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Traffic control
Operators want real-time control over network traffic.
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Operators want real-time control over network traffic.
• Access network: rate-limiting large incoming flows

Traffic control
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Operators want real-time control over network traffic.
• Access network: rate-limiting large incoming flows
• Enterprise network: dropping unsolicited packets

Traffic control

Allow
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K V

Operators want real-time control over network traffic.
• Access network: rate-limiting large incoming flows
• Enterprise network: dropping unsolicited packets
• Datacenter network: caching popular key-value pairs

K V

Traffic control

V
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Stateful applications
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Traffic control applies actions on packets based on the state.

Key-value store store the popular key-
value pairs

resolve the values for
popular keys

Example State Action

Rate limiter count the packets limit the rates of large
flows

Stateful firewall record the flow IDs of
outgoing traffic

drop the incoming
traffic with unmatched

flow IDs



Where to store states?
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Traffic control applies actions on packets based on the states.
• OpenFlow-based deployment incurs high overhead and latency.

Data Plane

Control Plane

Collect
statistics

State

Action

OpenFlow switch

Add
rules



State in the data plane
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Traffic control applies actions on packets based on the states.
• OpenFlow-based deployment incurs high overhead and latency.

Data Plane

Control PlaneState

Action

OpenFlow switch

• Programmable data planes allows state access at line rate.

Programmable 
Data Plane

PISA(Protocol Independent Switch Architecture) switch 

State Action



PISA switches enable stateful network control to run in the data plane.
To maintain line-rate processing, PISA switches are
inherently restricted in architectures & resources.
• Finite-stage pipeline

• Restricted memory access

• Limited memory resources 

• Limited computational resources

PISA switches
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Programmable 
Data Plane

PISA switch 

O(1) MB

P. Bosshart, et al., Forwarding metamorphosis: fast programmable match-action processing in hardware for SDN. SIGCOMM '13



PISA switches enable stateful network control to run in the data plane.
To maintain line-rate processing, PISA switches are
inherently restricted in architectures & resources.
• Finite-stage pipeline

• Restricted memory access

• Limited memory resources 

• Limited computational resources

Resource constraints
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Programmable 
Data Plane

PISA switch 

O(1) MB

P. Bosshart, et al., Forwarding metamorphosis: fast programmable match-action processing in hardware for SDN. SIGCOMM '13

Cannot apply sophisticated data processing.

Cannot keep exact per-flow state in data structures.



• Resource constraints demand network control applications to use 
approximate data structures to represent state compactly.

• Approximations are acceptable in many applications.

Approximate data structures
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Bloom Filter

Count-Min 
Sketch

Hash table

CocoSketch

BeauCoup

Hash table with 
Fingerprint

B. H. Burton, Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 1970.
X. Chen, et al., BeauCoup: Answering Many Network Traffic Queries, One Memory Update at a Time. SIGCOMM ’20.
Y. Zhang, et al., CocoSketch: high-performance sketch-based measurement over arbitrary partial key query. SIGCOMM ‘21.
G. Cormode, Count-Min Sketch. 2009.



• Approximate stateful firewall: guarantees access to all the solicited 
packets, at the cost of sometimes allowing the unsolicited ones.

Approximate traffic control

Allow
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• Approximate stateful firewall: guarantees access to all the solicited 
packets, at the cost of sometimes allowing the unsolicited ones…
• For network control applications, it is feasible to run entirely in the

data plane since approximation is tolerable in data structures.

Approximate traffic control
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Three challenges
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Laying semantic foundation for P4

Selecting & sizing data structures

Adapting data structures correctly

Verifiable traffic control with
approximate data structures in the data plane



Three challenges
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Laying semantic foundation for P4

Selecting & sizing data structures

Adapting data structures correctly

Verifiable traffic control with
approximate data structures in the data plane



• Selecting data structures

Selecting & sizing data structures
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?

Which approximate data structure supports the application intention?

Bloom Filter

Count-Min 
Sketch

Hash table

CocoSketch

BeauCoup

Hash table with 
Fingerprint



• Selecting data structures

• Sizing data structures
How to size the data structure to minimize the approximation error?

Selecting & sizing data structures
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Data StructureData StructureData Structure

Which approximate data structure supports the application intention?



• Selecting data structures

• Sizing data structures
How to size the data structure to minimize the approximation error?

Selecting & sizing data structures

18

Data Structure Data 
StructureData Structure

Which approximate data structure supports the application intention?



• Selecting data structures

• Sizing data structures
How to size the data structure to minimize the approximation error?

Selecting & sizing data structures
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Data Structure Data 
StructureData Structure

Programming traffic control applications is hard
without expertise in approximate data structures.

Which approximate data structure supports the application intention?



Three challenges
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Laying semantic foundation for P4

Selecting & sizing data structures

Adapting data structures correctly

Verifiable traffic control with
approximate data structures in the data plane



PISA switches enable stateful network control to run in the data plane.
To maintain line-rate processing, PISA switches are
inherently restricted in architectures & resources.
• Finite-stage pipeline

• Restricted memory access

• Limited memory resources
Cannot keep exact per-flow state in data structures.

• Limited computational resources
Cannot apply sophisticated data processing.

Architectural constraints
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Programmable 
Data Plane

PISA switch 

O(1) MB

P. Bosshart, et al., Forwarding metamorphosis: fast programmable match-action processing in hardware for SDN. SIGCOMM '13

Cannot implement general-purpose loops.

Cannot access memory across stages.



• Adapting data structures
Given architectural constraints, how to implement data structures for
the data plane?

Adapting data structures…
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Programmable 
Data Plane

PISA switch 

O(1) MB



P4 language
P4 is a domain-specific language for expressing packet processing on 
the programmable data planes.
• Low-level

Hardware-oriented and C-like
• Specialized constructs

PISA-specific features such as actions, tables, and control blocks
• Informal target semantics

• Informal language semantics

23The P4 Language Design Working Group. P4_16 Language Specifications.

Fragmented vendor documents

189-page P4 specification in prose & examples



• Adapting data structures
Given architectural constraints, how to implement data structures in 
the data plane?
• Verifying data structures

Given language complexity, how to ensure correctness of the adapted 
P4 implementation?

Adapting data structures… correctly!

24



• Adapting data structures
Given architectural constraints, how to implement data structures in 
the data plane?
• Verifying data structures

Given language complexity, how to ensure correctness of the adapted 
P4 implementation?

Adapting data structures… correctly!
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Implementing data structures correctly is hard
without expertise in architectures & verification.



Three challenges
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Laying semantic foundation for P4

Selecting & sizing data structures

Adapting data structures correctly

Verifiable traffic control with
approximate data structures in the data plane



• To adapt data structures correctly, we need to:
• Write programs in P4
• Build P4 verifiers

• Formal semantics: the foundation for both tasks
The mathematical specification of program behavior
• Example: ++ denotes concatenation in P4.
• Concatenating two 8-bit bitstrings should yield a 16-bit result 
8w0 ++ 8w1 = 16w1

Laying semantic foundation for P4

27



P4 language
P4 is a domain-specific language for expressing packet processing on 
the programmable data planes.
• Low-level

Hardware-oriented and C-like
• Specialized constructs

PISA-specific features such as actions, tables, and control blocks
• Informal target semantics

• Informal language semantics

28The P4 Language Design Working Group. P4_16 Language Specifications.

