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Abstract

The networks in campuses, companies, and data centers are growing larger and becoming more

complicated to manage. Today, network operators devote tremendous time and effort to three key

management tasks — routing, access control, and troubleshooting. Rather than trying to make

today’s brittle networks easier to manage, we focus on new network designs that are inherently

easier to manage and scale to many hosts, switches, and applications.

We design and develop a new management system that scales the routing, access control, and

performance diagnosis in enterprise and data center networks. The key challenges are the large

number of hosts, switches, and applications in these networks and the need for flexible policies,

while faced with strict memory and power constraints in the switches. To address these challenges,

we propose three key ideas: (1) designing new data structures and algorithms that make effective

use of limited memory in switches; (2) redirecting traffic when simple switches do not have enough

memory to handle packets; (3) rethinking the division of labor among switches, hosts, and a

centralized management system to make the network both flexible and scalable.

Based on the key ideas, we propose a new management system that addresses the scalabil-

ity challenges of routing, supporting flexible policies, and performance diagnosis with three key

components:

(i) BUFFALO: A scalable packet forwarding architecture that reduces the switch memory

usage for storing the forwarding table using Bloom filters — a compact way of representing a set

of elements. To gracefully handle the false positives caused by Bloom filters, BUFFALO sends

packets through a slightly longer path.

(ii) DIFANE: A scalable way to enforce flexible management policies from the centralized

management system to the switches. DIFANE rethinks the division of labor between the central-

ized management system and the switches, by pulling some rule processing functions back to the

switches, to achieve better scalability.

(iii) SNAP: A scalable network performance diagnosis architecture that exposes the interactions

between the network and applications in data centers. SNAP passively logs traffic statistics in the

end-host network stack and pinpoints problems that occur at the network device, network stack

and the application software.
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Our systems can be easily implemented with small modifications in today’s switches and end

hosts, as demonstrated by our prototypes built using the OpenFlow switches and Microsoft Win-

dows servers, and our evaluation using configuration data from AT&T networks and a deployment

in a production data center.
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Chapter 1

Introduction

Many networks at the edge of the Internet—in campuses, companies, data centers, and homes—

are growing larger in recent years and are becoming the important components of the Internet. To

manage these networks, campuses, companies, and data centers usually need a huge army of people

to perform daily management tasks such as registering new devices, assigning network addresses,

configuring routing policies, setting up firewalls, troubleshooting, and maintaining efficient and

reliable network connectivity. According to a Yankee group report [2], in most enterprises, network

management is responsible for 80% of the IT budget and 62% of the outages.

The key question that this thesis answers is how to build a management system that both

flexibly supports various management tasks and scales with the growth of these edge networks.

1.1 Edge Networks and Their Scalability Challenges

Edge networks are those networks that are located at the edge of the Internet, such as enterprise

networks (i.e., networks in campuses and corporations) and data center networks. These networks

have grown dramatically in the number of hosts, switches, and applications. The management of

these networks is getting more complex because operators have to assign network addresses for each

device, configure routing policies for each host and application, set up firewalls, and troubleshoot.

It is a challenging problem to scale the management of these networks because the networks are

growing large with complex management tasks, but only have cheap, simple switches.

1



1.1.1 Edge Networks Are Large

Large enterprises can easily have tens to hundreds of thousands of heterogeneous hosts such as

laptops, mobile phones, desktops and computing clusters [3]. Some hosts can move around to

different locations in the enterprise. There are thousands of switches and routers connecting these

hosts together. There are also hundreds of applications running on these hosts with different traffic

patterns and performance requirements.

Data center networks can easily have hundreds of thousands of servers with tens of virtual

machines on each server. These virtual machines can migrate to different servers. There are

multiple layers of switches connecting these servers. Data center applications include many map-

reduce jobs, search applications, and cloud storage applications and have stricter performance

requirements than enterprise applications.

1.1.2 Edge Networks Need Fine-grained Policies

Operators of the enterprise and data center networks have many considerations for network man-

agement such as security, mobility, application performance, energy consumption, cost saving,

debugging and maintenance, etc. To express these management considerations, operators need

to specify fine-grained policies for different types of traffic. Here are some example types of fine-

grained policies:

Routing: Different applications have different requirements for routing. For example, a banking

application may require secure paths that malicious users do not have access to; a video streaming

application may need high-bandwidth paths; the financial applications that exchange real-time

stock information may need low-latency paths.

Access control: Operators use access control rules to block the traffic from malicious users, in

order to improve the security of their networks. For example, in a medical company, operators

should make sure that attackers should not have access to the server which stores patients’ private

information. These access control rules should be fine-grained enough to capture various types of

malicious traffic without affecting the normal traffic.

Measurement: Operators need to measure the behaviors in the network for accounting, anomaly

detection, troubleshooting, and traffic engineering. For example, cloud providers need to accurately
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count the traffic from different users and applications in order to charge the users for the bandwidth

they use. Operators in data centers may need to identify the large flows in the network to better

configure their routing for traffic engineering (A flow is a sequence of packets that share the same

packet header properties such as source address/port, destination address/port, and/or protocol).

1.1.3 Simple, Cheap Switches Have Limited Memory

Unfortunately, to support ever growing networks with more complicated policies, there are only

simple and cheap switches in today’s enterprise and data center networks. This is because these

switches must process each packet within hundreds of nanoseconds to support high link speeds

(e.g., 10 Gbps, 40 Gbps and more). To store the state needed to process these packets, the switches

must use expensive, power-hungry on-chip memory. Due to cost and power constraints, the switch

memory is limited in size.

There are two types of memory in switches — SRAM (Static Random-Access Memory) and

TCAM (Ternary Content-Addressable Memory): The SRAM is used for direct lookup of key-value

pairs. For example, the SRAM in switches is used to store forwarding tables which match the

destination MAC addresses to the outgoing interfaces. In contrast, the TCAM is used for wildcard

matching where the keys can contain not only 0s and 1s, but also “don’t care” bits. For example,

the TCAM is used to store ACLs (Access Control Lists) at switches, which permit, block, or

rate-limit the flows whose packet headers match the patterns defined in the ACLs. The SRAM is

much cheaper and consume less power than the TCAM.

While the switch memory is very small due to its cost and energy constraints1, operators hope

to store a lot of state in the switch. For example, just to perform the simple forwarding action,

each switch may need to store 10K entries for an enterprise network with 10K hosts, because one

entry is needed for each host destination. Furthermore, switches may need to provide different

access control policies and quality of service (QoS) to different users and applications — requiring

even more memory. Switches may also need to maintain counters for specific flows for accounting

and diagnosis.

1The study [4] shows that a 48-port switch takes about 100-200 Watts power.
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Figure 1.1: Three layers in today’s management systems.

1.2 Management of Today’s Edge Networks

To address the scalability challenges of enterprise and data center networks, most research focuses

on making them faster and more efficient. However, the management of these edge networks is an

important yet under-explored area in networking research.

There are three key scalability challenges of managing enterprise and data center networks:

How to make the basic function of routing scale with many hosts and switches? How to scalably

enforce fine-grained polices at switches? How to diagnose performance problems with many hosts

and complicated applications?

Today, all these management tasks are performed with a three-layer architecture as shown in

Figure 1.1. The first layer is the data plane—the fast path of these networks that actually processes

packets. The data plane usually has fast on-chip memory such as SRAM and TCAM to store the

network state and packet processing rules. The second layer is the control plane—the brains of the

networks that run protocols to decide how to handle traffic. The third layer is the management

plane—the place where operators configure policies. Switches and routers from different vendors

typically have different data plane implementations, all of which only support limited policies. In

addition, the control plane is tightly bundled with the data plane. Therefore, different switches

and routers may have different control plane APIs and different levels of protocol support, making

management even harder. As a result, operators have to configure individual network devices

separately in an offline fashion, sometimes even manually. For example, to prevent attackers from

accessing the web server, operators have to identify the IP or MAC addresses of all the attackers’
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machines, locate the routers that direct traffic to the web server, and then install ACLs at these

routers.

Now, we will describe how the key management tasks — routing, access control, and diagno-

sis — are done in today’s networks with the three layer architecture. We will also discuss the

scalability limitations in this architecture.

1.2.1 Hybrids of Ethernet Islands Connected by IP Routers

In an Ethernet network, hosts are allocated with MAC addresses and the switches forward Ethernet

frames based on their destination MAC addresses. The MAC address is tied to the device and

is independent of the hosts’ locations. Thus, MAC addresses are a good choice for the enterprise

networks where laptops and mobile devices are moving frequently and data center networks where

virtual machine migration is common.

To deliver traffic, the switches cooperate to construct a spanning tree in the control plane to

provide loop-free routing paths. In the data plane, each switch maintains a forwarding table which

records how to reach different destinations. When a switch receives a frame and it contains no

forwarding-table entry for the frame’s destination MAC address, the switch floods each frame over

the entire spanning tree. The switch learns how to reach a MAC address by remembering the

incoming link for frames with a particular source MAC addresses and saving the mapping.

However, these Ethernet protocols do not scale to large networks: MAC addresses cannot be

aggregated, so we need one entry for each destination at each switch. Flooding requires large

amounts of state and control messages that grow with the size of the network [5]. Since spanning

tree networks can leave some links completely unused, they fail to take advantage of multiple

paths for higher bisectional bandwidth. Two nodes near each other may have to reach each other

through much longer paths if the shorter paths are not in the spanning tree. Sometimes, operators

must configure the switches carefully so that the switches can construct a spanning tree with low

latency for most pairs of nodes [6]. When a link or node fails, operators have to reconfigure the

entire network to construct a new spanning tree with low latency for most nodes.

To address the scalability and efficiency problems of the Ethernet, most enterprise and data

center networks today use small Ethernet islands interconnected by routers. The network is divided

into many Ethernet islands, each with only a limited number of hosts. Within each Ethernet island,
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MAC addresses are used to support host mobility and run spanning tree protocols to route packets.

Each Ethernet island is allocated with an IP subnet (i.e., the list of IP addresses that belongs to the

same IP prefix). A few IP routers deliver traffic based on the IP subnet a destination host belong

to. IP routers make Ethernet more scalable at the expense of configuration complexity. Since IP

addresses represent the locations of hosts, it is very hard to support host mobility. When hosts

move between Ethernet islands, these hosts must get new IP addresses or the routing configuration

at routers should change.

1.2.2 Policy Support with Access Control Lists Between Virtual LANs

In order to support flexible policies (e.g., customized routing, access control, and measurement),

operators group hosts sharing the same networking requirements using Virtual Local Area Net-

works (VLANs), instead of grouping hosts based on their locations. Each VLAN is usually allo-

cated an IP subnet, and hosts within the VLAN communicate using Ethernet protocols. Between

VLANs, there are some routers where operators can specify policies such as configuring different

queues with different quality of service (QoS), installing access control lists that block malicious

flows, or counting the amount of traffic from different applications.

VLANs can only support limited granularity of policy because operators can only express

their management policies at a few routers located in these networks and have limited control

and measurement of the traffic. VLANs are not scalable because a network can have only a

limited number of VLANs and each VLAN can have only a limited number of hosts [6]. VLAN

configuration is complex and error-prone because operators must ensure that each host’s IP address

belongs to the IP subnet of its VLAN, and that each VLAN has an efficient spanning tree that

remains connected under common failure scenarios [6].

1.2.3 Ad-hoc Troubleshooting with Application and Network Logs

To troubleshoot for reachability and performance problems, today’s enterprise and data center

networks often collect application logs on the servers about the liveness, correctness, and perfor-

mance of applications. At switches, these networks collect SNMP (Simple Network Management

Protocol) logs about the number of bytes/packets transferred through each switch. In addition,

operators maintain trouble ticket systems where users can report their problems. For example,
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operators usually pick out the trouble ticket with the most significant problems, manually inves-

tigate the problem description in the ticket, and then look into the application logs to identify

the problem. If they find that the problem is related to the network, they will study the network

logs, or run a few tools to identify the problems (e.g., ping to test reachability, traceroute to verify

routing).

Although these logs can reveal the significant problems in these networks, it is still a challenging

job to infer the causal relations between these problems and identify the root causes. Worse still,

for large enterprises and data centers, there are application and network teams each in charge

of different components in the system. It is challenging to identify which team is responsible for

performance problems or failures. It is even more challenging to automatically report problems

when they happen, quickly point out the root causes, and fix or get around these problems in real

time before the problems start to affect application performance.

