
Data-Driven Management of CDN

Performance

Mojgan Ghasemi

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Electrical Engineering

Adviser: Professor Jennifer Rexford

November 2017

c© Copyright by Mojgan Ghasemi, 2017.

All rights reserved.

Abstract

Content Distribution Networks (CDNs) carry most of the web content, with the goals

of offering good performance to users at a low cost. In this thesis, we introduce

measurement and analysis techniques to help CDNs balance these goals.

First, we allocate resources efficiently across the distributed edge servers by jointly

minimizing network latency and cache misses. We propose a unified framework for

CDNs to jointly solve the problems of placement, mapping, and disk allocation, while

including the impact of cache misses. We evaluate our methods using request logs

from a commercial CDN. We show that including the impact of cache misses in

the post-mapping disk allocation enhances the performance significantly for a small

increase in the cost. Still, there are other sources of performance problems on the

end-to-end (e2e) path of the servers to clients, which takes us to the next part.

Second, to detect and diagnose performance problems that cause poor experience

for users, we propose a fine-grained instrumentation of the e2e path. In particular,

we focus on the video delivery path because video is now the dominant application of

the Internet. We deploy our instrumentation and diagnosis methods in a commercial

content provider, enabling us to join the server-side, TCP statistics, and client-side

measurements for the first time, and characterize the performance problems in a large

set of videos. We uncover a wide range of problems, some of which were unknown

before, and can only be discovered by an e2e instrumentation. While capable of

diagnosing these problems, our tool is limited in how frequently it measures network.

To remedy this, we propose our final solution.

Finally, we dive deeper into diagnosing network problems by monitoring TCP

connections directly in the network devices. Our tool can pinpoint if the performance

of a TCP connection is hindered by the sender, receiver, or network. We deploy

emerging programmable edge devices to implement our monitoring and diagnosis

logic directly in the data plane, which runs at line-rate, without cooperation from

iii

servers. We infer fine-grained TCP metrics from the edge device (e.g, NIC), without

imposing storage or monitoring overhead on the servers.

iv

Acknowledgements

I would like to thank my wonderful advisor, Professor Jennifer Rexford, for being

the most amazing advisor I could ever ask for. Jen supported my transition into the

field of computer networks, and I was extremely lucky to explore this field under her

guidance and encouragements. She encouraged me to do internships, and taught me

many lessons in all endeavors including doing research in industry. She taught me

how to find problems with real-world impact and how to solve them. She taught me

how to present my ideas to a wide range of audiences. I consider Jen my mentor in

life, not just my advisor in graduate school.

I am extremely fortunate to have worked with Professor Theophilus Benson. Theo

guided me in my first project in graduate school when I was new in the computer

networking field, and he was very supportive and patient with me. Theo helped me

connect with great researchers in both industry and academia, and was a wonderful

host to me while I visited Duke university.

I am grateful to have had the opportunity to work closely with Professor Bruce

Maggs. I have immensely enjoyed doing research with Bruce. He taught me how

to extend a smaller problem to a general system and continued exploring new ideas

and brainstorming with me all throughout the development of the CAM project. He

connected me with people working on similar problems and helped me broaden my

network.

I am grateful to have had the opportunity of doing research in industry. I thank

Partha Kanuparthy for being my mentor in Yahoo Research. I thank Jim Wyllie

and Karim Abdel Magid Mattar Shaban for mentoring me during my internship at

Akamai.

I would like to thank the members of my dissertation committee, Professor Prateek

Mittal, Professor David Wentzlaff, Professor Nick Feamster, and Professor Theophilus

Benson for serving on my committee and providing feedback on this dissertation.

v

I also would thank the members of my research group, Cabernet, including current

and former students and post-docs: Srinivas Narayana, Praveen Naga Katta, Nanxi

Kang, Xin Jin, Peng Sun, Jennifer Gossels, Mina Tahmasbi, Rob Harrison, Robert

MacDavid, Ori Rottenstreich, and Ronaldo Ferreira.

My collaborations in industry benefited from many researchers and engineers. I

thank the folks in the Yahoo Research and the Yahoo Video Platforms for helping

us with instrumentation, answering our questions, and hearing our performance op-

timization observations. I thank the members of the Media Service Performance at

Akamai, specially the Foundation team, for patiently answering our questions and for

their constructive feedback and helpful conversations about our ideas.

Finally, I would like to thank my family for their endless love and support. I

thank my parents and my sister Nafiseh for always being there for me and teaching

me how to be strong. Above all, I thank my wonderful husband, Arthur, who helped

me the most during my time in Princeton, and without his love and support I could

not have done this. Thank you for your love and support, and for all the cappuccinos.

I dedicate this dissertation to you.

vi

To my husband Arthur,

My parents Mohammad and Fariba,

And my sister Nafiseh

vii

Contents

Abstract . iii

Acknowledgements . v

List of Tables . xi

List of Figures . xii

1 Introduction 1

1.1 Sources of Poor Performance . 3

1.2 Techniques For Managing CDN Performance 6

1.3 The Steps in Managing the Performance 10

2 Cache-Aware Mapping 13

2.1 Introduction . 14

2.2 Impact of Cache Misses . 15

2.3 CDN Resource Allocation Problems 16

2.4 Unified Performance Model . 22

2.4.1 Goals of a CDN . 23

2.4.2 Inputs and Notations . 24

2.4.3 Unified Performance Model 25

2.4.4 Solving the Unified Performance Model 28

2.5 Modeling Cache Miss Rates . 30

2.5.1 Approximation Models for Cache Miss Rate 32

viii

2.6 Dataset . 37

2.7 Results of Disk Optimization . 38

2.8 Discussion and Limitations . 39

2.9 Related Work . 41

3 Diagnosis of Internet Video Anomalies 43

3.1 Introduction . 43

3.2 Chunk Performance Monitoring . 47

3.2.1 Chunk Instrumentation . 47

3.2.2 Per-session Instrumentation 51

3.3 Measurement Dataset . 52

3.4 Characterizing Performance . 53

3.4.1 Server-side Performance Problems 54

3.4.2 Network Performance Problems 58

3.4.3 Client’s Download Stack . 67

3.4.4 Client’s Rendering Stack . 73

3.5 Discussion . 77

3.6 Related Work . 77

3.7 Conclusion . 79

4 Data-plane Performance Diagnosis of TCP 80

4.1 Introduction . 80

4.2 TCP Performance Monitoring . 83

4.2.1 Inferring Sender Statistics . 84

4.2.2 Inferring Network Statistics 87

4.2.3 Inferring Receiver Statistics 90

4.3 TCP Diagnosis Techniques . 92

4.4 Data-Plane Monitoring . 95

ix

4.4.1 TCP Monitoring Prototype in P4 95

4.4.2 Hardware Resource Constraints 102

4.5 Two-Phase TCP Monitoring . 104

4.6 Evaluation . 106

4.6.1 Accuracy of Heuristics . 106

4.6.2 CPU and Memory Overhead 107

4.6.3 Diagnosis Accuracy . 110

4.6.4 Analyzing CAIDA Traces . 112

4.6.5 Trade-offs in Accuracy and Overhead 113

4.7 Discussion . 115

4.8 Related Work . 116

4.9 Conclusion . 117

5 Conclusion 118

5.1 Future Work . 119

Bibliography 121

x

List of Tables

2.1 Notations used in the unified performance model 25

2.2 Stack distance of the items in the sequence pattern 35

2.3 Results of post-mapping disk optimization 39

3.1 Summary of key findings. 46

3.2 Per-chunk instrumentation at player and CDN. 51

3.3 Per-session instrumentation at player and CDN. 51

3.4 Latency notations and their description 51

3.5 ISP/Organizations with highest percentage of sessions with latency

variation . 63

3.6 OS/browser with highest DDS. 71

4.1 TCP performance problems at each component 83

4.2 Dapper’s Diagnosis Sensitivity and Accuracy 112

xi

List of Figures

1.1 Before and after CDNs . 2

1.2 Performance Management Tools . 7

1.3 The Control Loop . 12

2.1 A placement and mapping example. 18

2.2 Three different solutions of the mapping and placement example. . . 18

2.3 Diminishing returns in performance 20

2.4 Diminishing returns in cost . 20

2.5 A disk allocation example . 22

2.6 Notations used in the unified performance model 24

2.7 Popularity distribution of some example CPs 32

2.8 Cache miss-rate vs. disk size for some example CPs 37

3.1 End-to-End video delivery components. 45

3.2 Time diagram of chunk delivery . 48

3.3 Length and popularity of videos in the dataset. 53

3.4 Impact of server latency on QoE . 55

3.5 CDN latency breakdown . 56

3.6 Performance vs popularity . 57

3.7 Startup delay vs. network latency . 59

3.8 CDF of baseline (srttmin) and variation in latency (σsrtt) among sessions. 59

xii

3.9 distance of US prefixes in the tail latency from CDN servers 61

3.10 Path latency variation . 62

3.11 Differences in session length, quality, and re-buffering with and without

loss. 64

3.12 Rebuffering vs. retransmission rate in sessions. 65

3.13 Example case for loss vs. QoE. 65

3.14 Average per-chunk retransmission rate. 65

3.15 Re-bufffering frequency with or without loss, per chunkID. 65

3.16 Latency vs throughput: (a) Latency share (DFB

DFB+DLB
), (b) DFB, and

(c) DLB vs. performance score. 67

3.17 A case study showing the effects of client download stack 69

3.18 DFB of first vs. other chunks . 73

3.19 Dropped frames vs. chunk download rate 74

3.20 Dropped frames per CPU load . 75

3.21 Browser popularity and rendering quality 76

3.22 Dropped frames of (browser, OS) combinations 76

4.1 Dapper monitors performance at the edge of the network. 81

4.2 Dapper’s architecture : (1) data plane monitoring on edge, (2) control

plane diagnosis . 83

4.3 Tracking options, segment size, and application reaction time for a

simplex connection (server-client) . 84

4.4 Tracking a TCP connection’s flight size 85

4.5 Dapper’s packet-processing logic . 91

4.6 Flight size before and after loss . 94

4.7 How closely our heuristic tracks CWND. 107

4.8 Required state on switch in single vs two-phase monitoring 108

4.9 Expected collision rate vs number of flows for different table sizes . . 108

xiii

4.10 CPU per aggregate bandwidth processed. 109

4.11 CPU cycles to update the table based on each type of packet 110

4.12 Accuracy vs severeness of problem. 111

4.13 Diagnosis Results for CAIDA traces. 113

4.14 Error in inferring SRTT . 114

4.15 Error in inferring TCP options (MSS and wscale) midstream 114

xiv

Chapter 1

Introduction

Content Distribution Networks (CDNs) deliver a wide range of content including

web objects, video, e-commerce applications, and social networks to users. In the

early days of the world wide web, the content was served through the provider’s

own servers. The client would use the DNS to get the IP address of the provider’s

server, and then created a TCP connection and requested the content via HTTP

(Figure 1.1). However, there were some challenges in serving the content this way.

First, performance was not ideal because the server could be located far away from

the clients, causing high latency. There was also an availability problem if a server

went down. Additionally, there were scalability problems if many requests arrived

for a popular object, beyond the load that the server could handle. Finally, there

were security concerns such as Denial of Service (DOS) attacks, where a flood of

superfluous requests was sent to a target server and would overload the server, making

it unavailable to its intended users. A single-server service is particularly an easier

target to take down and causes outage faster.

These challenges were the driving factors for content distribution networks or

CDNs. A CDN is a set of distributed caching servers across the world, located near

1

Content	
Provider

Clients

CDN
(edge	servers)

Content	
Provider
(origin)

Clients

Figure 1.1: How content was served before (left) and after CDNs (right).

clients, to serve the content with higher performance (e.g., lower latency) to the

clients. A few example CDNs include Akamai, Limelight, and CloudFare.

When a client requests the content, the request is directed to one of CDN’s caching

servers across the globe using the DNS protocol. A key component of CDNs is

the global load balancer (GLB), that chooses the proximal edge server per client’s

request [29]. If the content is available on the disk at that edge server (i.e., cache

hit), the edge server sends it to the client. Otherwise, if the content is not available

on the local cache (i.e., cache miss), the server first fetches the content from the origin

server before serving it to the client, while also possibly updating the local cache with

new content. Note that often an edge server consults other CDN servers (e.g., peers)

before requesting from origin servers; however, for simplicity, we have omitted the

caching hierarchy in this figure.

The use of CDNs’ edge servers resolves the previously mentioned challenges: Per-

formance is enhanced because objects are served from a nearby replica. Availability

is enhanced because of the replication of the content. Scalability improves because

many servers can serve the content and spread the load. Finally, the security of ori-

gin server increases because the DNS protocol will direct the traffic to CDNs’ edge

2

servers, making it harder for the adversaries to overload all of the CDN servers as

compared to overloading a single origin server, protecting the origin machines 1.

Today most of the web content is served through CDNs. In particular, Akamai

alone served 15-30% of all web traffic in 2016, from over 170,000 servers deployed in

over 102 countries and 1300 ISPs around the world [67, 29].

The goal of a CDN is to serve content—usually from a content provider (CP)—to

end-users with high performance for clients (e.g., serving requests with low latency

or high throughput), and at a reasonable cost for the CDN. The cost comes from

consuming resources such as bandwidth or disk capacity. To achieve this goal, CDNs

deploy the edge servers in hundreds of data-centers around the globe; the widespread

edge servers ensure that the client’s request will be served by a “proximal” edge

server. Striking a balance between these two competing goals is often a problem that

CDNs face. We will show examples demonstrating this trade-off in Chapter 2. Our

goal in this thesis is to help CDN operators manage the performance of the platform

at scale; to do this, we must first understand what factors can hurt the performance

of the users of a CDN.

1.1 Sources of Poor Performance

There are many sources of poor performance for clients being served by a CDN server:

Far Away Replicas: The GLB often uses the network performance data (e.g., loss

and latency) as well as the real-time data from servers (e.g., load and liveness of

servers) [29] to map a client’s request to an edge server that offers the best perfor-

mance at a reasonable cost. If the chosen edge server is too far from clients (i.e.,

not proximal), the client experiences high latency, which results in a poor quality of

experience for users (i.e., long wait time before the video starts). In addition to poor

1An adversary can still attack the target machines if their IPs are known without DNS.

3

mapping, this issue can also be caused if the CDN does not enough have replicas that

are geographically distributed. i.e., even though the client is mapped to the closest

server, that server is still far from the clients.

Performance of the Edge Server: Once a request arrives at the edge server, the

server begins processing it. For every request, the CDN edge servers need to inspect

the local cache including the memory, disk, and finally their peers or origin servers

to first find the content and then transmit it to the clients. High latency in serving a

client’s request may be caused by poor edge server performance. We show instances of

such problems from real datasets in Chapter 3. For example, we found asynchronous

timers in Apache Traffic Server (ATS)—an open source HTTP proxy—cause extra

latency in serving the content from the disk. This issue was impacting a significant

portion of requests served by this CDN.

Network: Network problems can manifest themselves in the form of increased packet

loss, reordering, high latency, high variation in latency, and low throughput. Each

can be persistent or transient (e.g., temporary spike in latency caused by congestion).

Such network problems on the path of the client to CDN edge server could impair the

performance of users. In Chapter 3 Section 3.4.2, we will discuss network problems

in more detail.

Client’s Machine: Most Internet video providers split a vidoe into fixed-length

pieces, called “chunks”. The video player on the client-side makes an HTTP request

to fetch each chunk in the appropriate bitrate. We divide the client’s machine in two

parts:

1. Download Stack: the path that downloaded chunks take before arriving at

the application, for example the video player. The path includes the Network

Interface Card (NIC), Operating System (OS), and the browser.

4

2. Rendering Stack: the extra processing performed on video chunks after arriving

at the video player, including the de-muxing of audio from video, decoding, and

rendering frames on the screen.

We found that a client’s poor performance may be caused by the client’s bad

download or rendering stack. We saw instances where video chunks get buffered in

client’s download stack and cause video re-buffering. We also found out that some

combinations of OS and browsers (e.g., Yandex or Safari on Windows) are more likely

to have persistent download stack problems. Recognizing the lasting effect of client’s

machine on users’ quality of experience (QoE) is extremely important for content

providers and CDNs. See Chapter 3 for more details.

Cache Misses and Latency To Origin: When content does not exist on the edge

server’s local disk, it needs to be fetched from the peers or the origin server. This

process may itself create a chain of requests if the peer also does not have a copy

of the content. Often the origin servers are located far from the edge servers, which

increases the latency in serving content significantly because the requests travel a wide

area network (WAN). In our study (Section 3) we show that cache misses impact the

server latency significantly: the median server latency among chunks experiencing a

cache miss is 40 times higher, while the average and 95th percentile is tenfold.

In this section, we detailed the sources of poor performance that cause a CDN

server to answer a client’s request with high latency or serve the content with low

throughput. To detect such problems and manage CDN performance at scale we

need tools and techniques that each focus on relevant parts, including optimizing

the platform, diagnosing problems along the end-to-end path, and diagnosing finer-

grained network problems. We will explain these techniques in the next section.

5

1.2 Techniques For Managing CDN Performance

Following the key sources of performance problems in CDNs, we propose our scal-

able performance management and diagnosis system, which consists of three parts,

as shown in Figure 1.2. In this management system, CDN operators can first config-

ure the CDN platform to allocate its resources efficiently (Chapter 2). However, this

efficient allocation of resources is not enough, as we showed in the previous section;

performance problems can arise in a multitude of locations. Thus, the CDN operators

also need to quickly detect and diagnose problems when users have poor quality of

experience (QoE). To this end, we propose an end-to-end instrumentation method-

ology per-HTTP transaction (e.g., a chunk in video) that collects measurement data

from both sides (client and server) in addition to snapshotting TCP metrics. By

joining this dataset we construct performance metrics at essential milestones on the

end-to-end path to diagnose performance problems (Chapter 3). While the per-chunk

instrumentation can uncover a wide range of problems across the delivery path, in-

strumenting the CDN servers to collect fine-grained TCP measurement with higher

frequency is prohibitive because it consumes resources at the edge server and imposes

a storage overhead. To deal with this limitation, we present a tool to allow CDN op-

erators to dive deeper into the network problems and diagnose TCP problems more

efficiently directly in the network elements (e.g., network interface card or switch)

(Chapter 4).

It is important to note that “measurement” is the key in achieving our goals in

the three systems, and is the common theme in all three projects. These tools rely on

collecting and analyzing large datasets from the real world systems. We have built

prototypes for all three parts and evaluated Diva and CAM in real-world deployments.

CAM: Cache-Aware Mapping. CAM is a framework to allocate resources effi-

ciently across the CDN platform to strike a balance between performance and cost.

6

Allocate	resources	
efficiently	across	
the	platform

Diagnose	TCP	
connection	
problems	
efficiently

Diagnose	e2e	
performance	
problems

Diva
(HTTP)

Dapper	
(TCP)

CAM	
(TE)

7

CDN
(edge	
servers)

Content	
Provider
(origin)

Clients

Techniques	For	Managing	CDN	Performance	

Figure 1.2: Performance management and diagnosis tools: the scope of the three tools

Cache misses have a negative impact on users (e.g., increased rebuffering on video

clients), CDN operators (increased costs of operation), and content providers (in-

creased load on origin servers); however, the impact of cache misses has not been

explicitly and modeled in a unified framework for CDNs. CDNs optimize content

placement (i.e., which edge servers should be allowed to serve the requests of a con-

tent provider), request mapping (i.e., which server should serve each request), and

disk partitioning (how should the shared cache be managed among several customers).

In CAM, we propose a unified performance model that captures these three resource

allocation problems, while including the impact of cache misses. We avoid making

simplifying assumptions about the popularity distributions of content. While our

model focuses on the client’s performance, it can easily include cost (to the CDN)

and fairness (across content providers) as constraints. Since the joint optimization

is a non-linear and non-convex problem, we solve a simpler variation of it by only

7

focusing on one of these problems. We show that even without changing the current

mapping or placement, by only managing the disk efficiently, we can enhance the

performance significantly (17%) for a slight increase (0.25%) in the bandwidth cost

of the CDN.

Our contributions in this work include a unified framework to jointly optimize

mapping, placement, and disk allocation while including the impact of cache misses.

We offer workload characterization using real datasets. This work starts with a rel-

atively simple model of performance based on the distance or latency between the

client and edge server, and edge server and origin server. But, in reality, end-to-end

performance depends on a variety of other factors, including performance problems at

the edge server, congestion in the network, or problems at the client machine. To un-

cover this wide range of problems along the end-to-end path, we present our next tool,

Diva, to diagnose roots of poor performance, focusing on one content provider—in

this case, a video provider.

DIVA[48]: Diagnosis of Internet Video Anomalies. Despite the growing pop-

ularity of video streaming over the Internet, problems such as re-buffering (i.e., when

the video stream stalls) and high startup latency (i.e., when the user clicks to play

the video but faces a delay) continue to plague users. Diva uses a chunk-based in-

strumentation methodology to model the end-to-end path of video delivery system

and diagnose performance problems within this path, for every chunk, and across

the chunks in a video session. We instrumented both the CDN servers and the client

video player, while also collecting frequent snapshots of TCP variables from the server

network stack, allowing us to construct an end-to-end view of video performance for

the first time. With this unique visibility into the causes of performance degradation,

Diva uncovered a wide range of performance problems that were not known before,

including an asynchronous disk-read timer, impact of cache misses at the server, high

latency and latency variability in the network, buffering delays and dropped frames

8

at the client. Looking across chunks in the same session, or destined to the same IP

prefix, we see how some performance problems are relatively persistent, depending

on the video’s popularity, the distance between the client and server, and the client’s

operating system, browser, and Flash runtime. Our findings were used in Yahoo to

optimize the video performance.

Our contributions in Diva include (1) a diagnosis tool that for the first time joins

the dataset from the server side with client and network side, and (2) deploying it in an

operational setting in the wild (Yahoo player and CDN). Diva can accurately pinpoint

the sources of problems in the video delivery path. Still, Diva faces a limitation in

the frequency of network snapshots due to high overhead and storage limitation.

Collecting fine-grained network performance data on the server is costly. To work

around this limitation, we propose our next tool, Dapper.

Dapper[47]: Data-plane Performance Diagnosis of TCP A TCP connection

may have bottlenecks at the sender, receiver, or the network. In Table 1, we present

several examples of performance problems that may arise at each location. With many

applications and TCP congestion control variants in use today (e.g., Cubic [51], Taho

and Reno [56], New-Reno [54], Vegas [16]) it is challenging to decide what minimal

set of metrics to collect that are both affordable (i.e., does not consume a lot of

resources) and meaningful (i.e., helps in diagnosis). It is also essential to diagnose

such TCP performance problems in a timely manner. Offline processing of logs is slow

and inefficient, and collecting TCP metrics at end-hosts requires patching kernels

(e.g., to use tools such as Web10G [105]). It is also costly to frequently snapshot

TCP metrics from the kernel (e.g., tcp info), as we mentioned in the limitations of

Diva above. In addition, relying on network information offered by the kernel limits

the measurement flexibility (e.g., kernel collects smoothed averages of key statistics,

rather than individual samples, as we discuss it in more detail in Chapter 3).

9

Instead, our tool, Dapper, analyzes TCP performance in real time near the edge

servers at line-rate (e.g., at the NIC or the edge switch). Dapper determines whether a

TCP connection is limited by the sender (e.g., a slow application that is bottlenecked

elsewhere such as disk), the network (e.g., congestion), or the receiver (e.g., small

receive buffer). We use P4 [14] which is a language for programming the data plane

of network devices to prototype Dapper and evaluate our design on real and synthetic

traffic. To reduce the data-plane state requirements, we perform lightweight detec-

tion for all connections, followed by heavier-weight diagnosis just for the troubled

connections.

Our contributions in this work include a data-plane based system for diagnosing

TCP connections’ performance problems, at line-rate, that can detect the source of

problems. Our measurement in Dapper is “inference-based”, meaning we do not

require cooperation from the end-hosts at either side; Dapper makes a diagnosis

simply by analyzing the packet stream at the edge of the network.

In the next section, we outline how the three pieces of the thesis work together in

a control loop.

1.3 The Steps in Managing the Performance

To efficiently and uniformly manage the performance and diagnosis problems across

the CDN platform, we present a control loop that consists of three steps. Figure 1.3

shows the control loop and how these three steps fit in together. Let us explain these

steps, in order:

1. Measurement: Measurement is the first step in detecting, diagnosing, and man-

aging the CDN performance. Measurement could mean different things, for example,

in CAM we collect server request logs from edge servers with Akamai. In Diva, we

introduce new instrumentation infrastructure and performance metrics across the end-

10

to-end path of the video delivery system and join the server and client-side datasets

to understand what impacts the performance of the delivery path. In Dapper, we

are interested in collecting finer-grained TCP statistics to find out if the TCP per-

formance is limited by the sender, receiver, or the network. Thus, we build a new

inference-based measurement of TCP from the edge device.