Fragmented vendor documents

189-page P4 specification in prose & examples



• Natural-language specifications
Both vendor docs & the P4 spec are written informally
• Ambiguities and bugs make it difficult to:
• Write programs in P4 with confidence
• Build reliable P4 verifiers

• Example: ++ denotes concatenation in P4.
• Concatenating two 8-bit bitstrings should yield a 16-bit result 
8w0 ++ 8w1 = 16w1
• The P4 spec was unclear for fixed-width bitstrings

→ Formal semantics are needed to resolve this ambiguity

The problem of informal semantics

29



• Natural-language specifications
Both vendor docs & the P4 spec are written informally
• Ambiguities and bugs make it difficult to:
• Program in P4 with confidence
• Build reliable P4 verifiers

• Example: ++ denotes concatenation in P4.
• 8w0 ++ 8w1 = 16w1
• 8w1 ++ 8w0 = 16w256
• The P4 spec was unclear for fixed-width bitstrings

→ Formal semantics are needed to resolve this ambiguity

The problem of informal semantics
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Programming the data plane is hard
without expertise in P4.



Three challenges
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Laying semantic foundation for P4

Selecting & sizing data structures

Adapting data structures correctly

Verifiable traffic control with
approximate data structures in the data plane



Three contributions
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Selecting & sizing data structures

Verifiable traffic control with
approximate data structures in the data plane

Network Approximate Programming

Laying semantic foundation for P4

Adapting data structures correctly



Network Approximate Programming
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Data structures

M. Pan, et al., NAP: Programming Data Planes with Approximate Data Structures. EuroP4 2023.

Network 
Approximate 
Programming

NAP program

P4 program



Verifiable traffic control with
approximate data structures in the data plane

Three contributions
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Selecting & sizing data structures

Adapting data structures correctly
Verified modular data structures

Network Approximate Programming

Laying semantic foundation for P4



Verified modular data structures
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Modular data
structures

Specification

Verified modular
data structures

M. Pan, et al., NAP: Programming Data Planes with Approximate Data Structures. EuroP4 2023.
Q. Wang, M. Pan, et al., Foundational Verification of Stateful P4 Packet Processing. ITP 2023.

Network 
Approximate 
Programming

NAP program

P4 program

Modular
synthesis

framework

Layered
verification
framework



Verifiable traffic control with
approximate data structures in the data plane

Three contributions
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Laying semantic foundation for P4

Selecting & sizing data structures

Adapting data structures correctly

P4 formal semantics

Verified modular data structures

Network Approximate Programming



P4 formal semantics
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Modular data
structures

Specification

Verified modular
data structures

M. Pan, et al., NAP: Programming Data Planes with Approximate Data Structures. EuroP4 2023.
Q. Wang, M. Pan, et al., Foundational Verification of Stateful P4 Packet Processing. ITP 2023.

Network 
Approximate 
Programming

NAP program

P4 program

Modular
synthesis

framework

Layered
verification
framework

P4 formal
semantics VerifiableP4



P4 formal semantics

Outline

Verified modular data structures

Network Approximate Programming

Conclusions & future directions

Motivations, challenges & contributions
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P4 formal semantics

Outline

Verified modular data structures

Network Approximate Programming

Conclusions & future directions

Motivations, challenges & contributions
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Problem: Developers must manually select and size data structures, 
requiring deep domain knowledge and extensive tuning.
Limitations: Existing high-level languages lack support for approximate 
data structures or automate selection/sizing.

Selecting & sizing data structures

40

Approximate
data structures

Selecting data
structures

Sizing data
structures

Marple Only hash tables No No

Sonata Only sketches No Yes

Newton Yes No No

Lucid Yes No No

P4All Yes No Yes



Approach: NAP, a high-level language for approximate network control
Insight:
• Language: A simple universal abstraction for approximate data 

structures
• Compiler: Translates NAP programs into P4
• Selecting data structures: guided by high-level control intent
• Sizing data structures: lightweight greedy optimizer with pre-pruning

Network approximate programming

41



Identifying the common pattern
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How to design an abstraction that works universally across network 
control applications?
• Key: flow identifier
• Value: stateful information

Key-value store store the popular key-
value pairs Application key Application value

Example State Key Value

Rate limiter count the packets Source IP Number of packets

Stateful firewall record the flow IDs of
outgoing traffic (Internal IP, External IP) Existence



• Key: flow identifier
• Value: stateful information

Identifying common patterns

43

Bloom Filter

Count-Min 
Sketch

Hash table

CocoSketch

BeauCoup

Hash table with 
Fingerprint



Approximate 
Dictionary

Approximate dictionary abstraction
• Key: flow identifier
• Value: stateful information

44

Approximate dictionaries represent a 
wide variety of approximate data 

structures in a uniform way.



•  
•  
• Operations:

• Create<key>(parameters)
• Add(key)
• Query(key)

Basic dictionary operations
• Key: flow identifier
• Value: stateful information

45

key

Val

Approximate Dictionary



•  
•  
•  

•  
•  
•  

•  
• Exist: Query(key) -> Bool
• Count: Query(key) -> Int
• Fold: Query(key) -> Any

• Key: flow identifier
• Value: stateful information
•  
•  
• Operations:

• Create<key>(parameters)
• Add(key)
• Query(key)

•  
•  
•  

•  
•  
•  

• Dictionary Class: value updates

Dictionary classes

46

True

ExistDict

100

CountDict

Any

FoldDict



•  
•  
•  

•  
•  
•  

• Dictionary Class: value updates

•  
•  
•  

•  
•  

•  
•  

•  
• Temporal approximation

• Key: flow identifier
• Value: stateful information

•  
•  
•  

•  
•  

•  
• Parameters:

• Inclusion approximation

•  
•  
• Operations:

• Create<key>(parameters)
• Add(key)
• Query(key)

Two approximation dimensions

47



Many applications tolerate errors, but favor a specific direction. 

