertions and queries to

ensure correctness. This data structure may introduce false negatives by missing keys

if the intended slot is already occupied.

Approximate dictionary.

Generally approximate dictionaries permit both false positives and false negatives,

allowing more flexible trade-offs. Any of the above data structures may be used.

Additionally, when using hash tables with fingerprints, the compiler relaxes the re-
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quirement to store full keys. Partial fingerprints obtained by hashing the key also

suffice.

While it is possible to avoid hashing by slicing the key into a row index, slot index,

and fingerprint, this method assumes a uniform key distribution to minimize collisions.

In practice, key values such as IP addresses and ports often exhibit hierarchical or

skewed distributions, resulting in uneven row utilization. To ensure balanced multi-

row indexing under realistic traffic patterns, the NAP compiler relies on hash functions

for both row and slot selection.

Because data structures with different error directions are not directly compara-

ble in terms of accuracy or resource usage, NAP applies sensible defaults: Bloom

filters for ExistDict, count-min sketches for CountDict, and hash tables with partial

fingerprints for FoldDict.

Final remarks.

For overapproximate FoldDict, the randomization inherent in hashing may produce

aggregate values that are difficult to interpret, especially when keys have structure

(e.g., IP addresses). In such cases, developers can define an exact dictionary using

selected key bits—for instance, truncating IP addresses to /16 prefixes—to align

aggregates with semantically meaningful groups. Since this optimization relies on

traffic patterns and domain knowledge, NAP leaves it to users: they may slice the

key and set the error direction to exact in NAP to evaluate feasibility in the data

plane. This approach demonstrates that NAP balances the high-level control intents

with user-guided refinement.

4.2.2 Time Window Implementation

NAP supports time windows to restrict which key-value pairs in a dictionary are

considered valid. Chapter 3 introduced rotating panes as a modular mechanism for
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maintaining temporal freshness, providing two multi-pane layouts—overlapping and

disjoint—and two cleanup strategies—dedicated cleaning panes and per-slot times-

tamps.

This section explains how the data structure type determines the appropriate

multi-pane layout, and how the combination of time window and cleanup strategy

decides the required number of panes P .

Multi-pane layouts selection.

The choice between overlapping and disjoint layouts is driven by the data structure

choice. Sketches with temporally aggregatable values naturally adopt overlapping

layouts, which merge panes to form the effective window. In contrast, exact tables

and hash tables typically require disjoint panes, as their value state machines do not

support merging across time.

Approximate sliding window.

An approximate sliding window, within(lo,hi), retains entries seen for some dy-

namic recent time interval bounded by lo and hi. Regardless of the chosen multi-pane

layout, the required number of panes P depends solely on the cleanup strategy:

• Dedicated cleaning pane: To ensure the reading pane(s) always span an

interval of length between lo and hi, each rotation step must not exceed

(hi− lo), resulting in:

P ≥
⌈

hi

hi− lo

⌉
+ 1

• Per-slot timestamps: No dedicated cleaning pane is required, yielding:

P ≥
⌈

hi

hi− lo

⌉
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Tumbling window.

Tumbling windows segment time into consecutive intervals. The variant since(intv)

retains entries from the current interval, while last(intv) captures the immediately

preceding one. The required number of panes again depends on the cleanup strategy:

• Dedicated cleaning pane: since(intv) uses 2 panes (writing and cleaning);

last(intv) uses 3 (writing, reading, and cleaning).

• Per-slot timestamps: since(intv) requires only 1 pane; last(intv) re-

quires 2, as the cleaning pane is eliminated.

Cleanup strategy selection.

Given the time window, the compiler chooses between dedicated cleaning panes and

per-slot timestamps by comparing memory overheads based on P and the per-flow

state size (Table 4.2). Per-slot timestamps are typically preferred when P is small

and slot sizes are large, as is often the case for hash tables and tumbling windows.