2. Analysis: The next step after measurement is Analysis. Our datasets are at

industry scale. We instrumented over 85 CDN servers in Diva and analyzed more

than 500 million video chunks. In CAM, we study hundreds of servers with billions

of request logs. These huge datasets are analyzed on Hadoop and Spark clusters, via

MapReduce jobs.

3. Action: The final step is taking appropriate actions; which can differ based

on the goal of each project. These actions could include (1) optimizing the CDN

configurations (CAM), (2) using the results of analysis to come up with a better

system design (Diva), or even (3) triggering finer grained measurements to pinpoint

the source of poor performance (Dapper).

The remainder of this thesis is organized as follows: Chapter 2 presents CAM,

the unified framework for resource allocation within a CDN. Chapter 3 describes

Diva, the end-to-end chunk-based performance diagnosis system that finds the roots

of performance problems causing poor user QoE. Chapter 4 presents Dapper, the real-

time TCP performance diagnosis based on inference-based measurements that runs

at line-rate at the edge. Chapter 5 discusses how the three systems work together

and concludes the thesis.

11

Data	sets	at	industry	 scale
100s	of	servers	&	billions	 of	requests

Analyze

Measure Act

Edge	server	
request	logs

Performance	
logs	

(both	sides)

Fine-grained	
TCP	metrics

(1) Optimize	CDN	config
(2) Better	system	design
(3) Trigger	finer-grained	

measurement

Figure 1.3: Our control loop consists of three steps: (1) Measurement of the system,
(2) Analyzing the datasets, usually via big data analysis frameworks, and (3) Acting
based on the results.

12

Chapter 2

Cache-Aware Mapping

Most of the web traffic is served through CDNs; Akamai alone was responsible for

serving up to 30% of traffic in 2016 [29]. Recent work has shown the negative im-

pact of cache misses on the quality of experience of end-users [48, 91]. In addition,

cache misses are costly for CDN operators since they increase the consumed band-

width; cache misses also make content providers (CP) unhappy by increasing the load

on origin servers. Nevertheless, the impact of cache misses has not been explicitly

modeled in a unified way in CDN’s resource allocation algorithms (e.g., mapping,

placement, and disk partitioning).

In this chapter, we propose the Cache-Aware Mapping (CAM), a tool to allocate

resources across the distributed edge servers in a CDN to jointly minimize network

latency and cache miss rates and strike a balance between competing goals of a CDN

(i.e., performance and cost). CAM offers a unified model that optimizes performance

while explicitly modeling the impact of cache misses and without making simplify-

ing assumptions about the traffic (e.g., assuming the traffic always follows a Zipfian

distribution). We offer a unified model for CDNs to solve three essential problems

of content placement, mapping, and disk allocation. Since the joint optimization is

a non-linear non-convex problem, we pick one out of the three problems to focus on:

13

the disk allocation problem. We chose to optimize the disk partitioning problem for

a few reasons: (1) Akamai already has a mapping and placement algorithm, but the

disk optimization is done using an approximation to the LRU policy [67]. This opti-

mization aims to minimize the total cache miss rate, without taking into account that

some cache misses are costlier than others. (2) We are interested to know if we can

improve the performance by only managing the disk efficiently without changing the

current mapping and placement systems, and (3) disk management is a decentralized

process that is run on each edge server, hence it can be deployed incrementally, but

changes to mapping and placement are global and affect the entire platform at once.

Using server request logs from a commercial CDN (Akamai), we show that even with-

out changing the current mapping or placement algorithms, by only managing the

disk efficiently, we can enhance the performance—measured as the average distance or

network latency from clients to edge servers, and from edge servers to origin servers—

significantly (17%) for a slight increase (0.25%) in the operational cost—measured by

the bandwidth consumption.

2.1 Introduction

Let us start with an overview of how a CDN maps a content request to an edge

server. In this setting, a client is making a request for a specific content from a

content provider (CP), and the CP is using the services of a CDN. When the client

makes a DNS request for the CP, instead of getting the IP of the CP it gets the IP

address of one of the CDN’s edge servers. This mapping or assignment of clients to

edge servers is usually done via a global load balancer (GLB) 1

1There are CDNs such as CloudFlare [31] that use anycast [10] for mapping. A DNS-based
mapping offers fine-grained and near-real time control over the mapping, but requires considerable
investment in infrastructure [21], whereas an anycast mapping is often cheaper but offers minimal
control. In this work, we use the DNS-based model to be consistent with the Akamai ecosystem.

14

When GLB maps a client to an edge server, it tries to achieve the best performance

at a reasonable cost, which means that (1) the edge server should be able to handle

the request (i.e., the load and liveness of server is considered), (2) the edge server

should be nearby (i.e., proximity or network performance is considered), and (3) the

edge server should avoid going to to the origin server as much as possible (i.e., caching

is considered).

The majority of the related work in replica selection methods have focused on

balancing the proximity and the load (goals 1 and 2 above); however, less attention

has been given to maximizing cache hits. More importantly, the impact of cache

misses have often been ignored in these solutions [107, 85, 29, 89, 7, 50, 22, 82]. In

addition, the previous work on cache replacement algorithms [9, 79] make simplifying

assumptions such as assuming that the workload belongs to a single CP, or the content

popularity follows a specific distribution, in particular Zipfian [17, 81]. Instead, in

CAM we want to explicitly model the impact of cache hit rates on performance and

cost, and show how we can balance their trade-off by optimzing the allocated disk

per CP.

2.2 Impact of Cache Misses

Cache misses have a negative impact on all involved parties, as shown in Figure 1.2.

First, cache misses are costly for the CDN. If content does not reside in the local disk

of the edge servers and needs to be fetched from the origin servers of a particular CP,

the CDN has to pay the ISP(s) for the consumed bandwidth. A higher cache miss rate

increases the usage and escalates the need for a higher-capacity connection. Second,

cache misses at the edge make CPs unhappy, because it means more load is sent to the

origin servers of the CP 2, which sometimes cannot handle this high load. Third, cache

2For simplicity, we are ignoring the hierarchy within the CDN but in reality CDNs have multiple
layers of cache servers

15

misses impair the end-user performance. Recent work [48] shows that cache misses

increase the average latency of serving the content by 10X. We conducted a 10-day

study in Akamai in cooperation with a large video provider, where we analyzed and

correlated the client-side user QoE data with server-side request logs. We observed

that requests that are associated with re-buffering at the client-side have a higher cache

miss rate at the server-side.

This high impact of cache misses on all involved parties is the motivation behind

CAM: To enhance performance and cost while including the impact of cache misses,

based on real workloads. In the next section, we overview the problems a CDN faces,

and the decisions a CDN makes. In future chapters, we will incorporate the impact

of cache misses in all three decisions.

2.3 CDN Resource Allocation Problems

Before discussing the model, we need to understand the resource allocation problems

a CDN faces. There are three general resource allocation decisions that a CDN makes,

where we believe the impact of cache misses needs to be explicitly modeled:

1. Placement: Content placement is the decision of “which edge servers should be

able to serve the content, for each content provider”. Content placement decisions

are made on a long time-scale and are static. The solution to the content placement

question for each CP is a set of binary values for each edge server, where 1 means that

CP will be served from that edge server, and 0 means that CP will not be served from

that edge server. Content placement is solved at the granularity of a CP, which may

seem coarse-grained in contrast to placement of individual objects, but this is done

to (1) make the platform scale better, and (2) each CP is associated with a domain

that DNS resolves. A group of content (or objects) —the CP’s library—would have

the same domain name. Note that content placement is essential for CDNs since it’s

16

not always ideal to serve a CP from all the edge servers, because spreading the load

among more servers lowers the cache hit rates; in addition, after some point there is

no performance gain in adding more edge servers. We will elaborate more on this in

the next section with an example.

2. Mapping: Mapping is the decision made by the GLB to see “for each client

request of a content provider, which one of the replicas should serve it?”. Mapping

takes the placement constraints into account (i.e., won’t send the request to a server

not included in the content placement set as described above), and uses real-time

load and latency data to ensure the chosen edge server is (1) alive, (2) can handle the

extra load, and (3) is proximal, i.e., has a good network performance to the client.

The solution to the mapping problem can either be one chosen server, or a set of

servers (split-load). In this work, we assume the GLB can handle split-load mapping,

meaning, not all requests from a certain client cluster need to go to a single server,

rather, the load can be divided among several servers. This assumption is reasonable

for our system because GLB operates at client prefix level, so it is possible to direct

individual clients within a prefix to different edge servers. In addition, the DNS

responses contain Time To Live (TTL), meaning after its expiration a new request to

the GLB is made, therefore it is possible for the GLB to split the load across multiple

servers on a longer time-span than a TTL. Hence, the numerical solution will be a

set of values in [0, 1] range, where their sum of values across a client cluster equals 1

(i.e., all requests of that cluster are satisfied).

2. Disk Allocation: Once the CDN has decided which servers should serve each CP

(i.e., content placement), and which requests to send to each server (i.e., mapping),

each edge server ends up serving a group of CPs. The CDN needs to decide how

to manage or allocate the disk among these CPs on each edge server (i.e., the disk

allocation problem).

17

To understand how each of these three decisions interacts with the cache perfor-

mance, and thus the CDN goals, let us walk through two simple examples. The first

example will focus on content placement and mapping across the servers, and the

second one will focus on disk allocation within a server.

Example 1: Placement and Mapping

Consider a simple setting that a CDN has three servers across the US (Figure 2.1),

with three CPs and clients located in three clusters. If the goal of the CDN is to

minimize network latency (or the distance) between the clients and the edge servers,

then it should serve every CP at every edge server, i.e., the clients always get mapped

to the closest edge server (Figure 2.2a). In this solution, the content placement

decision includes all servers. However, there is a major problem with serving every

CP from every edge server: it can lower the cache hit rate. When an edge server

serves more CPs, the competition for the shared disk (cache) increases; resulting in

the objects of different CPs evicting the contents of other CPs from the shared cache,

and hurting the cache hit rate.

S1

S3

S2

CP1CP2CP3

Clusters of clients

Mapping

Figure 2.1: A placement and mapping example.

S1

CP1

CP2

CP3

S1

CP1

CP2

CP3

S1

CP1

CP2

CP3

(a) Every CP on every edge

S1
m1

S2
m2

S3
m3

CP1
CP2

CP3

(b) Dedicated edge per CP

S1

CP2

CP3

S1

CP2

CP1

S1
CP1

CP3

(c) A balanced solution

Figure 2.2: Three different solutions of the mapping and placement example.

18

If instead of minimizing the clients latency to servers, the CDN chooses to max-

imize cache hit rates, we’ll reach a different solution shown in Figure 2.2b. In this

solution, each CP has a dedicated edge server which minimizes the competition as

the cache is not shared; thus, achieves maximum per-CP cache hit rate. However, in

this solution clients are mapped to dedicated servers further away, which may hurt

the client-perceived performance.

These two solutions show the two extreme objectives of the optimization. The

first tries to optimize for performance (latency) and the second tries to optimize for

cost (cache hit rate). However, our goal in this work is to show that we can capture

both performance and cost in a joint optimization, and strike a balance between them.

Figure 2.2c shows a middle-ground solution where the cache hit rates are not as bad

as the first solution since there is less competition between CPs at each server, but

the performance is not as bad as the second solution either because the clients are

not mapped that far. The observation we make from this example is that there are

diminishing returns in both aspects of this optimization: serving each CP from a

dedicated edge server enhances the cache hit rate because the disk can fit the tail

of its library. Still the tail of the distribution is unpopular, so the performance gain

becomes negligible eventually. Similarly, serving every CP everywhere offers the most

proximal server to clients, but the network performance may already be adequate with

fewer locations.

We can see theses diminishing returns from real datasets: (a) Figure 2.3 shows the

performance gain for a particular CP as we increase the number of edge servers from

10 to 100 unique locations. The y-axis is the reduction in sum of traveled distances if

the CP has x edge servers, normalized by the sum of distances if there were only 10

edge servers. We can see that initially there is a performance gain as we increase the

number of servers, but by increasing number of edge servers past 40 servers the gain

becomes negligible. This is because this particular CP’s clients are clustered around

19

about 50 major locations within the US. (b) Figure 2.4 shows the cache miss rates of

a particular CP as we increase its disk capacity. The x-axis shows how many units

of the CP’s library we can fit in the cache. Initially by allocating more disk to this

library, cache miss rate is significantly reduced. However, once we get to the tail of

the distribution (i.e., less popular items) the gain in cache miss rate by adding more

disk becomes negligible.

0 20 40 60 80 100
Number of cache servers

0.0

0.2

0.4

0.6

0.8

1.0
R

ed
uc

tio
n

in
 su

m
 o

f d
is

ta
nc

es

Figure 2.3: Diminishing gain in performance (distance) as number of caching servers
increases.

0 2000 4000 6000 8000 10000 12000 14000
Cache size (#objects)

0.0

0.2

0.4

0.6

0.8

1.0

C
ac

he
 m

is
s r

at
e

Figure 2.4: Diminishing gain in cost (cache misses) as size of disk (MB) increases.

Example 2: Disk Allocation

The previous example showed us how mapping and content placement affect the

CDNs’ goals, now lets zoom into one of these edge servers and see how the disk should

be managed: If the goal of the CDN is “minimizing the overall cache miss rate”, then

20

a shared cache that evicts the least frequently used (LFU) item or the least recently

used item (LRU) naturally keeps items in the cache that enhance the cache hit rate.

However, our goal in this work is “minimizing the impact of cache misses”, not

cache miss rates themselves. Figure 2.5 shows the impact of cache misses for clients

of two different CPs, served from the same edge server. We can see that cache misses

for CP 1 are more harmful than CP 2 because the origin server of CP 1 is further

away. This means the clients of CP 2 must wait longer on a cache miss to fetch the

content from a further away origin server. The observation that we make from this

example is that the impact of cache misses is different among CPs, hence “the ability

to partition the cache is essential”. By partitioning the cache, we mean assigning an

amount of disk size that is reserved for each CP, based on the popularity distribution

of the CP as well as the latency to its origin. Related work such as [30] make similar

observations with formal proof that partitioning the cache yields better performance

compared to sharing it.

While for a CDN serving multiple CPs partitioning the cache is better than sharing

it, we still must decide the granularity of partitioning. One can imagine per-object

partitioning where a“performance toll” is associated with each object that reflects the

distance (or latency) to the origin server upon cache misses. However, a per-object

partitioning makes it challenging to model and enforce fairness among CPs. Instead,

we believe it is best for a CDN to partition the cache per CP, to manage the cost and

performance while being able to enforce fairness between different CPs. In addition,

per-CP partitioning makes the toll estimation at the edge servers simpler and avoids

redundancy since the objects of the same CP are fetched from the same origin and

incur a similar toll on user-perceived performance.

To summarize, in this section, we explained the three essential decisions a CDN

makes: placement, mapping, and disk allocation. We demonstrated with two exam-

ples how we can strike a balance among the competing goals of a CDN (performance

21

S1
CP2

CP1

CP2

CP1

Figure 2.5: A disk allocation example: Origin servers of CP 1 are further away from
the edge server than CP 2, making its cache misses more costly.

and cost). We observed that both of these objectives, if considered alone, have dimin-

ishing returns. We also showed that the impact of cache misses on clients (i.e., the

extra latency) differs among different CPs, therefore, the ability to partition the cache

is essential in managing the impact on end-users. In the next section, we explain how

to capture these three problems in a unified framework, while modeling the impact

of cache miss rates explicitly in the model.

2.4 Unified Performance Model

In this section, we will first explain the metrics that matter to a CDN(i.e., goals).

We then show how to capture all the three problems that a CDN faces into a sin-

gle framework, and how to optimize this model according to these goals (e.g., best

performance). For simplicity we use geographical distance, but the cost matrices can

be replaced with network latency, throughput, or even custom metrics defined by a

CDN (e.g., throughput over latency). Let us begin by explaining the metrics that

CAM focuses on:

22

2.4.1 Goals of a CDN

There are three major metrics that a CDN cares about, and our goal is to model

them with CAM; These metrics are:

1) Performance: CDNs care about user-perceived performance, e.g., the perceived

latency or throughput. The performance goal of CAM is to minimize sum (or average)

of distances (or latencies) for clients to servers. Note that when there is a cache miss,

there is an additional distance (or latency) from the edge caching server to origin to

be considered.

2) Cost: Cost is a measurement of how much a CDN pays for operations. to pay

ISPs for consuming bandwidth to serve clients. This is less of an issue for serving a

client’s request since it brings profit, however, cache misses require spending money

to fetch the content first from origin servers and then serving it to the client, hence

cache misses increase the net operational cost. Lowering cache misses helps reduce

the cost of running the CDN platform.

3) Fairness: CDNs strive to preserve a notion of fairness among CPs. Fairness is

complicated to model. For example, a CP may naturally have more cacheable content,

or have a smaller library size that fits well in any cache size, or have more popular

content. Therefore, instead of optimizing directly for fairness, we (1) show the impact

of optimized performance solution on fairness, and (2) add fairness constraints to the

framework to ensure the solution we reach at does not treat different CPs unfairly.

There are different criterion to measure the fairness, here we use the relative amount

of resources (e.g., the disk) allocated to each CP as a notion of fairness. We use

Jain’s fairness formula (shown below) to measure the fairness, where xi is the fairness

criteria, which is the relative amount of resources dedicated to CPi:

J(x1, x2, . . . , xn) =
(
∑n

i=1 xi)
2

n ·
∑n

i=1 xi
2

(2.1)

23

Next, we will outline the inputs to the system, along with the notation used in

the unified framework.

2.4.2 Inputs and Notations

Figure 2.6 summarizes the notation used in this section. A content provider (CP)

origin server is marked with“i”, CDN edge server with “j”, and client cluster with

“k” 3.

The distance (or latency) between the origin server of CPi and the CDN’s edge

serverj is shown with bi,j. Similarly, aj,k captures the distance between edge server

“j” and client cluster “k”. In addition, the ci,k value shows the demand for CPi from

clientk. In this model, we use variable xi,j,k to represent the portion of the demand

of clientk for CPi, that is served by edge serverj. Finally, the mi,j variables show

the cache miss fraction of CPi on edge serverj. Table 2.1 shows the list of notations

used in the model.

CDN
(edge	
servers)

Content	
Provider
(origin)

Clients

aj,k

bi,j

ci,k: demand for CPi from clientk

i

j

k

Figure 2.6: Notations used in the unified performance model

Using these notations, we are now equipped to discuss the unified performance

model.

3To reduce the complexity of the problem and make the optimization scale better we have clus-
tered clients based on their geographical location and AS

24

Table 2.1: Notations used in the unified performance model

Notation Meaning

i, j, k A CP, a CDN edge server, and a client cluster respectively.

aj,k The path cost (e.g., distance or latency) of accessing edge server j from client k.

bi,j The cost of path from edge cache j to origin servers of CP i.

ci,k The demand for CP library i from client k.

xi,j,k The fraction of client k’s demand for CP library i mapped to edge server j.

mi,j The miss rate of CP library i at edge cache j.

di,j Disk space allocated for CP library i at edge server j.

kj The capacity of edge server j, in terms of how much demand it can take.

diskj The disk capacity of edge server j.

li,j The demand for CP i served by edge server j.

U set of clients

2.4.3 Unified Performance Model

Using the notation as explained above, the performance of the requests from clientk

for CPi served from edgek can now be captured via the following equation:

perf = xi,j,k · ci,k · (aj,k +mi,j · bi,j) (2.2)

This equation captures two terms: First, for the portion of the demand (xi,j,k ·ci,k)

from the client to the edge server for a particular CP, all of such requests travel the

distance to the edge server (aj,k). In addition to that, the portion of this traffic that

experience a cache miss at the edge server (mi,j) will incur an additional distance (or

latency) of fetching the content from the CP’s origin server (bi,j).

By summing Equation 2.2 over all client clusters, all edge servers (shown as S),

and all CPs, we will reach to Equation 2.3. This equation represents the perfor-

mance of the entire system, measured as total traveled distance (or total latency

experienced by end-users). Dividing this equation by the total demand gives us the

25

average traveled distance (or average latency), considering the extra performance toll

of communication with origin servers due to cache misses.

perf =
∑
i∈CP

∑
j∈S

∑
k∈U

xi,j,k · ci,k · aj,k +
∑
i∈CP

∑
j∈S

∑
k∈U

xi,j,k · ci,k ·mi,j · bi,j (2.3)

The constraints of this model include:

• The assigned demand to each edge server cannot exceed the capacity of that

server, denoted by kj:

for all j:
∑
i∈CP

∑
k∈U

xi,j,k · ci,k ≤ kj (2.4)

• Demands can be partially assigned:

for all i, j, k: 0 ≤ xi,j,k ≤ 1 (2.5)

• Demands of each client cluster for each CP should be satisfied, regardless of

which servers take that responsibility:

for all i, j:
∑
k∈S

xi,j,k = 1 (2.6)

• The total disk allocations given to CPs on an edge server cannot exceed the

disk capacity of that server (we will discuss how to allocate di,j values in the

next section):

for all j:
∑
i∈CP

di,j ≤ Diskj (2.7)

26

Our unified performance model captures all three problems that CDNs face, while

incorporating the impact of cache misses in them. Let’s see how this framework

captures the three problems in one model:

1. Placement: The solution to the placement decision is captured in xi,j,k, if x

is always zero for clients of a CP on an edge server (i.e., never mapped there),

the library of the CP will not be placed at that edge server, while a nonzero x

indicates the library of the CP can be placed at this edge server, and requests

can be mapped there.

2. Mapping: the solution to the mapping decides how much of the demand from

each client cluster should be directed to each server. This is captured directly in

xi,j,k values. Note that xi,j,k is a variable in the range [0, 1] because we assume

the CDN can split the load.

3. Disk Allocation: Finally, the solution to the disk allocation problem is (indi-

rectly) captured in the miss rate of each CP on each edge server: mi,j. mi,j is

a complex function of various factors, including the size of the library of CPi,

the popularity distribution of objects in the library of CPi, the size of the disk

on serverj, and if serverj is hosting other CPs (i.e., cross traffic) with their re-

spective library sizes and popularity distributions. In the next section, we will

explain how we model the miss rate of each CP as a function of the allocated

disk.

In addition to capturing these three CDN problems in the performance model,

our unified model has the flexibility of including fairness and cost as constraints in

the model:

Cost: The associated bandwidth cost of CDN is a function of miss rate, as more

cache misses cause more bits to be pulled into the edge servers. We model the cost

27

constraint by the total number of cache misses across the edge servers for all CPs

(li,j =
∑

k xi,j,k · ci,k is the amount of demand for CPi served by edge serverj):

Cost : f(total cache misses) =
∑
i∈CP

∑
j∈S

mi,j · li,j (2.8)

Fairness: As explained before, the fairness of a solution can be evaluated by com-

paring the cache miss rates of different CPs, before and after partitioning the cache.

To enforce a fair solution, we can bound the cache miss rates (i.e., acceptable margin

of cache miss rates). This will direct the optimization to a fair solution where we

avoid situations like dedicating the entire cache to one CP with the furthest away

origin servers. We can accomplish this via enforcing a lower bound on the size of the

allocated disk (diskmin) to each CP, which ensures a maximum cache miss rate.

diskmin ≤ di,j ≤ diskj (2.9)

To find the exact amount of diskmin, we need to understand the relationship

between the disk size and the CP’s library, for every CP, which is the topic of the

next section (Section 2.5):

2.4.4 Solving the Unified Performance Model

To solve the joint optimization, we begin by assuming the distance (or latency) costs

are constant between the client locations and edge servers or between edge servers

and origins (i.e., bi,j and aj,k). While this assumption is true for distance, network

latency may change throughout the day due to routing changes, network congestion,

or the server delay itself. We will discuss how our framework can handle such changes

in Section 2.8.

With this assumption, the first part of Equation 2.3 becomes convex and linear

with respect to x; The second part of the equation is however non-linear and non-

28

convex, because it contains the product of two variables, x and m (xi,j,k ·ci,k ·mi,j ·bi,j).

Via numerical analysis, we show that mi,j is a non-linear but convex function of Di,j

(see next section); however, since the product of two convex functions is not necessar-

ily convex, we cannot use convex optimization tools. The joint optimization can still

be solved via search optimization methods (e.g., gradient descent, simulated anneal-

ing) where the solution converges to a local minimum, but it cannot be guaranteed

that the global minimum will be reached. Because of this limitation, we decided to

focus on only one of the three main problems. Since most CDNs currently do not

partition the disk or do not take into account that some cache misses are more costly

than others [67], we focus on the disk allocation problem. Our goal is to answer if we

can improve the performance by “only” managing the disk, with the current mapping

and placement algorithms in place.