Error directions
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Many applications tolerate errors, but favor a specific direction. 
• Rate limiter: underapproximate the counts

Error directions

49

11234556

1222

Underestimate

100

CountDict



Error directions
Many applications tolerate errors, but favor a specific direction. 
• Rate limiter: underapproximate the counts

50

• Stateful firewall: overapproximate the ID set

Allow
True

ExistDict



•  
•  
•  

•  
•  
•  

• Dictionary Class: value updates

•  
•  
• Operations:

• Create<key>(parameters)
• Add(key)
• Query(key)

•  
•  
•  

•  
•  

•  
• Parameters:

• Inclusion approximation: error direction

• Key: flow identifier
• Value: stateful information

Error directions in dictionaries
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•  
•  
• Operations:

• Create<key>(parameters)
• Add(key)
• Query(key)

• Key: flow identifier
• Value: stateful information

•  
•  
•  

•  
•  

•  
• Parameters:

• Inclusion approximation: error direction

•  
•  
•  

•  
•  
•  

• Dictionary Class: value updates

Error directions in dictionaries

52

Exact Overapproximation

Underapproximation Approximation



• Key: flow identifier
• Value: stateful information

•  
•  
•  

•  
•  

•  
• Parameters:

• Inclusion approximation: error direction

•  
•  
• Operations:

• Create<key>(parameters)
• Add(key)
• Query(key)

•  
•  
•  

•  
•  

•  
•  

•  
• Temporal approximation: time window

•  
•  
•  

•  
•  
•  

• Dictionary Class: value updates

Time windows in dictionaries

53

current time



Time windows in dictionaries
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current time
• Key: flow identifier
• Value: stateful information

•  
•  
•  

•  
•  

•  
• Parameters:

• Inclusion approximation: error direction

•  
•  
• Operations:

• Create<key>(parameters)
• Add(key)
• Query(key)

•  
•  
•  

•  
•  

•  
•  

•  
• Temporal approximation: time window

•  
•  
•  

•  
•  
•  

• Dictionary Class: value updates



Sliding time window
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current time

lo

hi

Sliding window:
within(lo, hi)

• Key: flow identifier
• Value: stateful information

•  
•  
•  

•  
•  

•  
• Parameters:

• Inclusion approximation: error direction

•  
•  
• Operations:

• Create<key>(parameters)
• Add(key)
• Query(key)

•  
•  
•  

•  
•  

•  
•  

•  
• Temporal approximation: time window

•  
•  
•  

•  
•  
•  

• Dictionary Class: value updates



Tumbling time window
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current time

lo

hi

Sliding window:
within(lo, hi)

current time

Tumbling window:

intv

• Key: flow identifier
• Value: stateful information

•  
•  
•  

•  
•  

•  
• Parameters:

• Inclusion approximation: error direction

•  
•  
• Operations:

• Create<key>(parameters)
• Add(key)
• Query(key)

•  
•  
•  

•  
•  

•  
•  

•  
• Temporal approximation: time window

•  
•  
•  

•  
•  
•  

• Dictionary Class: value updates



Tumbling time window
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current time

lo

hi

Sliding window:
within(lo, hi)

current time

Tumbling window:

intv

since(intv)

• Key: flow identifier
• Value: stateful information

•  
•  
•  

•  
•  

•  
• Parameters:

• Inclusion approximation: error direction

•  
•  
• Operations:

• Create<key>(parameters)
• Add(key)
• Query(key)

•  
•  
•  

•  
•  

•  
•  

•  
• Temporal approximation: time window

•  
•  
•  

•  
•  
•  

• Dictionary Class: value updates



Tumbling time window
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current time

lo

hi

Sliding window:
within(lo, hi)

current time

Tumbling window:

intv

since(intv)
last(intv)

• Key: flow identifier
• Value: stateful information

•  
•  
•  

•  
•  

•  
• Parameters:

• Inclusion approximation: error direction

•  
•  
• Operations:

• Create<key>(parameters)
• Add(key)
• Query(key)

•  
•  
•  

•  
•  

•  
•  

•  
• Temporal approximation: time window

•  
•  
•  

•  
•  
•  

• Dictionary Class: value updates



•  
•  
•  

•  
•  

•  
•  

•  
•

• Key: flow identifier
• Value: stateful information

•  
•  
•  

•  
•  

•  
• Parameters:

• Inclusion approximation: error direction

•  
•  
• Operations:

• Create<key>(parameters)
• Add(key)
• Query(key)

•  
•  
•  

•  
•  

•  
•  

•  
• Temporal approximation: time window

•  
•  
•  

•  
•  
•  

• Dictionary Class: value updates

Example: approximate stateful firewall
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type key = {int eip; int iip}
ExistDict<key> IDset = 

ExistDict.create (over,
                    within(sec(60),sec(90)),
                    ExistDict()) 
...
bool sol = true;
match p.ig_md.ig_port with
| INTERNAL_PORT -> {

ExistDict.add(IDset, {eip = p.ip.dip;
   iip = p.ip.sip});}
| _ -> {

sol = ExistDict.query(IDset,
{eip = p.ip.sip;

   iip = p.ip.dip});}
}
...



NAP compiler
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NAP compiler

Traffic characteristics NAP program Hardware resources

P4 program

Select data structures

Size data structures

Verified modular 
data structures



• Dictionary classes:
• ExistDict
• CountDict
• FoldDict

• Error directions:
• Exact
• Overapproximation
• Underapproximation
• Approximation

Compiler: select data structures

61

ExistDict
Exact Exact array

Under Hash table w. full fp

Approx All of above,
Hash table w. partial fp

Over Bloom filter

type key = {int eip; int iip}
ExistDict<key> IDset = 
  ExistDict.create (over,
                    within(sec(60),sec(90)),
                    ExistDict()) 



• Verified modular data structures
• Parameterized implementation:

(P, R, S) tuples

• Constrained optimization

Compiler: size data structures

62

Variables:
P: number of panes
R: number of rows per pane
S: number of slots per row

Minimize: 
    The expected false positive rate of 

a Bloom filter

Constrained by:
• Time constraints
• Memory constraints
• Computational constraints
• Architectural constraints …

…

R rows
per pane

S slots per row

…

… P panes



Pruning size search space
Optimizing the size parameters is straightforward in NAP.
• Users don’t need to define utility functions.
• The size of search space is (surprisingly) small.
• Few size parameters
• Limited memory resources
• Practical parameter choices

63

…

…

R rows
per pane

S slots per row

…

… P panes

(P, R, S) tuples:
• P × R: bounded by the number of registers

• ≤ 50 for 10-stage pipeline w. 5-register/stage
• S: power of 2, bounded by register size

• 21, 22, …, 223 for 1 MB register



A lightweight greedy optimizer
Optimizing the size parameters is straightforward in NAP.
• Users don’t need to define utility functions.
• The size of search space is (surprisingly) small.
• Greedy optimization algorithm:
• Compute the utility of all the possible parameter tuples.
• Rank the parameter tuples based on their utility.
• Allocate parameter tuples in order until finding the best one that fits.