4.2.3 Sizing the Data Structure

Approximate data structures inherently introduce errors, with their parameters di-

rectly determining both the error magnitude and resource usage. The synthesis frame-

work introduced in Chapter 3 generates modular P4 templates—rows, panes, and data

structures—while leaving key parameters, such as the number of panes (P ), rows per

Time window Clean pane Per-slot timestamp

within(lo,hi) ≥
⌈

hi
hi−lo

⌉
+ 1 ≥

⌈
hi

hi−lo

⌉
since(intv) = 2 = 1
last(intv) = 3 = 2

Table 4.2: Pane count P required under time windows and cleanup strategies.
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Data structures What to minimize Theoretical error

Bloom filter False positive rate min. 1− (1− (1− (1− 1
S
)
M
P )R)P

Count-min sketch
Upper bound of
expected error

min. e−R + e
S

Hash table w. full fingerprint Key misses min. M − SR

Hash table w. partial fingerprint
Key collision
probability

f = S(1− (1− 1
S
)
M
R )

k = M
fR

c = (1− 1
2F
)k−1

min. Rf(k − c)/M

Table 4.3: Theoretical errors of data structures.

pane (R), slots per row (S), and fingerprint length (F ), configurable. The NAP com-

piler selects appropriate parameter values to generate a concrete P4 program, aiming

to minimize theoretical error while meeting data plane resource constraints—yielding

a classic constrained optimization problem.

Optimization objective.

For each approximate data structure, the compiler aims to minimize its theoretical

error. This error is a function depending on parameters like P , R, S, and F , along

with input traffic characteristics such as the average number of distinct keys within

the target time window (M). Table 4.3 summarizes error formulas for each supported

data structure. When multiple approximate dictionaries are defined within a NAP

program, the compiler combines their errors into a unified optimization objective.

Parameter constraints. At first glance, the parameter space may seem large. For

example, consider the parameter tuple (P,R, S) of a Bloom filter. Given a fixed

memory budget n, there are O(n(log n)2) distinct tuples whose product P × R × S

fits within n. However, the actual space is far smaller thanks to constraints imposed

by the data plane. These constraints significantly simplify the optimization process

by allowing the compiler to pre-prune infeasible tuples:

• Time constraints: The number of panes P is restricted by the selected time

window and cleanup strategy (see Table 4.2 and Section 4.2.2).
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• Memory constraints: The total number of rows P × R must not exceed the

available registers, typically limited by the number of stateful ALUs. For in-

stance, a 10-stage pipeline with 5 stateful ALUs per stage imposes the constraint

P ×R ≤ 50.

• Computational constraints: The number of slots S must be a power of two

to avoid expensive modulo operations during hashing. For a 1MB register, S

may take at most 22 values among 21, . . . , 222. Furthermore, because register

memory is allocated in fixed-size blocks, smaller values of S that consume the

same number of blocks as larger ones can be pruned without loss of generality.

• Architectural constraints: Additional limitations arise from hardware-

specific factors, such as the number of available hash units, supported register

widths, and the total number of pipeline stages.

Collectively, these constraints reduce the parameter search space from millions

of combinations to just hundreds of valid tuples, making exhaustive enumeration

tractable.

Greedy placement algorithm. Due to the manageable size of the parameter

space, the NAP compiler employs a straightforward greedy placement algorithm:

• Enumerate all parameter tuples satisfying the constraints.

• Compute theoretical error for each tuple using formulas.

• Rank the tuples in ascending order of error.

• Convert the NAP program into a dependency graph of data structures and

imperative components, respecting topological order.
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• For each ranked tuple, simulate placement of the dependency graph onto the

hardware pipeline following a topological order, exhausting available resources

stage by stage.

• Select the first parameter tuple that fits entirely within available hardware re-

sources, and output the corresponding P4 program along with its theoretical

error.

This greedy heuristic is guaranteed optimal for programs where approximate dictio-

naries form a linear dependency chain—a common case due to constraints in the data

plane.

Discussion.

The NAP compiler avoids the complexity of global optimization techniques such as

integer linear programming. Instead, it relies on structural regularities and hardware-

imposed constraints to guide the search. Users benefit from not needing to define

custom cost functions or hardware mappings: each supported data structure comes

with a built-in, theoretically grounded error metric. The expected error, a byprod-

uct of compilation, is reported alongside the generated program, enabling users to

reason about the trade-offs introduced by approximation. The resulting system is

lightweight, automated, and practical.