Focusing on the disk allocation problem alone makes the optimization problem

simpler than the joint optimization. Because the mapping and placement is given,

we sum over all the clients’ demands (c′i,j,k = xi,j,k · ci,k) to get the portion of demand

of each CP served by each edge server (li,j =
∑

k c
′
i,j,k). This effectively reduces the

dimensions of the problem from three (client clusters, edge servers, and CPs) to two

(edge servers and CPs), as shown below in Equation 2.10:

perf =
∑
i∈CP

∑
j∈S

∑
k∈clients

c′i,j,kaj,k +
∑
i∈CP

∑
j∈S

li,j ·mi,j · bi,j (2.10)

In this simplified version of the unified model, the optimization variables are di,j,

or the amount of disk allocated CPi on edge serverj. In addition, under a given

mapping the first term of the optimization—the mapping distance between clients

and edge servers—becomes constant; hence, the optimization only minimizes the

second term—sum of the distances (or latency) from edge servers to origin servers for

cache misses.

29

perf =
∑
i∈CP

∑
j∈S

li,j ·mi,j · bi,j (2.11)

This new optimization formulation, as shown in Equation 2.11, is more tractable

and is convex with respect to di,j under one condition that mi,j is convex with respect

to di,j, which would guarantee that a convex optimization solver will find the global

minimum. Over the next section, we model the cache miss rates and understand the

relationship between mi,j and di,j and prove its convexity.

2.5 Modeling Cache Miss Rates

The goal of this section is to model the cache miss rate as a function of available disk,

or di,j. The cache miss rate depends on a few factors. First, the cache eviction policy

that is in use on the edge server. For example, whether the cache evicts the least

recently used item (i.e., LRU) or the least frequently used item (i.e., LFU). Most

CDNs, including Akamai, use the LRU cache eviction policy on edge servers [29].

Second, the amount of disk size available for caching. Naturally, the larger the disk

is, the more items can stay in the cache, which increases the time an object stays

in the cache until it is evicted; this time is referred to as the “eviction age” of the

object. A larger disk allows the tail of the distribution (i.e., the less popular objects

of the library) to stay in the cache. Third, the library size of a CP—how many

objects—and the size of objects in the library play a role in the cache miss rate as

well. For example, a small library fits in a small cache size on the edge servers, and

a library with smaller objects can fit more items in a fixed size cache. Finally, the

popularity distribution of the library impacts the caching efficiency [43]. For example,

consider two libraries A and B with similar sized objects each containing the same

number of objects. Library A has a “popular-heavy” distribution where the top 10%

of items receive about 90% of requests. Library B has a uniform distribution where

30

all items have a similar request rate. If each library gets a limited quota of the

disk, for example only enough to fit 10% of their items, it is clear that the caching

efficiency will be better for library A and its cache miss rate will be lower because its

objects are evicted from the cache less frequently. Let us present a formal definition

of “popularity distribution” of a CP before moving on to the cache miss rate model.

Popularity Distribution: Cache performance depends crucially on the popularity

distribution of a library, shown with q(). It is usual to order objects in order of

deceasing popularity such that q(1) ≥ q(2) ≥ ... ≥ q(N).

Zipfian Law: With the convention as explained above, the most frequently observed

popularity law [17, 25] is the generalized Zipfian law of: q(n) = 1/nα, with α > 0

Based on the discussion above, what we need from a cache model is a “predictive

model for the cache miss rates, as a function of disk space available, per library”. It

is important to know that we cannot analytically derive this model, unlike some of

the previous work [81, 71]; because based on a large scale characterization study with

Akamai we found that a lot of workloads do not follow the Zipfian law ; In fact, we

observed a variety of popularity distributions across different CPs, a few examples

are shown in Figure 2.7.

Each figure shows the popularity distribution of objects within an example CP.

The x-axis shows the ranks of objects; objects are sorted from the most popular

(rank = 0) to the least popular; the y-axis shows the relative popularity of that item,

which is fraction of requests of the library that belong to that item. The length of

the x-axis is different because the CPs have different library sizes. These figures show

us that the simplistic assumption that all workloads are Zipfian does not adhere to

the ground truth, as obtained from the characterized dataset, and should be avoided

in our model.

31

100 101 102 103 104
Rank

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

PD
F

100 101 102 103 104
Rank

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018

PD
F

100 101 102 103 104 105 106
Rank

0.000

0.002

0.004

0.006

0.008

0.010

0.012

PD
F

100 101 102 103 104
Rank

0.000

0.005

0.010

0.015

0.020

0.025

PD
F

Figure 2.7: Popularity distribution of a few CPs, objects are sorted from most popular
(rank=0) to least popular. We can see that the common assumption of zipf-like
popularity distribution does not hold here.

Unfortunately, evaluating the performance of the cache under different workloads

is hard, considering that the computational cost to exactly analyze just a single

LRU cache grows exponentially with both the cache size and the number of con-

tents. To resolve this issue, several approximations have been proposed over the

years [35, 27, 45, 43, 84] which can accurately predict cache performance at an af-

fordable computational cost. In the next part of this section, we discuss the existing

models and evaluate the accuracy vs. overhead trade-off for each.

2.5.1 Approximation Models for Cache Miss Rate

There are various ways to model an LRU cache; To understand these models we need

to equip ourselves with an understanding of the Independent Reference Model (IRM),

which is the standard approach adopted in the literature to characterize the pattern

of object requests arriving at a cache [45, 33].

32

Independent Reference Model: The IRM, as first introduced by [33] is based on

the following fundamental assumptions: i) users request items from a fixed library of

N objects; ii) the probability q(n) that a request is for object n, 1 ≤ n ≤ N , is con-

stant (i.e., the object popularity does not vary over time) and independent of all past

requests. Under this model the references to stored objects are independent random

variables, generating an independent and identically distributed (i.i.d.) sequence of

requests.

Our goal is to choose a model that offers a sweet spot between accuracy and

computational overhead. Our cache sizes are in the order of Tera-bytes, hence a

computationally expensive model does not fit our purpose well. Still, we want the

model to provide adequate accuracy in results. Here, we briefly present a few of

caching models to see which one fits our needs the best. We invite the readers to see

the related work at each part for a more detailed explanation. We will indicate the

size of available cache (or disk) with C:

• LFU: The least frequently used cache eviction policy stores the C most popular

items of the library in the cache. LFU is known to provide optimal performance

under IRM. Under the conventions described above, the cache miss rate under

this model can be described with the following Equation:

m(C) = 1−
∑

0≤i≤C

q(i) (2.12)

This model needs to the popularity distributions of each object (q(n)) to esti-

mate the cache miss rate, given the cache size. While this LFU model is simple

and has low computational overhead, it is not accurate enough to describe the

LRU cache used in the CDN edge servers.

• Che’s approximation: Che’s approximation of modeling the LRU cache is a

very well known method [43, 45], as first proposed by [27].

33

The probability a request is for object n, for 1 ≤ n ≤ N , is proportional to some

popularity q(n), independently of all past requests. The hit rate h(n) for object

n, i.e., the probability this object is present in the cache, is approximated by:

h(n) ≈ 1− e−q(n)TC (2.13)

Where TC is called “the characteristic time”, and is the unique root of the

following equation:

∑
0≤n≤N

(1− e−q(n)t) = C (2.14)

The characteristic time or TC can be approximated as the time at which exactly

C unique objects have been requested. With this model the cache miss rate can

be modeled as:

m(C) =
∑

0≤n≤C

e−q(n)TC (2.15)

Che’s approximation has been shown to be a very accurate model of the cache

through extensive experiments [43].

• Stack Distance: LRU stack distance, as first defined by [69], is the number of

distinct data accesses between two consecutive accesses to the same location in

cache. Consider the following access pattern to a cache:

a, b, a, b, b, c, d, a, b, c

The number of unique objects between two consecutive requests to each item is

shown in the Table 2.2 below. Notice when an object is requested for the first

time it is fetched from the origin (i.e., cache miss), shown with a distance of∞.

34

Table 2.2: Stack distance of the items in the sequence pattern

Item Stack Distance

a ∞, 1, 3

b ∞, 1, 0, 3

c ∞
d ∞

From the reference trace of the program, we can accurately calculate the miss-

rate by constructing a histogram of stack distances (shown with s). At a partic-

ular cache size of C, the cache already holds the item that was accessed within

a stack distance of less than C (i.e., cache hits are the sum of requests with

s ≤ C). However, when an item is requested when more than C items were

accessed before it, then it is a cache miss (i.e., cache misses are the sum of

requests with s > C). Using these terms we can calculate the cache miss rate

as follows:

m(C) =
misses

all
=

∑
C+1≤i≤∞ s(i)∑
0≤i≤∞ s(i)

(2.16)

While using stack distance provides an accurate modeling of the cache, it is a

computationally expensive method as it needs analyzing request logs one-by-

one, and requires O(NlogM) time and O(M) space for a trace of N accesses to

M distinct elements [75].

• Iterative Approach: Dan and Towsley [35] derived an iterative algorithm

under FIFO (i.e., the object replaced is the one that has been in the cache

the longest) and LRU replacement policies. This iterative algorithm calculates

the hit rate of a cache of size C using the hit rates for a cache of size C − 1.

While accurate, the complexity and computational overhead of this approach is

O(CN) which is prohibitive in our case that N and C are very large.

35

Using Che’s Approximation: Among the mentioned cache approximation tech-

niques, we chose to model the cache with Che’s approximation for the following rea-

sons: (1) Despite providing an accurate solution, it is computationally less expensive

than an iterative solution or the stack distance solution that needs replaying the re-

quest logs one by one (Our dataset has billions of log lines, See Section 2.6). (2) Che’s

approximation is a versatile and highly accurate tool for predicting the cache miss

rate of a cache with LRU replacement, previous work [43] discuss in detail why the

approximation works so well in different environments. In addition, we have verified

the accuracy of Che’s approximation against the iterative approach under different

workloads in our environment. (3) Che’s approximation does not make assumptions

about the popularity distribution of libraries, allowing us to provide the q(.) law to

model different CPs. Using big-data frameworks such as Spark we can efficiently

batch process the request logs of each CP to calculate the popularity distribution.

To use Che’s approximation, we have analyzed the request logs of the top 1000

CPs in our dataset—these CPs make up more than 95% of the traffic in our dataset.

Although the iterative approach is expensive, we have done extensive numerical verifi-

cation of Che’s approximation for each of these CPs against the iterative approach to

ensure the Che’s approximation is accurate. Still, estimating cache miss rates using

Che’s approximation for varying amounts of disk size is computationally expensive

because it requires us to solve Equation 2.14 for each disk size to find the character-

istic time of the cache; to avoid recalculating the root of this equation and speeding

up the optimization, we pre-compute the cache miss rate across a wide range of disk

sizes for each CP and then fit a curve to the model to obtain an analytical expression

of mi,j with respect of di,j.

We also verified these curves of cache miss-rate vs. disk are convex curves via

calculating the second derivative of curves, in addition to numerically verifying them.

We can see the relationship between mi,j and di,j of the same CPs in Figure 2.8.

36

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cache Size 1e3

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s R
at

e

0 1 2 3 4 5
Cache Size 1e3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
is

s R
at

e

0 1 2 3 4 5 6 7
Cache Size 1e5

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s R
at

e

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Cache Size 1e3

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s R
at

e
Figure 2.8: Cache miss-rate vs. disk size for some example CPs. We can see the
convexity in curves.

2.6 Dataset

Our dataset contains two days worth of data, where we instrumented over 300 servers

located across the state of Pennsylvania over two separate periods of 24 hours. The

reason we chose the state of Pennsylvania for analysis is because Akamai has a rel-

atively high number of edge servers located in this state, and it is a geographically

broad enough state to have some differences in network latency or distances. We

analyzed more than 4.5 billion request logs. This dataset includes which clients con-

tacted which edge servers, to request the items belonging to a CP. Hence it allows

us to construct the input to the optimization framework as shown in Table 2.1, in

addition to calculating the per-CP popularity distribution analysis to use in Che’s

approximation.

Data preparation: Using our dataset, we first construct the path cost values be-

tween clients to edge servers and the edge servers to origin servers (i.e., the aj,k and

bi,j). These costs can either be the geographical distance, which we obtain via Aka-

37

mai’s internal geo-location package called Edgescape [39], or the network latency (as

in, the latency in retrieving the first-byte as observed by the clients, including both

the server and the network latency), which is measured by the edge servers. We group

the logs by CP to calculate the per-CP demand that is served from each edge server

(li,j). We construct the popularity distribution per CP (q(.)); Next, we fit the cache

miss rate vs. disk curves for each CP, according to the model explained in Section 2.5.

2.7 Results of Disk Optimization

Here we present the result of our optimization framework (Equations 2.4 to 2.11)

on one edge server. Notice that each server runs the disk partitioning optimization

locally, as opposed to the mapping and placement problems that are solved globally.

Since the problem is a convex optimization, we use an off-the-shelf convex optimizer,

the fmincon by Matlab [68], however note that the local minimum is guaranteed to

be the global minimum. We chose one edge server to evaluate our methods on it, and

we compare our solution against a shared LRU disk (i.e., non-managed LRU disk).

This edge server is located in the state of PA. We will focus on the top 50 CPs of

this server. We have analyzed the object sizes served from this server on this day,

and observed that both the median and mean object sizes are around 1 MB; thus for

simplicity we assume a uniform object size of 1 MB. However, note that Che’s model

can easily be extended to include different object sizes within a library [43]. For each

CP, we calculate the popularity distributions and cost vectors to the origin servers.

The disk size of this server is 1TB, thus it can fit 1 million average-sized objects in

the cache.

Table 2.3 shows the preliminary results of our disk partitioning algorithm as com-

pared to a non-managed disk where CPs share an LRU cache. The shared LRU cache

is modeled as a single library that contains the items of all 50 CPs (i.e., constructing

38

q(.) across all objects of all CPs). We can observe that for a slight increase (0.25%)

in the overall cache miss rate (i.e., cost), network latency enhanced by 17% (i.e., per-

formance) if the disk is partitioned according to different CPs’s demand, popularity

distribution, and latency to their origin. We can thus conclude that even with the

current mapping and placement algorithms in place, the CDNs can enhance the per-

formance by only managing the disk. Note that this post-mapping disk optimization

is decentralized (i.e., optimization is run on each edge server as opposed to the entire

platform), which makes the convex optimization simpler, and enables incremental

deployment on the platform.

Table 2.3: Results of post-mapping disk optimization

Method Cache Miss
Rate (cost)

Avg Distance on
Miss (perf)

Avg Latency on
Miss (perf)

Shared LRU cache 22.50% 314 km 37.13 ms

Partitioned cache 22.75% 260 km 31.63 ms

2.8 Discussion and Limitations

There are some limitations in our current framework. Here we breifly describe them:

Object Sizes: So far we have assumed the cache capacity is measured in objects (i.e.,

unit object size of 1 MB). In reality, objects have different sizes and cache capacity is

more reasonably measured in bytes. Fortunately, this simplification can be addressed

in two ways: First, by using a version of Che’s model that includes object sizes:

suppose object n has size θ(n). Since the cache is intended to store a very large

number of objects, we can assume that θ(n) << C. This enables us to reasonably

ignore boundary effects and adapt the Che approximation by replacing Equation 2.14

with:

39

∑
0≤n≤N

(1− e−q(n)t)θ(n) = C (2.17)

The second way to account for variable size objects is to assume they are divided

into constant-sized chunks. Let θ(n) be given in chunks and assume all chunks in-

herit the popularity q(n) of their parent object. Applying Che’s approximation to

chunks, it is easy to see that Equation 2.14 for the characteristic time is the same as

Equation 2.17.

Variable Load and Popularity: Our framework is an offline algorithm that takes

into account the popularity of items and the demand of each CP as an input. But

if these inputs change, the result of optimization is no longer the valid solution. To

deal with this issue, we propose an online algorithm as part of our future work; our

online solution tracks changes in demands and popularity distribution per-CP, and

recalculates the allocated disk amounts. Still, note that the popularity distribution

of the library, q(.), can stay the same while the underlying items change within the

ranks (e.g., assume a CP introduces a new episode of a popular series every weekend,

while the most popular item of the library will change, the values of q(1) compared

to q(2) can stay similar, resulting in similar disk quota optimization). In addition, we

can reserve a portion of disk on edge servers as a cushion to handle sudden changes

in traffic such as flash crowds.

Caching Hierarchy: Our model of a CDN in this work ignores the caching hierarchy;

but in reality CDNs have layers of edge servers and an edge server often consults their

peers and parents before reaching the CP’s origin servers. Fortunately, our method

can be extended to include the caching hierarchy. To do this, we first need to estimate

the popularity distribution of the forwarded traffic—the traffic that is forwarded to

peers. Since we know the per-object miss rates and popularity distribution of each

40

CP, we can estimate the popularity distribution and demand of the forward traffic

and repeat the disk optimization at every level of the hierarchy.

2.9 Related Work

There is a large body of related work, below we categorized them into relevant groups.

Cache Replacement Policy

There has been an extensive amount of work done on the cache replacement policy.

In particular, [103] describes the elements of web caching systems (including hierar-

chical architecture, pre-fetching, etc.), and [79] offers an extensive survey of cache

replacement policies. [108] identifies the appropriate policies for proxies with differ-

ent characteristics, [28] aims to find the cache replacement policy (e.g., LRU vs LFU)

best suited for video workloads, [71] proposes using a rank-based algorithm using the

important characteristics of the video.

Our work differs from related work in this category because we try to optimize

the resource allocation to reduce the impact of cache miss rates given the current

replacement policy (LRU in our model).

Replica Selection Algorithms

There is a wide range of related work in this area [107, 85, 29, 89, 7, 50, 22, 82], and

we direct the readers to consider surveys such as [102] for an overview of the work

done so far. In particular, [67] overviews the current mapping system at Akamai

including GLB and stable allocations, and [29] explains how the mapping benefits

from end-user mapping instead of name servers.

Our work differs from the related work in several aspects: First, we characterize

the actual workloads and allocate resources based on the real data. Second, we model

a joint optimization that explicitly models the impact of cache misses, based on the

results of our characterization. Third, we propose a mechanism to manage cache

41

miss rates by controlling disk sizes, instead of sharing a cache. Finally, we propose a

unified framework for CDNs to solve resource allocation problems at once.

Handling Per-object Cache Misses

Hyperbolic caching [13] is a closely related work, in terms of incorporating different

latencies to the origins in a different form than our partitioning the cache. The

hyperbolic caching method decays item priorities at variable rates and continuously

reorders many items at once.

Workload Characterization Our work differs from this category in two respects:

first, unlike previous work [17, 81], we showed a lot of workloads do not follow the

Zipfian distribution. Second, we use the characterized workloads’s popularity curves

in our optimization to allocate the resources effectively across the platform.

Cache Modeling

Che’s approximation [27] proposes a simple approach for estimating the hit rates of

an LRU cache. This approximation has been widely adopted, and [43] offers math-

ematical explanation for the success of Che’s approximation. We also discussed an

iterative approach to model the LRU cache [35]. LRU cache can also be modeled

using stack distance, as first defined by [69].

Most of the existing work in this category model a shared cache for objects of a sin-

gle library, as opposed to our solution that aims to partition the cache among several

libraries. Still, our optimization uses an existing model (the Che’s approximation) to

construct an analytical model for cache miss vs. disk for different workloads.

42

Chapter 3

Diagnosis of Internet Video

Anomalies

3.1 Introduction

In the previous chapter, we presented a framework to allocate resources efficiently

across the CDN platform to strike a balance between performance and cost. We used

a relatively simple model of performance based on the distance and network latency

between the client and edge server, or the edge server and the origin server. But,

end-to-end performance depends on a variety of other factors, including performance

problems at the edge server, congestion in the network, or problems at the client

machine. To uncover this wide range of problems at the end-to-end path, we present

Diva in this chapter. Our goal here is to diagnose the roots of poor performance,

focusing on one content provider. In this case, we focus on a video provider, since

video is now the dominant application of the Internet.

Internet users watch hundreds of millions of videos per day [114], and video

streams represent more than 70% of North America’s downstream traffic during peak

hours [86]. A video streaming session, however, may suffer from problems such as

43

long startup delay, re-buffering events, and low video quality that negatively impact

user experience and the content provider’s revenue [63, 37]. Content providers strive

to improve performance through a variety of optimizations, such as placing servers

closer to clients, content caching, effective peering and routing decisions, and splitting

the video session (i.e., the HTTP session carrying the video traffic) into fixed-length

chunks in multiple bitrates [3, 113, 55, 59, 98]. Multiple bitrates enable adaptive

bitrate algorithms (ABR) in the player to adjust video quality to available resources.

Despite these optimizations, performance problems can arise anywhere along the

end-to-end delivery path shown in Figure 3.1. The poor performance can stem from

a variety of root causes. For example, the backend service may increase the chunk

download latency on a cache miss. The CDN servers can introduce high latency when

accessing data from disk. The network can introduce congestion or random packet

losses. The client’s download stack may handle data inefficiently (e.g., slow copying

of data from OS to the player via the browser and Flash runtime) and the client’s

rendering path may drop frames due to high CPU load.

While ABR algorithms can adapt to performance problems (e.g., lower the bitrate

when throughput is low), understanding the location and root causes of performance

problems enables content providers to take the right corrective (or even proactive)

actions, such as directing client requests to different servers, adopting a different

cache-replacement algorithm, or further optimizing the player software. In some cases,

knowing the bottleneck can help the content provider decide not to act, because the

root cause is beyond the provider’s control—for example, it lies in the client’s browser,

operating system, or access link. The content provider could detect the existence

of performance problems by collecting Quality of Experience (QoE) metrics at the

player, but this does not go far enough to identify the underlying cause. In addition,

the buffer at the player can (temporarily) mask underlying performance problems,

leading to delays in detecting significant problems based solely on QoE metrics.

44

Backend
Service

CDN PoPsABR

Client

H
TTP G

ET

Playback
buffer

Demux
Decode
Render

Screen

Figure 3.1: End-to-End video delivery components.

Instead, we adopt a performance-driven approach for uncovering performance

problems. Collecting data at the client or the CDN alone is not enough. Client-side

measurements, while crucial for uncovering problems in the download stack (e.g.,

a slow browser) or rendering path (e.g., slow decoder), cannot isolate network and

provider-side bottlenecks. Moreover, a content provider cannot collect OS-level logs or

measure the network stack at the client; even adding small extensions to the browsers

or plugins would complicate deployment. Server-side logging can fill in the gaps [115],

with care to ensure that the measurements are sufficiently lightweight in production.

In this paper, we instrument the CDN servers and the video player of a Web-scale

commercial video streaming service, and join the measurement data to construct an

end-to-end view of session performance. We measure per-chunk milestones at the

player, which runs on top of Flash (e.g., the time to get the chunk’s first and last

bytes, and the number of dropped frames during rendering), and the CDN server (e.g.,

server and backend latency), as well as kernel-space TCP variables (e.g., congestion

window and round-trip time) from the server host. Direct measurement of the main

system components help us avoid relying on inference or tomography techniques that

would limit the accuracy; or requiring other source of “ground truth” to label the

data for machine learning [36]. We make the following contributions in this chapter:

45

Location Findings

CDN 1. Asynchronous disk reads increase server-side delay.
2. Cache misses increase CDN latency by order of magnitude.
3. Persistent cache-miss and slow reads for unpopular videos.
4. Higher server latency even on lightly loaded machines.

Network 1. Persistent delay due to physical distance or enterprise paths.
2. Higher latency variation for users in enterprise networks.
3. Packet losses early in a session have a bigger impact.
4. Bad performance caused more by throughput than latency.

Client 1. Buffering in client download stack can cause re-buffering.
2. First chunk of a session has higher download stack latency.
3. Less popular browsers drop more frames while rendering.
4. Avoiding frame drops needs min of 1.5 secsec download rate.
5. Videos at lower bitrates have more dropped frames.

Table 3.1: Summary of key findings.

1. An End-to-end instrumentation to diagnose performance problems within the

player, the network path, and the CDN, across multiple layers of the stack, per-chunk.

We show an example of how partial instrumentation (e.g., player-side alone) would

lead to incorrect conclusions about performance problems. Such conclusions could

cause the ABR algorithm to make wrong decisions.

2. A large-scale instrumentation of both sides of the video delivery path in a

commercial video streaming service over a two-week period, studying more than 523

million chunks and 65 million on-demand video sessions.

3. We characterize transient and persistent problems in the end-to-end path that

have not been studied before; in particular, the client’s download stack and rendering

path, and show their impact on QoE.

4. We offer a comprehensive characterization of performance problems for Internet

video, and our key findings are listed in Table 3.1. Based on these findings, we offer

insights for video content providers and Internet providers to improve video QoE.

46

3.2 Chunk Performance Monitoring

Model. We model a video session as an ordered sequence of HTTP(S)1 requests and

responses over a single TCP connection between the player and the CDN server—after

the player has been assigned to a server. The session starts with the player requesting

the manifest, which contains a list of chunks in available bitrates (upon errors and

user events such as seeks, manifest is requested again). The ABR algorithm — tuned

and tested in the wild to balance between low startup delay, low re-buffering rate,

high quality and smoothness — chooses a bitrate for each chunk to be requested from

the CDN server. The CDN service maintains a FIFO queue of arrived requests and

maintains a thread pool to serve the queue. The CDN uses a multi-level distributed

cache (between machines, and the main memory and disk on each machine) to cache

chunks with an LRU replacement policy. Upon a cache miss, the CDN server makes

a corresponding request to the backend service.