64



• Generalizability

Evaluations

65

Applications
LoC Compile

Time (s)NAP P4

Single Dictionary

Stateful firewall 15 555 0.0055

DNS amplification mitigation 15 582 0.0056

FTP monitoring 20 798 0.0035

Heavy hitter detection 8 595 0.0049

Traffic rate measurement by IP/8 12 466 0.0040

TCP out-of-order monitoring 19 559 0.0043

Multiple Dictionaries

TCP superspreader detection 20 842 0.0130

TCP SYN flood detection 20 842 0.0130

NetCache 22 802 0.0394

•  
• A diverse set of nine 

example applications in 
network telemetry, 
monitoring, and control



Applications
LoC Compile

Time (s)NAP P4

Single Dictionary

Stateful firewall 15 555 0.0055

DNS amplification mitigation 15 582 0.0056

FTP monitoring 20 798 0.0035

Heavy hitter detection 8 595 0.0049

Traffic rate measurement by IP/8 12 466 0.0040

TCP out-of-order monitoring 19 559 0.0043

Multiple Dictionaries

TCP superspreader detection 20 842 0.0130

TCP SYN flood detection 20 842 0.0130

NetCache 22 802 0.0394

• Generalizability

Evaluations

66

•  
• Simplicity
•  
•  

• All example applications 
expressed within 30 LoC

• A reduction of 25X to 
50X in LoC



Applications
LoC Compile

Time (s)NAP P4

Single Dictionary

Stateful firewall 15 555 0.0055

DNS amplification mitigation 15 582 0.0056

FTP monitoring 20 798 0.0035

Heavy hitter detection 8 595 0.0049

Traffic rate measurement by IP/8 12 466 0.0040

TCP out-of-order monitoring 19 559 0.0043

Multiple Dictionaries

TCP superspreader detection 20 842 0.0130

TCP SYN flood detection 20 842 0.0130

NetCache 22 802 0.0394

• Generalizability

Evaluations
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•  
• Simplicity
•  

• Fast compilation

•  

• All examples compiled 
to P4 for the Intel Tofino 
target within 0.1 second



Advantages of NAP
• NAP is a domain-specific language for approximate network control.
• NAP selects & sizes the right data structures automatically.

68



What is still missing?

69

NAP compiler

Traffic characteristics NAP program Hardware resources

P4 program

Select data structures

Size data structures

Verified modular 
data structures

• How to synthesize data
structures for data planes?

• How to verify the resulting
P4 implementation?



P4 formal semantics

Outline

Verified modular data structures

Network Approximate Programming

Conclusions & future directions

Motivations, challenges & contributions

70



Problem: Developers must design and verify data structures under 
strict architectural constraints and the complexity of the P4 language.
Limitations: 
• Existing synthesis frameworks are:
• Monolithic: P4 programs often rely on a single, tightly coupled control block.
• Ad hoc: Techniques are often tailored to specific data structures.
• Unrefreshable: Designs often lack mechanisms to periodically evict stale data.

• Existing verification frameworks are:
• Monolithic: Verification happens directly on low-level P4 code, making proofs 

brittle and hard to scale or reuse.
• Inexpressive: Properties handled by solvers can only be simple logical formulas.

Adapt data structures correctly

71



Approach:
•

• Layered verification framework: Connects high-level specs to low-
level P4 code through stepwise refinement.

Insight: Breaking down monolithic designs and proofs into modular or 
layered components simplifies both implementation and verification. 

Modular synthesis & layered verification

72

Modular synthesis framework: Decomposes data structures into 
reusable, constraint-aware modules.



• Restricted state access: Requires careful allocation of the data structure.
• Finite number of stages: Requires a practical line-rate cleaning scheme.

Modular synthesis framework

73

… …

key

1

key

1 1

Original Bloom filter

Modular synthesis framework: Decomposes data structures into 
reusable, constraint-aware modules.



Row module
• Shard a data structure into rows for the staged pipeline.

74

… …

key

1

key

1 1

Original Bloom filter

…

…

…R rows

S slots per rowkey key

1

1 1

R-row Bloom filter



Pane module
• Shard a data structure into rows for the staged pipeline.
• Rotate a data structure by panes for the cleaning purpose.
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…

…

R rows
per pane

S slots per row

…

… P panes

P-pane R-row Bloom filter

…

…

…R rows

S slots per rowkey key

1

1 1

R-row Bloom filter



Rotation Timer
• Pre-processing for deciding
• Rotation timer:

• Time window length ∈ [(P-2) "	step, (P-1) "	step] (P ≥ 2)

76

Pane 0 Pane 1 Pane 2 Pane 3

P panes

Write pane Clean paneRead pane

step = time in between shifts



Supporting time windows in NAP
• Pre-processing for deciding
• Rotation timer:

• Time window length ∈ [(P-2) "	step, (P-1) "	step] (P ≥ 2)

• Supporting tumbling and sliding windows
• Two parameters: number of panes & step

77

P≥4

WR

WRC R R
WRC R R

WRC R R
C R R

time

step<30s
within(sec(60),sec(90))



• Pre-processing for deciding
• Rotation timer
• Operations:

Sliding-window 
Bloom filter

State operations

78

write read noopclean

Pane 0 Pane 1 Pane 2 Pane 3

cleanclean noop noop noop

add writenoopnoop clean

query read read read clean

Clean paneWrite pane



Computing indexes
• Pre-processing for deciding
• Rotation timer
• Operations
• Indexes:                                        for cleaning

79

Reading/Writing pane Cleaning pane

…
…

…
R rows

…

…

…
R rows

Incremental indexes

... ...



Computing indexes
• Pre-processing for deciding
• Rotation timer
• Operations
• Indexes:                                        for cleaning

80

Incremental indexes

Reading/Writing pane Cleaning pane

…
…

…
R rows

…

…

…
R rows

... ...



Computing indexes
• Pre-processing for deciding
• Rotation timer
• Operations
• Indexes:                                        for cleaning

81

Incremental indexes

Reading/Writing pane Cleaning pane

…
…

…
R rows

…

…

…
R rows

... ...

hash indexes&                           for access 



Merging operation results
• Pre-processing for deciding
• Rotation timer
• Operations
• Indexes

• State operations: calling operation @ the given index

• Post-processing for merging results
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Sliding-window 
Bloom filter Pane 0 Pane 1 Pane 2 Pane 3

query read read read clean

OR



A modular data structure template
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Data structure control
Preprocessing
• Rotation timer
• Operations 
• Indexes

State operations
• Calling P panes

Postprocessing
• Merging read results

Pane control

Calling R rows

Row control
Calling operation @ index
• Read
• Write
• Clear
• Idle

P × R ×

Result

Timestamp, Method, Params



Layered verification framework: Connects high-level specs to low-level 
P4 code through stepwise refinement.
• Concrete functional model: For P4 program verification
• Abstract functional model: For property verification

Layered verification framework
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P4 data 
structure

Concrete
model

Abstract
model



Verification step by step 
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P4 data 
structure

Concrete
model

Abstract
model

Layer

P4 refinement
A P4 Bloom filter implements its concrete model

Model refinement
The concrete model refines the abstract model

P4 data structure property
A P4 Bloom filter implies no false negatives

High-level property
The abstract model implies no false negatives

Specification

Verifiable P4

General Coq

General Coq

Refinement 
transitivity

Proof



Concrete model
Concrete model: a low-level functional model that closely mirrors P4 code.
• Modular structure: 
• rows, panes & data structures
• add, query, clean

• Architecture-aware designs:
•  fixed-width state
•  rotation timer
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Concrete model
Parameter (S R P step).
Definition row := listn bool S. 
Definition pane := listn row R.
Record sbf := mk_sbf 
{ sbf_panes : listn pane P;
sbf_clean_index : Z;
sbf_timer : bool * Z }

Definition update_timer ..
Definition sbf_add ..
Definition sbf_query ..
Definition sbf_clean ..