1.2.4 Summary

In summary, today’s enterprise and data center networks lack the scalability and flexibility to

support various management tasks. Often, in order to keep the networks manageable, operators

impose a lot of restrictions on the growth of the networks and the kind of applications that can run.

Therefore, to realize the full power of the enterprise and data center networks, we should make

the network easier and less expensive to manage. Future networks should be totally transparent

to applications, so that they can use the network freely without worrying about the network

configurations and resource constraints. However, today’s networks are far from that goal.

1.3 Emerging Trends of Redesigning for Manageability

Most of these problems of managing today’s brittle networks arise from the fact that these networks

were not designed with management in mind. Yet it is challenging to simplify the management of

today’s networks. Instead, we focus on how to design future networks to make them inherently

easier to manage.

There have been several recent directions arising from the research community with the goal

of making management easier: flat addresses, shortest path routing, logically centralized control,
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Figure 1.2: Emerging techniques for better network management.

and flow-based switches (as shown in Figure 1.2). While all these trends enable more scalable and

flexible management of these edge networks, they introduce new scalability challenges in the data

plane. We will discuss the benefits of these new trends and their scalability challenges below.

1.3.1 Flat Addresses to Support Zero Configuration and Host Mobility

To avoid complex configuration and better support host mobility, new protocols with flat addresses

such as SEATTLE [5], RBridges/TRILL [7, 8] and SPBM (Shortest-Path Bridging MAC) [9] have

been proposed. Each host has a fixed identifier that does not change when the host moves around,

so the host can be plugged into the network and start using the network immediately without

any extra configuration. Even when the network topology changes, administrators do not need

to reassign addresses. Furthermore, with flat addresses for routing, we can assign IP addresses to

express policies in a more aggregatable way. For example, for a campus network, we can assign

one IP prefix to the students’ machines although these machines may be located at different places

on campus. As a result, we only need a single IP prefix to express the policies for the student

group.

However, with all the hosts using MAC addresses that cannot be easily combined, we have too

many forwarding-table entries at each switch to reach a large amount of hosts.
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1.3.2 Shortest Path Routing to Improve Performance

Recent advances in Ethernet such as Rbridges/TRILL [7, 8] and SEATTLE [5] compute shortest

paths based on link weights between all pairs of hosts. We can also tune the link weights to control

the flow of traffic to minimize the delay and network congestion. Since shortest path routing uses

all the links in the network, it provides more efficient connectivity than spanning tree protocols.

We can also split traffic across multiple shortest paths, which is common in data center networks.

In addition, these shortest path routing protocols can quickly propagate link and node failure

events in the network, and automatically recalculate the new shortest paths.

1.3.3 Centralized Control to Make Policy Configuration Easier

Instead of configuring each switch and router separately, recent works propose to replace the

control-plane software at individual switches with a logically-centralized controller in the man-

agement plane [10, 11, 12, 13]. With the centralized controller, operators only need to configure

policies at a single place without worrying about reconfiguring the network when network topology

or traffic changes. The centralized controller is responsible for keeping information about the ad-

dress assignment, network topology, and routing. With this information, the centralized controller

can automatically configure the data plane of network devices to express the management policies.

The logically centralized controller imposes new scalability and reliability challenges. Instead of

making decisions on their own, the switches send the packets to the controller if they do not know

how to handle those packets, which significantly increases the load on the centralized controller [13].

The centralized controller can also be a single point of failure.

1.3.4 Flow-based Switches to Enable Fine-grained Policies

Traditional switches in enterprise and data center networks do not have much support for policies

such as customized routing, access control, and measurement. Flow-based switches [14, 15] are

proposed to support the policies. These flow-based switches perform simple actions based on rules.

The rules match on bits in the packet header (e.g., source address/port, protocol, etc.). Possible

actions include dropping packets from malicious users, forwarding packets to a specific outgoing

interface, and counting packets that belong to the web traffic. These flow-based switches are
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already available from several switch vendors (e.g., HP, NEC, etc.), and have been deployed in

several enterprises and backbones (e.g., National LambdaRail and Internet2).

With flow-based switches enabling fine-grained policies, operators can now specify new policies

that can have fine-grained control of their networks. As a result, operators may be tempted to

deploy many policies, which in turn introduce further scalability challenge of fitting these policies

into the small switch memory.

1.4 Key Design Principles

This thesis describes the design, implementation, and evaluation of new architectures that address

these key challenges: improving scalability and handling flexible policies with simple switches for

enterprise and data center networks. There are three key design principles that guide the design

of these new systems:

Traffic indirection that minimizes the state required at each switch. Switches need

to store various network state such as forwarding tables and ACLs. To minimize the state at

each switch, we propose to compress the state information or only store part of the state. As a

result, one switch may not be able to make decisions on its own. Instead, we redirect the traffic

to other switches that have stored the required state to make the decisions. In general, we reduce

switch memory usage by sending a small fraction of packets on a slightly longer path. Since most

enterprise and data center networks are local area networks with low end-to-end delay, the slightly

longer path would not introduce significant performance problems.

New data structures that work with today’s commodity switches. We design and build

new data structures for the data plane to reduce the memory usage at the switches and to support

traffic indirection. These new designs can be implemented with today’s commodity switches

without much hardware changes, because our data structures match the hardware features such as

hashing support at switches and wildcard rule support in TCAM. By leveraging the key features

in the enterprise and data center network settings (e.g., all the nodes are in a single domain,

managed by a centralized controller, and are well connected via shortest path routing), we can

guarantee the reachability, reduce the extra delay of traffic indirection, and quickly adapt to the

dynamics of these edge networks such as host mobility, traffic changes, and topology changes.
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Figure 1.3: A Scalable Management System for Edge Networks.

Rethinking the division of labor among hosts, switches and the centralized manage-

ment system. Hosts, switches, and the centralized controller are the three key components in

enterprises and data centers. It is important to place the right function at the right component to

achieve the scalability and flexibility at the same time. For example, we should place the function

of configuring high-level policies in the centralized controller to make management easier, and

process all the packets in the data plane at the switches to achieve the best performance. We also

rethink the division of labor between the network and the end hosts. For example, we place the

performance monitoring function at end hosts to leverage the computing and storage resources at

millions of end hosts.

1.5 A Scalable Management System for Edge Networks

Following the key design principles, we propose a scalable management system which consists of

three parts to scale packet forwarding, policy enforcement, and performance diagnosis as shown in

Figure 1.3. In this management system, operators can configure high-level policies at a centralized

controller. The controller enforces the high-level policies at the switches in the network, and collects

measurement data from both the switches and the end hosts to understand network behavior. To

improve the scalability of the system, we build three components: BUFFALO — a scalable packet
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forwarding data plane that provides basic network connectivity, DIFANE — a system that scalably

enforces fine-grained policies at the switches, and SNAP— a scalable performance diagnosis system

for data centers. We have built prototypes for all three parts and evaluated them with industrial

configuration data and real-world deployment.

BUFFALO [16]: A scalable packet forwarding architecture using Bloom filters and

random walks. As the link speed and the number of hosts and switches grow, simply building

switches with larger amounts of faster memory is not appealing, since high-speed memory is both

expensive and power-hungry. Given the fixed size of fast on-chip memory SRAM in switches,

BUFFALO uses a compact data structure, called a Bloom filter, to store the set of addresses

associated with each outgoing link. Bloom filters reduce SRAM usage at the expense of false

positives.If a Bloom filter reports that an address is in the set of addresses, it may not be the case.

In contrast, a Bloom filter does not have any false negatives. That is, if a Bloom filter indicates

that an address is not in the set, it must be the case. We propose a new way to gracefully

handle false positives without reducing the packet-forwarding rate, by redirecting those packets

which experience false positives through a slightly longer path. To reduce the extra delay of

packet redirection, we leverage the shortest-path routing features in enterprises and data centers.

Using random walk theory, we proved a bound of the average delay that packets could experience.

Our extensive analysis, simulation, and prototype implementation in Click (a kernel-level software

router) show that BUFFALO significantly reduces memory cost, increases the scalability of the

data plane, and improves packet-forwarding performance.

DIFANE [17]: A distributed flow-based architecture built on OpenFlow switches.

Emerging flow-based networking and commercially available OpenFlow switches [18] use a cen-

tralized controller software. With the centralized controller, enterprise administrators can easily

specify fine-grain policies to control how the underlying switches forward, drop, and measure

traffic. However, existing techniques rely too heavily on the controller to install rules based on

fine-grained policies, leading to poor scalability and high latency. DIFANE relegates the controller

to the simpler task of translating high-level policies to low-level rules, and decentralizes rule in-

stallation and all the packet processing in the underlying switches. To reduce the memory usage

of storing rules at switches, DIFANE builds a distributed rule directory service among the switches

by partitioning the rules among several switches, and selectively redirecting packets through these
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switches. DIFANE can be easily implemented with small software modifications to commercial

OpenFlow switches, as demonstrated by our prototypes built using the Click modular router. We

evaluated DIFANE on a 40-node testbed and conducted simulations of realistic topologies consist-

ing of thousands of nodes and millions of access-control rules extracted from real corporate and

campus networks.

SNAP [19]: A scalable network-application diagnosis system for data center applica-

tions. Network performance problems are notoriously difficult to diagnose, and this difficulty is

magnified when applications are often split into multiple tiers of application components spread

across thousands of servers in a data center. We observe that performance problems often arise

in the communication between the tiers, where either the application or the network (or both!)

could be to blame. Therefore, we designed and built SNAP, a scalable network-application profiler

that guides developers in identifying and fixing performance problems. SNAP passively collects

network stack information (e.g., congestion window size, send buffer size, number of packet loss,

etc.) with low computation and storage overhead. Then SNAP leverages statistical techniques to

correlate connections across shared resources (e.g., host, link, switch) to pinpoint the locations of

the performance problem. Our one-week deployment of SNAP in a production data center (with

over 8,000 servers and over 700 application components) has already helped developers uncover

15 major performance problems in application software, the network stack on the server, and the

underlying network.

The remainder of this thesis is organized as follows: Chapter 2 presents BUFFALO, the scalable

forwarding layer. Chapter 3 describes DIFANE, the scalable way to enforce flexible polices at

switches. Chapter 4 shows SNAP, the scalable diagnosis system for data center applications.

Chapter 5 discusses how the three systems work together and concludes the thesis.
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Chapter 2

BUFFALO: Scaling Packet

Forwarding on Switches

This chapter focuses on the scalability challenges for providing basic packet forwarding under flat

addressing. Simply building switches with larger amounts of faster memory is not appealing, since

high-speed memory is both expensive and power hungry. Implementing hash tables in SRAM is

not appealing either because it requires significant overprovisioning to ensure that all forwarding

table entries fit. Instead, we propose the BUFFALO architecture that provides a scalable packet

forwarding layer on switches.

BUFFALO uses a small SRAM to store one Bloom filter of the addresses associated with each

outgoing link. We provide a practical switch design leveraging flat addresses and shortest-path

routing. BUFFALO gracefully handles false positives without reducing the packet-forwarding

rate, while guaranteeing that packets reach their destinations with bounded stretch with high

probability. We tune the sizes of Bloom filters to minimize false positives for a given memory

size. We also handle routing changes and dynamically adjust Bloom filter sizes using counting

Bloom filters in slow memory. Our extensive analysis, simulation, and prototype implementation in

kernel-level Click show that BUFFALO significantly reduces memory cost, increases the scalability

of the data plane, and improves packet-forwarding performance.
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2.1 Introduction

The Ethernet switches used in today’s enterprise and data-center networks do not scale well with

increasing forwarding-table size and link speed. Rather than continuing to build switches with

ever larger and faster memory in the data plane, we believe future switches should leverage Bloom

filters for a more scalable and cost-effective solution.

2.1.1 Memory Problems in the Data Plane

Enterprises and data centers would be much easier to design and manage if the network offered

the simple abstraction of a virtual layer-two switch. End hosts could be identified directly by

their hard-coded MAC addresses, and retain these addresses as they change locations (e.g., due to

physical mobility or virtual-machine migration). The hosts could be assigned IP addresses out of

a large pool, without the artificial constraints imposed by dividing a network into many small IP

subnets. However, traditional Ethernet can only support this abstraction in small network topolo-

gies, due to a heavy reliance on network-wide flooding and spanning tree. Recent advances [7, 8, 5]

have made it possible to build much larger layer-2 networks, while still identifying hosts by their

MAC addresses. These new architectures focus primarily on improving the control plane, enabling

the use of shortest-path routing protocols (instead of spanning tree) and efficient protocols for

disseminating end-host information (instead of flooding data packets).