The client host includes two independent execution paths that share host re-

sources. The download path “moves” chunks from the NIC to the player, by writing

them to the playback buffer. The rendering path reads from the playback buffer, de-

muxes (audio from video), decodes and renders the pixels on the screen—this path

could use either the GPU or the CPU. Note that there is a stack below the player:

the player executes on top of a Javascript and Flash runtime, which in turn is run by

the browser on top of the OS.

3.2.1 Chunk Instrumentation

We collect chunk -level measurements because: (1) most decisions affecting perfor-

mance are taken per-chunk (e.g., caching at the CDN, and bitrate selection at the

player), although some metrics are chosen once per session (e.g., the CDN server),

1Both HTTP and HTTPS protocols are supported at Yahoo; for simplicity, we use HTTP instead
of HTTPS in the rest of the paper.

47

BackendOS CDN

Ti
m
e

DCDN
+DBE {} DBE

Wide-Area
Network

Backend
Connection

Cache Miss

Player

DFB

{DLB

{
Download

Stack

HTTP GET

{DDS

Figure 3.2: Time diagram of chunk delivery. Solid lines are instrumentation while
dashed lines are estimates.

(2) sub-chunk measurements would increase CPU load on client, at the expense of

rendering performance (Section 3.4.4), and (3) client-side handling of data within a

chunk can vary across streaming technologies, and is often neither visible nor control-

lable. For example, players implemented on top of Flash use a progress event that

delivers data to the player, and the buffer size or frequency of this event may vary

across browsers or versions.

We capture the following milestones per chunk at the player and the CDN service:

(1) When the chunk’s HTTP GET request is sent, (2) CDN latency in serving the

chunk, in addition to backend latency for cache misses, and (3) the time to download

the first and last bytes of the chunk. We denote the player-side first-byte delay DFB

and last-byte delay DLB. Figure 3.2 summarizes our notation. We divide a chunk’s

lifetime into the three phases: fetch, download, and playout.

Fetch Phase. The fetch process starts with the player sending an HTTP request to

the CDN for a chunk at a specified bitrate until the first byte arrives at the player.

The byte transmission and delivery traverse the host stack (player, Flash runtime,

browser, userspace to kernel space and the NIC)—contributing to the download stack

48

latency. If the content is cached at the CDN server, the first byte is sent after a delay

of DCDN (the cache lookup and load delay); otherwise, the backend request for that

chunk incurs an additional delay of DBE. Note that the backend and delivery are

always pipelined. The first-byte delay DFB includes network round-trip time (rtt0),

CDN service latency, backend latency (if any), and client download stack latency:

DFB = DCDN +DBE +DDS + rtt0 (3.1)

We measure DFB for each chunk at the player. At the CDN service, we measure

DCDN and its constituent parts: (1) Dwait: the time the HTTP request waits in the

queue until the request headers are read by the server, (2) Dopen: after the request

headers are read until the server first attempts to open the file, regardless of cache

status, and (3) Dread: time to read the chunk’s first byte and write it to the socket,

including the delay to read from local disk or backend. The backend latency (DBE)

is measured at the CDN service and includes network delay. Characterizing backend

service problems is out of scope for this work; we found that such problems are

relatively rare.

A key limitation of player-side instrumentation is that application layer metrics

capture the mix of download stack latency, network latency, and server-side latency.

To isolate network performance from end-host performance, we measure the end-to-

end network path at the CDN host kernel’s TCP stack. Since kernel-space latencies

are relatively very low, it is reasonable to consider this view as representative of

the network path performance. Specifically, the CDN service snapshots the Linux

kernel’s tcp info structure for the player TCP connection (along with context of

the chunk being served). The structure includes TCP state such as smoothed RTT,

RTT variability, retransmission counts, and sender congestion window. We sample

49

the path performance periodically every 500ms2; this allows us to observe changes in

path performance.

Download Phase. The download phase is the window between arrivals of the first

and the last bytes of the chunk at the player, i.e., the last-byte delay, DLB. It depends

on the chunk size, which depends on chunk bitrate and duration. To identify chunks

suffering from low throughput, on the client side we record the requested bitrate and

the last-byte delay. To understand the network path performance and its impact on

TCP, we snapshot TCP variables from the CDN host kernel at least once per-chunk

(as described above).

Playout Phase. As a chunk is downloaded, it is added to the playback buffer. If

the playback buffer does not contain enough data, the player pauses and waits for

sufficient data; in case of an already playing video, this causes a rebuffering event. We

instrument the player to measure the number (bufcount) and duration of rebuffering

events (bufdur) per-chunk played.

Each chunk must be decoded and rendered at the client. In the absence of hard-

ware rendering (i.e., GPU), chunk frames are decoded and rendered by the CPU,

which makes video quality sensitive to CPU utilization. A slow rendering process

drops frames to keep up with the encoded frame rate. To characterize rendering path

problems, we instrument the Flash player to collect the average rendered frame rate

per chunk (avgfr) and the number of dropped frames per chunk (dropfr). A low ren-

dering rate, however, is not always indicative of bad performance; for example, when

the player is in a hidden tab or a minimized window, video frames are dropped to

reduce CPU load [37]. To identify these scenarios, the player collects a variable (vis)

that records if the player is visible when the chunk is displayed. Table 3.2 summarizes

the metrics collected for each chunk at the player and CDN.

2The frequency is chosen to keep overhead low in production.

50

Location Statistics

Player (Delivery) sessionID, chunkID, DFB, DLB, bitrate

Player (Rendering) bufdur, bufcount, vis, avgfr, dropfr

CDN (App layer) sessionID, chunkID, DCDN (wait, open, and read), DBE,

cache status, chunk size

CDN (TCP layer) CWND, SRTT, SRTTVAR, retx, MSS

Table 3.2: Per-chunk instrumentation at player and CDN.

3.2.2 Per-session Instrumentation

In addition to per-chunk milestones, we collect session metadata; see Table 3.3. A

key to end-to-end analysis is to trace session performance from the player through

the CDN (at the granularity of chunks). We implement tracing by using a globally

unique session ID and per-session chunk IDs.

Location Statistics

Player sessionID, user IP, user agent, video length

CDN sessionID, user IP, user agent, CDN PoP, CDN server, AS, ISP, connection
type, location

Table 3.3: Per-session instrumentation at player and CDN.

Latency Description

DFB Time to fetch the first byte

DLB Time to download the chunk (first to last byte)

DCDN CDN latency (= Dwait + Dopen + Dread)

DBE Backend latency in cache miss

DDS Client’s download stack latency

rtt0 Network round-trip time during the first-byte exchange

Table 3.4: Latency notations and their description

51

3.3 Measurement Dataset

We study 65 million VoD sessions (523m chunks) with Yahoo, collected over a period

of 18 days in September 2015. These sessions were served by a random subset of 85

CDN servers across the US. Our dataset predominantly consists of clients in North

America (over 93%).

Figure 3.3a shows the cumulative distribution of the length of the videos. All

chunks in our dataset contain six seconds of video (except, perhaps, the last chunk).

We focus on desktop and laptop sessions with Flash-based players. The browser

distribution is as follows: 43% Chrome, 37% Firefox, 13% Internet Explorer, 6%

Safari, and about 2% other browsers; the two major OS distributions in the data are

Windows (88.5% of sessions) and OS X (9.38%). We do not consider cellular users in

this paper since the presence of ISP proxies affects the accuracy of our findings.

The video viewership and popularity of videos is heavily skewed towards popular

content; see Figure 3.3b. We find that top 10% of most popular videos receive about

66% of all playbacks.

Data preprocessing to filter proxies. A possible pitfall in our analysis is the

existence of enterprise or ISP HTTP proxies [111], since the CDN server’s TCP con-

nection would terminate at the proxy, leading to network measurements (e.g., RTT)

reflecting the server-proxy path instead of the client. We filter sessions using a proxy

when: (i) we see different client IP addresses or user agents [104] between HTTP

requests and client-side beacons3, or (ii) the client IP address appears in a very large

number of sessions (e.g., more more minutes of video per day than there are minutes

in a day). After filtering proxies, our dataset consists of 77% of sessions.

Ethical considerations: Our instrumentation methodology is based on logs/met-

rics about the traffic, without looking at packet payload or video content. For privacy

reasons, we do not track users (through logging) hence we cannot study access pat-

3A beacon is a message sent back from the client to the analytic servers, carrying information.

52

101 102 103 104

Video duration (sec)

10-3

10-2

10-1

100

C
C

D
F

(a) CCDF of video lengths (one month)

10-4 10-3 10-2 10-1 100

Normalized Rank

10-6
10-5
10-4
10-3
10-2
10-1

N
or

m
al

iz
ed

 F
re

qu
en

cy

(b) Rank vs. popularity (one day)

Figure 3.3: Length and popularity of videos in the dataset.

terns of individual users. Our analysis uses client IP addresses internally to identify

proxies and perform coarse-grained geo-location; after that, we use opaque session

IDs to study the dataset.

3.4 Characterizing Performance

In this section, we characterize the performance of each component of the end-to-end

path, and show the impact on QoE. Prior work has shown that important stream-

related factors affect the QoE: startup delay, rebuffering ratio, video quality (average

bitrate), and the rendering quality [37, 113]. They have developed models for esti-

mating QoE scores of videos by assigning weights to each of these stream metrics to

estimate a user behavior metric such as abandonment rate.

We favor looking at the impact on individual QoE factors instead of a single QoE

score to assess the significance of performance problems. This is primarily because of

the impact of content on user behavior (and hence, QoE). First, user behavior may

be different for long-duration content such as Netflix videos (e.g., users may be more

patient with a longer startup delay) than short-duration content (our case). Second,

the type of content being viewed impacts user behavior (and hence the weights of QoE

53

factors). For example, the startup delay for a news video (e.g., “breaking news”) may

be more important to users than the stream quality; while for sports videos, the

quality may be very important. Given the variety of Yahoo videos, we cannot use

a one-size-fits-all set of weights for a QoE model. Moreover, the results would not

generalize to all Internet videos. Instead, we show the impact of each problem directly

on the QoE factors.

3.4.1 Server-side Performance Problems

Yahoo uses the Apache Traffic Server (ATS), a popular caching proxy server [5], to

serve HTTP requests. The traffic engineering system maps clients to CDN nodes

using a function of geography, latency, load, cache likelihood, etc. In other words, the

system tries to route clients to a server that is likely to have a hot cache. The server

first checks the main memory cache, then tries the disk, and finally sends a request

to a backend server if needed.

Server latencies are relatively low, since the CDN and the backend are well-

provisioned. About 5% of sessions, however, experience a QoE problem due to the

server, and the problems can be persistent as we show below. Figure 3.4 shows the

impact of the server-side latency for the first chunk on the startup delay (time to

play) at the player.

1. Asynchronous disk read timer and cache misses cause high server la-

tency. Figure 3.5 shows the distribution of each component of CDN latency across

chunks; it also includes the distribution of total server latency for chunks broken by

cache hit and miss. Most of the chunks have a negligible waiting delay (Dwait < 1ms)

and open delay. However, the Dread distribution has two nearly identical parts, sep-

arated by about 10ms. The root cause is that ATS executes an asynchronous read

to read the requested files in the background. When the first attempt in opening the

54

0 100 200 300 400 500 600
Server latency (ms)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

St
ar

tu
p

tim
e

(s
ec

)

average
median

Figure 3.4: Impact of server latency on QoE (startup time), error bars show the
interquartile range (IQR).

cache is not immediately returned (due to content not being in memory), ATS retries

to open the file (either from the disk or from backend service) using a 10ms timer [99].

On a cache miss, the backend latency significantly affects the serving latency

according to Figure 3.5. The median server latency among chunks experiencing a

cache hit is 2ms, while the median server latency for cache misses is 40 times higher

at 80ms. The average and 95th percentile of server latency in case of cache misses

increases tenfold. In addition, cache misses are the main contributor when server

latency has a higher contribution to DFB than the network RTT: for 95% of chunks,

network latency is higher than server latency; however, among the remaining 5%, the

cache miss ratio is 40%, compared to an average cache miss rate of 2% across session

chunks.

Take-away: Cache misses impact serving latency, and hence QoE (e.g., startup

time) significantly. An interesting direction to explore is to alter the LRU cache

eviction policy to offer better cache hit rates. For example, policies for popular-heavy

workloads, such as GD-size or perfect-LFU [17].

2. Less popular videos have persistent high cache miss rate and high

latency. We observed that a small fraction of sessions experience performance prob-

55

10-1 100 101 102 103

Server-side latency breakdown (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

wait

open

read

total¡hit
total¡miss

Figure 3.5: CDN latency breakdown across all chunks.

lems that are persistent. Once a session has a cache miss on one chunk, the chance of

further cache misses increases significantly; the mean cache miss ratio among sessions

with at least one cache miss is 60% (median of 67%). Also, once a session has at least

one chunk with a high latency (> 10ms), the chance of future read delays increases;

the mean ratio of high-latency chunks in sessions with at least one such chunk is 60%

(median of 60%).

One possible cause for persistent latency, even when the cache hit ratio is high, is

a highly loaded server that causes high serving latency; however, our analysis shows

that server latency is not correlated with load4. This is because the CDN servers are

well provisioned to handle the load.

Instead, the unpopularity of the content is a major cause of the persistent server-

side problems. For less popular videos, the chunks often need to come from disk, or

worse yet, the backend server. Figure 3.6(a) shows the cache miss percentage versus

video rank (most popular video is ranked first) using data from one day. The cache

miss ratio drastically increases for unpopular videos. Even on a cache hit, unpopular

videos experience higher server delay, as shown in Figure 3.6(b). The figure shows

mean server latency after removing cache misses (i.e., no backend communication).

4We estimated load as of number of parallel HTTP requests, sessions, or bytes served per second.

56

0 2k 4k 6k
Rank¸x

0

5

10

15

20

25

M
is

s p
er

ce
nt

ag
e

(%
)

0 2k 4k 6k
Rank¸x

5

10

15

20

25

30

M
ed

ia
n

se
rv

er
 d

el
ay

 (m
s)

Figure 3.6: Performance vs popularity: (a) miss rate vs rank, (b) CDN latency
(excluding cache misses) vs rank.

The unpopular content generally experiences a higher latency due to higher read

(seek) latency from disk.

Take-away. The persistence of cache misses could be addressed by pre-fetching the

subsequent chunks of a video session after the first miss. Pre-fetching of subsequent

chunks would particularly help with unpopular videos since backend latency makes

up a significant part of their overall latency and could be avoided.

When an object cannot be served from local cache, the request will be sent to the

backend server. For a popular object, many concurrent requests may overwhelm the

backend service; thus, the ATS retry timer is used to reduce the load on the backend

servers; the timer introduces extra delay for cases where the content is available on

local disk.

3. Load vs. performance due to cache-focused client mapping. We have

observed that more heavily loaded servers offer lower CDN latency (note that CDN

latency does not include the network latency, but only the time a server takes to start

serving the file). This result was initially surprising since we expect busier servers to

have worse performance; however, this can be explained by the cache-focused mapping

CDN feature: As a result of cache-based assignment of clients to CDN servers, servers

57

with less popular content have more chunks with either higher read latency as the

content is not fresh in memory (and the ATS retry-timer), or worse yet, need to be

requested from backend due to cache-misses.

While unpopular content leads to lower performance, because of lower demand it

also produces fewer requests, hence servers that serve less popular content seem to

have worse performance at a lower load than the servers with a higher load.

Take-away. An interesting direction to achieve better utilization of servers and load

balancing is to actively partition popular content among servers (on top of cache-

focused routing). For example, given that the top 10% of videos make up 66% of

requests, distributing only the top 10% of popular videos across servers can balance

the load.

3.4.2 Network Performance Problems

Network problems can manifest themselves in the form of increased packet loss, re-

ordering, high latency, high variation in latency, and low throughput. Each can be

persistent (e.g., far away clients from a server have persistent high latency) or tran-

sient (e.g., spike in latency caused by congestion). In this section, we characterize

these problems.

Distinguishing between a transient and a persistent problem matters because al-

though a good ABR may adapt to temporary problems (e.g., by lowering bitrate), it

cannot avoid bad quality caused by persistent problems (e.g., when a peering point is

heavily congested, even the lowest bitrate may see re-buffering). Instead, persistent

problems require corrective actions taken by the video provider (e.g., placement of

new CDN PoPs) or ISPs (e.g., additional peering).

We characterize the impact of loss and latency on QoE. To characterize long-term

problems, we aggregate sessions into /24 IP prefixes since most allocated blocks and

BGP prefixes are /24 prefixes [80, 42]. Figure 3.7 shows the effect of network latency

58

during the first chunk on video QoE, specifically, startup delay, across sessions. High

latency in a session could be caused by a persistently high baseline (i.e., high srttmin)5,

or variation in latency as a result of transient problems (i.e., high variation, σsrtt).

Figure 3.8 shows the distribution of both of these metrics across sessions. We see

that both of these problems exist among sessions; we characterize each of these next.

Figure 3.7: Average and median startup delay vs. network latency, error bars show
the interquartile range (IQR).

100 101 102 103

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

¾srtt
srttmin

Figure 3.8: CDF of baseline (srttmin) and variation in latency (σsrtt) among sessions.

5Note that TCP’s estimate of RTT, SRTT, is an EWMA average; hence srttmin is higher than the
minimum RTT seen by TCP. The bias of this estimator, however, is not expected to be significant
for our study since it is averaged.

59

1. Persistent high latency caused by distance or enterprise path problems.

In Figure 3.8, we see that some sessions have a high minimum RTT. To analyze the

minimum latency, it is important to note that the SRTT samples are taken after 500ms

from the beginning of the chunk’s transmission; hence, if a chunk has self-loading [57],

the SRTT sample may reflect the additional queuing delay and not just the baseline

latency. To filter out chunks whose SRTT has grown while downloading, we use an

estimate of the initial network round-trip time (rtt0) per-chunk. Equation 3.1 shows

that DFB− (DCDN +DBE) can be used as an upper-bound estimate of rtt0. We take

the minimum of SRTT and rtt0 per-chunk as the baseline sample. Next, to find the

minimum RTT in a session or prefix, we take the minimum among all these per-chunk

baseline samples in the session or prefix.

In order to find the underlying cause of persistently high latency, we aggregate

sessions into /24 client prefixes. The aggregation overcomes client last-mile problems,

which may increase the latency for one session, but are not persistent problems. A

prefix has more RTT samples than a session; hence, congestion is less likely to inflate

all samples.

We focus our analysis on prefixes in the 90th percentile latency, where srttmin >

100ms; which is a high latency for cable/broadband connections (note that our CDN

and client footprint is largely within North America). To ensure that a temporary

congestion or routing change has not affected samples of a prefix, and to understand

the persistent problems in poor prefixes, we repeat this analysis every day in our

dataset and calculate the recurrence frequency, #days prefix in tail
#days

. We take the top

10% of prefixes with highest re-occurrence frequency as prefixes with a persistent

latency problem. This set includes 57k prefixes.

In these 57k prefixes, 75% are located outside the US and are spread across 96

different countries. These non-US clients are often limited by geographical distance

and propagation delay. However, among the 25% of prefixes located in the US, the

60

majority are close to CDN nodes. Since IP geolocation packages may not be accurate

outside US, in particular favoring the US with 45% of entries [80], we focus our

geo-specific analysis to US clients. Figure 3.9 shows the relationship between the

srttmin and geographical distance of these prefixes in the US. If a prefix is spread

over several cities, we use the average of their distances to the CDN server. Among

high-latency prefixes inside the US within a 4km distance, only about 10% are served

by residential ISPs, while the remaining 90% of prefixes originate from corporations

and private enterprises.

0 1000 2000 3000 4000
Mean distance of prefix from CDN servers (km)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 3.9: Mean distance (km) of US prefixes in the tail latency from CDN servers.

Take-away: Finding clients that suffer from persistent high latency due to geograph-

ical distance helps video content providers in better placement of new CDN servers

and traffic engineering. It is equally important to look at close-by clients suffering

from high latency to (1) avoid over-provisioning servers in those geographics and

wasting resources, and, (2) identify the IP prefixes with known persistent problems

and adjust the ABR algorithm accordingly, for example, to start the streaming with

a more conservative initial bitrate.

2. Residential networks have lower latency variation than enterprises. To

measure RTT variation, we calculate the coefficient of variation (CV) of SRTT in

61

each session, which is defined as the standard deviation over the mean of SRTT.

Sessions with low variability have CV < 1 and sessions with high SRTT variability

have CV > 1. For each ISP and organization, we measure the ratio of sessions with

CV > 1 to all sessions. We limit the result to ISPs/organizations that have least 50

video streaming sessions to provide enough evidence of persistence. Table 3.5 shows

the top ISPs/organizations with highest ratio. Enterprises networks make up most

of the list. To compare this with residential ISPs, we analyzed five major residential

ISPs and found that about 1% of sessions have CV > 1.

In addition to per-session variation in latency, we characterize the variation of

latency in prefixes as shown in Figure 3.10. We use the average srtt of each session

as the sample latency. To find the coefficient of variance among all source-destination

paths, we group sessions based on their prefix and the CDN PoP. We see that 40%

of (prefix, PoP) pairs belong to paths with high latency variation (CV > 1).

0 2 4 6 8 10
CV(srtt) among sessions of each (prefix, CDN PoP)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 3.10: CDF of path latency variation: CV of latency per path, a path is defined
by a (prefix, PoP) pair.

Take-away: Recognizing which clients are more likely to suffer from latency varia-

tion is valuable for content providers because it helps them make informed decisions

about QoE. In particular, the player bitrate adaptation and CDN traffic engineering

algorithms can use this information to optimize streaming quality under high latency

62

isp/organization #sessions with CV > 1 #all sessions Percentage

Enterprise#1 30 69 43.4%

Enterprise#2 4,836 11,731 41.2%

Enterprise#3 1,634 4,084 40.0%

Enterprise#4 83 208 39.9%

Enterprise#5 81 203 39.9%

Table 3.5: ISP/Organizations with highest percentage of sessions with CV (SRTT) >
1.

variation. For example, the player can make more conservative bitrate choices, lower

the inter-chunk wait time (i.e., request chunks sooner), and increase the buffer size

to deal with variability.

3. Earlier packet losses have higher impact on QoE. We use the retransmission

count to study the effect of packet losses. A majority of the sessions (> 90%) have

a retransmission rate of less than 10%, with 40% of sessions experiencing no loss.

While 10% can severely impact TCP throughput, not every retransmission is caused

by an actual loss (e.g., due to early retransmit optimizations, underestimating RTO,

etc.). Figure 3.11 shows the differences between sessions with and without loss in

three aspects: (a) number of chunks (are these sessions shorter?), (b) bitrate (similar

quality?), and (c) re-buffering. We see that the session length and bitrate distribu-

tions are almost similar between the two groups; however, re-buffering difference is

significant and sessions without loss have better QoE.

While higher loss rates generally indicate higher re-buffering (Figure 3.12), the

loss rate of a TCP connection does not necessarily correlate with the video QoE; the

timing of the loss matters too. Figure 3.13 shows two example sessions (case-1 and

case-2) where both sessions have 10 chunks with similar bitrates, cache status, and

SRTT distributions. Case-1 has a retransmission rate of 0.75% compared to 22% in

case-2; but it experienced dropped frames and re-buffering despite the lower loss rate.

63

0 5 10 15 20
#chunks

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

no loss
loss

(a) CDF of session length with and without
loss

102 103 104

Avg bitrate (kbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

no loss
loss

(b) CDF of Average bitrate with and without
loss

10-1 100 101 102

rebuffering rate (%)

0.00

0.01

0.02

0.03

0.04

0.05

C
C

D
F

no loss
loss

(c) CCDF (1-CDF) of Re-buffering rate with and without loss

Figure 3.11: Differences in session length, quality, and re-buffering with and without
loss.

As Figure 3.13 shows, the majority of losses in case-1 happen in the first chunk, while

case-2 has no loss during the first four chunks, building up its buffer to 29.8 seconds

before a loss happens and successfully avoids re-buffering.

Because the buffer can hide the effect of subsequent loss, we believe that it is

important to not only measure loss rate in video sessions, but also the chunk ID that

experiences loss. Loss during earlier chunks has more impact on QoE because the

playback buffer would hold less data for earlier chunks. We expect losses during the

first chunk to have the highest effect on re-buffering. Figure 3.15 shows two examples:

(1) P (rebuf at chunk = X), which is the percentage of chunks with that chunk ID

seeing a re-buffering event; and (2) P (rebuf at chunk = X|loss at chunk = X), which

is the same probability conditioned on occurrence of a loss during the chunk. While

64

0 2 4 6 8 10
retransmission rate %

0.0

0.5

1.0

1.5

2.0

2.5

3.0

re
bu

ff
er

in
g

ra
te

 %
Figure 3.12: Rebuffering vs. retransmission rate in sessions.