4.3 Evaluation

We evaluate NAP along three key dimensions: expressiveness of the language, per-

formance of the compiler, and end-to-end correctness and efficiency of the generated

programs. We first assess expressiveness by implementing a diverse set of applications

in NAP and comparing them to their compiled P4 outputs (Section 4.3.1). Next, we
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analyze compilation time and optimization behavior across applications and bench-

marks (Section 4.3.2). Finally, we demonstrate functional correctness and hardware

efficiency by running the stateful firewall on the Intel Tofino and evaluating its per-

formance on a campus traffic trace (Section 4.3.3).

4.3.1 Language Design

To evaluate expressiveness and ease of programming, we implement a diverse set of

nine example applications in NAP, including network telemetry, network monitoring,

and network control applications.3 Each of them utilizes one or more approximate

dictionaries. All of these practical applications can be expressed within 30 lines of

code (LoC). In comparison to their compiled P4 counterparts, NAP substantially

reduces programming effort, achieving a reduction of 25X to 50X in LoC (Table 4.4).

It is worth noting that NAP generates highly modularized P4 programs, poten-

tially resulting in an even greater reduction in LoC when compared to hand-written

P4 programs. For reference, Lucid [42] generates a 2267-LoC P4 program for an

approximate stateful firewall, significantly longer than our 555-LoC P4 output.

4.3.2 Compiler Performance

In measuring the compiler effiency, we can see that all example programs compile to

hardware-targeted P4 code in under one second, with single-dictionary applications

completing in less than 0.01 seconds.

To stress-test the compiler, we introduce synthetic benchmarks that incrementally

increase the number of overapproximate ExistDicts, each of which is compiled into

a Bloom filter. As expected, compilation time increases sharply with the number of

dictionaries: each additional Bloom filter increases the parameter space space multi-

plicatively, causing compilation time to scale by roughly a factor of 100 (Table 4.4).

3The full code for these applications is provided in Appendix A.
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Application
LoC Compile

time (s)
Configurations

NAP P4 Total Optimal rank
Single dictionary

Stateful firewall [5] 16 555 0.0055 525 87 (16.6%)
DNS amplification mitigation [5] 16 582 0.0056 525 87 (16.6%)
FTP monitoring [5] 18 798 0.0035 64 32 (50.0%)
Heavy hitter detection [5] 11 595 0.0049 126 3 (2.4%)
Traffic rate measurement by IP/8 12 466 0.0040 14 1 (0.8%)
TCP out-of-order monitoring [32] 23 559 0.0043 66 22 (33.3%)

Heterogeneous dictionaries
TCP superspreader detection [5] 24 842 0.0130 3274 730 (22.3%)
TCP SYN flood detection [5] 24 842 0.0130 3274 730 (22.3%)
NetCache [25] 24 802 0.0394 9726 5049 (51.9%)

Bloom filter benchmarks
1-Bloom filter 17 555 0.0055 525 87 (16.6%)
2-Bloom filter 30 960 0.1743 88053 4053 (4.6%)
3-Bloom filter 43 1289 25.94 6648.2K 367.4K (5.5%)
4-Bloom filter 56 1618 2278.87 261.0M 24.5M (9.4%)

Table 4.4: Network applications and benchmarks.

This experiment highlights two key points. First, NAP supports efficient compi-

lation for real-word applications. Second, the exponential growth in parameter con-

figurations exposes the limits of scaling: while small applications explore hundreds of

configurations, the 4-Bloom filter benchmark must process over 261 million.

A closer breakdown reveals that the majority of time is spent generating and eval-

uating parameter tuples. For example, compiling the 4-Bloom filter program takes an

average of 2278.87 seconds, with 2020.27 seconds used to generate all configurations

and 255.23 seconds used to fit the top 9.4% onto hardware. These results suggest

concrete opportunities for future improvement: further reducing the size of the pa-

rameter space through smarter pruning, or accelerating the fitting process by better

guiding the search.