Abstract model
Abstract model: a high-level functional model for property specification.
• Architecture-aware designs abstracted away
• Explicit time window
• Actual inserted elements
• Abstract cleaning

• Validity assumption:
• dense flow check
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Abstract model
Parameter (S R P step).
Definition sbf := option sbf_core.
Record sbf_core := mk_sbf
{ sbf_panes : list (list Element) 
time_next_step : Z;
time_last_clean : Z; 
num_clean : Z }.

Definition packet_arrives ..
Definition sbf_add ..
Definition sbf_query ..
Definition sbf_clean ..

No False Negative Property
For any valid abstract sbf, if an element is added 
at time t, then querying the sbf for that element 
at any time t’ within the window length lower 
bound returns true.



Advantages of modular synthesis
Generalizability: systematically supporting many data structures
Proof organization: reusable verification of rows and panes
Code readability: making P4 code easier to read, learn, and modify
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Advantages of layered verification
Generalizability: systematically supporting many data structures
Maintainability: localized verification efforts
• High-level properties
• Functional models
• Implementation strategies
• Target architecture

Separation of expertise: facilitating collaboration
• Data structure expertise
• P4 expertise
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What is missing?
So far, we’ve built frameworks for synthesis and verification. But one 
essential component is still missing: a formal semantics for P4.
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• Defines how P4 behaves for
P4 programming 

• Reason about P4 code 
correctness in Verifiable P4

Modular data
structures

Specification

Verified modular
data structures

Modular
synthesis

framework

Layered
verification
framework

P4 formal
semantics VerifiableP4



P4 formal semantics

Outline

Verified modular data structures

Network Approximate Programming

Conclusions & future directions

Motivations, challenges & contributions
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Laying semantic foundation for P4
Problem: P4 lacks rigorous, mechanized semantics, leaving developers 
with ambiguous, informal specifications for programming & verification.

92R. Doenges, et al., Petr4: formal foundations for p4 data planes. POPL 2021.

Nondeterminism Single execution outcome

Petr4 semantics
Main goal Faithful to program execution

Design choices Borrows from functional languages

Mechanization Pen-and-paper

Limitations: Petr4 semantics underlies a P4 interpreter — 
an executable model of programs.



P4 formal semantics
Problem: P4 lacks rigorous, mechanized semantics, leaving developers 
with ambiguous, informal specifications for programming & verification.

93R. Doenges, et al., Petr4: formal foundations for p4 data planes. POPL 2021.

Nondeterminism Single execution outcome

Petr4 semantics
Main goal Faithful to program execution

Design choices Borrows from functional languages

Mechanization Pen-and-paper

Our semantics
Captures specs & data-plane behavior

Mechanized in Coq

All possible execution outcomes

Domain-specific semantics

Limitations: Petr4 semantics underlies a P4 interpreter — 
an executable model of programs.
Approach: Our semantics underlies Verifiable P4 —
an interactive verification system.



Domain-specific semantics
Insight: Bounded by inherent constraints of programmable data planes,
P4 is a domain-specific language.

94

   ; so is our semantics.
• To allocate the scarce hardware resources optimally, P4 requires static

allocation during compilation, leading to a two-phase semantics.
• Given the finite number of stages, P4 has no recursion or loop
constructs, leading to a big-step operational semantics.
• Given the architecture-dependent stateful behavior, P4 is a target-
specific language, leading to target-specific state semantics
modules.



P4 compiler allocates data plane resources statically during instantiation:
• To optimize resource utilization
• To ensure high throughput

P4 language can be naturally split into two phases

Two-phase semantics
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Counter
control Counter( idx ) ( drop ) { 
Register( 1024 ) reg;
RegisterAction( reg ) add = {..};
action add_act() {..}
action drop_act() {..}
apply { add_act();

if (drop) {drop_act();} }
}
Counter( false ) ctr;

Instantiations

Executions

Counter
…1

idx = 3

0 + 1 = 1

; so is P4 semantics:
• Instantiation phase: compile-time behavior

Constructor paramsRuntime params

Instantiations

• Execution phase: runtime behavior



P4 compiler allocates data plane resources statically during instantiation:
• To optimize resource utilization
• To ensure high throughput

P4 language can be naturally split into two phases

Two-phase semantics
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Phase separation leads to a simple semantics faithful to P4 specifications.

; so is P4 semantics:
• Instantiation phase: compile-time behavior
• Static locations: decide where information live
• Static initialization: fill locations with initial runtime information
• Static instantiation: fill locations with compile-time known information

• Execution phase: runtime behavior



Instantiation phase assigns static locations to all P4 entities.
• Globally unique path: uniquely identify every P4 entity under a hierarchy.
• Locally unique locator: remove the common prefix for runtime variables.

Instantiation: static locations
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Counter
control Counter( idx ) ( drop ) { 
Register( 1024 ) reg;
RegisterAction( reg ) add = {..};
action add_act() {..}
action drop_act() {..}
apply { add_act();

if (drop) {drop_act();} }
}
Counter( false ) ctr;

..

idx

ctr
ctr.reg

ctr.drop

ctr.add_act

..



Instantiation phase statically initializes all registers.
Execution store contains all runtime information.

Instantiation: static initialization
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..

idx

ctr
ctr.reg

ctr.drop

ctr.add_act

..

RegisterStore = Path → RegisterObject 
Persistent stateful information

VariableStore = Locator → Value
Packet-specific variables 

Execution
Store



Instantiation phase statically instantiates all instances.
Static environments contains all compile-time known information.

Instantiation: static instantiation

Path → Instance

Path → Code

Path → Constants

Path → Types

Static
Environments

..

idx

ctr
ctr.reg

ctr.drop

ctr.add_act

..
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Instantiation phase statically instantiates all instances.
Static environments contains all compile-time known information.

Instantiation: static instantiation
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Counter
control Counter( idx ) ( drop ) { 
Register( 1024 ) reg;
RegisterAction( reg ) add = {..};
action add_act() {..}
action drop_act() {..}
apply { add_act();

if (drop) {drop_act();} }
}
Counter( false ) ctr;

Instance

Constant

Code

Counterctr

Counter

ctr.drop False

apply { add_act();
if (drop) {drop_act();} }



Instantiation phase evaluates declarations for:
• Static locations: decide where information live
• Static initialization: fill locations with initial runtime information
• Static instantiation: fill locations with compile-time known information

Instantiation phase summary
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Instance

Code

Constants

Types

Static
Environments

Execution
Store

RegisterStore

VariableStore

Given initialized execution store & generated static environments,
execution phase evaluates statements to simulate runtime behavior.



Given initialized execution store & generated static environments,
execution phase evaluates statements to simulate runtime behavior.

Execution
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control Counter( idx ) ( drop ) { 
Register( 1024 ) reg;
RegisterAction( reg ) add = {..};
action add_act() {..}
action drop_act() {..}
apply { add_act();

if (drop) {drop_act();} }
}
Counter( false ) ctr;

Counter
Counter.add_actctr.add_act

Instance
ctr + add_act = ctr.add_act

Counter.add_act action add_act() {..}

Code

• Lookup: Globally unique path -> code
• Execution: Execute code definition

Semantic rule for method call



69 semantic rules formalize P4 behavior.