0 1 2 3 4 5 6 7 8 9
Chunk ID

0
5

10
15
20
25
30
35
40
45

L
os

s r
at

e
%

 in
 c

hu
nk case #1, rebuffering

case #2, no rebuffering

Figure 3.13: Example case for loss vs.
QoE.

0 5 10 15 20
chunk ID

0

2

4

6

8

10

A
vg

 r
et

ra
ns

m
is

si
on

 r
at

e
(%

)

Figure 3.14: Average per-chunk re-
transmission rate.

0 5 10 15 20
chunk ID

0

1

2

3

4

5

%
 o

f c
hu

nk
s w

ith
 r

eb
uf

fe
ri

ng

P(rebuffering at chunk=X)
P(rebuffering at chunk=X| loss at chunk=X)

Figure 3.15: Re-bufffering frequency with or without loss, per chunkID.

occurrence of a loss in any chunk increases the likelihood of a re-buffering event, the

increase is more significant for the first chunk.

We observe that losses are more likely to happen on the first chunk: Figure 3.14

shows the average per-chunk retransmission rate. The bursty nature of TCP losses

65

towards the end of slow start [1] could be the cause of higher loss rates during the first

chunk, which TCP avoids in subsequent chunks when transitioning into congestion

avoidance state.

Take-aways: Due to the existence of a buffer in video streaming clients, the session

loss rate does not necessarily correlate with QoE. The temporal location of loss in the

session matters as well: earlier losses impact QoE more, with the first chunk having

the biggest impact.

Due to the bursty nature of packet losses in TCP slow start caused by the expo-

nential growth, the first chunk may have the highest per-chunk retransmission rate.

Prior work showed a possible solution to work around a related issue using server-side

pacing [49].

4. Throughput is a bigger problem than latency. To separate chunks based

on performance, we use the following intuition: the playback buffer decreases when it

takes longer to download a chunk than there are seconds of video in the chunk. With

τ as the chunk duration, we tag chunks with bad performance when the following

score is less than one:

perfscore =
τ

DFB +DLB

(3.2)

We use DLB as a “measure” of throughput. Both latency (DFB) and through-

out (DLB) play a role in this score. We define the latency share in performance by

DFB

DFB+DLB
and the throughput share by DLB

DFB+DLB
. We show that while the chunks with

bad performance generally have higher latency and lower throughput than chunks

with good performance, throughput is a more “dominant” metric in terms of impact

on the performance of the chunk. Figure 3.16a shows that chunks with good per-

formance generally have higher share of latency and lower share of throughput than

chunks with bad performance. Figure 3.16b shows the difference in absolute values

of DFB, and Figure 3.16c shows the difference in absolute values of DLB.

66

While chunks with bad performance generally have higher first and last byte

delays, the difference in DFB is negligible compared to that of DLB. We can see

that most chunks with bad performance are limited by throughout and have a higher

throughput share.

Take-away: Our findings could be good news for ISPs because throughput can be

an easier problem to fix (e.g., establish more peering points) than latency [64].

0.0 0.2 0.4 0.6 0.8 1.0
Latency share

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

perfscore>1

perfscore<1

(a) Latency share (DFB
DFB+DLB

)

101 102 103 104

First-byte latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

perfscore>1

perfscore<1

(b) DFB

101 102 103 104 105

Last-byte latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

perfscore>1

perfscore<1

(c) DLB

Figure 3.16: Latency vs throughput: (a) Latency share (DFB

DFB+DLB
), (b) DFB, and (c)

DLB vs. performance score.

3.4.3 Client’s Download Stack

1. Some chunks have significant download stack latency. Video packets

traversing the client’s download stack (OS, browser, and the Flash plugin) may be

delayed due to buffered delivery. In the extreme case, all the chunk bytes could be

buffered and delivered late and all at once to the player6, resulting in a significant

increase in DFB. Since the buffered data is delivered at once or in short time windows,

the instantaneous throughput (TPinst = chunk size
DLB

) will be much higher at the player

than the arrival rate of the chunk bytes from the network. We use TCP variables to

6Note that the delay is not caused by a full playback buffer, since the player will not request a
new chunk when the buffer is full.

67

estimate the download throughout per-chunk:

throughput = MSS × CWND

SRTT
(3.3)

To detect chunks with this issue, we detect outliers using standard deviation:

when a chunk is buffered in the download stack, its DFB is much higher than that of

the other chunks — more than 2 · σ greater than the mean — despite other similar

latency metrics (i.e., network and server-side latency are within one σ of the mean).

Also, its TPinst is much higher — more than 2 ·σ greater than the mean — due to the

buffered data being delivered in a shorter time, while the estimated throughput from

server side (using CWND and SRTT) does not explain the increase in throughput.

Equations 3.4 summarize the detection conditions:

DFBi
> µDFB

+ 2 · σDFB

TPinsti > µTPinst
+ 2 · σTPinst

SRTT,Dserver, CWND < µ+ σ

(3.4)

Figure 3.17 shows an example session that experiences the download stack problem

(DS) taken from our dataset; our algorithm detected chunk 7 with much higher DFB

and TPinst than the mean. Figure 3.17a shows DFB of chunks and its constituents

parts. We see that the increase in chunk 7’s DFB is not caused by a latency increase

in backend, CDN, or network RTT. Figure 3.17b shows that this chunk also has an

abnormally high throughput that seems impossible based on the estimated network

throughput (Equation 3.3) at the server-side. The presence of both observations in

the same chunk suggests that the chunk was buffered inside the client’s stack and

delivered late to the player. The buffered data was delivered almost instantaneously,

since it mainly involves a kernel to userspace copy.

68

0 7 14 21
Chunk ID

0
500

1000
1500
2000
2500
3000
3500
4000

L
at

en
cy

 (m
s)

srtt
server
first-byte delay

(a) First-byte delay and its constituents in the session

0 7 14 21
Chunk ID

0

20

40

60

80

100

T
P

(M
bp

s)

connection TP
download TP

(b) Network throughput vs instantaneous download throughput

Figure 3.17: A case study showing the effects of client download stack (chunk#7).

We have detected 1.7m chunks (0.32% of all chunks) using this method, demon-

strating how often the client’s download stack can buffer the data and hurt perfor-

mance. About 1.6m video sessions have at least one such chunk (3.1% of sessions).

Take-aways: The download stack problem is an example where looking at one-side

of measurements (CDN or client) alone would lead to wrong conclusions, and where

both sides may blame the network. It is only with end-to-end instrumentation that

this problem can be localized correctly. Failure in correctly recognizing such an effect

on latency may lead to the following problems:

69

Over-shooting : Some ABR algorithms use player-level throughput (i.e., the instanta-

nous throughput) in the bitrate selection process (e.g., a moving average of previous

N chunks’ throughput). Buffered delivery can lead to overestimation of end-to-end

TCP throughput.

Under-shooting : If the ABR algorithms are either latency-sensitive, or use the average

throughput (as opposed to the instantaneous throughput), the affected chunks may

cause underestimation of the connection’s throughput.

Incorrect actions: When the TCP throughput is low, content providers may initiate

a corrective action, such as re-routing the client. If the download stack latency is not

diagnosed, clients may be falsely re-routed.

While designing ABR algorithms that rely on throughput or latency measure-

ments, using server-side data (CWND and SRTT) enables the player to estimate the

state of the network more accurately than client-side measurements alone. This could

be done by the CDN in an HTTP header with the next chunk. When it is not possible

to incorporate server-side measurements, the current ABR algorithms that rely on

client-side measurements should detect and exclude outliers in their throughput/la-

tency input.

2. Persistent download-stack problems. The underlying assumption in the

above method is that the majority of chunks will not be buffered by download stack,

hence we can detect the outlier chunks. However, when a persistent problem in

client’s download stack affects all or most chunks, this method cannot detect the

problem. If we could directly observe the network RTT, rtt0, we can estimate DDS

using Equation 3.1 per-chunk. The current vanilla Linux kernel does not expose

individual RTT samples via the tcp info structure, and kernel changes or collecting

packet traces may be infeasible in production settings.

70

To work around this limitation, we use a conservative estimate of rtt0 as the

TCP retransmission timer (RTO)7. RTO is how long the sender waits for a packet’s

acknowledgment before deciding it is lost; hence, RTO can be considered as a conser-

vative estimate of rtt0. We use RTO to estimate a lower bound of the client download

stack latency per-chunk:

DDS ≥ DFB −DCDN −DBE −RTO (3.5)

Using this method, we see that 17.6% of all chunks experience a positive download

stack latency. In 84% of these chunks, download stack latency share in DFB is higher

than network and server latencies, making it the bottleneck in DFB. Table 3.6 shows

the top OS/browser combinations with highest persistent download stack latency. We

see that among major browsers, Safari on non-OS X environments has the highest

average download stack latency. In the “other” category, we find that less-popular

browsers on Windows, in particular, Yandex and SeaMonkey, have high download

stack latencies.

Browser
/ OS

Safari on
Linux

Safari on
Windows

Firefox on
Windows

Other on
Windows

Firefox on
Mac

mean
DS(ms)

1041 1028 283 281 275

Table 3.6: OS/browser with highest DDS.

Take-aways and QoE impact: Download stack problems are worse for sessions

with re-buffering: among sessions with no re-buffering, the average DDS is less than

100ms. In sessions with up to 10% re-buffering ratios, the average DDS grows up to

250ms, and in sessions with more than 10% re-buffering ratios, the average DDS is

more than 500ms. Although the download stack latency is not a frequent problem,

it is important to note that when it is an issue, it is often the major bottleneck

7RTO = 200ms + SRTT + 4× SRTTV AR, according to RFC 2988 [77].

71

in latency. Any adaptation mechanisms at the client should detect the outliers to

improve QoE.

It is important to know that some client setups (e.g., Yandex or Safari on Win-

dows) are more likely to have persistent download stack problems. Recognizing the

lasting effect of client’s machine on QoE helps content providers avoid actions caused

by wrong diagnosis (e.g., re-routing clients due to seemingly high network latency

when problem is in download stack).

3. First chunks have higher download stack latency. We find that the distri-

bution of DFB in first chunks is higher than other chunks: the median DFB among

first chunks is 300ms higher than other chunks. Using packet traces and developer

tools on browsers, we confirmed that this effect is not visible in OS or browser times-

tamps. We believe that the difference is due to higher download stack latency of first

chunk. To test our hypothesis, we select a set of performance-equivalent chunks with

the following conditions: (1) no packet loss, (2) CWND > ICWND, (3) no queuing

delay and similar SRTT (we use 60ms < SRTT < 65ms for presentation), and (4)

DCDN < 5ms, and cache-hit chunks.

Figure 3.18 shows the distribution of DFB among the equivalent set for first ver-

sus other chunks. We see that despite similar performance conditions, first chunks

experience higher DFB. The root cause appears to be the processing time spent in

initialization of Flash events and data path setup (using the progressEvent in Flash)

at the player, which can increase DFB of first chunk.8

Take-away: First chunks experience a higher latency than other chunks. Video

providers could eliminate other sources of performance problems at startup and reduce

the startup delay by methods such as caching the first chunk of video titles [87], or

by assigning higher cache priorities for first chunks.

8We can only see Flash as a blackbox, hence, we cannot confirm this. However, a similar issue
about ProgressEvent has been reported [41].

72

101 102 103 104

D_FB (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

first
other

Figure 3.18: DFB (ms) of first vs. other chunks in equivalent performance conditions.

3.4.4 Client’s Rendering Stack

1. Avoiding dropped frames requires at least 1.5 sec
sec

download rate. In a

typical video session, video chunks include multiplexed and encoded audio and video.

They need to be de-multiplexed, decoded, and rendered on the client’s machine,

which takes processing time. Figure 3.19 shows the fraction of dropped frames versus

average download rate of chunks. We define the average download rate of a chunk as

video length (in seconds) over total download time (τ
DFB+DLB

). A download rate of

1 sec
sec

is barely enough: after receiving the frames, more processing is needed to decode

frames for rendering. Increasing the download rate to 1.5 sec
sec

enhances the framerate;

however, increasing the rate beyond this does not improve the framerate.

To see if this observation can explain the rendering quality, we look at the framer-

ate as a function of chunk download rate: 85.5% of chunks have low framerate (> 30%

drop) when the download rate is below 1.5 sec
sec

and good framerate when download rate

is at least 1.5 sec
sec

. About 5.7% of chunks have low rates but good rendering, which can

be explained by the buffered video frames that hide the effect of low rates. Finally,

6.9% of chunks have low framerate despite a minimum download rate of 1.5 sec
sec

, not

confirming the hypothesis. However, this could be explained as follows: First, the av-

73

erage download rate does not reflect instantaneous throughput. In particular, earlier

chunks are more sensitive to changes in throughput, since fewer frames are buffered

at the player. Second, when the CPU on the client machine is overloaded, software

rendering can be inefficient irrespective of the chunk arrival rate.

Figure 3.20 shows a simple controlled experiment, where a player is running in

the Firefox browser on OS X with eight CPU cores, connected to the server using

a 1Gpbs Ethernet link. The first bar represents the per-chunk dropped rate while

using GPU decoding and rendering. Next, we turned off hardware rendering; we see

increase in frame drop rate with background processes using CPU cores.

0 1 2 3 4 5
Download rate of chunk, secsec

0
5

10
15
20
25
30
35
40

%
 D

ro
pp

ed
 F

ra
m

es

average
median

Figure 3.19: %Dropped frames vs. chunk download rate, first bar represents hardware
rendering.

2. Higher bitrates have better rendered framerate. Higher bitrates contain

more data per frame, thus imposing a higher load on the CPU for decoding and

rendering in time. We expect chunks with higher bitrates to have more dropped

frames as a result. We did not observe this in our data. However, we observed the

following trends in the data: (1) higher bitrates are often requested in connections

with lower RTT variation: SRTTVAR across sessions with bitrates higher than 1Mbps

is 5ms lower than the rest. Less variation may result in fewer frames delivered late.

(2) higher bitrates are often requested in connections with lower retransmission rate:

74

<10% 100% 200% 300% 400% 500% 600% 700% 800%
0

2

4

6

8

10

CPU utilization (8 cores)

D
ro

pp
ed

 fr
am

es
 (%

)

Figure 3.20: Dropped frames per CPU load in a controlled experiment.

the retransmission rate among sessions with bitrates higher than 1Mbps is 1% lower

than the rest. Lower packet loss rate results in less frames dropped or arrived late.

3. Less popular browsers have low rendering quality. If we limit our analysis

to chunks with good performance (rate > 1.5 sec
sec

) where the player is visible (i.e.,

vis = true), the rendering quality can still be bad due to inefficiencies in client’s

rendering path. Since we cannot measure the client host environment in production,

we only characterize the clients based on their OS and browser.

Figure 3.21 shows the fraction of chunks requested from browsers on OS X and

Windows platforms (each platform is normalized to 100%), as well as the average frac-

tion of dropped frames among chunks served by that browser. Browsers with internal

Flash (e.g., Chrome) and native HLS support (Safari on OS X) outperform other

browsers (some of which may run Flash as a process, e.g., Firefox’s protected mode).

Also, the unpopular browsers (grouped as Other) have the lowest performance. We

further break them down as shown in Figure 3.22. We restrict to browsers that have

processed at least 500 chunks. Yandex, Vivaldi, Opera or Safari on Windows have

low rendered framerate compared to other browsers.

75

Chrome IE Firefox Edge Other Safari Chrome Firefox Other

Windows Mac
0

10

20

30

40

50

60

Pe
rc

en
ta

ge

% chunks in platform
% dropped frames

Figure 3.21: Browser popularity and rendering quality in the two major platforms:
Windows vs Mac.

0 5 10 15 20 25 30 35 40
Average dropped % among chunks

Yandex, Windows

Vivaldi, Windows

Opera, Windows

Safari, Windows

Average in the rest

Figure 3.22: Dropped % of (browser, OS), rate ≥ 1.5 sec
sec

, vis = True.

Take-aways: De-multiplexing, decoding and rendering video chunks could be

resource-heavy on the client machine. In absence of hardware (GPU) rendering, the

burden falls on CPU to process frames efficiently; however, the resource demands

from other applications on the host can affect the rendering quality. We found that

video rendering requires processing time, and that a video arrival rate of 1.5 sec
sec

could

be used as a rule-of-thumb for achieving good rendering quality. Similar to download

stack problems, rendering quality differs based on OS and browser. In particular, we

found unpopular browsers to have lower rendering quality.

76

3.5 Discussion

Monitoring and diagnosis is a challenging problem for large-scale content providers

due to insufficient instrumentation or measurement overhead limitations. In partic-

ular, (1) sub-chunk events such as bursty losses will not be captured in per-chunk

measurements; capturing them will impact player’s performance, (2) SRTT does not

reflect the value of round-trip time at the time of measurement, rather is a smoothed

average; vanilla Linux kernels only export SRTTs to userspace today. To work with

this limitation, we use methods discussed in Section 3.4.2, (3) the characterization of

the rendering path could improve by capturing the underlying resource utilization and

environment (e.g., CPU load, existence of GPU), and (4) in-network measurements

help further localization. For example, further characterization of network problems

(e.g., is bandwidth limited at the core or the edge?) would have been possible us-

ing active probes (e.g., traceroute or ping) or in-network measurements from ISPs

(e.g., link utilization). Some of these measurements may not be feasible to collect

at Web-scale, because collecting fine-grained TCP metrics can quickly become costly

and impose scalability issues. We will tackle these challenges in the next chapter.

3.6 Related Work

Video streaming characterization: There is a rich area of related work in char-

acterizing video-streaming quality. [78] uses ISP packet traces to characterize video

while [112] uses CDN-side data to study content and Live vs VoD access patterns.

Client-side data and a clustering approach is used in [58] to find critical problems

related to user’s ISP, CDN, or content provider. Popularity in user-generated content

video system has been characterized in [24]. Our work differs from previous work by

collecting and joining fine-grained per-chunk measurements from both sides and di-

77

rect instrumentation of the video delivery path, including the client’s download stack

and rendering path.

QoE models: Studies such as [37] have shown correlations between video quality

metrics and user engagement. [63] shows the impact of video quality on user behavior

using quasi experiments. Network data from commercial IPTV is used in [93] to

learn performance indicators for users QoE, where [2] uses in-network measurements

to estimate QoE for mobile users. We have used the prior work done on QoE models

to extract QoE metrics that matter more to clients (e.g., the re-buffering and startup

delay) to study the impact of performance problems on them.

ABR algorithms: The bitrate adaptation algorithms have been studied well, [40]

studies the interactions between HTTP and TCP, while [3] compares different algo-

rithms in sustainability and adaptation. Different algorithms have been suggested to

optimize video quality, in particular [59, 98] offer rate-based adaptation algorithms,

where [55] suggests a buffer-based approach, and [113] aims to optimize quality us-

ing a hybrid model. Our work is complementary to these works, because while an

optimized ABR is necessary for good streaming quality, we showed problems where a

good ABR algorithm is not enough and corrective actions from the content provider

are needed.

Optimizing video quality by CDN selection: Previous work suggests different

methods for CDN selection to optimize video quality, for example [101] studies policies

and methods used for server selection in Youtube, while [62] studies causes of inflated

latency for better CDN placement. Some studies [65, 46, 44] make the case for

centralized video control planes to dynamically optimize the video delivery based on

a global view while [8] makes the case for federated and P2P CDNs based on content,

regional, and temporal shift in user behavior.

78

3.7 Conclusion

In this section, we presented the first Web-scale end-to-end measurement study of In-

ternet video streaming to characterize problems located at a large content provider’s

CDN, Internet, and the client’s download and rendering paths. Instrumenting the

end-to-end path gives us a unique opportunity to look at multiple components to-

gether during a session, at per-chunk granularity, and to discover transient and per-

sistent problems that affect the video streaming experience. We characterize several

important characteristics of video streaming services, including causes for persistent

problems at CDN servers such as unpopularity, sources of persistent high network

latency, and persistent rendering problems caused by browsers. We draw insights

into the client’s download stack latency (possible at scale only via end-to-end instru-

mentation); and we showed that the download stack can impact the QoE and feed

incorrect information into the ABR algorithm. We discussed the implications of our

findings for content providers (e.g., pre-fetching subsequent chunks), ISPs (establish-

ing better peering points), and the ABR logic (e.g., using apriori observations about

client prefixes). One of the major limitations that Diva faces is working with aggre-

gated network statistics collected from the kernel of CDN servers. We will address

this challenge in the next section.

79

Chapter 4

Data-plane Performance Diagnosis

of TCP

4.1 Introduction

One of major limitations of Diva is that collecting fine-grained TCP logs at end-hosts

(i.e., the CDN server’s kernel) is costly. Patching kernel to collect TCP metrics (e.g.,

Web10G [105]) for monitoring consumes the resources and slows down the servers.

Frequently snapshotting TCP metrics from the kernel (e.g., tcp info) needs a lot of

storage. Therefore, in Diva we could only collect TCP metrics at a low frequency.

Also, the collected information is often aggregated and insufficient; hence it lacks

flexibility for performance diagnosis (e.g., SRTT instead of individual RTT samples).

In contrast, collecting TCP metrics on the switches in the core of the network does

not impose an overhead to the end-hosts. But switches in the core of the network do

not have visibility into the end-to-end metrics, and are not owned by the CDN.

Instead, we believe measurement at the “edge”—in the NIC, or top-of-rack switch,

as shown in Figure 4.1—offers the best viable alternative. The edge device (i) sees

all of a TCP connection’s packets in both directions, (ii) can closely observe the

80

application’s interactions with the network without cooperation from the servers,

and (iii) can measure end-to-end metrics from the end-host perspective (e.g., path

loss rate) because it is only one hop away from the end-host.

Application Edge Core

VM 1

Hy
pe

rv
iso

r

NICVM 2

Tenant Edge Core

App
NIC

Edge
Switch

Figure 4.1: Dapper monitors performance at the edge of the network.

Fortunately, emerging edge devices offer flexible packet processing at line rate, in

software switches [88], NICs [100], and hardware switches [15]. There have been a

variety of proposals to achieve stateful programmable dataplanes, including POF [94],

OpenState [12], Domino [92] and P4 [14]. New capabilities, such as flexible parsing

and registers that maintain state open up the possibility of detecting and diagnosing

TCP performance problems directly in the data plane. Still, a major challenge for

data-plane connection diagnosis is finding a “sweet spot” that balances the need for

fine-grained metrics for diagnosis, while remaining lightweight enough to run across

a wide range of devices with limited capabilities.

In this section we present Dapper, a Data-Plane Performance diagnosis tool that

infers TCP bottlenecks by analyzing packets in real time at the network edge, as

shown in Figure 4.2. Dapper quantifies the contribution of the sender, network, and

receiver to poor end-to-end performance. Table 4.1 shows examples of problems that

can limit a TCP connection’s performance. Identifying the entity responsible for poor

performance is often the most time-consuming and expensive part of failure detection

and can take from an hour to days in data centers [4]. Once the bottleneck is correctly

81

identified, specialized tools within that component can pinpoint the root cause. To

achieve this goal, we need to infer essential TCP metrics. Some of them are easy to

infer (e.g., counting number of bytes or packets sent or received), while others are

more challenging (e.g., congestion and receive windows).

Dapper analyzes header fields, packet sizes, timing, and the relative spacing of

data and ACK packets, to infer the TCP state and the congestion and receive window

sizes. A unique challenge that Dapper faces is that the end-hosts may use different

versions of TCP, each possibly with tuned parameters. Thus, our techniques must

be applicable to a heterogeneous set of TCP connections. The advantage of a data-

plane performance diagnosis, apart from line-rate diagnosis, is that the data plane

can use this information for quick decision making (e.g., load balancing for network-

limited connections). However, a data-plane monitoring tool often has more resource

constraints: limited state and limited number of arithmetic and Boolean operations

per packet. We discuss design challenges and the necessary steps for Dapper to run in

the data plane, including reducing the accuracy of some measurements (e.g., RTT) to

lower the amount of per-flow state, as well as two-phase monitoring where we switch

from collecting lightweight metrics for all flows to only collecting heavyweight metrics

for troubled ones.

Roadmap: Section 4.2 explains the TCP performance bottlenecks we identify and

how to infer the metrics necessary to detect them. Section 4.3 explains how Dapper

diagnoses performance problems from the inferred statistics. Section 4.4 explains

how to monitor TCP connections in real time using commodity packet processors

programmed using P4 [14, 76]. Section 4.5 discusses our two-phase monitoring to

reduce the memory overhead in the data plane. Section 4.6 evaluates the overhead

and performance of our system. Section 4.7 discusses the limitations of our approach

and implementation. Section 4.8 discusses related work, and Section 4.9 concludes

this section.

82

\\\ Data plane (monitoring on edge)

Control plane (Dapper’s Diagnoser)

P4 program
TCP statistics

Figure 4.2: Dapper’s architecture : (1) data plane monitoring on edge, (2) control
plane diagnosis techniques.