4.3.3 Stateful Firewall Case Study

To evaluate the practical viability of NAP programs, we deploy our approximate

stateful firewall program onto the Intel Tofino. The program is first compiled to P4,
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Figure 4.7: False positive rate fluctuations over ten minutes.

utilizing a 4-pane and 3-row Bloom filter with a theoretical error of 0.329%. After

installing the P4 program onto the data plane, we replay a 10-minute anonymized

trace captured at the Princeton University campus border starting at 2 p.m. EST on

August 19, 2020. The trace comprises around 106 million packets at a rate of 185,000

packets per second.

Compared to the ground truth with an exact 60-second sliding window, our ap-

proximate stateful firewall exhibits a 0.509% false positive rate. This error is slightly

higher than the theoretical error, possibly due to the temporal approximation. The

NAP program adopts a [60, 90]-second approximate sliding window, which includes

keys that the ground truth does not have in its exact window.

Figure 4.7 presents the variation of the false positive rate over time. It starts off

at 0% since the initially empty Bloom filter does not allow any unsolicited incoming

traffic. As it fluctuates between 0.25% and 2%, an interesting pattern emerges, char-

acterized by spikes occurring about every 30 seconds, corresponding to the 30-second

pane length. The rate gradually increases as the writing pane fills up and then drops

suddenly when the oldest pane is replaced with a cleaned pane.

Resource Hash Units ALU Units SRAM TCAM
Utilization 27.3% 31.8% 25.6% 7.9%

Table 4.5: Hardware resource utilization on the Intel Tofino.
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Table 4.5 displays the resource utilization for the output P4 program on the Intel

Tofino. While one might intuitively expect the program to fully utilize the available

memory, hash units, and stateful ALUs to minimize errors, the optimal configuration

actually consumes only 25.6% of the SRAM. This seemingly underutilized allocation

arises from two key factors: first, a significant portion of SRAM is architecturally

unavailable for register memory; second, the preprocessing and postprocessing de-

pendencies confine the data structures’ placement to the middle pipeline stages.

These results demonstrate that NAP-generated P4 programs can achieve low false

positive rates while maintaining bounded resource usage. The modular synthesis

framework and parameter search work in tandem to balance performance and hard-

ware constraints—allowing NAP programs to coexist with other applications and

workloads in production environments.

4.4 Related Works

Several network programming languages have been developed for programmable data

planes, each targeting different abstractions and optimization challenges.

Lucid [42] is an event-driven language designed for low-latency network control on

programmable switches. While it offers a concise syntax, it requires users to manually

select and define data structures. Its compiler optimizes control flows through static

analysis, primarily reducing the number of pipeline stages—an effort orthogonal to

NAP’s focus on optimizing approximate data structures under memory constraints.

Marple [32] and Sonata [21] are network telemetry languages tailored for perfor-

mance and scalability. Marple supports query-driven performance monitoring via a

new key-value primitive, while Sonata leverages stream processors to offload data-

plane work. However, neither system is designed to operate entirely within the pro-

grammable data plane. Newton [56] addresses in-network monitoring using approx-
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imate data structures to tolerate dynamic traffic conditions, but it lacks a general

abstraction for data structures and does not support reactive control. Moreover, all

three are limited to offline analysis and do not support packet-by-packet actions in

response to queries.

P4All [22] extends P4 with support for parameterized data structures and com-

piles them via integer linear programming. While it enables greater flexibility by

letting users define custom objectives and data structures, this generality results in

a vast solution space and prolonged compilation time. In contrast, NAP confines

users to predefined approximate dictionaries. This design choice allows the compiler

to leverage prior knowledge about resource usage and placement behavior, enabling

efficient optimization via exhaustive enumeration and greedy placement.

Domino [41], Chipmunk [20], and Lyra [19] all focus on compiling control algo-

rithms into P4 pipelines while optimizing resource usage, such as minimizing stage

count. However, these compilers assume low-level data structures and do not ad-

dress the challenge of synthesizing and optimizing parameterized approximate data

structures as NAP does.