As these new technologies enable the construction of ever larger “flat” networks, the scala-

bility of the data plane becomes an increasingly serious problem. In today’s Ethernet and in

proposed solutions like TRILL [7, 8], each switch maintains a forwarding-table entry for each ac-

tive MAC address. Other solutions [5] cache a smaller number of end-host MAC addresses, but

still require a relatively large amount of data-plane state to reach every switch in the network.

Large networks can easily have tens or hundreds of thousands of end-host MAC addresses, due

to the proliferation of PDAs (in enterprises) and virtual machines (in data centers). In addition,

link speeds are increasing rapidly, forcing the use of ever-faster—and, hence, more expensive and

power-hungry—memory for the forwarding tables. This motivates us to explore new ways to

represent the forwarding table that require less memory and (perhaps more importantly) do not

require memory upgrades when the number of end hosts inevitably grows.
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To store the forwarding table, one simple solution is to use a hash table in SRAM to map MAC

addresses to outgoing interfaces. However, this approach requires significant overprovisioning the

fast memory for three reasons: First, when switches are out of memory, the network will either

drop packets in some architectures [7, 8] or crash in others [5]. Second, it is difficult and expensive

to upgrade the memory for all the switches in the networks. Third, collisions in hash tables (i.e.,

different destination addresses mapped to the same place in the hash table) require extra memory

overhead to handle them, and affect the throughput of the switch.

Given these memory problems in the data plane, our goal is to make efficient use of a small,

fast memory to perform packet forwarding. Such small fast memory can be the L1 or L2 cache

on commodity PCs serving as software switches, or dedicated SRAM on the line cards. When

the memory becomes limited with the growth of forwarding table, we ensure that all packet-

forwarding decisions are still handled within the SRAM, and thus allow the switches last longer

with the increase of forwarding table size.

2.1.2 The BUFFALO Forwarding Architecture

Most enterprise and data center networks are “SPAF networks”, which uses Shortest Path routing

on Addresses that are Flat (including conventional link-state, distance-vector, and spanning tree

protocols). Leveraging the unique properties in SPAF networks, we propose BUFFALO, a Bloom

Filter Forwarding Architecture for Large Organizations. BUFFALO performs the entire address

lookup for all the packets in a small, fast memory while occasionally sending the packets through

a slightly longer path.

To make all packet-forwarding decisions with a small fast memory, we use a Bloom filter [20],

a hash-based compact data structure for storing a set of elements, to perform the flat address

lookup. Similar to previous work on resource routing [20, 21]1, we construct one Bloom filter

for each next hop (i.e., outgoing link), and store all the addresses that are forwarded to that next

hop. By checking which Bloom filter the addresses match, we perform the entire address lookup

within the fast memory for all the packets. In contrast, previous work [22] uses Bloom filters to

assist packet lookup and every address lookup still has to access the slow memory at least once.

1These studies design the algorithms of locating resources by using one Bloom filter to store a list of resources
that can be accessed through each neighboring node.
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To apply our Bloom filter based solution in practice, we provide techniques to resolve three

issues:

Handling false positives: False positives are one key problem for Bloom filters. We propose a

simple mechanism to forward packets experiencing false positives without any memory overhead.

This scheme works by randomly selecting the next hop from all the matching next hops, excluding

the interface where the packet arrived. We prove that in SPAF networks the packet experiencing

one false positive (which is the most common case for the packet) is guaranteed to reach the des-

tination with constant bounded stretch. We also prove that in general the packets are guaranteed

to reach the destination with probability 1. BUFFALO gracefully degrades under higher memory

loads by gradually increasing stretch rather than crashing or resorting to excessive flooding. In

fact, in enterprise and data center networks with limited propagation delay and high-speed links,

a small increase in stretch would not run the risk of introducing network congestion. Our evalu-

ation with real enterprise and data center network topologies and traffic shows that the expected

stretch of BUFFALO is only 0.05% of the length of the shortest path when each Bloom filter has

a false-positive rate of 0.1%.

Optimizing memory and CPU usage: To make efficient use of limited fast memory, we

optimize the sizes and number of hash functions of the Bloom filters to minimize the overall false-

positive rate. To reduce the packet lookup time, we let the Bloom filters share the same group

of hash functions and reduce the memory access times for these Bloom filters. Through extensive

analysis and simulation, we show that BUFFALO reduces the memory usage by 65% compared to

hash tables.

Handling routing dynamics: Since routing changes happen on a much longer time scale than

packet forwarding, we separate the handling of routing changes from the packet forwarding and

use counting Bloom filters in the large, slow memory to assist the update of the Bloom filters. To

reduce the false-positive rate under routing changes, we dynamically adjust the sizes and number

of hash functions of Bloom filters in fast memory based on the large fixed-size counting Bloom

filters in slow memory.

We implement a prototype in the Click modular router [23] running in the Linux kernel. By

evaluating the prototype under real enterprise and data center network topologies and traffic,
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we show that in addition to reducing memory size, BUFFALO forwards packets 10% faster than

traditional hash table based implementation. BUFFALO also reacts quickly to routing changes

with the support of counting Bloom filters.

The rest of the chapter is organized as follows: Section 2.2 describes the underlying SPAF

networks we focus on in this chapter. Section 3.2 presents an overview of the BUFFALO archi-

tecture. Section 2.4 describes how to handle false positives and proves the packet reachability. In

Section 2.5, we adjust the sizes of Bloom filters to make the most efficient use of limited fast mem-

ory. In Section 2.6, we show how to dynamically adjust the sizes of Bloom filters using counting

Bloom filters. Section 3.6 presents our prototype implementation and the evaluation. Section 2.8

discusses several extensions of BUFFALO. Section 2.9 and 4.9 discuss related work and conclude

the chapter.

2.2 Shortest Paths & Flat Addresses

This chapter focuses on SPAF networks, the class of networks that perform Shortest-Path routing

on Addresses that are Flat. In fact, most enterprise and data center networks are SPAF networks.

Flat addresses: Flat addresses are used widely in enterprise and data center networks. For

example, MAC addresses in Ethernet are flat addresses. New protocols with flat address spaces

(e.g., SEATTLE [5], ROFL [24], AIP [25]) have been proposed to facilitate network configura-

tion and management, because they simplify the handling of topology changes and host mobility

without requiring administrators to reassign addresses. Even IP routing can be done based on

flat addresses, by converting variable-length IP prefixes into multiple non-overlapping fixed-length

(i.e., /24) sub-prefixes.

Shortest path routing: We also assume shortest-path routing on the network topology, based

on link-state protocols, distance-vector protocols, or spanning-tree protocols.2 Recent advances

in Ethernet such as Rbridges [7, 8] and SEATTLE [5] all run link-state protocols that compute

shortest paths.

Based on the above two properties, we define the SPAF network as a graph G = (V,E), where

V denotes the set of switches in the network, and E denotes all the links viewed in the data

2In today’s Ethernet the control plane constructs a spanning tree and the data plane forwards packets along
shortest paths within this tree.
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plane. In the SPAF network we assume all the links in E are actively used, i.e., the weight on link

e(A,B) is smaller than that on any other paths connecting A and B. This is because if a link is

not actively used, it should not be seen in the data plane. Let P (A,B) denote the set of all paths

from A to B. Let l(A,B) denote the length of the shortest path from A to B, i.e., the length of

e(A,B), and the length of a path p is l(p) =
∑

e∈p l(e). We have:

∀A,B ∈ V, p ∈ P (A,B), l(A,B) ≤ l(p).

In this chapter, we propose an efficient data plane that supports any-to-any reachability be-

tween flat addresses over (near) shortest paths. We do not consider data-plane support for Virtual

LAN (VLANs) and access-control lists (ACLs), for three main reasons. First, the new generation

of layer-two networks [7, 8, 5] do not perform any flooding of data packets, obviating the need to

use VLANs simply to limit the scope of flooding. Second, in these new architectures, IP addresses

are opaque identifiers that can be assigned freely, allowing them to be assigned in ways that make

ACLs more concise. For example, a data center could use a single block of IP addresses for all

servers providing a particular service; similarly, an enterprise could devote a small block of IP

addresses to each distinct set of users (e.g., faculty vs. students). This makes ACLs much more

concise, making it easier to enforce them with minimal hardware support at the switches. Third,

ACLs are increasingly being moved out of the network and on to end hosts for easier management

and better scalability. In corporate enterprises, distributed firewalls [26, 27], managed by Active

Directory [28] or LDAP (Lightweight Directory Access Protocol), are often used to enforce access-

control policies. In data-center networks, access control is even easier since the operators have

complete control of end hosts. Therefore, the design of BUFFALO focuses simply on providing

any-to-any reachability, though we briefly discuss possible ways to support VLAN in Section 2.8.

2.3 Packet Forwarding in BUFFALO

In this section, we describe the BUFFALO switch architecture in three aspects: First, we use one

Bloom filter for each next hop to perform the entire packet lookup in the fast SRAM. Second,

we leverage shortest-path routing to forward packets experiencing false positives through slightly

longer paths without additional memory overhead. Finally, we leverage counting Bloom filters
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Figure 2.1: BUFFALO Switch Architecture

in slow memory to enable fast updates to the Bloom filters after routing changes. Figure 3.7

summarizes the BUFFALO design.

2.3.1 One Bloom Filter Per Next Hop

One way to use a small, fast memory is route caching. The basic idea is to store the most frequently

used entries of the forwarding table (FIB) in the fast memory, but store the full table in the slow

memory. However, during cache misses, the switch experiences low throughput and high packet

loss. Malicious traffic with a wide range of destination addresses may significantly increase the

cache miss rate. In addition, when routing changes or link failures happen, many of the cached

routes are simultaneously invalidated. Due to its bad performance under worst-case workloads,

route caching is hardly used today.

To provide predictable behavior under various workloads, we perform the entire packet lookup

for all the packets in the fast memory by leveraging Bloom filters, a hash-based compact data

structure to store a set of elements. We set one Bloom filter BF (h) for each next hop h (or

outgoing link), and use it to store all the addresses that are forwarded to that next hop. For a

switch with T next hops, we need T Bloom filters. A Bloom filter consists of an array of bits.

To insert an address into Bloom filter BF (h), we compute k hash values of the address, each
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denoting a position in the array. All the k positions are set to 1 in the array. By repeating the

same procedure for all the addresses with next hop h, Bloom filter BF (h) is constructed.

It is easy to check if an address belongs to the set with Bloom filter BF (h). Given an address,

we calculate the same k hash functions and check the bits in the corresponding k positions of the

array. If all the bits are 1, we say that the element is in the set; otherwise it is not. To perform

address lookup for an address addr, we check which BF (h) contains addr, and forward the packet

to the corresponding next hop h.

Note that there are different number of addresses associated with each next hop. Therefore we

should use different size for each Bloom filter according to the number of addresses stored in it,

in order to minimize the overall false-positive rate with a fixed size of fast memory. We formulate

and solve the false-positive rate optimization problem in Section 2.5.

2.3.2 Handling False Positives in Fast Memory

One key problem with Bloom filters is the false positive — an element can be absent from the set

even if all k positions are marked as 1, since each position could be marked by the other elements

in the set. Because all the addresses belong to one of the Bloom filters we construct, we can easily

detect packets that experience false positives if they match in multiple Bloom filters.3

One way to handle packets experiencing false positives is to perform a full packet lookup in the

forwarding table stored in the slow memory. However, the lookup time for packets experiencing

false positives will be much longer than others, leading to the throughput decrease. Attackers may

detect those packets with longer latency and send a burst of them. Therefore, we must handle

false positives in fast memory by picking one of the matching next hops.

For the packets that experience false positives, if we do not send them through the next hop

on the shortest path, they may experience stretch and even loops. One way to prevent loops is

to use a deterministic solution by storing the false positive information in the packets (similar to

FCP [29]). When a packet is detected to have false positives in a switch, we store the switch and

the next hop it chooses in the packet. So next time the packet travels to the same switch, the

3The handling of addresses that should have multiple matches (e.g., Equal-Cost Multi-Path) are discussed in
Section 2.8. Addresses that have no match in the FIB should be dropped. Yet these packets may hit one Bloom
filter due to false positives. We cannot detect these addresses, but they will eventually get dropped when they hit
a downstream switch that has no false positives. In addition, an adversary cannot easily launch an attack because
it is hard to guess which MAC addresses would trigger this behavior.
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switch will choose a different next hop for the packet. However, this method requires modifying

the packets and has extra payload overhead.

Instead, we use a probabilistic solution without any modification of the packets. We observe

that if a switch sends the packet back to the interface where it comes from, it will form a loop.