4.2 TCP Performance Monitoring

A TCP connection may have bottlenecks at the sender, receiver, or the network. In

Table 4.1, we present several examples of performance problems that may arise at

each location. With many applications and TCP variants, it is challenging to decide

what minimal set of metrics to collect that are both affordable (i.e., does not consume

a lot of resources) and meaningful (i.e., helps in diagnosis). In this section, we discuss

the metrics we collect to diagnose the performance bottlenecks at each component,

and the streaming algorithms we use to infer them.

Location Performance Problems

Sender slow data generation rate due to resource constraints,
not enough data to send (non-backlogged)

Network congestion (high loss and latency), routing changes, lim-
ited bandwidth

Receiver delayed ACK, small receive buffer

Table 4.1: TCP performance problems at each component

We denote a TCP connection by a bi-directional 4-tuple of server and client IP

addresses and port numbers. We focus on the performance of the data transmission

from the server, where the server sends data and receives ACKs, as shown in Fig-

83

Client Server

Application
Reaction
Time

Delayed
ACK

Figure 4.3: Tracking options, segment size, and application reaction time for a simplex
connection (server-client)

ure 4.3. Hence, we monitor traffic close to the server, for several reasons. First, being

close to the server enables us to imitate the internal state of the server’s congestion

control and monitor how quickly the server responds to ACKs. Second, since the

connection is end-user facing, we do not have access to the client’s edge in a real-

world deployment. Finally, monitoring at one end reduces the overhead and avoids

redundancy as opposed to keeping per-flow state at both ends. Note that if we could

instrument and monitor both ends of a connection, it would offer higher accuracy

and better visibility into the connection’s state by collecting more statistics on the

client-side (e.g., delayed ACKs).

4.2.1 Inferring Sender Statistics

Performance problems at the sender limit the TCP connection’s performance; for

example, an application that is constrained by its host’s resources (e.g., slow disk or

limited CPU) may generate data at a lower rate than the network or receiver accept,

or it simply may not have more data to send; this application is referred to as non-

backlogged. To find such problems, we measure the ground-truth by counting sent

84

sent, ACKed
sent, not
ACKed

 (in flight)

not eligible
to send

eligible to
send next

send window = min (CWND, RWND)

Figure 4.4: Tracking a TCP connection’s flight size

packets and compare it with the connection’s potential sending rate, determined by

the receive and congestion windows.

If we could directly monitor the TCP send buffer inside the server’s end-host, we

could easily observe how much data the application writes to the buffer, how quickly

the buffer fills, and the maximum buffer size. In the absence of OS and application

logs from the servers, we rely on two independent metrics to see if the application

is sending “too little” or “too late”: (i) generated segment sizes, to measure if an

application is sending too little, and (ii) application’s reaction time, to see if it is

taking too long.

Inferring flight size to measure sending rate: Upon transmission of new pack-

ets, we update the packet and byte counters for each connection and measure the

connection’s flight size to infer its sending rate (i.e., flight size
RTT

). The flight size of a

connection is the number of outstanding packets—packets sent but not ACKed yet—

as shown in Figure 4.4, and is inferred via examining the sequence number of outgoing

packets and the incoming acknowledgment numbers to track how many segments are

still in flight. In this figure, the “send window” represents the available window to

the sender, that is, the maximum packets that the sender can send before waiting for

a new ACK; this window is limited by both the RWND and CWND. In this example,

the application is not backlogged, because it has not fully used the available window.

We can see that flight size can at most be equal to the send window.

85

Note that the flight size of a connection is an important metric in diagnosis because

it depends on the congestion window, the receive window, and the application’s own

data-generation rate (i.e., is the application backlogged?). We will revisit this metric

in Section 4.2.2.

Extracting MSS from TCP options: The segment sizes in a connection indicate

the amount of data that the sending application generates. We infer MSS by parsing

the TCP options exchanged during the three-way handshake, as shown in Figure 4.3,

in the SYN and SYN-ACK packets.

Measuring sender’s reaction time via cross-packet analysis: We define the

sender’s reaction time as the time window between the arrival of a new acknowledg-

ment and the transmission of a new segment. The reaction time evaluates the sending

application’s data-generation rate, i.e., whether or not it is backlogged. Lower reac-

tion times indicate that the data was already processed and was just awaiting an

opportunity to be sent. We measure the reaction time using time-stamps of incom-

ing acknowledgments and outgoing packets. We compare the reaction time with an

empirically derived threshold, calculated based on the latency between the edge and

the server.

Note that “cross-packet analysis” happens at the edge, thus the reaction time

consists of the application’s own data-generation latency plus the communication

latency between the application and edge (i.e., latency in the hypervisor and virtual

switch). More importantly, the network latency does not influence this metric. Also,

notice that the edge acts as the single point of observation, seeing both directions

of the flow to do cross-packet analysis. These two conditions are not necessarily

true on the switches in the core of network to measure the sender’s reaction time

since the packets could have been delayed at earlier network hops—as opposed to the

application itself—or worse yet, taken different paths.

86

4.2.2 Inferring Network Statistics

Network problems cause poor performance in a TCP connection. For example, in a

congested network, the increased packet loss and path latency cause the sender’s TCP

congestion-control algorithm to decrease the sending rate. The sender’s reaction to

congestion varies based on the congestion control in use (e.g., Reno vs Cubic) and the

severity of the congestion itself. To determine and quantify the network limitation in

the performance of a TCP connection, we need to measure and compare its congestion

window—how much the network allows the connection to send—against the receive

window—how much the receiver allows the connection to send—and how much data

the sender has available to send.

To infer a connection’s congestion window, we “imitate” the internal congestion-

control algorithm of the server by tracking flight size, packet losses and their kinds,

and duplicate ACKs. We track RTT and RTTvar to pinpoint the effect of network

congestion, routing changes, and queuing delay on TCP performance.

Inferring loss via retransmission: We calculate a connection’s loss rate by count-

ing the lost and total packets in the flow. In addition, we use a counter to track

the duplicate ACKs and use it to infer the kind of loss: fast-retransmission (FR) is

triggered after a fixed number of duplicate ACKs are received (normally 3); however,

a timeout is triggered when no packet has arrived for a while (RTO). We track the se-

quence number of outgoing packets (i.e., packets sent by the server) which helps us find

the retransmission of previously seen sequence numbers. Using the duplicate ACK

counter, if we see at least three duplicate acknowledgments before a re-transmission,

we treat it as a fast retransmission, otherwise, we deduce that the loss was recovered

by a timeout.

Estimating latency by passive RTT measurements: We use Karn’s algo-

rithm [60] to estimate SRTT, SRTTvar, and RTO using a series of “RTT measure-

87

ments”. An RTT measurement is the time between when a segment was sent and

when its acknowledgment reached the sender. For any connection, upon transmission

of a new segment, we create a (time-stamp, sequence number) tuple and maintain it

in a queue. Upon arrival of an ACK, we inspect the queue to see if any of the tuples

are acknowledged by it. If so, we create an RTT measurement and use it to update

the latency statistics via Karn’s algorithm.

Note that a retransmitted packet cannot be used as an RTT measurement, because

the corresponding ACK cannot be correctly mapped to a single outgoing time-stamp.

Also, if a connection has multiple outstanding packets, the queue will have multiple

tuples, i.e., the length of the queue grows with the flight size. Finally, if an incoming

ACK acknowledges multiple tuples (i.e., a delayed ACK) we de-queue multiple tuples

but only create one RTT measurement, from the most recent tuple, to exclude the

effect of delayed ACK on RTT.

Estimating congestion window via flight size and loss: It is challenging to

estimate a connection’s congestion window outside the server’s networking stack due

to following reasons: (1) Many TCP variations: There are many different TCP

congestion control algorithms used today (e.g., Reno, New Reno, Cubic, DCTCP).

Some are combined with tuning algorithms (e.g., Cubic combined with HyStart to

tune ssthresh) or have configurable parameters (e.g., initial window). (2) Thresholds

change: ssthresh is the threshold that separates slow-start (SS) from congestion-

avoidance (CA) in the TCP state machine and is initially set to a predefined value.

However, the Linux kernel caches the ssthresh value to use it for similar connections

in the future. Also, ssthresh changes throughout the life of a connection (e.g., under

packet loss). Therefore, if the full history of a connection (and even past connections!)

is not observed, ssthresh is unknown, making it impossible to detect transitions from

SS to CA based on the ssthresh threshold.

88

In the presence of these challenges, we rely on these TCP invariants to infer

congestion window: (1) The flight size of a connection is bounded by congestion

window, as shown in Figure 4.4. We denote this lower-bound estimate of congestion

window with inf cwnd. In a loss-free network, inf cwnd is a moving maximum of

flight size of the connection. Note that in the absence of loss, if the connection’s

flight size decreases, it is either due to the sender producing less data (i.e., not fully

utilizing the window) or the receiver’s limited receive window; hence, inf cwnd does

not decrease. (2) If a packet is lost, we adjust inf cwnd based on the nature of loss,

a timeout resets it to IW and a fast-retransmit causes a multiplicative decrease.

Estimating the congestion window based on these invariants makes inf cwnd“self-

adjustable”, working regardless of TCP variant and configuration, and is calculated

according to Algorithm 1. Algorithm 1 consists of a while loop that inspects every

new packet. If a new segment is transmitted and the connection’s flight size grows

beyond inf cwnd, we update inf cwnd to hold the new maximum value of flight

size. In case of retransmissions (loss), we decrease inf cwnd by the multiplicative

decrease constant, C, if loss is recovered by fast recovery. Otherwise, inf cwnd is

reset to initial window if recovered by a timeout. In this algorithm, we assume the

CDN knows the value of C and IW , or they can be easily inferred, either indirectly

via observing how large the first window is and how it changes after a loss, or directly

via tools such as Nmap [74].

Note that inf cwnd as estimated by Algorithm 1 does not require full knowl-

edge of connection’s history, thresholds, or the congestion control algorithm, and is

only dependent upon measuring the connection’s flight size and loss, thus solves the

challenges above without cooperation of servers or using the end-host’s resources1.

1To keep our heuristics general across all TCP variants, we do not rely on selective acknowledg-
ments.

89

Algorithm 1: Estimating inf cwnd

Input: multiplicative decrease factor (C), initial window (IW)
Output: inf cwnd

1 while P ←− capture new packet do
2 if P is new segment and flight size ¿ inf cwnd then
3 inf cwnd←− flight size

4 else if P is retransmitted then
5 if fast retransmit then
6 if first loss in fast recovery then
7 inf cwnd←− C×inf cwnd

8 else if timeout then
9 inf cwnd←− IW

4.2.3 Inferring Receiver Statistics

The receiver-side of a TCP connection can limit the flow by decreasing its advertised

window (i.e., RWND) or slowing down the rate of acknowledgments [115] to control

the release of new segments.

Tracking RWND per-packet and per-connection : To quantify the receiver

limitation in a TCP connection, we track the advertised RWND value per-packet,

reflecting how much buffer is available on the client. We also track the per-connection

agreed upon window scaling option during the TCP handshake, as shown in Fig-

ure 4.3, which is used for scaling RWND.

Inferring delayed ACKs via RTT samples: When an incoming ACK acknowl-

edges multiple tuples in the queue, it must be a delayed ACK, as the client is acknowl-

edging multiple segments at once. When we de-queue tuple(s) based on an incoming

ACK, we count and average the number of de-queued tuples per ACK to reflect the

effect of delayed ACK.

Summary: Figure 4.5 summarizes how Dapper updates a TCP connection’s perfor-

mance statistics while processing a new packet. The packets are first hashed on the

90

directi
on?

 Update
counters,

flightsize,
inf_cwnd.
enQ for

RTT, etc.

outgoing incoming

hash

initialize

new
flow?

load stats

direction

reset
dupACK,

track RWND,
deQ

samples,
etc.

Timeout
retx

FR retx

new
seq?

dupACK
==3 ?

yes

no (retx)

yes

new
ack?

dupACK++

no

yes no

yesno

Figure 4.5: Dapper’s packet-processing logic

four-tuple to either initialize a new flow, or read the existing statistics. Then, based

on the direction of the packet, the relevant header fields are extracted and used to

update the metrics. The blue boxes show the analytics performed to keep per-flow

state (e.g., update flight size) and the pink diamonds show the conditions used to

decide which state to update.

91

4.3 TCP Diagnosis Techniques

In this section, we describe how Dapper uses the statistics gathered by the stream-

ing algorithms discussed in section 4.2. The high-level objective of the diagnosis

techniques is to troubleshoot a connection’s performance limitation.

Diagnosing Sender Problems: Our goal is to find if the sender-side is not limiting

the connection’s performance (backlogged), or limiting the sending rate via not having

enough data to send or taking too long to produce it (non-backlogged).

1. Exponential sending rate indicates a backlogged sender: On transmission of new

segments, we first examine the connection’s macroscopic behavior, i.e., the sending

rate, and check to see if it is growing exponentially to infer if the connection is in

slow start. More accurately, we compare the relationship between ACKs and the data

packets to see how many packets the sender transmits after a new ACK. If sending

rate grows exponentially, we know the connection is not sender-limited. Otherwise,

we attempt to understand if the connection is sender-limited by checking the next

heuristics.

2. If the sender is backlogged, it will “completely” use the send window: When send-

ing rate does not grow exponentially, the connection could either be in congestion

avoidance with a backlogged sender, or it could suffer from a non-backlogged sender,

producing less data than CWND. This heuristic checks to see if the connection’s flight

size is consistently less than the allowed window to send, determined by the minimum

of RWND and CWND, i.e., if flightsize < min(inf cwnd,RWND). If so, the con-

nection’s performance is limited because the sending application does not send more,

not because it’s not allowed to.

3. Sending less than allowed, or later than allowed, indicates a non-backlogged sender:

Here we examine the connection’s microscopic behavior to see if the connection is

under-utilizing the network, not concerning the “number” of packets in flight like the

92

previous heuristic, but instead focusing on the “size” and “timing” of packets. More

concretely, we check to see if a connection is sending packets that are smaller than

MSS, or if the application’s reaction time (i.e., data generation time) is larger than an

empirically derived threshold for backlogged applications. If either of these conditions

are met, we conclude that the application is non-backlogged, hence the connection is

sender-limited indicating that the sender is either not generating enough data to fill

up a whole packet, or not responding almost immediately when it is allowed to send.

4. How the flight size changes during a loss recovery gives us a clue of how backlogged

the sender is: In addition to the heuristics above, during loss recovery a connection

reveals some information about its internal state2. As a reminder, fast-recovery causes

the congestion window to decrease by a multiplicative factor, C.

Consider a connection not limited by receiver, and assume that the sending appli-

cation’s data generation rate remains unchanged during the network loss. We denote

the flight size of the connection before loss by f1 and after the loss by f2. Figure 4.6

shows three example scenarios, where loss happens at 30ms, prompting CNWD to

decrease by half. The f2
f1

ratio gives us the following insights: if flight size is closely

tracking CWND, f2
f1

= C, the sender is backlogged (app 1); if the connection was not

fully using the CWND before loss but is backlogged after the loss, C < f2
f1
< 1 (app

2); finally, if the flight size remains unchanged the sender is not backlogged (app 3).

Note that in these examples we assume the state of the sender remains unchanged

during the loss recovery.

Diagnosing Network Problems: Our goal is to determine if the network is restrict-

ing TCP performance, either due to limited bandwidth (congestion window limited),

high packet loss rate, or increased latency due to problems such as queuing delay or

routing problems.

2This heuristic can be treated as a bonus, and the diagnosis algorithm does not rely on seeing a
loss.

93

0 10 20 30 40 50 60
Time (ms)

0

10

20

30

40

50

60

W
in

do
w

 (M
SS

)

cwnd

app1, f2
f1
=C

app2, C<f2
f1
<1

app3, 1¸f2
f1

Figure 4.6: Flight size before and after loss

1. Small congestion window hurts TCP’s performance: When the network has per-

formance constraints, for example limited network bandwidth, the congestion window

will limit the rate of the connection, that is: flight size ≤ inf cwnd < RWND. Upon

a packet retransmission, if loss causes the inf cwnd value to drop below the RWND,

we deduce the connection is limited by network.

2. Increased network path latency slows TCP’s rate: The sending rate of the connec-

tion is a function of both the flight size and RTT; the sender can only increase the

window after a new ACKs arrives, which usually takes an RTT. To track the impact

of network latency on TCP performance, we use the RTT measurements as explained

in section 4.2. The cloud provider can either define an “expected RTT” per TCP

connection based on SLAs, or use the minimum RTT sample per-flow as the baseline.

To diagnose path latency problems, we compare the RTT values with the expected

RTT to detect if a connection’s latency is acceptable.

Diagnosing Receiver Problems: Our goal is to find if the receiver is restricting

TCP performance, either by offering a small receive buffer (receive window), or by

delaying ACKs.

1. Small receive window hurts performance: Upon updating the RWND and inf cwnd

values, this heuristic compares them with the current flight size to see if the connec-

94

tion’s sending rate is receiver-limited, that is: flight size ≤ RWND < inf cwnd. If

so, the connection is diagnosed as receiver-limited.

2. Delayed acknowledgment hurts performance: The receiver can limit TCP perfor-

mance by sending ACKs with a delay; delayed ACKs has been shown to cause issues

in datacenters [115]. When the client sends ACKs with a delay, for example, send-

ing acknowledgments for every other packet, the sender’s opportunity to increase its

window is halved3. For each connection, we measure the average number of RTT

samples freed by each new ACK and if the average is greater than one, we diagnose

the connection as receiver-limited due to delayed acknowledgment.

4.4 Data-Plane Monitoring

In this section, we describe how Dapper tracks TCP connections in the data plane and

discuss the principles behind our target-independent solution using P4. We outline

the P4 features (e.g., metadata) that enable us to monitor TCP connections according

to Figure 4.5 (Section 4.4.1); then, we discuss the target-specific resource constraints

and how to mitigate them (Section 4.4.2).

4.4.1 TCP Monitoring Prototype in P4

P4 is a programming language that allows us to express how packets are processed

and forwarded in a target-independent program, therefore, our P4 prototype can run

in a public cloud on a variety of targets, as long as at least one of the elements at the

edge (the switch, the hypervisor, or the NIC) can run P4 programs.

To monitor TCP connections in the data plane in real time, we need to extract

and retain packet header information (P4’s flexible parsing), carry information across

multiple stages of packet processing (P4’s metdata), and store state across successive

3Note that the congestion window on sender-side opens up upon receiving each new ACK, as
every ACK is a sign that a packet has left the network, hence the network can receive more.

95

packets of the flow (P4’s registers). Furthermore, to realize the logic in Figure 4.5, we

need to perform specific operations on each packet, shown with blue boxes (P4’s tables

and actions) and check test conditions based on both the packet headers and the flow

state to invoke the relevant tables, shown by pink diamonds (P4’s flow control).

1. Extracting headers and options via flexible parsing: Using header defini-

tions, we identify the relevant header fields in a packet. In our prototype we assume

the TCP packets have Ethernet, IPv4, and TCP headers, although this can be easily

extended to include other protocols (e.g., IPv6). The following snippet shows some

relevant TCP headers. In addition, we provide a parser that extracts headers (e.g.,

source and destination IP from the IP header).

header_type tcp_t {

fields {

srcPort : 16;

dstPort : 16;

seqNo : 32;

ackNo : 32;

...

}

}

P4 models the parser as a state machine represented by a parse graph. The parsed

headers need to be “de-parsed”, i.e., merged back, to a serial stream of bytes before

forwarding. TCP options require TLV (Type-Length-Value) parsing. For parsing

options, we use “masks” to identify the “type” (e.g., type 2 represent MSS), then a

parser is called to extract that option knowing its “length” (e.g., parse mss for MSS

in the snippet below) which returns the control back to the original parser when done.

This creates a loop in the parsing graph causing the exact de-parsing behavior to be

undefined. To solve it, we impose a fixed order for de-parsing, by using the pragma

keyword as the following code snippet shows. We will use this extracted MSS value

in the subsequent parts.

96

@pragma header_ordering ethernet ipv4 tcp options_mss options_sack options_ts options_nop

options_wscale options_end

parser parse_tcp_options {

return select(mymeta.opt_counter, current(0,8)) {

...

0x0002 mask 0x00ff : parse_mss;

...

}

}

2. Keeping per-flow state in registers: Registers are stateful memories, which

are essential to Dapper because they maintain the per-flow state as it gets updated

after processing each packet. Registers consume resources on the target, hence are a

major limitation in running our solution on specific targets, therefore we will minimize

the required per-flow state to ensure our program runs on commodity hardware in

Section 4.5.

P4 registers can be global, referenced by any table, or static, bound to a single

table. The following code shows one of our global registers, MSS, as an array of 16-bit

values, and instance count is the number of entries in the flow table. Each packet is

hashed to find its flow index in the register array. We will explain our bi-directional

flow hashing in more details shortly.

register MSS {

width : 16;

instance_count : ENTRIES;

}

When tracking a TCP connection for diagnosis, some register values depend on the

value of other registers; for example, only by comparing a packet’s acknowledgment

with previous ACKs of the flow can we detect a duplicate ACK. To update such

dependent registers, we have to read other register(s), test conditions, and finally

update the target register.

97

3. Carrying information per-packet via metadata: Metadata is the state

associated with each packet, not necessarily derived from the packet headers, and

can be used as temporary variables in the program. We use metadata to carry the

information belonging to the same packet from one table to the other. The code

below shows the most widely used metadata in our program, flow map index, which

is the flow’s index produced by hashing. This metadata carries the index over to

the subsequent tables, each using it to index their registers for read/write. Below,

we show a code snippet for declaring metadata field named flow map index where

FLOW MAP SIZE indicates its width in bits. In the next subsection, we explain how we

use this metadata in hashing.

header_type stats_metadata_t {

fields {

flow_map_index : FLOW_MAP_SIZE; // flow’s map index

...

}

}

metadata stats_metadata_t stats_metadata;

Some metadata has special significance to the operation of the target (i.e., the

standard intrinsic metadata). In particular, we use the target’s ingress global timestamp

as the arrival time of the packet, which is necessary to infer latency metrics such as

the sender’s reaction time and SRTT.

4. Bi-directional hashing using metadata and registers: As discussed earlier,

our streaming algorithm must see both directions of traffic to capture our cross-packet

metrics, e.g., application reaction time. To do this, we need to hash both directions

to the same index and process them as one entity. Unfortunately, P4 provides no

primitives or methods for hashing both directions to the same index—no symmetric

hashes. Although some targets may allow configuring the hash function through run-

time APIs, this support may vary across targets [76]. Therefore, we build our own

98

symmetric hash using P4’s default hash algorithm, e.g., crc32, by defining two sets

of headers to hash on, with one in the reverse order of the other. In other words, one

direction is hashed based on (src IP, dst IP, src Port, dst Port) fields, and the reverse

direction is hashed on (dst IP, src IP, dst Port, src Port) fields. To keep the direction’s

hash function consistent, we use a simple and consistent comparison of the two IPs:

if srcIP > dstIP , we hash the packet header in the former order, otherwise we hash

the packet headers in latter order. This guarantees that each side of packet stream

gets consistently hashed by one of these hash functions, but results in the same index

value per flow.

5. Realizing operations using actions and tables: To realize the blue boxes in

the flowchart of Figure 4.5, P4 tables and actions are used. A P4 table defines the

fields to match on and the action(s) to take, should the entry match. P4 tables allow

us to express different sets of match-action rules to apply on packets; for example,

the set of actions for an outgoing packet differs from incoming packets. Furthermore,

some tables could be dedicated to monitoring while others are dedicated to forwarding

packets (e.g., ipv4 lpm and forward). A fundamental difference between our moni-

toring tables from regular forwarding tables in P4 is that our monitoring tables have

a single static entry that matches on every packet —hence, have no match field. In

contrast, ipv4 lpm is a forwarding table that uses longest prefix matching to find the

next hop. The following code snippet shows two of Dapper’s tables, the lookup table,

that hashes every packet to find its flow index, and the init table that initializes the

flow upon observing its first packet (e.g., saves the extracted MSS value in the MSS

register array, at the flow’s index).

table lookup{

actions {

lookup_flow_map;

}

}

table init{

99

actions {

init_actions;

}

}

action lookup_flow_map() {

modify_field_with_hash_based_offset(stats_metadata.

flow_map_index, 0, flow_map_hash, FLOW_MAP_SIZE);

}

action init_actions() {

register_write(MSS, stats_metadata.flow_map_index, options_mss.MSS);

...

}

Actions in P4 are declared imperatively as functions, inside the tables. Actions

can use registers, headers, and metadata to compute values. An example action is

register write, which takes a register, and index, and a value as input, and sets

the value of the register array at the index accordingly. Actions are shown with red

color in our code snippets.

6. Conditions via control-flow: The control flow of a P4 program specifies in

what order the tables are to be applied. Inside the control segment, we can “apply”

tables and test conditions. The choice of which block to execute may be determined

by the actions performed on the packet in earlier stages. The control flow is what

enables us to design the pipeline and implement the conditions (pink diamonds) in

P4 as the flowchart shows in Figure 4.5.