In summary, NAP advances programmable network control by enabling approx-

imate stateful behavior entirely within the data plane, building on the event-driven

model pioneered by systems like Lucid. While prior work has focused on control logic,

telemetry queries, or custom data structure optimization, NAP introduces high-level

approximate dictionaries. This restricted yet expressive abstraction enables modu-

lar synthesis of approximate data structures and efficient parameter selection under

hardware constraints. By specializing the language and compiler around in-network

approximation, NAP achieves practical automation, robust expressiveness, and strong

hardware efficiency across a broad class of real-world applications.
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Chapter 5

Conclusion

Modern network control applications—including traffic management, security sys-

tems, and performance monitoring—demand fine-grained and dynamic responses to

evolving traffic patterns. These applications typically share a common structure: they

maintain per-flow state over time and use it to make flow-level decisions on how to

process packets. This pattern recurs across a variety of settings, from access networks

to data centers. Yet, implementing such stateful logic at line rate remains a funda-

mental challenge, especially given the constraints of traditional switch hardware.

The advent of programmable switches has created new opportunities and complex-

ities for network control. Languages like P4 allow developers to implement custom

logic entirely within the data plane, enabling fast and flexible in-network applications.

However, the available memory and compute resources remain limited, requiring com-

pact representations of state. Approximate data structures offer a promising solution

by trading precision for scalability. When carefully designed, these data structures

can support diverse stateful control applications without exceeding hardware limits.

Despite their potential, implementing approximate stateful logic in programmable

switches introduces substantial challenges. Developers must navigate trade-offs

between accuracy and resource usage, while reasoning within strict hardware
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constraints—such as pipeline depth, register layouts, hash unit availability, and

stateful ALU capacity. Language-level limitations further complicate development:

ambiguities in the P4 specification and the lack of a formal semantics hinder program-

ming and reasoning, particularly in the presence of stateful externs and uninitialized

values. Developers lack the abstractions and tools needed to manage these challenges

effectively. As a result, building approximate control applications today remains a

difficult and error-prone task.

5.1 Summary of Contributions

This thesis presents a comprehensive approach to enabling network control in pro-

grammable data planes by integrating formal semantics, data structure synthesis, pro-

gram verification, domain-specific languages, and resource optimization. It bridges

high-level abstractions and hardware-executable implementations by addressing foun-

dational challenges in semantics, data structures, and language abstraction:

• Formal semantics for P4: We define a formal semantics for the P4 pro-

gramming language and the Intel Tofino architecture by faithfully modeling the

language specification and architecture-specific behaviors (joint work with Qin-

shi Wang [46, 47]). Our semantics captures P4’s two-phase evaluation model,

characterizes stateful externs, and accounts for uninitialized values. Fully mech-

anized in Coq, it serves as a foundation for verifying P4 programs. Compared

to prior work, our semantics offers broader language coverage and tighter align-

ment with the specifications. In the process, we uncovered inconsistencies, am-

biguities, and bugs in the P4 specification, offering insights for future language

evolution.

• Verifiable modular data structures: We develop a synthesis framework

for constructing approximate data structures compatible with programmable
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switches (joint work with Hyojoon Kim [39]). Our modular design supports

memory sharding and time window semantics, enabling practical in-network

state management. We propose a layered verification strategy across three lev-

els: modular P4 code, concrete models that closely reflect P4 behavior, and ab-

stract models that specify correctness properties (joint work with Qinshi Wang,

Shengyi Wang, and Lennart Beringer [46, 47]). This structure supports end-

to-end proofs and systematically bridges the gap between formal specifications

and hardware-executable code.

• Network approximate programming language: We design and implement

NAP, a domain-specific language and compiler for expressing network control

applications using approximate dictionaries (joint work with Hyojoon Kim [39]).

Based on the abstraction of dictionaries over time windows, NAP allows develop-

ers to write concise control logic while relying on the compiler to automatically

select, configure, and place data structures. The compiler builds on modular

synthesis and constrained optimization to generate runnable P4 code, making

practical deployment of network control applications on real hardware accessi-

ble.

Collectively, these contributions demonstrate how formal methods and system

design can be effectively combined to realize verifiable and efficient network control.

By grounding verification in formal semantics, synthesizing verified data structures,

and raising the programming interface with a high-level language, this thesis offers a

principled and practical methodology for building trustworthy network control.