Semantic rules
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control Counter( idx ) ( drop ) { 
Register( 1024 ) reg;
RegisterAction( reg ) add = {..};
action add_act() {..}
action drop_act() {..}
apply { add_act();

if (drop) {drop_act();} }
}
Counter( false ) ctr;

Counter
Counter.add_actctr.add_act

Instance

Counter.add_act action add_act() {..}

Constant

ctr + add_act = ctr.add_act

• Lookup: Globally unique path -> code
• Execution: Execute code definition

Semantic rule for method call



Domain-specific semantics
Insight: Bounded by inherent constraints of programmable data planes,
P4 is a domain-specific language; so is our semantics.
• To allocate the scarce hardware resources optimally, P4 requires static

allocation during compilation, leading to a two-phase semantics.
• Given the finite number of stages, P4 has no recursion or loop

constructs, leading to a big-step operational semantics.
• Given the architecture-dependent stateful behavior, P4 is a target-

specific language, leading to target-specific state semantics modules.
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State semantics is target-specific.

Target-specific state semantics
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control Counter(idx ) ( drop ) { 
Register( 1024 ) reg;
RegisterAction( reg ) add = {

  void apply( val ) {
    value = value + 1; } };
action add_act() {

add.execute(key); }
.. }

Counter( false ) ctr;

Counter

Execution Store
RegisterStore = Path → RegisterObject 

VariableStorectr = Locator → Value 

[0, 0, 0, 0, .., 0]ctr.reg

idx 3

• Read: read reg[idx] into val in
StackFrameadd.

• Modify: execute the user-defined 
apply method.

• Write: write val to reg[idx] in
 RegisterStore.

VariableStoreadd = Locator → Value 
val 0

Semantic rule for register action

1

1,



Domain-specific semantics
Insight: Bounded by inherent constraints of programmable data planes,
P4 is a domain-specific language; so is our semantics.
• To allocate the scarce hardware resources optimally, P4 requires static

allocation during compilation, leading to a two-phase semantics.
• Given the finite number of stages, P4 has no recursion or loop

constructs, leading to a big-step operational semantics.
• Given the architecture-dependent stateful behavior, P4 is a target-

specific language, leading to target-specific state semantics modules.
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Domain-specific semantics
Insight: Bounded by inherent constraints of programmable data planes,
P4 is a domain-specific language; so is our semantics.
• To allocate the scarce hardware resources optimally, P4 requires static

allocation during compilation, leading to a two-phase semantics.
• Given the finite number of stages, P4 has no recursion or loop

constructs, leading to a big-step operational semantics.
• Given the architecture-dependent stateful behavior, P4 is a target-

specific language, leading to target-specific state semantics modules.
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Debugging language specifications
• Rigorous formalization of domain-specific P4 semantics uncovers 

ambiguities, errors, and inconsistencies in specifications & compilers.
• 23 issues discussed with the P4 language design working group.
• 17 fixes adopted.
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Category Issues Status
Expression Concatenation is missing from the operations on the bit type. Released

Instantiation Instantiation should not be a statement. Released

Table Default action should be set as NoAction when undefined. Released

Advantages of P4 formal semantics
• Rigorous formalization of domain-specific P4 semantics uncovers 

ambiguities, errors, and inconsistencies in specifications & compilers.
• 23 issues discussed with the P4 language design working group.
• 17 fixes adopted.

• Many issues could have been avoided with formal semantics when
designing the language.
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Advantages of P4 formal semantics
• Rigorous formalization of domain-specific P4 semantics uncovers 

ambiguities, errors, and inconsistencies in specifications & compilers.
• 23 issues discussed with the P4 language design working group.
• 17 fixes adopted.

• P4 faces challenges in balancing language generality and domain-
specific focus.
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Category Issues Status
Expression Implicit conversions of lists, tuples, structs & headers are not specified. Stalled

Function Abstract extern methods open multiple back doors, e.g., allowing 
recursion and accessing nonlocal variables. Stalled

Name Name duplication and name shadowing are undefined. Stalled



Outline

Verifiable modular data structures

Network Approximate Programming

Conclusions & future directions

Motivations, challenges & contributions

111

P4 formal semantics



Conclusions
To realize verifiable traffic control in the data plane, we present
• Network Approximate Programming Language

Automating data structure selection and sizing
• Verifiable Modular Data Structures

Hardware-compliant data structures with correctness guarantees
• Formal Semantics for P4

Building a solid foundation for P4 programming & reasoning
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Looking ahead
Broader impact:
• Promote abstractions for programmable networks. 
• Advance verification for real-world P4 programs.
• Bridge the gap between programming languages and network control.
Future directions:
• Broaden NAP for richer dictionary classes and optimization strategies.
• Integrate with distributed network control.
• Extend verification to more targets and data structures.
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Thank you so much!
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Backup slides
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Programming state in P4
P4 is a domain-specific language for expressing packets processing on 
the programmable data planes.
• Low-level and complicated
• Specialized language constructs
• Ambiguous and buggy specification

Q: What does a P4 program mean?

116The P4 Language Design Working Group. P4_16 Language Specifications.

Match-Action Table
table routing {
key = { hdr.ipv4.dstAddr : lpm; }
actions = { drop; route; }
const entries = {..}
size = 2048;

}

Q: What is the default action by default?
A: Not in the specification.



•  
•  
•  

•  
•  

•  
•  

•  
•
• Value state machine

Value state machine in in dictionaries
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Any

FoldDict

• Key: flow identifier
• Value: stateful information

•  
•  
•  

•  
•  

•  
• Parameters:

• Error direction: inclusion approximation

•  
•  
• Operations:

• Create<key>(parameters)
• Add(key)
• Query(key)

•  
•  
•  

•  
•  

•  
•  

•  
• Time window: temporal approximation

•  
•  
•  

•  
•  
•  

• Dictionary Class: value updates



• Goal:
• within(lo, hi):

Sliding window of length ∈ [lo, hi]
• since(intv)/last(int):

Tumbling windows are degenerate cases.

• Synthesis framework:
• A sliding window of length ∈ 
[(P-2)"step, (P-1)"step] (P ≥ 2)

• Time constraints:
• P ≥ lo/(hi – lo) + 2

Compiler: configure time window
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type key = {int eip; int iip}
ExistDict<key> IDset = 
  ExistDict.create (over,
                    within(sec(60),sec(90)),
                    ExistDict()) 

P≥4

WR

WRC R R
WRC R R

WRC R R
C R R

time

step<30s



Data structure pipeline
• Pre-processing for deciding
• Rotation timer:

• Time window length ∈ [(P-2) "	step, (P-1) "	step] (P ≥ 2)

• Supports tumbling and sliding windows
• Flexible step size
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… 0 …

Timestamp (ns)
30 bit flip-flops at 30th bit → step ≈ 30 s

Timer bit = 30th bit



Dense flow
• We need a “dense enough” packet flow to properly clean the state:
• Catch all bit flops at the timer bit to rotate panes on time.
• Increment cleaning index to clean a pane completely.

• We use a packet generator to maintain the minimum packet rate.