In the “widely-supported” P4 specification [76], conditional operations are re-

stricted to the control segments of program; that is, we cannot have if-else state-

ments inside a table’s logic. Fortunately, P4 offers metadata, which can be used as

temporary variables in the program. The metadata gives us an opportunity to read

the current value of conditional registers inside an earlier table—the “loader”—in

the pipeline, store their values in the metadata, test the conditions in the control

100

section, and apply the appropriate set of tables conditionally. Note that we need the

“loader” table because of the current restrictions in P4 that allows conditions only in

the control segment.

control ingress {

if (ipv4.protocol == TCP_PROTO) {

if(ipv4.srcAddr > ipv4.dstAddr) {

apply(lookup);

}else{

apply(lookup_reverse);

}

if ((tcp.syn == 1) and (tcp.ack == 0))//first pkt

apply(init);

else

apply(loader);

if (ipv4.srcAddr == stats_metadata.senderIP){

if(tcp.seqNo > stats_metadata.seqNo){

apply(flow_sent);

if(stats_metadata.sample_rtt_seq == 0)

apply(sample_rtt_sent);//"temp" has the new flightsize

if(stats_metadata.temp > stats_metadata.mincwnd)

apply(increase_cwnd);

}else{

if(stats_metadata.dupack == DUP_ACK_CNT_RETX)

apply(flow_retx_3dupack);

else

apply(flow_retx_timeout);

}

}

else if(ipv4.dstAddr == stats_metadata.senderIP) {

if(tcp.ackNo > stats_metadata.ackNo){

apply(flow_rcvd);//new ack

if(tcp.ackNo >= stats_metadata.sample_rtt_seq and stats_metadata.sample_rtt_seq>0){

if(stats_metadata.rtt_samples ==0)

apply(first_rtt_sample);

else

apply(sample_rtt_rcvd);

}

}else

apply(flow_dupack);//duplicate ack

}

101

}

apply(ipv4_lpm);

apply(forward);

}

4.4.2 Hardware Resource Constraints

In this section, we explain our design choices to monitor connections in P4. These

choices stem from a variety of restrictions, in particular, the limited resources on

hardware switches, missing features in the P4 spec, and the diversity of hardware

targets, which would require us to design for the least common denominator among

the supported features.

1. Handling hash collisions: We use 32 bits for hashing in our prototype; regard-

less, collisions are often a concern in hash tables. In our software implementation,

we handle collisions in the hash table by “hash-chaining”: we store the four tuple

key of the connection and create a linked-list of flows in the same index with differ-

ent keys. However, since memory in hardware is limited, we decide to not store a

connection’s tuple. Still, if collisions go undetected they may pollute the accuracy

of collected statistics. Hence, it is useful to assess if the accuracy of a connection’s

statistics has been compromised. Therefore, we perform basic checks on the packet’s

sequence number versus the flow’s previously sent sequence numbers and available

windows (i.e., does the sequence number fall within the acceptable window?). This

comparison requires additional tables or registers per-flow, but can store the result

of conditions in a Boolean variable, named “sanity check”. The sanity check can be

queried from the data plane along with the connection metrics to indicate whether

collected statistics are reliable for diagnosis.

2. Keeping one RTT sample at a time: As discussed in Section 4.3, to accurately

track the connection’s RTT, we maintain a queue of tuples based on the outgoing

102

packets, where each tuple is (sequence number, time-stamp). The received ACKs are

compared to the tuples of the queue to make an RTT measurement. Since the queue

of tuples grows with the flow’s flight size, it increases the amount of state per-flow in

our P4 program. Because the hardware resources on a switch are limited, we limit

the number of outstanding RTT tuples in our P4 program to one at a time, per-flow:

we only sample an outgoing packet for RTT if the flow’s queue is empty.

3. Multiple accesses per register array: Our program accesses some registers

from multiple points to use them in test conditions; e.g. duplicate ACK count register

is read in the loader table and used for identifying the kind of loss, and upon a new

duplicate ACK another table updates it. Currently, conditional operations in P4 are

restricted to the control segments. Thus we cannot avoid accessing some registers in

multiple tables. Unfortunately, accessing a register from multiple tables limits the

processing rate. However, the ternary operator (?:) will be supported in the next P4

version [26], allowing us to perform simple conditional assignments, eliminating the

need for global registers, and permitting our solution to run at line rate.

4. Relying on control plane to scale RWND: In TCP, the advertised RWND

should be shifted by the window scale (as negotiated in handshake) to calculate the

actual receive window. However, most P4 targets can only “shift” by a “constant”

value [76]. So, we instead record both values and allow the control plane to query

both and perform the shift.

5. Foregoing RTTvar: Calculating RTTvar involves capturing the absolute dif-

ference of the smoothed moving average RTT (SRTT) and the current RTT sample

(RTT). This difference can be captured via an abs operator or by introducing a new

comparison test, i.e., a new pipeline stage. Unfortunately, the P4 specification does

not support the abs operator and adding a new stage impacts the processing rate of

103

our implementation to gain a single metric. By default, Dapper does not include this

stage but can be enabled optionally.

4.5 Two-Phase TCP Monitoring

Our goal in this section is to lower the cost of monitoring and diagnosing TCP connec-

tions. We present a two-phase monitoring technique to decrease the amount of state

required. The first phase monitors all connections continuously but only collects low-

overhead metrics, enough to detect but not diagnose performance problems. When

a connection meets the “badness” criterion, heavier-weight monitoring is enabled to

diagnose the poor performance.

Phase 1: Lightweight detection: In the first phase, we collect lightweight metrics

that suffice to “detect” the existence of performance problems, based on a badness

criterion. The statistics used in the first phase must be: 1. lightweight to maintain,

ensuring that the continuous monitoring of connections in the data plane is cheap,

and 2. general enough to capture the badness of the flow, regardless of the component

limiting the performance. We use the average rate of the flow as an indicator of how

well it’s performing.

To maintain the average rate of flow, we keep three registers: 1. init time, the

time-stamp when monitoring began, 2. bytes sent, total bytes sent so far, and 3.

update time, the time-stamp when the flow was updated last. The control plane can

query these states per-flow and find the connections that look troubled based on a

CDN-wide specific threshold. Upon observing low rate, the CDN operators can turn

on the heavy-weight monitoring mode to do diagnosis.

Phase 2: Diagnosis of troubled connections: The second phase is “diagnosis”,

where we collect heavyweight metrics for a troubled connection to shed light on the

component that is hindering the flows performance. These metrics include the com-

104

plete set of TCP statistics (discussed in Section 4.2) and our diagnosis techniques

(discussed in section 4.3). This phase consumes more state on the switch, but note

that it is only turned on after a problem is detected, hence the switch state consump-

tion overall decreases. The two-phase monitoring can be thought of as a “long and

narrow” table (all flows, few metrics), followed by a “short and fat” table (few flows,

many metrics).

There are some challenges with inferring TCP metrics midstream: First, the TCP

constants, in particular MSS and window scale are exchanged once, during the hand-

shake. Second, the flow counters (e.g., packets sent, ACKed, or in flight) are unknown.

This results in errors in the inferred value of flight size, which is also used to estimate

inf cwnd.

Our solution to these challenges is two fold: 1. Parse and keep the TCP options

during the handshake for all the flows in the first phase, in case they are needed

later. This approach provides high accuracy but requires more data-plane state. 2.

Infer them midstream, only when necessary. Of course, inferring constants midstream

reduces the memory overhead at the expense of accuracy. To infer MSS from mid-

stream, we need to keep track of the largest segment sizes seen so far. To infer the

window scaling option midstream we track the flight size and the unscaled RWND as

advertised in received packets. We use the TCP invariant that “the flight size of a

connection is limited by the receive window”, hence we can estimate the lower-bound

window scaling factor:

flight size ≤ RWND · 2scale

dlog2

flightsize

RWND
e ≤ scale (4.1)

105

Finally, to infer inf cwnd, we rely on flight size, which itself is inferred from

tracking sequence numbers of outgoing packets and incoming ACKs midstream. We

will evaluate the accuracy of these metrics to show how close to actual values the

accuracy of midstream inferred metrics get.

4.6 Evaluation

In this section we evaluate the accuracy of our heuristics, and the overhead of our P4

prototype for hardware switches, and our C prototype for hypervisors (Section 4.6.2).

Then we use the software prototype to validate the accuracy of our diagnosis algorithm

using synthetic traffic (Section 4.6.3). Next, we showcase Dapper in the wild by

analyzing CAIDA packet traces (Section 4.6.4). Finally, we demonstrate the trade-

offs in accuracy and overhead in the P4 design.

4.6.1 Accuracy of Heuristics

We begin the evaluation by comparing our heuristics against the ground truth data

collected from within the end-hosts (using Linux kernels tcp info structure). In

particular, Figure 4.7 demonstrates how well the CWND is inferred for the first 5

seconds of a flow. The connection belongs to a simple server-client application where

the server is transmitting a large file over a 1G link, both machines run TCP Cubic.

We make three observations based on this figure: (1) Dapper’s inferred CWND closely

follows Cubic’s. This suggests it is possible to accurately infer the congestion window

without tenant’s cooperation. (2) If monitoring begins at later times (e.g., after 1

sec in (b) or 3 sec in (c)) Dapper infers CWND accurately, and the inferred CWND

converges quickly. (3) We show how losses offer extra information for tracking CWND.

Note, that while the figure only presents the first 5 second, our observations generalize

to whole flow and to other flows in our dataset.

106

0 2000 4000
Time (ms)

0

20

40

60

80

100

M
SS

 W
in

do
w

s

cwnd
inf_cwnd (a)
inf_cwnd (b)
inf_cwnd (c)

Figure 4.7: First 5 seconds of a flow shows how closely our heuristic tracks CWND,
from monitoring starting points of (a) beginning, (b) 1 sec, (c) 3 sec.

4.6.2 CPU and Memory Overhead

We evaluate Dapper’s overhead along two dimensions: memory utilization on hard-

ware switches, and CPU Utilization on hypervisor or vswitch; this is mainly because

switches operate at line rate but are constrained for memory, while software solutions

are not often constrained by memory, but by CPU utilization. Dapper’s software

prototype is implemented in C and uses libpcap to capture packets.

Memory in hardware: In single-phase mode, our P4 prototype keeps 67 bytes of

state for each connection (i.e., 16 four-byte registers to keep the flow state, a two-

byte register to track MSS, and a one-byte register for scale). In addition, 40 bytes

of metadata are used to carry a packet’s information across tables. In a typical

data center, a host can have 10K connections [115], which results in 670 KB of state

required to track their state. In the two-phase monitoring prototype, as described in

section 4.5, we use the average rate of flows as the badness factor in the first stage,

which would impose about 16 bytes per flow in the first stage. Figure 4.8 shows

the amount of state needed for single-phase monitoring, as opposed to two-phase

monitoring with 10% and 20% troubled connections.

107

100 500 1000 5000 10000
Number of connections

0
100
200
300
400
500
600
700

St
at

e
on

 th
e

sw
itc

h
(K

B
)

single-stage
two-stage, 10% troubled
two-stage, 20% troubled

Figure 4.8: Required state on switch in single vs two-phase monitoring, with 10%
and 20% troubled connections.

As more connections are monitored, the expected rate of collision in the hash

table increases. Figure 4.9 shows the expected collision rate per number of flows (k),

for varying sizes of tables (N). Assuming the N hash values are equally possible, the

probability that a flow A shares the same index with flow B is 1
N

. So, the probability

that the other k-1 flows will not share the same index is (1− 1
N

)k−1, resulting in the

expected likelihood of collisions of 1 − (1 − 1
N

)k−1. Thus, to track 10K connections

with a collision rate of less than 4%, we need the table size to be at least 262, 144

(218), which results in less than 18 MB space on the switch.

0 2000 4000 6000 8000 10000
Number of connections (k)

0
2
4
6
8

10
12
14

E
xp

ec
te

d
co

lli
si

on
 r

at
e

(%
)

N = 65,536
N = 131,072
N = 262,144
N = 524,288

Figure 4.9: Expected collision rate vs number of flows (k) for different table sizes (N).

108

CPU in software: We measure the CPU overhead by connecting two servers to

a single switch and starting parallel TCP flows between them and measuring CPU

using top. The server machines have Xeon e3-1630 V3, 4 core, 3.4 GHZ processors.

All flows are initially established (i.e., completed the TCP handshake) and have the

average rate of 1 Mbps. Figure 4.10 shows the total CPU consumption (including

live packet capturing via libpcap and copying packets to user space) versus the

aggregate bandwidth processed. Dapper’s CPU consumption is close to approaches

that use near-real time polling frequency (e.g., [115] at 50ms frequency). Batch-

processing can lower the CPU overhead. In addition, the overhead in system calls

and memory copies caused by libpcap for packet capturing can be reduced if Dapper

uses fast packet IO frameworks such as Netmap [83].

1
10
0
20
0
30
0
40
0
50
0
60
0
70
0
80
0
90
0
10
00

Aggregated Bandwidth (Mbps)

0

5

10

15

20

25

30

A
ve

ra
ge

 C
PU

 %

Figure 4.10: CPU per aggregate bandwidth processed.

In Figure 4.11, we quantify the CPU processing requirements for different packet

types. The y-axis shows how many CPU cycles it takes after a packet is fully captured

to update the flow state (excluding the packet capturing process). The first packet

of a flow usually takes longer to process, because Dapper must allocate and initialize

flow state and parse packet options that require extra CPU cycles. Further, the

first outgoing packet is used for creating the first tuple for RTT measurement. The

variations in the cycles are caused by several reasons: First, our software prototype’s

109

init
outgoing

init
incoming

update
outgoing

update
incoming

Packet type

0
1
2
3
4
5
6
7
8

C
PU

 c
yc

le
s t

o
pr

oc
es

s

Figure 4.11: CPU cycles to update the table based on each type of packet, excluding
packet capturing and handling.

flowtable is a hash table with hash-chaining, thus, in case of a collision, the flow

statistics are maintained in a linked-list; incurring the extra overhead of linked-list

traversal for collisions. Second, for retransmitted packets or duplicate ACKs, the flow

state needs further updates. Finally, packets used for RTT measurement incur extra

processing.

4.6.3 Diagnosis Accuracy

We measure the accuracy of our diagnosis method by systematically creating TCP

connections with known problems and comparing the diagnosis results with the

ground truth. We create a server-client connection with the client requesting a 1MB

file over a link with 1Mbps bandwidth and 50ms round-trip time. We then create the

following problems in the connection and repeat the experiments 100 times:

1. Sender-Limited: We emulate a resource bottleneck for the server, e.g., slow disk

or busy CPU, by making the server wait for T seconds before transmitting each data

packet. Higher T indicates more severe problems. We also emulate non-backlogged

servers by limiting the transmitted segment sizes to less than an MSS.

110

2. Receiver-Limited: We create receiver-limited connections by changing socket

options (using Linux’s setsockopt) to limit the client’s receive buffer size,

socket.SO RCVBUF.

3. Network-Limited: We use the Gilbert-Elliot model [52] to emulate micro-bursts

during network congestion: a connection can be in either a good (no network con-

gestion) or bad (network congestion) state. To emulate the bad state, we generate

bursty losses at a rate of 1% to 10% for 2 seconds. We assume that losses in the good

state are negligible.

For each problem shown in Table 4.2, we measure “sensitivity” and “accuracy”:

the true positive rate (TPR) is the fraction of correctly diagnosed tests, showing the

sensitivity to each problem, and diagnosis accuracy is the fraction of time Dapper

correctly classified the connection to be limited by that problem. The initial results

are promising, Dapper achieves an average accuracy of 94%; Dapper’s accuracy is

less than 100% because the ability to detect a problem is proportional to its severity.

Figure 4.12 shows an example problem where the severity changes from low (1% loss)

to high (10% loss), increasing the average accuracy of diagnosis.

0 2 4 6 8 10
Loss rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 a
cc

ur
ac

y

Figure 4.12: Accuracy vs severeness of problem.

111

Table 4.2: Dapper’s Diagnosis Sensitivity and Accuracy

Problem TPR Avg Accuracy

Sender-Limited 98% 95%
Receiver-Limited 96% 94%
Network-Limited 94% 93%
Sender-Network-Limited 100% 95%
Receiver-Network-Limited 100% 93%

4.6.4 Analyzing CAIDA Traces

We use CAIDA traces collected on Equinix-Chicago [20] to showcase Dapper, assum-

ing that the applications that produced this traffic could be served on a CDN. We

pre-process the trace by eliminating connections with less than 10 packets in either

direction. A total of 244,185 flows are considered in this study. After preprocessing,

the traces are treated as a live stream of packets, with no replay. To account for the

fact that the packet traces are collected from within the network, rather than the

edge, we turn off inferences based on application reaction time because it cannot be

reliably captured in the core of the network.

Figure 4.13 shows the CDF of the fraction of time each type of performance

problems limits a connection. Since the bottlenecks in a connection may change

over time, the CDF shows the normalized duration of bottlenecks. We observe that:

1. 99% of flows spend less than 1% of their life in the no-limit state; this means

that 99% of flows have at least one bottleneck in more than 99% of their lifetime.

2. Although sender and receiver problems have similar rates, we did not use the

application reaction time to detect the sender-limited connections, thus we expect

the actual rate of sender-limited connections to be higher. 3. Many connections are

bottlenecked by two factors simultaneously (e.g., sender-network or receiver-network).

4. About 90% of the connections spend some time in the network-limited state, with

almost half of them being network-limited 50% of the time. 4

4Note that these results are from wide-area network and the characteristics of data-center con-
nections are different from WAN.

112

0.0 0.2 0.4 0.6 0.8 1.0
Normalized duration of problem

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

No Limit
Sender Limited
Receiver Limited
Receiver-Network Limited
Sender-Network Limited
Network Limited

Figure 4.13: Diagnosis Results for CAIDA traces.

4.6.5 Trade-offs in Accuracy and Overhead

Using the CAIDA trace, we evaluate the impact of our space optimizations on the

accuracy of our measurement. To do this, we operate our software prototype in two

modes: first, trades-off space for accuracy (emulate P4) and second, measures with

high accuracy and precision (ground-truth).

Limited queue size: Our measurement shows that running Dapper with an un-

bounded queue increases memory usage by about 9%. In a network with higher

bandwidth capacity, (i.e., high bandwidth delay product), more memory will be re-

quired. In Figure 4.14, we examine the error in SRTT when the queue size is bounded

to one. We observe that when the queue size is bounded, Dapper requires more sam-

ples to reduce error. Note these traces were collected in WAN, not a datacenter,

hence the high RTTs.

Two-phase monitoring: Recall, two-phase monitoring offers a trade-off between

accuracy of our heuristics and their memory overhead. We filter the connections

to consider only those with known options, and use that as the ground-truth to

compare against the midstream inferred constants. Figure 4.15 shows the error in

inferring MSS and window scaling options according to Section 4.5. While the error

113

0 2 4 6 8 10
Samples ¸ x

0

100

200

300

400

500

600

E
rr

or
 in

 S
R

T
T

 (m
s)

Figure 4.14: Error in inferring SRTT with queue size of 1. As more packets are
exchanged, the error decreases.

in MSS decreases as more packets are inspected, the inferred window scale value

still differs from the ground-truth by about 20%. This is because most of these

connections are not RWND-limited, hence the flight size values used in estimating

the scale (Equation 4.5) do not approach the upper-bound imposed by the receiver.

5 10 15 20
Packets processed¸x

0

20

40

60

80

100

E
rr

or
 %

N = average-SRTT
N = median-SRTT
N = median-Scale
N = average-Scale

Figure 4.15: Error in inferring TCP options (MSS and wscale) midstream, the error
rate decreases faster for MSS.

114

4.7 Discussion

In this section, we discuss the implications of implementing Dapper in hardware and

our diagnosis granularity.

(1) Diagnosis Granularity: Dapper identifies the component causing the performance

problem in a connection (network, sender, or receiver), but does not find the root

cause within that component. As part of future work, we plan to explore domain

specific inference algorithms for each entity.

(2) Hardware capabilities: A major issue in our P4 implementation arises from ac-

cessing the same registers at multiple stages, which hurts the line-rate performance

at the switch. Fortunately, as discussed in Section 4.4, future versions of P4 will

support the ternary operator, allowing us to effectively restrict access to registers to

one stage.

(3) Hardware capacity: Switches have a limited number of registers and as discussed

in Section 4.6, this capacity limitations increases the collision rate and ultimately

reduces the monitoring accuracy of Dapper. To address this limitation, we propose

two solutions: (i) Dapper’s software equivalent (which uses libpcap and BPF) can be

used in the hypervisor in public clouds. The software environment will have much

more memory for storing, however, the measurement process will consume the end-

host’s CPU instead of the edge switch. Some of the CPU cost could be mitigated

via batch-processing [70] and fast packet I/O such as netmap [83]. (ii) Sampling and

triggering, as discussed in Section 4.5, can help us cope with the limited capacity.

Monitoring in the network removes packet capturing and processing overhead from

the end hosts, and enables the network to adapt in real time to the diagnosis results.

Implementing Dapper in the dataplane via P4 introduces limitations that a purely

software solution may avoid. Yet, P4 embodies some of the capabilities at the edge

(e.g. stateful programming) and provides a realistic environment. We believe that the

115

modest overheads are an acceptable price to pay for the flexibility of automatically

embedding Dapper in a wide range of existing edge architectures.

4.8 Related Work

We have categorized the existing related work to Dapper:

Offline packet trace analysis: Several tools analyze packet traces to find perfor-

mance limitation [116, 11, 97] for a known TCP variant. Some [110] store packet

headers that facilitate diagnosis via running queries on headers. However, offline

analysis makes this category unsuitable for real-time diagnosis and introduces large

data-collection overhead.

Measurement in the core: Some tools use coarse-grained metrics collected on

switches, e.g., 5-minute SNMP counters [109]. Such metrics are not sufficiently fine-

grained to diagnose the sources of poor performance [6]; others [66] focus on coordina-

tion between network switches to ensure the full packet stream is analyzed. Instead,

we rely on the “edge” for better visibility and a simpler solution.

Instrumenting the network stack: Existing end-host techniques [95, 96, 105, 115]

are invasive and consume resources as they would run inside the server end-hosts.

Trumpet [70], similar to Dapper, tracks packets at the hypervisor with the goal of

providing a network-wide event monitoring system, but would still rely on the network

operators to write diagnosis predicates.

Tomography: Network tomography infers link-level properties (e.g., loss , delay)

from end-to-end measurements [18, 72, 19, 73, 90, 32] and may use linear [23, 38] or

Boolean algebra [38, 106, 61] to find congested links. Our work differs from this body

of work since we rely on direct and continuous measurement of performance instead.

Tomography can be complementary to Dapper, e.g., to locate the congested link(s)

among network-limited connections.

116

Machine learning: Recent work [4] makes the case for using machine learning (ML)

in connection’s performance diagnosis. Our solution differs in several aspects: first,

instead on relying on ML, we leverage the fact that TCP is a well studied protocol

and derive techniques based on common characteristics of TCP and its interaction

with applications. Second, our solution is agnostic to application and TCP variant,

while the ML would require new training for each variant.

Congestion control from the “edge”: To enable new congestion control algo-

rithms in multi-tenant clouds, [34] offers virtualized congestion control in the hyper-

visor. Similarly, [53] enforces congestion control in the vswitch without cooperation

from the tenant VM.

4.9 Conclusion

Dapper helps CDN operators diagnose TCP connections directly in the network, at

line rate, and without instrumenting the end-host servers. We use TCP domain

knowledge to draw inferences about the internal state of the connections to find if a

connection if limited by the sender, the network, or the receiver.

117

Chapter 5

Conclusion

In this thesis, we presented three systems for managing CDN performance. First, we

presented CAM to allocate resources efficiently across the CDN platform by including

the impact of cache misses. We use real workloads served by Akamai to choose and

verify a model that best describes the relationship between the cache size and cache

miss rate, and we showed that by efficient allocation of disk shares on edge servers we

can enhance the performance, even with current mapping and placement algorithms

in place. In CAM we model the client-perceived performance by network latency or

geographical distance; however, the end-user’s performance can be impacted by many

other factors across the end-to-end path. To diagnose all such problems, we presented

Diva.

Diva offers a chunk-based end-to-end methodology to diagnose problems within

a video streaming session. Diva collects client-side information from a video player,

and joins it with the server-side data and TCP connection statistics collected on the

CDN servers, to build a complete and end-to-end view of the video delivery path that

can diagnose many problems for the first time. Diva is the first end-to-end dataset in

the video streaming literature that joins the client-side and server-side dataset and

can offer ground truth in the real sources of poor performance. Diva faced some

118

limitations in the frequency of TCP statistics collection from the kernels, because

the measurement and storage overhead of fine-grained TCP monitoring is high for an

operational setting. To handle this problem, we present Dapper.