5.2 Future Directions

This thesis lays a foundation for verifiable network control with compact data struc-

tures in programmable switches. Several promising directions remain open for ex-
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tending the underlying techniques to support broader architectures, applications, and

deployment scenarios.

Extending semantics and verification.

Our formal semantics faithfully captures both the P4 language and the Intel Tofino

architecture. Future work may extend this foundation to other programmable targets

such as eBPF, FPGAs, and smartNICs, which feature distinct architectures and mem-

ory models. Although the low-level details vary, many of the high-level techniques

developed in this thesis remain broadly applicable: employing formal semantics to

surface ambiguities, layering verification around reusable control abstractions, and

introducing high-level languages to express control intent. Extending these ideas to

new architectures would not require reinventing the framework, but would involve

carefully re-mapping the core abstractions to the concurrency, memory, and pipeline

models of each platform.

Verifiable P4 supports semi-modular verification by replaying proofs across mul-

tiple instances of a control. A more modular verification framework would allow each

control to be verified once, ensuring correctness for all instantiations and reducing

proof burden.

Finally, bridging synthesis and verification remains a compelling direction. While

NAP can synthesize P4 implementations, the associated specifications and correctness

proofs must still be written manually. Extending NAP to generate formal specifica-

tions and machine-checked proof artifacts would move toward verified-by-construction

data plane programs.

More powerful data structures and synthesis.

NAP currently supports a core set of classic approximate data structures. Expanding

this set—e.g., to include frequency-aware eviction policies or decay-based retention
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schemes—would support more sophisticated applications such as in-network caching

and streaming analytics.

On the compiler side, NAP’s greedy placement algorithm can be augmented with

hybrid strategies that combine pruning-based search with ILP formulations or sim-

ulated annealing. Such techniques may improve compilation time for large-scale ap-

plications without sacrificing solution quality.

Multi-target and distributed networks.

Modern networks comprise heterogeneous devices with distinct programming models.

Today, deploying a control program across multiple targets requires rewriting it for

each device. Extending NAP to support cross-device portability and multi-target de-

ployment would allow a single program to be automatically partitioned and compiled

across heterogeneous devices or between control and data planes.

A related direction involves reasoning about system-wide properties that span

both control-plane and data-plane components. In particular, connecting C-based

control plane logic with P4-based data plane behavior to verify global invariants

would enable more holistic correctness reasoning in modern networked systems.

By pursuing these directions, future work can extend the reach of verifiable, ex-

pressive, and efficient network programming. As programmable networks continue to

evolve, the integration of formal methods, data structure design, and domain-specific

languages will remain central to building correct and efficient systems.
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Appendix A

NAP Examples

To complement the evaluation in the main text, we provide the full code for the

nine NAP example applications in this appendix (Figures A.1–A.9). These programs

span diverse domains, including network telemetry, monitoring, and control, and each

leverages one or more approximate dictionaries. All examples are written in fewer

than 30 lines of code, demonstrating both the expressiveness and ease of programming.

1 type key_t = {int <32> int_ip; int <32> ext_ip ;}

2 global ExistDict.t<key_t > seen =

3 ExistDict.create(over , within(sec(LO), sec(HI)), Exist ());

4 handle pkt_in(pkt_t p) {

5 int <8> s = 1;

6 match p.ig_intr_md.ingress_port with

7 | INT_PORT -> { ExistDict.add(seen ,

8 {ext_ip = p.hdr.ip.dst;

9 int_ip = p.hdr.ip.src}); }

10 | _ -> { s = ExistDict.query(seen ,

11 {ext_ip = p.hdr.ip.src;

12 int_ip = p.hdr.ip.dst}); }

13 match s with

14 | 0 -> { p.ig_intr_dprsr_md.drop_ctl = 0x1; }

15 | 1 -> { p.ig_intr_dprsr_md.drop_ctl = 0x0; }

16 }

Figure A.1: Stateful firewall.
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1 type key_t = {int <32> int_ip; int <32> ext_ip ;}

2 global ExistDict.t<key_t > seen =

3 ExistDict.create(over , within(sec(LO), sec(HI)), Exist ());

4 handle pkt_in(pkt_t p) {

5 int <8> s = 1;