Therefore, we avoid sending the packet to the incoming interface. To finally get out the possible

loops, we randomly pick one from all the remaining matching next hops. In Section 2.4, we prove

that in SPAF networks, the packet experiencing one false positive (which is the most common case

for the packet) is guaranteed to reach the destination with constant bounded stretch. In general,

packets are guaranteed to reach the destination with probability 1. This approach does not require

any help from the other switches in the network and thus is incrementally deployable.

2.3.3 CBFs for Handling Routing Changes

When routing changes occur, the switch must update the Bloom filters with a new set of addresses.

However, with a standard Bloom filter (BF) we cannot delete elements from the set. A counting

Bloom filter (CBF) is an extension of the Bloom filter that allows adding and deleting elements [30].

A counting Bloom filter stores a counter rather than a bit in each slot of the array. To add an

element to the counting Bloom filter, we increment the counters at the positions calculated by the

hash functions; to delete an element, we decrement the counters.

A simple way to handle routing changes is to use CBFs instead of BFs for packet forwarding.

However, CBFs require much more space than BFs. In addition, under routing changes the number

of addresses associated with each next hop may change significantly. It is difficult to dynamically

increase/decrease the sizes of CBFs to make the most efficient use of fast memory according to

routing changes.

Fortunately, since routing changes do not happen very often, we can store CBFs in slow

memory, and update the BFs in small fast memory based on the CBFs. We store CBF in slow

memory rather than a normal FIB because it is easier and faster to update BFs from CBFs under

routing changes. With a CBF layer between BFs and control plane, we can even change the sizes

of BFs to the optimal values with low overhead. By using both CBFs and BFs, we make an

efficient use of small fast memory without losing the flexibility to support changes in the FIB. The

details of using CBFs are discussed in Section 2.6.
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As shown in Figure 3.7, there are three layers in our switch architecture. The control plane can

be either today’s Ethernet or new Ethernet techniques such as Rbridges [7, 8] and SEATTLE [5].

CBFs are stored in slow memory and learn about routing changes from the control plane. BFs

are stored in the fast memory for packet lookup. During routing changes, the related BFs will be

updated according to the corresponding CBFs. If the number of addresses associated with a BF

changes significantly, BFs are reconstructed with new optimal sizes from CBFs.

2.4 Handling False Positives

When BUFFALO detects packets that experience false positives, it randomly selects a next hop

from the candidates that are different from the incoming interface, as discussed in Section 2.3.2.

In the case of a single false positive, which is the most common, avoiding sending the packet to

the incoming interface guarantees that packets reach destination with tightly bounded stretch. In

the improbable case of multiple false positives, this randomization guarantees packet reachability

with probability 1, with a good bounds on expected stretch.

Notation Definition
NHsp(A) The next hop for shortest path at switch A
NHfp(A) The matching next hop due to a sole false

positive at switch A
l(A,B) The length of the shortest path from

switch A to B
P (A,B) All the paths from switch A to B

Table 2.1: Notations for the false-positive handler

2.4.1 Handling One False Positive by Avoiding Incoming Interface

We first investigate the case that a packet only experiences one false positive at one switch, i.e.,

at switch A, the packet has two matching next hops. Let NHsp(A) denote the next hop A should

forward the packet to on the shortest path, and NHfp(A) denote the additional next hop matched

by a Bloom filter false positive. (The notations are summarized in Table 2.4.) Note that this single

false positive case is the most common case, because with reasonable Bloom filter parameters the

probability of multiple false positives is much lower than one false positive. Since switch A connects
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Figure 2.2: Loops caused by false positives (99K false positive link, −→ shortest path link)

to each end host through one switch port, there is no false positives for the ports that connect to

end hosts. Therefore, NHfp(A) must be a switch rather than an end host.

The one false positive case is shown in Figure 2.2(a). (We hereafter use 99K to denote false

positive link, and → for shortest path link.) Switch A has a false positive, and randomly picks

a next hop B (NHfp(A) = B). Switch B receives the packet, and may (i) send it to a next hop

different from A, which leads to the destination or (ii) send it back to A. For (i), we will prove

that there are not any loops. For (ii), when A receives the packet, it will not pick B since the

packet comes from B.

In general, we have the following theorem:

Theorem 1. In SPAF networks, if a packet only experiences one false positive in one switch, it

is guaranteed to reach the destination with no loops except a possible single transient 2-hop one.

Proof. Suppose the packet matches two next hops at switch A: NHsp(A) and some B = NHfp(A).

If A picks NHsp(A), there is no loop. If B is selected, it will have a path B → . . .→ dst to forward

the packet to the destination, since the network is connected. With a single false positive, a packet

will follow the correct shortest-path hops at all nodes other than A. Thus, the only case that can

cause a loop is the packet going through A again (A 99K B → . . . → A → . . . → dst). However,

in SPAF networks, we assume the link e(B,A) is actively used (This assumption is introduced in

Sec. 2.2), i.e.,

l(NHfp(A), A) ≤ l(p), ∀p ∈ P (NHfp(A), A).

Thus, on a shortest path from B to dst, if the packet visits A at all, it would be immediately after

B. If the packet is sent back to A, A will avoid sending it to the incoming interface NHfp(A),

and thus send the packet to NHsp(A), and the shortest path from there to dst can’t go through
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A. Thus, the packet can only loop by following A 99K NHfp(A) → A → . . . → dst. So the path

contains at most one 2-hop loop.

Now we analyze the stretch (i.e., latency penalty) the packets will experience. For two switches

A and B, let l(A,B) denote the length of the shortest path from A to B. Let l′(A,B) denote the

latency the packet experiences on the path in BUFFALO. We define the stretch as:

S = l′(A,B) − l(A,B)

.

Theorem 2. In SPAF networks, if a packet experiences just one false positive at switch A, the

packet will experience a stretch of at most l(A,NHfp(A)) + l(NHfp(A), A).

Proof. Since there is one false positive in A, A will choose either NHsp(A) or NHfp(A). If A picks

NHsp(A), there is no stretch. If A picks NHfp(A), there are two cases: (i) If NHfp(A) sends

the packet to the destination without going through A, the shortest path from NHfp(A) to the

destination is followed. Based on the triangle inequality, we have:

l(NHfp(A), dst) ≤ l(NHfp(A), A) + l(A, dst)

l′(A, dst)− l(A, dst) ≤ l(A,NHfp(A)) + l(NHfp(A), A)

(ii) If NHfp(A) sends the packet back to A, the stretch is l(A,NHfp(A)) + l(NHfp(A), A).

Therefore, we prove that in the one false positive case, packets are guaranteed to reach the

destination with bounded stretch in SPAF networks.

2.4.2 Handling Multiple False Positives with Random Selection

Now we consider the case where all the switches in the network apply our Bloom filter mechanism.

We choose different hash functions for different switches so that the false positives are independent

among the switches. (We can choose different keys for key-based hash functions to generate a group

of hash functions.) Thus it is rare for a packet to experience false positives at multiple switches.
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Figure 2.3: BUFFALO forwarding graph (99K false positive link, −→ shortest path tree)

Let us fix a destination dst, and condition the rest of this section on the fixed forwarding table

and memory size (which, per Section 2.5, means the Bloom filter parameters are fixed, too). Let

f(h) be the probability of Bloom filter h erroneously matching dst (a priori independent of dst

if dst shouldn’t be matched). Then, k, the number of Bloom filters mistakenly matching d is, in

expectation, F =
∑

h f(h). If all values of f are comparable and small, F is roughly binomial,

with Pr[k > x] decays exponentially for x≫ 2f |E|.

There may exist loops even when we avoid picking the incoming interface. For example, in

Figure 2.2(b), A may choose the false-positive hop to B at first, and B may choose the false-

positive next hop C. However, the packet can eventually get out of the loop if each switch chooses

the next hop randomly: any loop must contain a false-positive edge, and the source node of that

edge will with some probability choose its correct hop instead. For example, A will eventually

choose the next hop D to get out of the loop. Such random selection may also cause out-of-order

packets. This may not be a problem for some applications. For the applications that require

in-order packet forwarding, we can still reorder packets in the end hosts.

In general, in SPAF networks there is a shortest path tree for each destination dst, with each

packet to dst following this tree. In BUFFALO, packets destined to dst are forwarded in the

directed graph consisting of a shortest path tree for dst and a few false positive links. We call this

graph BUFFALO forwarding graph. An example is shown in Figure 2.3, where two false positives

occur at A and B. Note that, if the shortest-path links are of the same length (e.g., in terms of

latency), the link from A to F cannot be less than about twice that length: otherwise F ’s shortest
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Figure 2.4: Coupling for the expected stretch proof: all nodes at the same hop distance from dst
are collapsed into 1 node. Forward false positive links, like D to B, are dropped. The number of
backward edges on the line graph is the maximum over all nodes at that distance of the number of
backward and same-depth false-positive links (B’s edges at d = 1, D’s edges at d = 2). A random
walk on the line graph converges no faster than a random walk on the original. The line graph
itself is a valid network, thus allowing for tight bounds.

path would go through A. If all links are the same length , no false positive edge can take more

than one “step” away from the destination.

If a packet arrives at the switch that has multiple outgoing links in BUFFALO forwarding graph

due to false positives, we will randomly select a next hop from the candidates. Thus, the packet

actually takes a random walk on the BUFFALO forwarding graph, usually following shortest-path

links with occasional “setbacks”.

Theorem 3. With an adversarially designed BUFFALO network with uniform edge latencies, and

even worst-case placement of false positives, the expected stretch of a packet going to a destination

associated with k false positives is at most S(k) = ρ · ( 3
√
3)k, where ρ = 529

54· 3
√
3
< 6.8.

To prove this theorem, we first present the model used in our proof:

Step 1: Model.

We make the following two assumptions:

1. We assume the underlying SPAF computation is based on “hop count” only, or, equivalently,

equal edge weights on all edges. We expect that the bounds we derive under this assumption
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will not differ qualitatively from the typical case of edge weights that are diverse but roughly

on the same order of magnitude.

2. BUFFALO implements a “no-bounce” rule: if a node detects a false positive, it randomly

selects a next hop out of the several candidates that the Bloom filters then offer, but excludes

from consideration the hop that the packet arrived from. We allow the selection of the latter,

as well, ignoring the “no-bounce” optimization in BUFFALO. This simplifies the analysis,

and we expect that the upper bounds should not get any worse in the presence of this feature.

We represent the underlying network with an undirected graph G = (V,E), with n nodes, each

representing a switch or an end host. Consider forwarding to a particular destination dst ∈ V with

some, possibly all, switches in the network implementing BUFFALO. The underlying protocol

builds a shortest-path tree (V, T ⊂ E), directed toward dst.

After any given FIB update, some BUFFALO-using routers may have false positives for des-

tination dst. A false positive at node v for next hop v′ will cause BUFFALO to possibly forward

from v to v′ — but this can only happen if the edge {v, v′} exists in G. Let (V,B) be the directed

”BUFFALO graph,” containing all the edges along which BUFFALO switches might forward, given

the current false positives. That is, B consists of T , and, for each false positive at node v that

matches next hop v′ for destination dst, an additional (directed) edge (v, v′). We use P to denote

the false-positive edges alone (P = B \ T ).

Observation 2.4.1. Without the “no-bounce” rule, if some or all routers use BUFFALO, a packet

to dst performs an unbiased random walk on (V,B) until reaching dst.

For background on random walks, we refer the reader to any of a number of standard books,

such as [31, 32, 33].

We denote by dT (v, w) the hop distance from v to w in T , and use d(v) as shorthand for

dT (v, dst), the distance from v to the destination in T , which we call the depth of v.

Observation 2.4.2. d(v) = dE(v, dst) = dB(v, dst), since T is a shortest-path tree, and is con-

tained in B and E. The shortest-path property also ensures that, for any edge {v, w} ∈ E,

|d(v) − d(w)| ≤ 1.
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We say a packet traveling from v to dst experiences stretch S if it traverses d(v)+S hops before

reaching dst. The expected stretch of a packet starting at v is directly connected to the random

walk’s expected hitting time from v to dst: Tv,dst = d(v) + E[S].

Now, Let’s prove Theorem 3.

Step 2: Calculate expected stretch.