Dapper is a real-time TCP diagnostic system that runs at line-rate at the edge

device, hence does not limit the edge servers or consume their resources. Dapper

reconstructs the internal state of a TCP connection on the edge switch based on

the incoming and outgoing packet stream, without cooperation from the OS or the

application. Dapper uses the P4 language, which is among the recent frameworks

for stateful programmable data planes, and offers new capabilities such as flexible

parsing and registers that maintain state, which makes the detection and diagnosis

of TCP performance problems possible directly in the data plane. Dapper allows

the diagnosis framework to dig deeper into the network metrics and find if a TCP

connection is limited by the sender, receiver, or then network.

5.1 Future Work

While we have presented our work on CDN performance management, there are many

opportunities available for extending the scope of this thesis. Currently, we are work-

ing on our disk allocation algorithm in CAM to have an online version that can react

to changes in cost (e.g., congestion in the network can change the latency costs),

popularity distribution (e.g., certain CPs can have temporary trendy objects), and

demands (e.g., peak vs. off-peak hours, or weekdays vs. weekends). We have devel-

oped a simple online greedy algorithm based on the convexity of the optimization.

Our future work includes further analysis to understand (1) how well does our greedy

algorithm converge to the offline optimal solution, (2) what is a good minimum size for

disk allocation (i.e., unit of disk reallocation), and (3) how often should the resources

be reallocated, which requires more characterization of variance within popularity

119

and demand. Next, we plan to expand the model we currently use in CAM to include

the cache hierarchy (i.e., peers and parents). Finally, we plan to go back to the CDN

join optimization problem and explore new solutions via either search optimization

techniques (e.g., simulated annealing), or iterative optimization.

120

Bibliography

[1] A. Aggarwal, S. Savage, and T. Anderson. Understanding the performance of
TCP pacing. In IEEE INFOCOM, 2000.

[2] Vaneet Aggarwal, Emir Halepovic, Jeffrey Pang, Shobha Venkataraman, and
He Yan. Prometheus: Toward quality-of-experience estimation for mobile apps
from passive network measurements. In Workshop on Mobile Computing Sys-
tems and Applications, 2014.

[3] Saamer Akhshabi, Ali C. Begen, and Constantine Dovrolis. An experimental
evaluation of rate-adaptation algorithms in adaptive streaming over HTTP. In
ACM Conference on Multimedia Systems, 2011.

[4] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf Schuster, and Geoff
Outhred. Taking the blame game out of data centers operations with netpoirot.
In Proc. ACM SIGCOMM, 2016.

[5] Apache Traffic Server. http://trafficserver.apache.org.

[6] Paramvir Bahl, Ranveer Chandra, Albert Greenberg, Srikanth Kandula,
David A. Maltz, and Ming Zhang. Towards highly reliable enterprise network
services via inference of multi-level dependencies. In Proc. ACM SIGCOMM,
2007.

[7] S. Bakiras. Approximate server selection algorithms in content distribution
networks. In IEEE International Conference on Communications, 2005.

[8] Athula Balachandran, Vyas Sekar, Aditya Akella, and Srinivasan Seshan. Ana-
lyzing the potential benefits of CDN augmentation strategies for internet video
workloads. In Proc. ACM IMC, 2013.

[9] A. Balamash and M. Krunz. An overview of web caching replacement algo-
rithms. Commun. Surveys Tuts., 2004.

[10] A. Barbir, B. Cain, R. Nair, and O. Spatscheck. Known content network (cn)
request-routing mechanisms. RFC 3568, RFC Editor, July 2003.

[11] Paul Barford and Mark Crovella. Critical path analysis of TCP transactions.
In Proc. ACM SIGCOMM, 2000.

121

http://trafficserver.apache.org

[12] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cascone.
Openstate: Programming platform-independent stateful openflow applications
inside the switch. ACM SIGCOMM CCR, 2014.

[13] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. Hyperbolic
caching: Flexible caching for web applications. In USENIX ATC, Santa Clara,
CA, 2017.

[14] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming protocol-independent packet processors. ACM
SIGCOMM CCR, 2014.

[15] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown,
Martin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding metamor-
phosis: Fast programmable match-action processing in hardware for SDN. In
Proc. ACM SIGCOMM, 2013.

[16] Lawrence S Brakmo, Sean W O’Malley, and Larry L Peterson. TCP Vegas: New
techniques for congestion detection and avoidance, volume 24. ACM, 1994.

[17] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker. Web caching and
zipf-like distributions: evidence and implications. In Proc. IEEE INFOCOM,
volume 1, Mar 1999.

[18] R. Caceres, N. G. Duffield, J. Horowitz, and D. F. Towsley. Multicast-based
inference of network-internal loss characteristics. IEEE Transactions on Infor-
mation Theory, 1999.

[19] R. Caceres, N.G. Duffield, S.B. Moon, and D. Towsley. Inference of internal
loss rates in the mbone. In Proc. GLOBECOM, 1999.

[20] The CAIDA UCSD 2013 internet traces - 2013/05/29. http://data.caida.

org/datasets/passive-2013.

[21] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra
Padhye. Analyzing the performance of an anycast cdn. In Proc. ACM IMC,
2015.

[22] R. L. Carter and M. E. Crovella. Server selection using dynamic path charac-
terization in wide-area networks. In Proc. of IEEE INFOCOM, 1997.

[23] Rui Castro, Mark Coates, Gang Liang, Robert Nowak, and Bin Yu. Network
tomography: recent developments. Statistical Science, 2004.

[24] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and Sue
Moon. I tube, you tube, everybody tubes: Analyzing the world’s largest user
generated content video system. In Proc. of ACM IMC, 2007.

122

http://data.caida.org/datasets/passive-2013
http://data.caida.org/datasets/passive-2013

[25] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and Sue
Moon. Analyzing the video popularity characteristics of large-scale user gener-
ated content systems. IEEE/ACM Transactions on Networking, 17(5), October
2009.

[26] Changhoon Kim, Co-chair of P4 Language Design Working Group, personal
communication.

[27] Hao Che, Ye Tung, and Zhijun Wang. Hierarchical web caching systems: Mod-
eling, design and experimental results. IEEE Journal on Selected Areas in
Communications, 20(7), September 2006.

[28] Umesh Chejara, Heung-Keung Chai, and Hyunjoon Cho. Performance compar-
ison of different cache-replacement policies for video distribution in cdn. High
Speed Networks and Multimedia Communications, 2004.

[29] Fangfei Chen, Ramesh K. Sitaraman, and Marcelo Torres. End-user mapping:
Next generation request routing for content delivery. In Proc. of ACM SIG-
COMM. ACM, 2015.

[30] Weibo Chu, Mostafa Dehghan, Don Towsley, and Zhi-Li Zhang. On allocat-
ing cache resources to content providers. In Proce. of ACM Conference on
Information-Centric Networking, 2016.

[31] Cloudflare. https://www.cloudflare.com.

[32] Mark Coates, Rui Castro, Robert Nowak, Manik Gadhiok, Ryan King, and
Yolanda Tsang. Maximum likelihood network topology identification from edge-
based unicast measurements. In Proc. ACM SIGMETRICS, 2002.

[33] Edward G. Coffman, Jr. and Peter J. Denning. Operating Systems Theory.
Prentice Hall Professional Technical Reference, 1973.

[34] Bryce Cronkite-Ratcliff, Aran Bergman, Shay Vargaftik, Madhusudhan Ravi,
Nick McKeown, Ittai Abraham, and Isaac Keslassy. Virtualized congestion
control. In Proc. ACM SIGCOMM, 2016.

[35] Asit Dan and Don Towsley. An approximate analysis of the lru and fifo buffer
replacement schemes. In Proc. of ACM SIGMETRICS. ACM, 1990.

[36] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, K. Papagiannaki, and
P. Steenkiste. Identifying the root cause of video streaming issues on mobile
devices. In CoNext, 2015.

[37] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Gan-
jam, Jibin Zhan, and Hui Zhang. Understanding the impact of video quality
on user engagement. In ACM SIGCOMM, 2011.

123

https://www.cloudflare.com

[38] N. Duffield. Network tomography of binary network performance characteris-
tics. IEEE Trans. on Information Theory, 2006.

[39] Akamai edgescape brochure. http://www.akamai.com/dl/brochures/

edgescape.pdf.

[40] Jairo Esteban, Steven A. Benno, Andre Beck, Yang Guo, Volker Hilt, and Ivica
Rimac. Interactions between HTTP adaptive streaming and TCP. In Workshop
on Network and Operating System Support for Digital Audio and Video, 2012.

[41] ActionScript 3.0 reference for the Adobe Flash. http://help.adobe.

com/en_US/FlashPlatform/reference/actionscript/3/flash/net/

FileReference.html.

[42] Michael J. Freedman, Mythili Vutukuru, Nick Feamster, and Hari Balakrishnan.
Geographic locality of ip prefixes. In IMC, 2005.

[43] Christine Fricker, Philippe Robert, and James Roberts. A versatile and accurate
approximation for LRU cache performance. CoRR, abs/1202.3974, 2012.

[44] Aditya Ganjam, Junchen Jiang, Xi Liu, Vyas Sekar, Faisal Siddiqi, Ion Stoica,
Jibin Zhan, and Hui Zhang. C3: Internet-scale control plane for video quality
optimization. In USENIX NSDI, 2015.

[45] Michele Garetto, Emilio Leonardi, and Valentina Martina. A unified approach
to the performance analysis of caching systems. ACM Transactions on Modeling
and Performance Evaluation of Computing Systems, 2016.

[46] Panagiotis Georgopoulos, Yehia Elkhatib, Matthew Broadbent, Mu Mu, and
Nicholas Race. Towards network-wide QoE fairness using OpenFlow-assisted
adaptive video streaming. In ACM SIGCOMM Workshop on Future Human-
centric Multimedia Networking, 2013.

[47] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. Dapper: Data
plane performance diagnosis of tcp. In Proc. of ACM SOSR, 2017.

[48] Mojgan Ghasemi, Partha Kanuparthy, Ahmed Mansy, Theophilus Benson, and
Jennifer Rexford. Performance characterization of a commercial video streaming
service. In Proc. of ACM IMC, 2016.

[49] Monia Ghobadi, Yuchung Cheng, Ankur Jain, and Matt Mathis. Trickle: Rate
limiting YouTube video streaming. In USENIX Annual Technical Conference,
2012.

[50] James D. Guyton and Michael F. Schwartz. Locating nearby copies of replicated
internet servers. In Proc. of the Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication, SIGCOMM ’95, 1995.

124

http://www.akamai.com/dl/brochures/edgescape.pdf
http://www.akamai.com/dl/brochures/edgescape.pdf
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/FileReference.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/FileReference.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/FileReference.html

[51] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: A new tcp-friendly high-speed
tcp variant. ACM SIGOPS Oper. Syst. Rev., July 2008.

[52] G. Hasslinger and O. Hohlfeld. The gilbert-elliott model for packet loss in
real time services on the internet. In Measuring, Modelling and Evaluation of
Computer and Communication Systems (MMB), March 2008.

[53] Keqiang He, Eric Rozner, Kanak Agarwal, Yu (Jason) Gu, Wes Felter, John
Carter, and Aditya Akella. AC/DC TCP: Virtual congestion control enforce-
ment for datacenter networks. In Proc. ACM SIGCOMM, 2016.

[54] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. The newreno modification
to tcp’s fast recovery algorithm. RFC 6582, RFC Editor, April 2012. http:

//www.rfc-editor.org/rfc/rfc6582.txt.

[55] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. A buffer-based approach to rate adaptation: Evidence from a large
video streaming service. In ACM SIGCOMM, 2014.

[56] V. Jacobson. Congestion avoidance and control. In Symposium Proceedings on
Communications Architectures and Protocols, 1988.

[57] Manish Jain and Constantinos Dovrolis. End-to-end available bandwidth: Mea-
surement methodology, dynamics, and relation with TCP throughput. In Proc.
ACM SIGCOMM, 2002.

[58] Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang. Shedding light on the
structure of internet video quality problems in the wild. In ACM CoNext, 2013.

[59] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving fairness, efficiency, and
stability in HTTP-based adaptive video streaming with FESTIVE. In ACM
CoNext, 2012.

[60] P. Karn and C. Partridge. Improving round-trip time estimates in reliable
transport protocols. In Proc. of the ACM Workshop on Frontiers in Computer
Communications Technology, SIGCOMM, 1988.

[61] R.R. Kompella, J. Yates, Albert Greenberg, and A.C. Snoeren. Detection and
localization of network black holes. In IEEE INFOCOM, 2007.

[62] Rupa Krishnan, Harsha V. Madhyastha, Sridhar Srinivasan, Sushant Jain,
Arvind Krishnamurthy, Thomas Anderson, and Jie Gao. Moving beyond end-
to-end path information to optimize CDN performance. In IMC, 2009.

[63] S. Shunmuga Krishnan and Ramesh K. Sitaraman. Video stream quality im-
pacts viewer behavior: Inferring causality using quasi-experimental designs. In
Proc. ACM IMC, 2012.

125

http://www.rfc-editor.org/rfc/rfc6582.txt
http://www.rfc-editor.org/rfc/rfc6582.txt

[64] It’s latency, stupid. https://rescomp.stanford.edu/~cheshire/rants/

Latency.html.

[65] Xi Liu, Florin Dobrian, Henry Milner, Junchen Jiang, Vyas Sekar, Ion Stoica,
and Hui Zhang. A case for a coordinated Internet video control plane. In ACM
SIGCOMM, 2012.

[66] Xuemei Liu, Meral Shirazipour, Minlan Yu, and Ying Zhang. Mozart: Temporal
coordination of measurement. In Proc. ACM SOSR, 2016.

[67] Bruce M. Maggs and Ramesh K. Sitaraman. Algorithmic nuggets in content
delivery. SIGCOMM CCR, July 2015.

[68] MATLAB. version 9.10.441655 (r2016b), 2016.

[69] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques
for storage hierarchies. IBM Systems Journal, June 1970.

[70] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. Trumpet:
Timely and precise triggers in data centers. In Proc. of ACM SIGCOMM, 2016.

[71] T. R. Gopalakrishnan Nair and P. Jayarekha. A rank based replacement policy
for multimedia server cache using zipf-like law. CoRR, abs/1003.4062, 2010.

[72] Hung X. Nguyen and Patrick Thiran. Binary versus analogue path monitoring
in IP networks. In Proc. PAM, 2005.

[73] Hung X. Nguyen and Patrick Thiran. Network loss inference with second order
statistics of end-to-end flows. In Proc. ACM IMC, 2007.

[74] Nmap. http://www.nmap.org.

[75] Frank Olken. Efficient methods for calculating the success function of fixed-
space replacement policies. Technical report, Lawrence Berkeley Lab., CA
(USA), 1981.

[76] The P4 language specification, version 1.0.2. http://p4.org/wp-content/

uploads/2015/04/p4-latest.pdf.

[77] V. Paxson and M. Allman. Computing TCP’s Retransmission Timer. RFC
2988 (Proposed Standard), 2000. Obsoleted by RFC 6298.

[78] Louis Plissonneau and Ernst Biersack. A longitudinal view of HTTP video
streaming performance. In Multimedia Systems Conference, 2012.

[79] Stefan Podlipnig and Laszlo Böszörmenyi. A survey of web cache replacement
strategies. ACM Comput. Surv., December 2003.

[80] Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar, Benoit Donnet, and Bamba
Gueye. IP geolocation databases: Unreliable? ACM SIGCOMM CCR, 2011.

126

https://rescomp.stanford.edu/~cheshire/rants/Latency.html
https://rescomp.stanford.edu/~cheshire/rants/Latency.html
http://www.nmap.org
http://p4.org/wp-content/uploads/2015/04/p4-latest.pdf
http://p4.org/wp-content/uploads/2015/04/p4-latest.pdf

[81] David M. W. Powers. Applications and explanations of zipf’s law. In Proc. of the
Joint Conferences on New Methods in Language Processing and Computational
Natural Language Learning. Association for Computational Linguistics, 1998.

[82] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-aware over-
lay construction and server selection. In Proc. of Twenty-First Annual Joint
Conference of the IEEE Computer and Communications Societies, 2002.

[83] Luigi Rizzo. netmap: A novel framework for fast packet i/o. In USENIX ATC,
2012.

[84] Elisha J. Rosensweig, Jim Kurose, and Don Towsley. Approximate models for
general cache networks. In Proc. of IEEE INFOCOM, 2010.

[85] John P. Rula and Fabian E. Bustamante. Behind the curtain: Cellular dns and
content replica selection. In Proc. ACM IMC, 2014.

[86] Sandvine: Global Internet phenomena report 2015. https://www.sandvine.

com/trends/global-internet-phenomena/.

[87] S. Sen, J. Rexford, and D. Towsley. Proxy prefix caching for multimedia streams.
In IEEE INFOCOM, 1999.

[88] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon Kim, Nick Feamster,
Nick McKeown, and Jennifer Rexford. Pisces: A programmable, protocol-
independent software switch. In Proc. ACM SIGCOMM, 2016.

[89] A. Shaikh, R. Tewari, and M. Agrawal. On the effectiveness of dns-based server
selection. In Proc. of IEEE INFOCOM. Conference on Computer Communi-
cations. Twentieth Annual Joint Conference of the IEEE Computer and Com-
munications Society (Cat. No.01CH37213), 2001.

[90] Y. Shavitt, Xiaodong Sun, A. Wool, and B. Yener. Computing the unmeasured:
An algebraic approach to internet mapping. In Proc. IEEE INFOCOMM, 2001.

[91] Shan-Hsiang Shen and Aditya Akella. An information-aware qoe-centric mobile
video cache. In Proc. of MobiCom, 2013.

[92] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Moham-
mad Alizadeh, Hari Balakrishnan, George Varghese, Nick McKeown, and Steve
Licking. Packet transactions: High-level programming for line-rate switches. In
Proc. of ACM SIGCOMM, 2016.

[93] Han Hee Song, Zihui Ge, Ajay Mahimkar, Jia Wang, Jennifer Yates, Yin Zhang,
Andrea Basso, and Min Chen. Q-score: Proactive service quality assessment in
a large IPTV system. In IMC, 2011.

[94] Haoyu Song. Protocol-oblivious forwarding: Unleash the power of sdn through
a future-proof forwarding plane. In Proc. of ACM SIGCOMM HotSDN, 2013.

127

https://www.sandvine.com/trends/global-internet-phenomena/
https://www.sandvine.com/trends/global-internet-phenomena/

[95] Peng Sun, Minlan Yu, Michael J. Freedman, and Jennifer Rexford. Identifying
performance bottlenecks in CDNs through TCP-level monitoring. In ACM
SIGCOMM Workshop on Measurements Up the Stack, 2011.

[96] Peng Sun, Minlan Yu, Michael J. Freedman, Jennifer Rexford, and David
Walker. HONE: Joint host-network traffic management in software-defined net-
works. Journal of Network and Service Management, 2015.

[97] tcptrace. http://tcptrace.org/.

[98] Guibin Tian and Yong Liu. Towards agile and smooth video adaptation in
dynamic HTTP streaming. In CoNext, 2012.

[99] Open read retry timer. https://docs.trafficserver.apache.org/en/4.2.

x/admin/http-proxy-caching.en.html#open-read-retry-timeout.

[100] Tom Tofigh and Nic Viljoen. Dynamic analytics for programmable NICs uti-
lizing p4 - identification and custom tagging of elastic telecoms traffic. http:

//p4.org/wp-content/uploads/2016/06/P4-Poster-Netronome-ATT.pdf.

[101] Ruben Torres, Alessandro Finamore, Jin Ryong Kim, Marco Mellia, Maur-
izio M. Munafo, and Sanjay Rao. Dissecting video server selection strategies
in the YouTube CDN. In International Conference on Distributed Computing
Systems, 2011.

[102] Anna Saro Vijendran and S. Thavamani. Survey of caching and replica place-
ment algorithm for content distribution in peer to peer overlay networks. In
Proc. International Conference on Computational Science, Engineering and In-
formation Technology, 2012.

[103] Jia Wang. A survey of web caching schemes for the internet. ACM SIGCOMM
CCR., 29(5), October 1999.

[104] Nicholas Weaver, Christian Kreibich, Martin Dam, and Vern Paxson. Here be
web proxies. In PAM, 2014.

[105] The Web10G project. http://www.web10g.org.

[106] Wei Wei, Bing Wang, Don Towsley, and Jim Kurose. Model-based identification
of dominant congested links. In Proc. of ACM IMC, 2003.

[107] Patrick Wendell, Joe Wenjie Jiang, Michael J. Freedman, and Jennifer Rex-
ford. Donar: Decentralized server selection for cloud services. In Proc. ACM
SIGCOMM, 2010.

[108] Kin-Yeung Wong. Web cache replacement policies: A pragmatic approach.
IEEE Network, Jan 2006.

128

http://tcptrace.org/
https://docs.trafficserver.apache.org/en/4.2.x/admin/http-proxy-caching.en.html#open-read-retry-timeout
https://docs.trafficserver.apache.org/en/4.2.x/admin/http-proxy-caching.en.html#open-read-retry-timeout
http://p4.org/wp-content/uploads/2016/06/P4-Poster-Netronome-ATT.pdf
http://p4.org/wp-content/uploads/2016/06/P4-Poster-Netronome-ATT.pdf
http://www.web10g.org

[109] L4Xin Wu, Daniel Turner, Chao-Chih Chen, David A. Maltz, Xiaowei Yang,
Lihua Yuan, and Ming Zhang. Netpilot: Automating datacenter network failure
mitigation. ACM SIGCOMM CCR, 2012.

[110] Wenfei Wu, Guohui Wang, Aditya Akella, and Anees Shaikh. Virtual network
diagnosis as a service. In Symposium on Cloud Computing, 2013.

[111] Xing Xu, Yurong Jiang, Tobias Flach, Ethan Katz-Bassett, David Choffnes,
and Ramesh Govindan. Investigating Transparent Web Proxies in Cellular Net-
works. In Proc. of PAM, 2015.

[112] Hao Yin, Xuening Liu, Feng Qiu, Ning Xia, Chuang Lin, Hui Zhang, Vyas
Sekar, and Geyong Min. Inside the bird’s nest: Measurements of large-scale
live VoD from the 2008 olympics. In Proc. ACM IMC, 2009.

[113] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A control-
theoretic approach for dynamic adaptive video streaming over HTTP. In Proc.
ACM SIGCOMM, 2015.

[114] Youtube statistics. https://www.youtube.com/yt/press/statistics.html.

[115] Minlan Yu, Albert Greenberg, Dave Maltz, Jennifer Rexford, Lihua Yuan,
Srikanth Kandula, and Changhoon Kim. Profiling network performance for
multi-tier data center applications. In Proc. NSDI, 2011.

[116] Yin Zhang, Lee Breslau, Vern Paxson, and Scott Shenker. On the characteristics
and origins of Internet flow rates. In Proc. ACM SIGCOMM, 2002.

129

https://www.youtube.com/yt/press/statistics.html

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Sources of Poor Performance
	1.2 Techniques For Managing CDN Performance
	1.3 The Steps in Managing the Performance

	2 Cache-Aware Mapping
	2.1 Introduction
	2.2 Impact of Cache Misses
	2.3 CDN Resource Allocation Problems
	2.4 Unified Performance Model
	2.4.1 Goals of a CDN
	2.4.2 Inputs and Notations
	2.4.3 Unified Performance Model
	2.4.4 Solving the Unified Performance Model

	2.5 Modeling Cache Miss Rates
	2.5.1 Approximation Models for Cache Miss Rate

	2.6 Dataset
	2.7 Results of Disk Optimization
	2.8 Discussion and Limitations
	2.9 Related Work

	3 Diagnosis of Internet Video Anomalies
	3.1 Introduction
	3.2 Chunk Performance Monitoring
	3.2.1 Chunk Instrumentation
	3.2.2 Per-session Instrumentation

	3.3 Measurement Dataset
	3.4 Characterizing Performance
	3.4.1 Server-side Performance Problems
	3.4.2 Network Performance Problems
	3.4.3 Client's Download Stack
	3.4.4 Client's Rendering Stack

	3.5 Discussion
	3.6 Related Work
	3.7 Conclusion

	4 Data-plane Performance Diagnosis of TCP
	4.1 Introduction
	4.2 TCP Performance Monitoring
	4.2.1 Inferring Sender Statistics
	4.2.2 Inferring Network Statistics
	4.2.3 Inferring Receiver Statistics

	4.3 TCP Diagnosis Techniques
	4.4 Data-Plane Monitoring
	4.4.1 TCP Monitoring Prototype in P4
	4.4.2 Hardware Resource Constraints

	4.5 Two-Phase TCP Monitoring
	4.6 Evaluation
	4.6.1 Accuracy of Heuristics
	4.6.2 CPU and Memory Overhead
	4.6.3 Diagnosis Accuracy
	4.6.4 Analyzing CAIDA Traces
	4.6.5 Trade-offs in Accuracy and Overhead

	4.7 Discussion
	4.8 Related Work
	4.9 Conclusion

	5 Conclusion
	5.1 Future Work

	Bibliography