6 match p.hdr.udp.dport , p.hdr.udp.sport with

7 | 53, _ -> { ExistDict.add(seen ,

8 {ext_ip = p.hdr.ip.dst;

9 int_ip = p.hdr.ip.src}); }

10 | _, 53 -> { s = ExistDict.query(seen ,

11 {ext_ip = p.hdr.ip.src;

12 int_ip = p.hdr.ip.dst}); }

13 match s with

14 | 0 -> { p.ig_intr_dprsr_md.drop_ctl = 0x1; }

15 | 1 -> { p.ig_intr_dprsr_md.drop_ctl = 0x0; }

16 }

Figure A.2: DNS amplification mitigation.

1 type key_t = {int <32> int_ip; int <32> ext_ip; int <16> client_port ;}

2 global ExistDict.t<key_t > seen = ExistDict.create

3 (under , since(sec(INTV)), Exist ());

4 handle pkt_in(pkt_t p) {

5 int <8> s = 1;

6 match p.hdr.tcp.dport with

7 | 21 -> { ExistDict.add(seen ,

8 {ext_ip = p.hdr.ip.dst;

9 int_ip = p.hdr.ip.src;

10 client_port = p.hdr.tcp.sport }); }

11 | 20 -> { s = ExistDict.query(seen ,

12 {ext_ip = p.hdr.ip.src;

13 int_ip = p.hdr.ip.dst;

14 client_port = p.hdr.tcp.sport }); }

15 match s with

16 | 0 -> { p.ctrl_md.monitor = 0x1; }

17 | _ -> { p.ctrl_md.monitor = 0x0; }

18 }

Figure A.3: FTP monitoring.
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1 type key_t = {int <32> src;}

2 global CountDict.t<key_t > counter = CountDict.create

3 (over , since(sec(INTV)), Count ());

4 handle pkt_in(pkt_t p) {

5 int <32> cnt = 0;

6 cnt = CountDict.add_query(counter ,

7 {src = p.hdr.ip.src});

8 match cnt with

9 | THR .. MAX_INT -> { p.ctrl_md.monitor = 0x1; }

10 | _ -> { p.ctrl_md.monitor = 0x0; }

11 }

Figure A.4: Heavy hitters.

1 type key_t = {int <8> src_prefix ;}

2 type state_t = {int <32> cnt;}

3 fun state_t init(pkt_t p) { return {cnt = 1}; }

4 fun state_t upd(pkt_t p, state_t s) { return {cnt = s.cnt + 1}; }

5 fun int <32> read(state_t s) { return s.cnt; }

6 global FoldDict.t<key_t > counter = FoldDict.create

7 (exact , within(sec(LO), sec(HI)), Fold(init , upd , read));

8 handle pkt_in(pkt_t p) {

9 int <32> cnt = 0;

10 cnt = FoldDict.add_query(counter ,

11 {src_prefix = p.hdr.ip.src [0:7]});

12 }

Figure A.5: Traffic rate measurement by IP/8.
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1 type key_t = {int <32> src_ip; int <32> dst_ip;

2 int <32> sport; int <32> dport;}

3 type state_t = {int <32> prev; int <32> cnt;}

4 fun state_t init(pkt_t p)

5 { return {prev = p.hdr.tcp.seq; cnt = 0}; }

6 fun state_t upd(pkt_t p, state_t s)

7 { return {prev = p.hdr.tcp.seq;

8 cnt = s.cnt + 1 if s.prev > p.hdr.tcp.seq else s.cnt}; }

9 fun int <32> read(state_t s) { return s.cnt; }

10 global FoldDict.t<key_t > ooo = FoldDict.create

11 (under , since(sec(INTV)), Fold(init , upd , read));

12 handle pkt_in(pkt_t p) {

13 int <32> cnt = 0;

14 match p.hdr.ip.protocol with

15 | 6 -> { cnt = FoldDict.add_query(ooo ,

16 {src_ip = p.hdr.ip.src;

17 dst_ip = p.hdr.ip.dst;

18 sport = p.hdr.tcp.sport;

19 dport = p.hdr.tcp.dport }); }

20 match cnt with

21 | THR .. MAX_INT -> { p.ctrl_md.monitor = 0x1; }

22 | _ -> { p.ctrl_md.monitor = 0x0; }

23 }

Figure A.6: TCP out-of-order monitoring.