First, “project” the whole graph (the shortest path tree and the “noise” false positive edges)

onto a line (multi)graph L where node li corresponds to all nodes in the real network at depth i

away from dst, as shown in Figure 2.4. Let’s say l0, corresponding to the destination, is on the

“right” while lx, where x is the equivalent of “diameter” (the length of the longest shortest path

to d), is on the left.

li has 1 edge pointing to the right, and ki edges pointing to the left, where ki is the max, over

all nodes v at depth i in the original graph, of the number of false positives at v that point to

nodes of depth i or i+ 1.

Lemma 2.4.3. The expected stretch of an unbiased random walk on B starting at v is at most

the expected stretch of an unbiased random walk on L starting at ld(v).

Proof. The lemma follows from a conventional coupling argument, between the random walk’s

depth in B and the random walk’s depth in L.

Consider the next hop from some node v in B, at depth d, which has i ≥ 1 edges to nodes of

depth d − 1, j edges to nodes of depth d, and k edges to nodes of depth d + 1. By construction,

the corresponding node ld has at least k + j edges to ld+1 and one edge to ld−1. The probability

of the walk moving to depth d− 1 in L at most 1/(k+ j +1), while the walk in B moves to depth

d − 1 with probability i/(i + k + j) ≥ 1/(k + j + 1). This allows a natural coupling for depth of

the next hop in B and in L:

If the L walk takes a deeper next hop than the B walk, we can “suspend” the B walk, and

let the L walk continue until the next time it reaches a node at the same depth as the B walk —

this is guaranteed to happen, since depth never changes by more than 1 hop. After that point,

proceed with the next hop on both random walks. Since L and B random walks start at the same

depth, this coupling guarantees that L will never move to a lower depth than B, and thus that L

will take at least as many hops as B.
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Figure 2.5: Coupling the depth process in B and L

We now analyze the worst-case expected hitting time for an unweighted random walk on L.

For any i > j, the hitting time from li to l0 must include at least one visit to lj , guaranteeing that

the expected hitting time to l0 is maximized at lx. The transition probability matrix (where Pi,j

is the probability, when at li, of going to lj on the next step) is:

P =














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
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(2.1)

Following the expected hitting time analysis detailed in, e.g., [34], which cites [35], we let Q

be the matrix P with the last row and last column removed. The expected hitting time from vx

to v0 is then:

T =
∑

j

(I −Q)−1
0,j (2.2)
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Inversion of (I −Q) via Gaussian elimination on the augmented matrix yields:

Rx :
(

1 −1 0 · · · 0 1
)

Rx−1 : −kx−1

kx−1+1 1 −1
kx−1+1 0 · · · 0 1 ← R′

x−1 = (kx−1 + 1)Rx−1 + kx−1R
′
x

Rx−2 : 0 −kx−2

kx−2+1 1 −1
kx−2+1 · · · 0 1 ← R′

x−2 = (kx−2 + 1)Rx−2 + kx−2R
′
x−1

...
...

. . .
. . .

. . .
...

. . .
...

R2 : 0 · · · 0 −k2

k2+1 1 −1
k2+1 1 ← R′

2 = (k2 + 1)R2 + k2R
′
3

R1 : 0 · · · 0 −k1

k1+1 1 1 ← R′
1 = (k1 + 1)R1 + k1R

′
2

 

R′
x :
(

1 −1 0 · · · 0 1 0 · · ·
)

← R′′
x =

∑

iR
′
i

R′
x−1 : 0 1 −1 0 · · · 0 kx−1 (kx−1 + 1) 0 · · ·

R′
x−2 : 0 0 1 −1 · · · 0 kx−1kx−2 (kx−1 + 1)kx−2 (kx−2 + 1) 0 · · ·

...
...

. . .
. . .

. . .
...

. . .

R′
2 : 0 · · · 0 0 1 −1 kx−1kx−2 · · · k2 (kx−1 + 1)kx−2 · · · k2 · · · (k2 + 1) 0

R′
1 : 0 · · · 0 0 1 kx−1kx−2 · · · k2k1 (kx−1 + 1)kx−2 · · · k2k1 · · · (k2 + 1)k1 (k1 + 1)

(2.3)

The expecting hitting time, the sum of the top row of the inverse matrix, is thus the sum

of all the entries on the right side. We split the sum of each column c except the first into

∑x−c+1
i=1

∏x−c+1
j=i kj +

∑x−c
i=1

∏x−c
j=i kj +1, and then group the first term with the previous column,

c− 1. This yields:

T = x+ 2

x
∑

c=1

x−c
∑

i=1

x−c
∏

j=i

kj (2.4)

= x+ 2
∑

1≤a≤b≤x

b
∏

i=a

ki (2.5)

Since, with no false positives, a packet may take up to x hops to get to d, the stretch S is thus

upper bounded by S ≤ T − x = 2
∑

1≤a≤b≤x

∏b
i=a ki.

We’ll use the symbol Sqp for
∑

p≤a≤b≤q

∏b
i=a ki, i.e. the sum of products over each possible

substring of integer sequence {ki}.

The S
q
p notation, as well as the L

q and Rp notations introduced below, leave implicit their

dependence on the sequence {ki}. When discussing proposed changes to the sequence, these

symbols are to always be interpreted in terms of the sequence before the change in question.

Step 3: Exact patterns for maximizing Sx1 .
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The remainder of the proof of Theorem 3 is a detailed combinatorial treatment of maximizing

Sx1 over all sequences whose sum, i.e. the total number of false positives
∑

i ki, is fixed at some k.

We proceed by listing a series of transformations of any candidate maximizing sequence that never

change the sum, never decrease the sum of substring products, and converge to a very specific

family of maximum sequences that allows S to be explicitly computed.

We forewarn the reader that this subsection is relatively technical and is unlikely to be of

broader interest outside this proof.

In all the statements below, we implicitly require that
∑

i ki = k.

Observation 2.4.4. To upper-bound stretch, we can assume, WLOG, that ki > 0 for all i.

Otherwise, removing that ki and thus shrinking x by 1 cannot decrease S: the walk before the edge

is removed can never return to the part of L above this edge, so contracting the edge only adds

possible extra upward traversals, which would still have to return to this node before continuing to

dst.

Lemma 2.4.5. There is a sequence {ki} maximizing Sx1 that has ki ≤ 3 for all i.

Proof. Suppose there is a ki ≥ 4 in some sequence {ki} maximizing S
x
1 . Then, split ki into two

adjacent sequence elements, 2 and ki − 2. Since 2(ki − 2) ≥ ki, each substring of the original

sequence that contained ki will have a corresponding substring including both 2 and ki − 2 in the

new sequence, with a product at least as big as the original substring. Any substring that didn’t

include ki originally will still exist as-is. Also, the new sum of substring products will also include

the substring containing just the new 2 element, which does not correspond to any of the original

substrings, thus guaranteeing a strictly greater substring product sum.

Lemma 2.4.6. There is a sequence {ki} that maximizes S that has 1 ≤ ki ≤ 3 and is dip-free: if

a < b < c, and ka > kb, then kb ≥ kc; and if a < b < c and kb < kc, then ka ≤ kb. That is, {ki}

matches the regular expression 1∗2∗3∗2∗1∗.

Proof. Consider a sequence {ki} maximizing S. We will see that it is dip-free by considering

transpositions of two adjacent sequence elements.

Let Lp denote
∑

1≤a≤p

∏p
i=a ki, the partial sum of substring products covering all substrings

ending exactly at p. Similarly, let Rq denote
∑

q≤b≤x

∏b
i=q ki, the partial sum of substring products

covering all substrings starting exactly at q. We define L0 = Rx+1 = 0.
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Note that, since ki ≥ 1, Lp = kpL
p−1 + kp monotonically strictly increases with p, and Rq =

kqRq+1 + kq monotonically strictly decreases with q.

For any 1 ≤ i ≤ x − 1, we can now split the full sum of Sx1 into several categories, based on

where the substring lies in relation to ki and ki+1:

S
x
1 =S

i−1
1 + S

x
i+2 + kiki+1 + ki + ki+1 + kiki+1

(

L
i−1 + Ri+2 + L

i−1
Ri+2

)

+ kiL
i−1 + ki+1Ri+2

All except the last two of the terms add up to an expression that is symmetric with respect to

transposing ki and ki+1. Now, suppose ki < ki+1. Then, since the sequence is maximizing, its Sx1

is greater than it would be if ki and ki+1 were transposed, requiring:

kiL
i−1 + ki+1Ri+2 ≥ ki+1L

i−1 + kiRi+2

(ki+1 − ki)(Ri+2 − L
i−1) ≥ 0

Ri+2 − L
i−1 ≥ 0

Then, for any i′ < i, strict monotonicity gives us Ri′+2 − L
i′−1 > 0. If ki′ > ki′+1, we would

have (ki′+1−ki′)
(

Ri′+2 − L
i′
)

< 0, contradicting maximality of {ki}, since that would allow us to

raise Sx1 by transposing ki′ and ki′+1. Inductively applying this argument shows that, if a > b > c

and kb < kc, then ka ≤ kb. The other side follows by symmetry.

Lemma 2.4.7. There exists a maximizing sequence obeying the constraints of Lemma 2.4.6 that

starts and ends with a 1, i.e., it matches the regular expression 11∗2∗3∗2∗1∗1.

Proof. If k1 > 1 in a maximizing sequence, consider splitting it into adjacent elements 1 and k1−1.

This transforms the original sum of substring products from k1+k1R2+Sx2 into 1+k1−1+1(k1−

1) + (k1 − 1)R2 + 1(k1 − 1)R2 + Sx2 = 1+ 2(k1 − 1) + 2(k1 − 1)R2 + Sx2 . Since k1 ≤ 2(k1 − 1), this

increases the total sum of substring products by 1. The same argument holds for kx.

33



Observation 2.4.8. An adjacent (1, 3) pair can always be replaced with a (2, 2) pair, strictly

increasing Sx1 . It changes from S
i−2
1 + Sxi+1 + (1 + 3)Li−2 + (3 + 3)Ri+1 + 3Li−2Ri+1 + 1+ 3+ 3 to

S
i−2
1 +Sxi+1+(2+4)Li−2+(2+4)Ri+1+4Li−2Ri+1+2+2+4, an increase by 2Li−2+Li−2Ri+1+1,

which is always positive.

Lemma 2.4.9. For k ≥ 7, there is an maximizing sequence satisfying 2.4.2 that has at most two

1’s on each side.

Proof. Consider a sequence satisfying 2.4.2 with at least three 1’s at the start. If the first non-1

element is some ki = 3, Observation allows us to replace it and the preceding 1 with (2,2).

If the first non-1 element is some ki = 2, consider replacing (1, 2) with a 3. S
x
1 changes from

S
i−2
1 + Sxi+1 + (1 + 2)Li−2 + (2 + 2)Ri+1 + 2Li−2Ri+1 + 1+ 2+ 2 to S

i−2
1 + Sxi+1 + 3Li−2 + 3Ri+1 +

3Li−2Ri+1 + 3. The increment is Li−2Ri+1 − Ri+1 − 2, non-negative if (Li−2 − 1)Ri+1 ≥ 2.

For k ≥ 7, this is satisfied, since either:

1. There are four or more ones before ki. Then, Li−2 − 1 ≥ 2. By 2.4.2, there is at least one

element after ki, guaranteeing Ri+1 ≥ 1;

2. Or
∑x

j=i+1 kj ≥ 2, guaranteeing Ri+1 ≥ 2. Since the sequence starts with three or more

ones, Li−2 − 1 ≥ 1.

A symmetrical argument applies to the other end of the sequence.

Lemma 2.4.10. For k ≥ 18, any maximizing sequence satisfying 2.4.9 has at least one 3.

Proof. With k ≥ 18 no 3’s, and at most two 1’s at each end, the sequence must then have at least

seven 2’s. Let ki−2 be the first 2. We consider replacing the third, fourth, and fifth 2’s (ki, ki+1,

and ki+2)) with two 3’s.

Before the change, Sx1 is Si−1
1 + Sxi+3 + (2 + 4+ 8)Li−1 + (2 + 4+ 8)Ri+3 +8Li−1Ri+3 + 2+ 2+

2 + 4 + 4 + 8 = S
i−1
1 + Sxi+3 + 14(Li−1 + Ri+3) + 8Li−1Ri+3 + 22. After the change, it becomes

S
i−1
1 + Sxi+3 +(3+ 9)Li−1 + (3+ 9)Ri+3 +9Li−1Ri+3 +3+3+ 9 = S

i−1
1 + Sxi+3 +12(Li−1 +Ri+3) +

9Li−1Ri+3 + 15. This is an increase of Li−1Ri+3 − 2(Li−1 + Ri+3)− 7 = (Li−1 − 2)(Ri+3 − 2)− 11.