Rate (pkt/ns) = max( , )

120

1/2tb_pos S/step



Concrete model
Concrete model: low-level functional model that closely mirrors P4 code.
• The concrete model, defined in Coq, is fully parameterized.
• The data structure, defined in P4, hardcode parameters.
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Concrete model
Parameter (S R P step).
Definition row := listn bool S. 
Definition pane := listn row R.
Record sbf := mk_sbf 
{ sbf_panes : listn pane P;
sbf_clean_index : Z;
sbf_timer : bool * Z }

Definition update_timer ..
Definition sbf_add ..
Definition sbf_query ..
Definition sbf_clean ..

P4 data structure
control Row( key ) {
Register( S ) reg;

  RegisterAction( reg ) add = {..};
}
control Pane( key ) {
Row() row_1;

  Row() row_2;
}
control SBF( key ) { 
Pane() pane_1;
Pane() pane_2;

}



Verification-aware programming
VerifiableP4 allows proving properties of approximate data structures.
• Verification takes efforts.
• P4 program should be amenable to verification.
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Modular
control Row( key ) {
..

}
control BloomFilter( key ) { 
Row() row_1;
Row() row_2;

}
control Ingress(..) {
BloomFilter() bf;

}
Switch(ig = Ingress()) main;

Flattened
control Ingress(..) {
Register( 1024 ) bf_row_1_reg;
RegisterAction( bf_row_1_reg ) add = {..};
..
Register( 1024 ) bf_row_1_reg;
RegisterAction( bf_row_1_reg ) add = {..};

..

}
Switch(ig = Ingress()) main;



Proof for P4 refinement
Semi-modular verification:
• Specifications & proofs for a row can be replayed for all row instances. 
• Specifications & proofs for a pane can be replayed for all pane instances.

123

Object P4
code

Concrete
functional

model

Function
spec.

P4
proof

Row 53 85 165 140

Pane 22 62 235 140

Filter 341 333 858 1579

Verifying a sliding-window Bloom filter (LoC)



Abstract model
Abstract model: high-level functional model for property specification.
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Abstract model
Parameter (S R P step).
Definition sbf := option sbf_core.
Record sbf_core := mk_sbf
{ sbf_panes : list (list Element) 
time_next_step : Z;
time_last_clean : Z; 
num_clean : Z }.

Definition packet_arrives ..
Definition sbf_add ..
Definition sbf_query ..
Definition sbf_clean ..

No False Negative Property

For any valid abstract sbf, if an element e is 
added at time t, then querying the sbf for that 
element at any time t’ within the window length 
lower bound returns true.

Definition window_lo := (P-2)*step.
Lemma no_false_neg_lemma :
forall sbf t t’ e,
valid_by sbf t ->
t <= t ’ <= t + window_lo ->
sbf_query (sbf_add sbf t e) t’ e = true.



AST

Abstract syntax tree
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Lexer, Parser, typer

DeclControl “Row” [key] 
  [ DeclInstantiation “Register” [1024] “reg”;
    DeclInstantiation “RegisterAction” [“reg”] “add” [..];

DeclAction “add_act” [] [ StatMethodCall .. ]; ]
  [ StatMethodCall (ExpName “add_act”) ] 

Row control block
control Row( key ) { 
Register( 1024 ) reg;
RegisterAction( reg ) add = {..};
action add_act() {

    add.execute( key ); }
apply { add_act(); }

}
Instantiations Executions



Petr4 intermingles instantiation & execution.
• Local environment: name -> location
• Global store: location -> value & closures
• Closure: local environment + code definition

control Counter( idx ) ( drop ) { 
Register( 1024 ) reg;
RegisterAction( reg ) add = {..};
action add_act() {..}
action drop_act() {..}
apply { add_act();

if (drop) {drop_act();} }
}
Counter( false ) ctr;

Why not Petr4’s solution?
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CounterEnv_ctr = [ “drop” → 200, “idx” → 400, ..,
“add_act” → 600 ]

Store = [ 200 → false, 400 → 3, ..,
600 → clos(Env_add_act, Code_add_act) ]

Values
Closures



control Counter( key ) ( drop ) { 
Register( 1024 ) reg;
RegisterAction( reg ) add = {..};
action add_act() {..}
action drop_act() {..}
apply { add_act();

if (drop) {drop_act();} }
}
Counter( false ) ctr;

Petr4 intermingles instantiation & execution.
• Local environment: name -> location
• Global store: location -> value & closures
• Closure: local environment + code definition

Why not Petr4’s solution?
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CounterEnv_ctr = [ “drop” → 200, “key” → 400, ..,
“add_act” → 600 ]

Store = [ 200 → false, 400 → 3, ..,
600 → clos(Env_add_act, Code_add_act) ]

Values
Closures

Dynamic locations:
• Keeping track of fresh locations
• Adding a layer of indirection



Petr4 intermingles instantiation & execution.
• Local environment: name -> location
• Global store: location -> value
• Closure: local environment + code definition

control Counter( idx ) ( drop ) { 
Register( 1024 ) reg;
RegisterAction( reg ) add = {..};
action add_act() {..}
action drop_act() {..}
apply { add_act();

if (drop) {drop_act();} }
}
Counter( false ) ctr;

Why not Petr4’s solution?
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CounterEnv_ctr = [ “drop” → 200, “idx” → 400, ..,

“add_act” → 600 ]
Store = [ 200 → false, 400 → 3, ..,

600 → clos(Env_add_act, Code_add_act) ]
“ctr.reg” → [0, 0, .., 0],

“reg” → “ctr.reg”, Register

Initialization @ 1st packet



control Counter( key ) ( drop ) { 
Register( 1024 ) reg;
RegisterAction( reg ) add = {..};
action add_act() {..}
action drop_act() {..}
apply { add_act();

if (drop) {drop_act();} }
}
Counter( false ) ctr;

Petr4 intermingles instantiation & execution.
• Local environment: name -> location
• Global store: location -> value
• Closure: local environment + code definition

Why not Petr4’s solution?
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CounterEnv_ctr = [ “drop” → 200, “key” → 400, ..,

“add_act” → 600 ]
Store = [ 200 → false, 400 → 3, ..,

600 → clos(Env_add_act, Code_add_act) ]
“ctr.reg” → [0, 0, .., 0],

“reg” → “ctr.reg”, Register @permanent location

Initialization @ 1st packet

Dynamic Initialization:
• Unfaithful to P4 behavior



Petr4 intermingles instantiation & execution.
• Local environment: name -> location
• Global store: location -> value
• Closure: local environment + code definition

Why not Petr4’s solution?
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Counter
control Counter( idx ) ( drop ) { 
Register( 1024 ) reg;
RegisterAction( reg ) add = {..};
action add_act() {..}
action drop_act() {..}
apply { add_act();

if (drop) {drop_act();} }
}
Counter( false ) ctr;

Env = [ “Counter” → 100,
 “ctr” → 200 ]
Store = [ 100 → cstr_clos(Env_Counter, Cstr_params,
   Code_Counter),

200 → false,
300 → clos(Env_ctr, Code_Counter) ]

Env_ctr = [ “drop” → 300]

Definition

Instantiation



Petr4 intermingles instantiation & execution.
• Local environment: name -> location
• Global store: location -> value
• Closure: local environment + code definition