1 type key_t = {int <32> src;}

2 global CountDict.t<key_t > syn = CountDict.create

3 (over , since(sec(INTV)), Count ());

4 global CountDict.t<key_t > fin = CountDict.create

5 (under , since(sec(INTV)), Count ());

6 handle pkt_in(pkt_t p) {

7 int <32> num_syn = 0;

8 int <32> num_fin = 0;

9 int <32> num_unmatched = 0;

10 match p.hdr.tcp.flags with

11 | SYN_FLAG ->

12 { num_syn = CountDict.add_query(syn , {src = p.hdr.ip.src}); }

13 | _ ->

14 { num_syn = CountDict.query(syn , {src = p.hdr.ip.src}); }

15 match p.hdr.tcp.flags with

16 | FIN_FLAG ->

17 { num_fin = CountDict.add_query(fin , {src = p.hdr.ip.src}); }

18 | _ ->

19 { num_fin = CountDict.query(fin , {src = p.hdr.ip.src}); }

20 num_unmatched = num_syn - num_fin;

21 match num_unmatched with

22 |THR .. MAX_INT -> { p.ctrl_md.monitor = 0x1; }

23 | _ -> { p.ctrl_md.monitor = 0x0; }

24 }

Figure A.7: TCP overspreader detection.
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1 type key_t = {int <32> src;}

2 global CountDict.t<key_t > syn = CountDict.create

3 (over , since(sec(INTV)), Count ());

4 global CountDict.t<key_t > ack = CountDict.create

5 (under , since(sec(INTV)), Count ());

6 handle pkt_in(pkt_t p) {

7 int <32> num_syn = 0;

8 int <32> num_ack = 0;

9 int <32> num_unmatched = 0;

10 match p.hdr.tcp.flags with

11 | SYN_FLAG ->

12 { num_syn = CountDict.add_query(syn , { src = p.hdr.ip.src}); }

13 | _ ->

14 { num_syn = CountDict.query(syn , { src = p.hdr.ip.src}); }

15 match p.hdr.tcp.flags with

16 | SYN_ACK_FLAG ->

17 { num_ack = CountDict.add_query(ack , { src = p.hdr.ip.src}); }

18 | _ ->

19 { num_ack = CountDict.query(ack , { src = p.hdr.ip.src}); }

20 num_unmatched = num_syn - num_ack;

21 match num_unmatched with

22 |THR .. MAX_INT -> { p.ctrl_md.monitor = 0x1; }

23 | _ -> { p.ctrl_md.monitor = 0x0; }

24 }

Figure A.8: TCP SYN flood detection.
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1 type key_t = {int <32> key;}

2 type state_t = {int <32> val;}

3 global CountDict.t<key_t > counter = CountDict.create

4 (over , since(sec(INTV)), Count ());

5 fun state_t init(pkt_t p) { return {val = p.hdr.data.val}; }

6 fun state_t upd(pkt_t p, state_t s) {

7 return {val = p.hdr.data.val}; }

8 fun int <32> read(state_t s) { return s.val; }

9 global FoldDict.t<key_t > cache = FoldDict.create

10 (under , since(sec(INTV)), Fold(init , upd , read));

11 handle pkt_in(pkt_t p) {

12 int <32> cnt = 0;

13 match p.hdr.data.type with

14 | REQUEST ->

15 { CountDict.add(counter , { key = p.hdr.data.key}); }

16 | RESPONSE ->

17 { cnt = CountDict.query(counter , { key = p.hdr.data.key}); }

18 match cnt , p.hdr.data.type with

19 | THR .. MAX_INT , RESPONSE ->

20 { FoldDict.add(cache , { key = p.hdr.data.key}); }

21 | _, REQUEST ->

22 { p.hdr.data.val = FoldDict.query(cache ,

23 {key = p.hdr.data.key}); }

24 }

Figure A.9: NetCache.
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