With ki−2 = ki−1 = ki+3 = ki+4 = 2, we are guaranteed that both Li−1 and Ri+3 are at least 6,

making the increase positive.
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Lemma 2.4.11. For k ≥ 18, any maximizing sequence satisfying 2.4.10 has exactly one 1 on each

side.

Proof. Suppose, WLOG, there are exactly two 1’s in the beginning (Lemmas 2.4.2 and 2.4.9 allow

us to reach such a maximizing sequence from any other). Use b for the number of 2’s between the

last 1 and the first 3 (b = i− 3). Consider replacing k2 = 1 and the first 3, ki = 3 (which Lemma

2.4.10 guarantees to exist) with k2 = ki = 2. The increment in Sx1 is:



S
x
i+1 + S

i−1
3 + Ri+1



1 · 2 · 2b · 2 + 2 · 2b · 2 + 2

b
∑

j=0

2j





+ 2 ·





b
∑

j=0

2j



+ 2 · 2b · 2 + 2 · 2b · 2 · 1 + 2 ·





b
∑

j=0

2j



+ 1 · 2 ·





b
∑

j=0

2j



+ 1



−



S
x
i+1 + S

i−1
3 + Ri+1



1 · 1 · 2b · 3 + 1 · 2b · 3 + 3

b
∑

j=0

2j





+ 3 ·





b
∑

j=0

2j



 + 3 · 2b · 1 + 3 · 2b · 1 · 1 + 1 ·





b
∑

j=0

2j



+ 1 · 1 ·





b
∑

j=0

2j



+ 1





= Ri+1

(

(12 · 2b − 2)− (12 · 2b − 3)
)

+
(

(20 · 2b − 5)− (16 · 2b − 4)
)

= Ri+1 + 2b+2 − 1 (2.6)

Since b ≥ 1, the increment is strictly positive, violating maximality. A symmetric argument

applies for two 1’s at the end.

Lemma 2.4.12. For k ≥ 18, any maximizing sequence satisfying 2.4.11 has at most three 2’s on

each side of the 3’s.

Proof. Consider a maximizing sequence with at least four 2’s before the 3’s. First, apply to ensure

that we’re considering a maximizing sequence starting and ending with a 1.

By Observation 2.4.2, in a maximizing sequence, there must be at least one 2 after the 3’s —

else the total is strictly increased by replacing a (3, 1) pair with (2, 2).

Like in Lemma 2.4.10 above, we consider replacing the last three 2’s before the 3’s with two new

3’s, which will increase the total if (Li−1−2)(Ri+3−2) > 11. But the existence of at least one 3, at
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least one 2, and a 1 after the triple we’re replacing guarantees that Ri+3− 2 ≥ 3+ 6+ 6− 2 = 13.

Since there must be at least one extra 2 before the triple, and at least one 1, we have Li−1 ≥ 4,

guaranteeing the strict inequality.

We are now guaranteed, for k ≥ 18, the existence of a maximizing sequence of form 12b3c2d1

where 1 ≤ b, d ≤ 3 and c ≥ 1. We can now obtain a convenient closed form for Sx1 for such

sequences. First note that the substring products of a homogeneous sequence zn add up to:

m(z, n) =
∑

1≤a≤b≤n

b
∏

i=a

ki

= z

n
∑

a=1

n
∑

b=a

zb−a

= z

n
∑

a=1

z(n−a+1) − 1

z − 1

=
z

z − 1

n
∑

i=1

(zi − 1)

=
z

z − 1
·
(

zn+1 − 1

z − 1
− 1− n

)

=
zn+2 − (n+ 1)z2 + nz

(z − 1)2

Using this, we can split up the computation of Sx1 based on which part of the sequence the

substring starts and ends in:
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S
x
1 = 1 +m(2, b) +m(3, c) +m(2, d) + 1

+ 1 ·
b
∑

i=1

2i + 1 · 2b ·
c
∑

i=1

3i + 1 · 2b · 3c ·
d
∑

i=1

2i + 1 · 2b · 3c · 2d · 1

+

(

b
∑

i=1

2i

)(

c
∑

i=1

3i

)

+

(

b
∑

i=1

2i

)

· 3c ·
(

d
∑

i=1

2i

)

+

(

b
∑

i=1

2i

)

· 3c · 2d · 1

+

(

c
∑

i=1

3i

)(

d
∑

i=1

2i

)

+

(

c
∑

i=1

3i

)

· 2d · 1

+

(

d
∑

i=1

2i

)

· 1

= 4 · 2b − 2b− 4 + 4 · 2d − 2d− 4 +
9

4
3c − 9

4
c− 9

4
+

3

4
c

+ (2− 2 + 3) + (2− 3

2
− 3)2b + (2− 3

2
− 3)2d + (−3 + 4− 3)3c

+ (
3

2
− 2 + 3− 4)2b3c + (

3

2
− 2 + 3− 4)3c2d + (2 + 1 + 4 + 2)2b3c2d

= 9 · 2b3c2d − 1.5 · 3c(2b + 2d) + 0.25 · 3c + 1.5(2b + 2d)− 2(b+ d)− 1.5c− 6.25

(2.7)

Lemma 2.4.13. For k ≥ 18, any maximizing sequence satisfying 2.4.12 cannot contain three

consecutive 2’s.

Proof. Suppose, WLOG, b = 3. We consider two cases for d:

Suppose d = 1. Consider “balancing” the sequence, by setting b = d = 2, and leaving c fixed.

In equation 2.7, this preserves the value of b + d and 2b2d. Thus, the only change to Sx1 is in the

terms involving (2b + 2d), which goes from 9 to 8. Since c ≥ 1 by Lemma 2.4.10, this guarantees

a strict increase in Sx1 , by 1.5 · 3c − 1.5 ≥ 3.

Suppose 2 ≤ d ≤ 3. Consider replacing k3 and k4, the second and third 2 at the beginning,

and kx−2, the first 2 at the end, with two 3’s. This changes b from 3 to 1, d to d − 1, and c to

c+ 2. Thus, Sx1 is incremented by:
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9 · 3c(2 · 2d−1 · 9− 8 · 2d)− 1.5 · 3c(9(2 + 2d−1)− (8 + 2d)) + 0.25 · 3c(9− 1)

+ 1.5(2 + 2d−1 − 8− 2d)− 2(1 + (d− 1)− (3 + d))− 1.5 · 2 =

= 7.5 · 3c2d−1 − 13 · 3c − 1.5 · 2d−1 − 6

≥ 15 · 3c − 13 · 3c − 1.5 · 4− 6

= 2 · 3c − 12

Since there are at most three 2’s and exactly one 1 on each side of the sequence, k ≥ 18 requires

c ≥ 2, which renders the increment strictly positive.

We now know that 1 ≤ b, d ≤ 2 in a maximizing sequence. But, at this point, if k mod 3 = 0,

this only allows b = d = 1; if k mod 3 = 1, this only allows b = d = 2; and if k mod 3 = 2 this only

allows b = 2 and d = 1 or vice versa — and since the formula for Sx1 is symmetric with respect

to reversing the sequence, in all three cases, this specifies the exact sequence maximizing Sx1 , and

hence the expected stretch.

For k ≥ 18, Theorem 3 follows from substituting each of the three possibilities into equation

2.7:

S(k) ≤ 2max































(9 · 4− 6 + 0.25)3(k−6)/3 − 1.5k−6
3 + 6− 4− 6.25 (k mod 3 = 0)

(9 · 16− 12 + 0.25)3(k−10)/3 − 1.5k−10
3 + 12− 8− 6.25 (k mod 3 = 1)

(9 · 8− 9 + 0.25)3(k−8)/3 − 1.5k−8
3 + 9− 6− 6.25 (k mod 3 = 2)

< 2 · 3k/3 max































121/36 (k mod 3 = 0)

529/(108 3
√
3) (k mod 3 = 1)

253/(36 3
√
9) (k mod 3 = 2)

=
529

54 3
√
3
· 3k/3
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k maxS(k)
⌊

529
54 3

√
3
3k/3

⌋

Maximum stretch at:

1 2 9 1
2 6 14 1 1
3 12 20 1 1 1
4 20 29 1 1 1 1
5 32 42 1 1 2 1
6 52 61 1 2 2 1
7 76 88 1 1 2 2 1
8 120 127 1 2 2 2 1
9 170 183 1 2 3 2 1
10 260 264 1 2 2 2 2 1
11 370 381 1 2 2 3 2 1
12 544 550 1 2 2 2 2 2 1
13 786 793 1 2 2 3 2 2 1
14 1126 1144 1 2 2 3 3 2 1
15 1622 1650 1 2 2 2 3 2 2 1
16 2370 2380 1 2 2 3 3 2 2 1
17 3400 3433 1 2 2 3 3 3 2 1

Table 2.2: Optimal sequences for 1 ≤ k ≤ 17, obtained by brute-force search.

For 1 ≤ k ≤ 17, brute force search among sequences adding up to k and obeying Lemma 2.4.6

shows that the sequences in Table 2.2 maximize stretch, which obeys the bound of Theorem 3, as

well, concluding the proof of the latter.

Step 4: Tight lower bound.

Observation 2.4.14. Assuming that there can be multiple (a, b) edges from a particular node a to

a particular node b, the line graph L itself is then a valid “tree and false positives” configuration,

which means the sequence defined by Lemma 2.4.13 corresponds to a concrete, valid example that

makes the above bound exactly tight for k mod 3 = 1.

Observation 2.4.15. If multiple edges between the same pair of nodes are not allowed, we expect

that the worst-case stretch will be somewhat better, but can still be exponential under worst-case

false positive placements. An example of such an arrangement is in Figure 2.6.

Though the expected stretch is exponential, this is counterbalanced by the exponentially low

probability of k false positives. Tuning the Bloom filter parameters to optimize memory usage

will allow us to bound F , yielding at least a superlinear tail bound on the probability of large

stretches, assuming f values are comparable to 1/2m or smaller, yielding F = O(1):
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Figure 2.6: Exponential stretch with k false positives and no multiple edges: an i+1-row network
like the one on the left has 9i false positives, with worst-case stretch equivalent to the line graph
on the right: S(k) = Θ(3i) = Θ(3k/9)

Theorem 2.4.16. For any z ≥ 60.3 · 7.3221F , the probability of stretch exceeding z is bounded by

2/z. Asymptotically, the tail will decay as Õ(1/z1.54), to within polylog factors.

Proof. Assume the worst-case arrangement of false positive locations. Consider packets starting

at the source with the worst expected stretch to the destination. With k false positives, by the

Markov bound, the stretch will be at most 2S(k) with probability at least 1/2. After every 2S(k)

steps, any such packet not at the destination can be “reset” to the worst possible starting location

without shortening its current expected arrival time. Thus, for any integer α, the probability of

the stretch being more than 2αS(k) is at most 1/2α.

We can bound the overall stretch by setting k, with foresight, to the solution of k3k/3 = z
ρ(2−1/e)

(here and below, e is Euler’s constant), which is a unique positive value, by monotonicity4.

4We forgo the details of dealing with rounding and integrality.
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This value of k will allow us to productively apply the following union bound:

Pr[stretch > z] ≤ Pr[stretch > z| ≤ k false pos] + (2.8)

+ Pr[> k false pos] (2.9)

The above iterated Markov bound covers the first term, which is then bounded by 1/2z/2S(k) =

1/2k(1−1/2e).

For the second term, let F =
∑

f(h) be the expected number of false positives anywhere in

the system for any fixed destination, i.e. the sum of the probabilities of false positives along each

possible edge. If k > 2eF (where e is Euler’s constant), we can use the fact that the hashes for

each Bloom filter are chosen independently and apply the following form of the Chernoff bound

[32]: Pr[X > (1+δ) E[X ]] < 2−δE[X], for any δ > 2e−1. With X as the random variable counting

the false positives for our destination, we set δ = k/F − 1 yielding Pr[X > k] < 2−(k/F−1)F =

2−k+F < 1/2k(1−1/2e), bounding the overall probability by 2/(21−1/2e)k ≤ 2/1.76k.

To satisfy the k > 2eF requirement of the Chernoff bound, we need z = (2 − 1/e)ρk3k/3 ≥

60.3 · 7.3221F . The same constraint, since F > 0, guarantees z ≥ 29, ensuring that 2/1.76k ≤

2/((2− 1/e)ρk3k/3) = 2/z.

With z = 3k/3+O(log(k)), the tail asymptotically decays as Õ(1/zlog 3√
3
1.76), to within polylog

factors, yielding the second part of the theorem.