Why not Petr4’s solution?
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Counter
control Counter( key ) ( drop ) { 
Register( 1024 ) reg;
RegisterAction( reg ) add = {..};
action add_act() {..}
action drop_act() {..}
apply { add_act();

if (drop) {drop_act();} }
}
Counter( false ) ctr;

Env = [ “Counter” → 100,
 “ctr” → 200 ]
Store = [ 100 → cstr_clos(Env_Counter, Cstr_params,
   Code_Counter),

200 → false,
300 → clos(Env_ctr, Code_Counter) ]

Env_ctr = [ “drop” → 300]

Declaration

Instantiation

Dynamic instantiation:
• Complex store management
• Complex semantics



Petr4 borrows from functional languages:
• Local environment: name -> location
• Global store: location -> value
• Closure: local environment + code definition
Petr4 mixes instantiation with execution, adding unnecessary complexity:
• Dynamic locations
• Dynamic initialization
• Dynamic instantiation

Why not Petr4’s solution?
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These are all static in our P4
semantics, happening in the
instantiation phase.



Takeaway: why two phases?
• VerifableP4’s semantics is built upon Petr4, but with phase distinction.
• Static environment: path → static object
• Program state: path → value/register object

• Petr4’s semantics mixes two phases:
• Global storage: dynamic locations -> values
• Local environment: currently visible names -> dynamic locations

• Benefits of two phases:
• Faithful representation of static compilation behavior in P4 specifications.
• Straightforward stateful semantics & reasoning

133R. Doenges, et al., Petr4: formal foundations for p4 data planes. POPL 2021.



Instantiation phase generates a static environment mapping from
globally unique paths to static instances/code/values/types.

Instantiation: static locations
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Instantiations in a telemetry system
control Counter( key ) ( drop ) { 
Register( 1024 ) reg;
RegisterAction( reg ) add = {..};
action add_act() {..}
action drop_act() {..}

}
control telemetry( key ) { 
Counter( false ) ctr_tcp;
Counter( true ) ctr_udp;

}
control Ingress(..) {
telemetry() tm;

}

Hierarchical namespace
Ingress

ig

Telemetry
ig.tm

Counter
ig.tm.cntr_2

Counter
ig.tm.cntr_1

RegisterAction
ig.tm.cntr_1.add

Action
ig.tm.cntr_1.add_act.....



Instantiation phase generates a static environment mapping from
globally unique paths to static instances/code/values/types.

Instantiation
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Compile-time known objects

Action Object

...
...

action add_act() {
add.execute( key ); }

RegisterAction Object

RegisterAction( reg ) add = {
  void apply( val ) {
    value = value + 1; }
};

Hierarchical namespace
Ingress

ig

Telemetry
ig.tm

Counter
ig.tm.cntr_2

Counter
ig.tm.cntr_1

RegisterAction
ig.tm.cntr_1.add

Action
ig.tm.cntr_1.add_act.....



Program logic: specification
• Program logic provides a formal system to specify and verify program

properties based on semantics.
• Simplified functional model of Row: SRow

• Function specification of row_1.apply(key):
• Precondition: row_1 represents srow
• Postcondition: row_1 represents srow after key is inserted
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PATH row_1 MOD Null [row_1] 
WITH (srow : SRow) (key : Z) (_: 0 ≤ key < num_slots), 

PRE (ARG [key], MEM [ ], EXT [row_repr row_1 srow]) 
POST (RET Null, ARG [ ], MEM [ ], EXT [row_repr row_1 (srow_insert srow key)])



Program logic: verification
• Program logic provides a formal system to specify and verify program

properties based on semantics.
• To prove that row_1.apply(key) satisfies its function specification:
• Create a symbolic program state as described by the precondition;
• Apply program logic rules in forward mode;
• Proves the resulting program state implies the postcondition.

• Example program logic rule for assignment:
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Γ, p, P ⊢ exp ⇓ v
Γ, p ⊢ {MEM P, EXT Q} x@(inst p’) := exp { MEM P[p’ → v], EXT Q }

assignment statement

semantics rule for expression

postconditionprecondition



Execution
Execution phase simulates run-time behavior over program state based 
on static environment.
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row_1.apply(key)

• Semantic rule for method call:
• Current path + object name = fully qualified name
• Static environment: fully qualified name -> object

ActionObject
Code definitionmain.ig.bf.

row_1.add_act

Static environment

action add_act() {
add.execute( key ); }

bf.row_1 + add_act =.bf.row_1.add_act 

control Row( key ) { 
...
apply { 
add_act();

}
}



Execution
Execution phase simulates run-time behavior over program state based 
on static environment.
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Execution of a row instance
control Row( key ) { 
...
apply { 
add_act();

}
}

Program state
StackFrame := [“main.ig.bf.row_1.key” → 3]
RegisterStore := [“main.ig.bf.row_1.reg” →

[0, 1, 0, 0, …, 0, 0] ]

• ProgramState := StackFrame × RegisterStore 
• Packet-specific variables: StackFrame := Path → Value
• Persistent stateful information: RegisterStore  := Path → RegisterObject



ActionObject
Code definition
action add_act() {

add.execute( key ); }

Execution
Execution phase simulates run-time behavior over program state based 
on static environment.
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row_1.apply(key)

main.ig.bf.
row_1.add_act

Static environment
control Row( key ) { 
Register( 1024 ) reg;
RegisterAction( reg ) add = {..};
action add_act() {..}
apply { add_act(); }

... main.ig.bf.row_1 + add_act = main.ig.bf.row_1.add_act 

• Semantic rule for method call:
• Current path + object name = fully qualified name
• Static environment: fully qualified name -> object
• Execute the object over the ProgramState



row_1.apply(key)
control Row( key ) { 
Register( 1024 ) reg;
RegisterAction( reg ) add = {..};
action add_act() {..}
apply { add_act(); }

...

Execution
Execution phase simulates run-time behavior over program state based 
on static environment.
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RegisterActionObject
Code defintion

Static environment

RegisterAction( reg ) add = {
  void apply( val ) {
    value = 1; }
};

action add_act() {
add.execute( key ); }

main.ig.bf.row_1 + add = main.ig.bf.row_1.add

main.ig.bf.
row_1.add

• Execute the object over the ProgramState

• Semantic rule for method call:
• Current path + object name = fully qualified name
• Static environment: fully qualified name -> object

← Rules can be recursively used.



Static environment
RegisterActionObject

Code defintion
RegisterAction( reg ) add = {
  void apply( val ) {
    value = 1; }
};

row_1.apply(key)
control Row( key ) { 
Register( 1024 ) reg;
RegisterAction( reg ) add = {..};
action add_act() {..}
apply { add_act(); }

...

Execution
Execution phase simulates run-time behavior over program state based 
on static environment.
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action add_act() {
add.execute( key ); }

main.ig.bf.row_1 + add = main.ig.bf.row_1.add

main.ig.bf.
row_1.add

• Execute the object over the ProgramState

• Semantic rule for method call:
• Current path + object name = fully qualified name
• Static environment: fully qualified name -> object