This bound characterizes the worst-case configuration the network may end up in after any

particular control-plane event. As a description of the typical behavior, on the other hand, this

bound is quite crude. We expect that an average-case analysis over false positive locations, cor-

responding to the typical behavior of BUFFALO, will yield polynomial expected stretch for fixed

k: the exponential worst-case behavior relies on all the false-positives carefully “conspiring” to

point away from the destination, and randomly placed false positives, as with real Bloom filters,

will make the random walk behave similarly to a random walk on an undirected graph, producing

polynomial hitting times. This will allow z = poly(k) and hence an exponentially decaying stretch

distribution.

While our scheme works with any underlying network structure, it works particularly well with

a tree topology. Tree topologies are common in the edges of enterprise and data center networks.
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A logical tree is usually constructed with the spanning tree protocols in today’s Ethernet. Roughly

speaking, in a tree, a lot of distinct false positives are needed at each distance from the destination

in order to keep “pushing” the packet away from the destination.

Claim 4. If the underlying network is a tree, with no multiple links between any one pair of

routers, the expected stretch with k false positives, even if they are adversarially placed, is at most

2(k − 1)2.

Proof. Consider any configuration of the shortest path tree and the extra false positive edges.

Since there are no multiedges, each edge of the shortest path tree has 1 or 0 antiparallel false

positive edges. Contracting all the tree edges without a corresponding false positive edge will

not decrease the expected stretch, by an argument similar to Observation 2.4.4: Any such edge

renders the subtree behind it unreachable after it’s traversed. Shrinking this edge only adds the

possibility of an extra detour back into the subtree, which would have to pass through this node

again before proceeding — at that point, the expected remaining time until destination will be

the same as when this node was first visited in the original graph.

The resulting graph is effectively undirected, with each edge having a corresponding antiparallel

edge. A random walk is thus identical to a random walk on an undirected tree, shown in, e.g.,

Sec. 5.3 of [31] to have the expected hitting time of at most 2(k − 1)2.

We believe that similar results should apply when we allow heterogeneous latencies, especially

when the per-link latencies are within a small constant factor of each other, as is likely in many

geographically-local networks.

2.4.3 Stretch in Realistic Networks

We evaluate the stretch in three representative topologies: Campus is the campus network of a

large (roughly 40,000 students) university, consisting of 1600 switches [36]. AS 1239 is a large

ISP network with 315 routers [37]. (The routers are viewed as switches in our simulation.) We

also constructed a model topology similar to the one used in [5], which represents a typical data

center network composed of four full-meshed core routers each of which is connected to a mesh of

twenty one aggregation switches. This roughly characterizes a commonly-used topology in data

centers [38].
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Figure 2.7: Expected stretch
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Figure 2.8: Stretch with real traces in campus network

In the three topologies, we first analyze the expected stretch given the false-positive rate. We

then use simulation to study the stretch with real packet traces.

Analysis of expected stretch: We pick the false-positive rate of Bloom filters and calculate

the expected stretch for each pair of source and destination in the network by analyzing all the

cases with different numbers and locations of false positives and all the possible random selections.

The expected stretch is normalized by the length of the shortest path. We take the average stretch

among all source-destination pairs. We can see that the expected stretch increases linearly with

the increase of the false-positive rate. This is because the expected stretch is dominated by the

one false-positive case. Since we provide a constant stretch bound for the one false-positive case in

BUFFALO, the expected stretch is very small. Even with a false-positive rate of 1%, the expected

stretch is only 0.5% of the length of the shortest path (Figure 3.16).
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Simulation on stretch distribution: We also study the stretch of BUFFALO with packet

traces collected from the Lawrence Berkeley National Lab campus network by Pang et. al. [39].

There are four sets of traces, each collected over a period of 10 to 60 minutes, containing traffic to

and from roughly 9,000 end hosts distributed over 22 different subnets. Since we cannot get the

network topology where the trace is collected, we take the same approach in [5] to map the trace

to the above campus network while preserving the distribution of source-destination popularity of

the original trace. Figure 2.8 shows the distribution of stretch normalized by shortest path length.

When the false-positive rate is 0.01%, 99% of the packets do not have any stretch and 0.01% of

the packets have a stretch that is twice as long as the length of the shortest path. Even when the

false-positive rate is 0.5%, only 0.0001% of the packets have a stretch of 6 times of the length of

the shortest path. Note that in an enterprise or data center, the propagation delays are small, so

the stretch caused by false positives is tolerable.

2.5 Optimizing Memory Usage

In this section, we consider a switch with M -bit fast memory (i.e., SRAM) and a fixed routing

table. We formulate the problem of minimizing the overall false-positive rate through tuning the

sizes in the Bloom filters. This optimization is done by a Bloom filter manager implemented in a

BUFFALO switch. We then show numerical results of false positives with various sizes of memory

and forwarding tables.

2.5.1 Optimizing Bloom-Filter Sizes

Our goal is to minimize the overall false-positive rate. If any one of the T Bloom filters has a false

positive, an address will hit in multiple Bloom filters. In this case, we send the packets through a

slightly longer path as described in Section 2.4. To reduce the stretch, we must minimize the false

positives in each switch. We define the overall false-positive rate for a switch as the probability

that any one of the T Bloom filters has a false positive. As above, let f(h) denote the false-positive

rate of Bloom filter BF (h). Since Bloom filters for different next hops store independent sets of

addresses, and thus are independent of each other, the overall false-positive rate of T Bloom filters
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is

F = 1−
T
∏

h=1

(1− f(h)) ≈
T
∑

h=1

f(h)

(when f(h)≪ 1/T, ∀h = 1..T )

Optimizing the sum approximation for F also directly optimizes the applicability threshold for

Theorem 2.4.16, expressed in terms of the sum as such.

Since there are different numbers of addresses per next hop, we should use different sizes for

the Bloom filters according to the number of addresses stored in them, in order to minimize the

overall false-positive rate with the M-bit fast memory.

In addition to constraining the fast memory size, we should also avoid overloading the CPU.

We bound the packet lookup time, which consists of hash computation time and memory access

time. To reduce the computational overhead of address lookup, we apply the same group of hash

functions to all T Bloom filters. Since we use the same hash functions for all the Bloom filters,

we need to check the same positions in all the Bloom filters for an address lookup. Therefore, we

put the same positions of the Bloom filters in one memory unit (e.g., a byte or a word), so that

they can be accessed by one memory access. In this scheme, the packet lookup time is determined

by the maximum number of hash functions in T Bloom filters (kmax = maxTh=1(k(h)), where k(h)

denotes the number of hash functions used in BF (h)). Let uhash denote the number of hash

functions that can be calculated in a second. We need kmax/uhash time for hash computation.

Let tfmem denote the access time on small, fast memory. Assume there are b bits in a memory

unit which can be read by one memory access. We need ⌈(Tkmax/b)tfmem⌉ memory access time.

Since both hash computation and memory access time are linear in the maximum number of hash

functions kmax, we only need to bound kmax in order to bound the packet lookup time.5

We minimize the lookup time for each packet by choosing m(h) (the number of bits in BF (h))

and k(h) (i.e., the number of hash functions used in BF (h)), with the constraint that Bloom filters

must not take more space than the size of the fast memory and must have a bounded number of

hash functions.

5In switch hardware, the 4-8 hash functions can be calculated in parallel. We also assert that fabrication of 6 to
8 read ports for an on-chip Random Access Memory is attainable with today’s embedded memory technology [40].
The cache line size on a Intel Xeon machine is about 32 bytes to 64 bytes, which is enough to put all the positions
of T Bloom filters in one cache line.
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Let n(h) denote the number of addresses in Bloom filter BF (h). The optimization problem is

formulated as:

Min F =

T
∑

h=1

f(h) (2.10)

s.t. f(h) = (1− e−k(h)n(h)/m(h))k(h) (2.11)
T
∑

h=1

m(h) = M (2.12)

k(h) ≤ kmax, ∀h ∈ [1..T ] (2.13)

given T,M, kmax, and n(h)(∀h ∈ [1..H ])

Equation (2.10) is the overall false-positive rate we need to minimize. Equation (2.11) shows the

false-positive rate for a standard Bloom filter. Equation (2.12) is the size constraint of the fast

memory. Equation (2.13) is the bound on the number of hash functions. We have proved that

this problem is a convex optimization problem.6 Thus there exists an optimal solution for this

problem, which can be found by the IPOPT [41] (Interior Point OPTimizer) solver. Most of our

experiments converge within 30 iterations, which take less than 50 ms. Note that the optimization

is executed only when the forwarding table has significant changes such as a severe link failure

leading to lots of routing changes. The optimization can also be executed in the background

without affecting the packet forwarding.

2.5.2 Analytical Results of False Positives

We study in a switch the effect of forwarding table size, number of next hops, the amount of fast

memory, and number of hash functions on the overall false-positive rate.7 We choose to analyze the

false positives with synthetic data to study various sizes of forwarding tables and different memory

and CPU settings. We have also tested BUFFALO with real packet traces and forwarding tables.

The results are similar to the analytical results and thus omitted in the thesis. We studied a

forwarding table with 20K to 2000K entries (denoted by N), where the number of next hops (T )

varies from 10 to 200. The maximum number of hash functions in the Bloom filters (kmax) varies

6The proof is omitted due to lack of space.
7In Section 2.4, the false-positive rate is defined for each Bloom filter. Here the overall false-positive rate is

defined for the switch because different Bloom filters have different false-positive rates. The overall false-positive
rate can be one or two orders of magnitude larger than individual Bloom-filter false-positive rate.
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Figure 2.9: Effect of memory size (T = 10, N = 200K)
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Figure 2.10: Effect of number of next hops (M = 600KB,N = 200K)

from 4 to 8. Since next hops have different popularity, Pareto distribution is used to generate the

number of addresses for each next hop. We have the following observations:

(1) A small increase in memory size can reduce the overall false-positive rate signif-

icantly. As shown in Figure 2.9, to reach the overall false-positive rate of 0.1%, we need 600 KB

fast memory and 4-8 hash functions to store a FIB with 200K entries and 10 next hops. If we

have 1 MB fast memory, the false-positive rate can be reduced to the order of 10−6.

(2) The overall false-positive rate increases almost linearly with the increase of T .

With the increase of T and thus more Bloom filters, we will have larger overall false-positive

rate. However, as shown in Figure 2.10, even for a switch that has 200 next hops and a 200K-

entry forwarding table, we can still reach a false-positive rate of 1% with 600KB fast memory

(kmax = 6). This is because if we fix the total number of entries N , with the increase of T , the

number of addresses for each next hop drops correspondingly.
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Figure 2.11: Effect of number of entries (T = 10, kmax = 8)
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(3) BUFFALO switch with fixed memory size scales well with the growth of forwarding

table size. For example, as shown in Figure 2.11, if a switch has a 1MB fast memory, as the

forwarding table grows from 20K to 1000K entries, the false-positive rate grows from 10−9 to 5%.

Since packets experiencing false positives are handled in fast memory, BUFFALO scales well with

the growth of forwarding table size.

(4) BUFFALO reduces fast memory requirement by at least 65% compared with hash

tables at the expense of a false-positive rate of 0.1%. We assume a perfect hash table that

has no collision. Each entry needs to store the MAC address (48 bits) and an index of the next hop

(log(T ) bits). Therefore the size of a hash table for an N-entry forwarding table is (log(T )+ 48)N

bits. Figure 2.12 shows that BUFFALO can reduce fast memory requirements by 65% compared

with hash tables for the same number of FIB entries at the expense of a false-positive rate of

0.1%. With the increase of forwarding table size, BUFFALO can save more memory. However
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in practice, handling collisions in hash tables requires much more memory space and affects the

throughput. In contrast, BUFFALO can handle false positives without any memory overhead.

Moreover, the packet forwarding performance of BUFFALO is independent of the workload.

2.6 Handling Routing Changes

In this section, we first describe the use of CBFs in slow memory to keep track of changes in the

forwarding table. We then discuss how to update the BF from the CBF and how to change the

size of the BF without reconstructing the CBF.

2.6.1 Update BF Based on CBF

In a switch, the control plane maintains the RIB (Routing Information Base) and updates the FIB

(Forwarding Information Base) in the data plane. When FIB updates are received, the Bloom

filters should be updated accordingly. We use CBFs in slow memory to assist the update of Bloom

filters. We implement a group of T CBFs, each containing the addresses associated with one

next hop. To add a new route of address addr with next hop h, we will insert addr to CBF (h).

Similarly, to delete a route, we remove addr in CBF (h). The insertion and deletion operations

on the CBF are described in Section 2.2. Since CBFs are maintained in slow memory, we set

the sizes of CBFs large enough, so that even when the number of addresses in one CBF increases

significantly due to routing changes, the false-positive rates on CBFs are kept low.

After the CBF (h) is updated, we update the corresponding BF (h) based on the new CBF (h).

We only need to modify a few BFs that are affected by the routing changes without interrupting

the packet forwarding with the rest BFs. To minimize the interruption of packet forwarding with

the modified BFs, we implement a pointer for each BF in SRAM. We first generate new snapshots

of BFs with CBFs and then change the BF pointers to the new snapshots. The extra fast memory

for snapshots is small because we only need to modify a few BFs at a time.

If the CBF and BF have the same number of positions, we can easily update the BF by checking

if each position in the CBF is 0 or not. The update from CBF to BF becomes more challenging

when we have to dynamically adjust the size of the BF to reduce the overall false-positive rate.
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Figure 2.13: Adjust BF size from m to 2m based on CBF

2.6.2 Adjust BF Size Without Reconstructing CBF

When the forwarding table changes over time, the number of addresses in the BF changes, so the

size of the BF and the number of hash functions to achieve the optimal false-positive rate also

change. We leverage the nice property that to halve the size of a Bloom filter, we just OR the first

and second halves together [20]. In general, the same trick applies to reducing the size of a Bloom

filter by a constant c. This works well in reducing the BF size when the number of addresses in

the BF decreases. However, when the number of addresses increases, it is hard to expand the BF.

Fortunately, we maintain a large, fixed size CBF in the slow memory. we can dynamically

increase or decrease the size of the BF by mapping multiple positions in the CBF to one position

in the BF. For example in Figure 2.13, we can easily expand the BF with size m to BF ∗ with size

2m by collapsing the same CBF.

To minimize the overall false-positive rate under routing changes, we monitor the number of

addresses in each CBF, and periodically reconstruct BFs to be of the optimal sizes and number

of hash functions. Since resizing a BF based on a CBF requires the BF and CBF to use the same

number of hash functions. We need to adjust the number of hash functions in the CBF before

resizing the BF. The procedure of reconstructing a BF with an optimal size from the corresponding

CBF is described in three steps:

Step 1: Calculate the optimal BF size and the number of hash functions. Solving the optimization

problem in Section 2.5, we first get the optimal size of each BF and denote it by m∗. Then we
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round m∗ to m′, which is a factor of S,

m′ = S/c,where c = ⌈S/m∗⌉.

Finally we calculate the optimal number of hash functions to minimize false positives with size

m′ and the number of addresses n in the BF, which is m′ ln 2/n based on standard Bloom filter

analysis [20]. We also need to bound the number of hash functions by kmax. Thus the number of

hash functions is k′ = min(kmax,m
′ ln 2/n).

Step 2: If k 6= k′, change the number of hash functions in the CBF from k to k′. The number

of hash functions does not always change because routing changes are sometimes not significant

and we have the kmax bound. When we must change k, there are two ways with either more

computation or more space: (i) If k′ > k, we obtain all the addresses currently in the forwarding

table from the control plane, calculate the hash values with the k′−k new hash functions on all the

addresses currently in the BF, and update the CBF by incrementing the counters in corresponding

positions. If k′ < k, we also calculate k − k′ hash values, and decrementing the corresponding

counters. (ii) Instead of doing the calculation on the fly, we can pre-calculate the values of these

hash functions with all the elements and store them in the slow memory.

Step 3: Construct the BF of size m′ = S/c based on the CBF of size S. As shown in Figure 2.13,

the value of the BF at position x (x ∈ [1..m′]) is updated by c positions in CBF x, 2x, ... cx. If

all the counters in the c positions of CBF are 0, we set the position x in BF to 0; otherwise, we

set it to 1. During routing changes, the BFs can be updated based on CBFs in the same way.

2.7 Implementation and Evaluation

To verify the performance and practicality of our mechanism through a real deployment, we built

a prototype BuffaloSwitch in kernel-level Click [23]. The overall structure of our implementation

is shown in Figure 3.7. BuffaloSwitch consists of four modules:

Counting Bloom filters: The counting Bloom filter module is used to receive routing changes

from the control plane and increment/decrement the counters in the related CBFs correspondingly.
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Bloom filters: The Bloom filter module maintains one Bloom filter for each next hop. It also

performs the packet lookup by hash calculation and checking all the Bloom filters. When it finds

out the multiple next hop candidates due to false positives, it will call the false positive handler.

Bloom filter manager: The Bloom filter manager monitors the number of addresses in each BF.

If the number of addresses in one BF changes significantly (above threshold TH), we recalculate

the optimal size of the BF and reconstruct it based on the CBF.

False positive handler: The false positive handler module is responsible for selecting a next

hop for the packets that experience false positives.

To evaluate our prototype, we need a forwarding table and real packet traces. We map the

Lawrence Berkeley National Lab Campus network traces [39] to the campus network topology [36]

as described in Section 2.4.3. We then calculate shortest paths in the network and construct the

forwarding table accordingly. The forwarding table consists of 200K entries.

We run BuffaloSwitch on a 3.0 GHz 64-bit Intel Xeon machine with a 8 KB L1 and 2 MB L2

data cache. The main memory is a 2 GB 400 Mhz DDR2 RAM. We take the fast memory size

M as 1.5MB to make sure Bloom filters fit in the L2 cache. The Bloom filter manager optimizes

sizes of Bloom filters given the forwarding table and M . To avoid the potential bottleneck at the

Ethernet interfaces, we run the Click packet generator on the same machine with BuffaloSwitch.

We send the packet with constant rate and measure the peak forwarding rate of BuffaloSwitch.

The packet size is set as 64 bytes, which is the minimum Ethernet packet size, so that the packet

payload does not pollute the cache much. For comparison, we also run EtherSwitch — a standard

Click element which performs Ethernet packet forwarding using hash tables.

Our experiment shows that BuffaloSwitch achieves a peak forwarding rate of 365 Kpps, 10%

faster than EtherSwitch which has 330 Kpps peak forwarding rate. This is because all the Bloom

filters in BuffaloSwitch fit in the L2 cache, but the hash table in EtherSwitch does not and thus

takes longer time to access memory. The forwarding rate with BuffaloSwitch can be further

improved by parallelizing the hash calculations on multiple cores.

To measure the performance of BuffaloSwitch under routing changes, we generate a group of

routing updates which randomly change FIB entries and replay these updates. It takes 10.7 µsec

for BuffaloSwitch to update the Bloom filters for one route change. Under significant routing

changes, it takes an additional 0.47 seconds to adjust the Bloom filter sizes based on counting
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Bloom filters. This is because CBFs are very large and takes longer time to scan through them.

However, it is much faster than recalculating hash functions for all FIB entries to reconstruct

Bloom filters.

2.8 Extensions to BUFFALO

In this section we discuss the extensions of BUFFALO to support ECMP, VLAN, broadcast and

multicast packets, and backup routes.

Supporting ECMP: In shortest-path routing protocols like OSPF and IS-IS, ECMP (Equal-

Cost Multi-Path) is used to split traffic among shortest paths with equal cost. When a destination

address has multiple shortest paths, the switch inserts the destination address into the Bloom

filter of each of the next hops. Since packets with this address match multiple next hops, the

BUFFALO false-positive handler will randomly choose one next hop from them, achieving even

splitting among these equal-cost multiple paths.

Supporting virtual LANs: VLAN is used in Ethernet to allow administrators to group multiple

hosts into a single broadcast domain. A switch port can be configured with one or more VLANs.

We can no longer use just a single Bloom filter for each port because due to false positives a

packet in VLAN A may be sent to a switch which does not know how to reach VLAN A and thus

get dropped. To support VLANs in BUFFALO, we use one Bloom filter for each (VLAN, next

hop) pair. For a packet lookup, we simply check those Bloom filters that have the same VLAN

as the packet. However, this does not scale well with a large number of VLANs in the network.

For future architectures that have simpler network configuration and management methods rather

than VLAN, we do not have this problem.

Broadcast and multicast: In this chapter, we have focused on packet forwarding for unicast

traffic. To support Ethernet broadcast, the switch can identify the broadcast MAC address and

forward broadcast packets directly without checking the Bloom filters. Supporting multicast in

the layer-2 network is more complex. One way is to broadcast all the multicast packets and let the

NIC on the hosts decide whether to accept or drop the packets. Another way is to allow switches

to check whether the destination IP address of the packet is a multicast-group packet, and leverage

IP multicast solutions such as storing the multicast forwarding information in packets [42, 43].

53



Fast failover to backup routes: When a significant failure happens such as one of the switch’s

own links fail, many routes change in a short time. In order to quickly recover from significant

failures, we provide an optional optimization of BUFFALO. The control plane calculates backup

routes for every link/node failure case in advance, and notifies the data plane about the failure

event. In addition to the original routes stored in CBF (h) (h ∈ [1..T ]), we pre-calculate backup

counting Bloom filters CBF (h1, h2) (for all h1 ∈ [1..T ], h2 ∈ [1..T ]), which denotes the set of

addresses that are originally forwarded to next hop h1, but if h1 is not accessible, they should

be forwarded to next hop h2. When the failure happens and thus h1 is not accessible, we simply

need to update the Bloom filters based on the original Bloom filters and backup counting Bloom

filters. For example, we update BF (h2) based on the old BF (h2) and CBF (h1, h2). This is fast

because merging two Bloom filters is just OR operations.

2.9 Related Work

Bloom filters have been used for IP packet forwarding, and particularly the longest-prefix match

operation [22]. The authors use Bloom filters to determine the length of the longest matching

prefix for an address and then perform a direct lookup in a large hash table in slow memory. The

authors in [44] design a d-left scheme using d hash functions for IP lookups. To perform an IP

lookup, they still need to access the slow memory at least d times. The paper [45] stores Bloom

filter in the fast memory, and stores the values in a linked structure in the slow memory such

that the value can be accessed via one access on the slow memory most of the times. Different

from these works, we focus on flat addresses and perform the entire lookup in fast memory at

the expense of a few false positives. We also propose a simple scheme that handles false positives

within fast memory, and proves its reachability and stretch bound.

Bloom filters have also been used in resource routing [20, 21], which applies Bloom filters to

probabilistic algorithms for locating resources. Our “one Bloom filter per next hop” scheme is

similar to their general idea of using one Bloom filter to store the list of resources that can be

accessed through each neighboring node. To keep up with link speed in packet forwarding with a

strict fast memory size constraint, we dynamically tune the optimal size and the number of hash

functions of Bloom filters by keeping large fixed-size counting Bloom filters in slow memory. We
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also handle false positives without any memory overhead. BUFFALO is also similar to Bloomier

filters [46] in that we both use a group of Bloom filters, one for each value of a function that maps

the key to the value. However, Bloomier filters only work for a static element set.

Bloom filters are also been used for multicast forwarding. LIPSIN [43] uses Bloom filters to

encode the multicast forwarding information in packets. False positives in Bloom filters may cause

loops in its design. LIPSIN caches packets that may experience loops and send the packets to a

different link when a loop is detected. However, they do not show how well they can prevent loops

and the cache size they need. In contrast, our loop prevention mechanism is simple and effective,

and does not have any memory overhead.

To handle routing changes, the paper [45] store counting Bloom filters (CBFs) in fast memory,

which uses more memory space than the Bloom filters (BFs). Both our paper and the paper [22]

and leverage the fact that routing changes happen on a much longer time scale than address

lookup, and thus store only the BF in fast memory, and use the CBF in slow memory to handle

routing changes. The idea of maintaining both the CBF and BF is similar to the work in [30],

which uses BFs for sharing caches among Web proxies. Since cache contents change frequently,

the authors suggest that caches use a CBF to track their own cache contents, and broadcast the

corresponding BF to the other proxies. The CBF is used to avoid the cost of reconstructing the

BF from scratch when an update is sent; the BF rather than the CBF is sent to the other proxies

to reduce the size of broadcast messages. Different from previous work, we dynamically adjust

the size of the BF without reconstructing the corresponding CBF, which may be useful for other

Bloom filter applications.

Our idea of using one Bloom filter per port is similar to SPSwitch [47] which forward packets

on flat identifiers in content-centric networks. Our workshop paper [48] applies Bloom filters for

enterprise edge routers by leveraging the fact that edge routers typically have a small number of

next hops. However, it does not deal with loops caused by false positives. The paper uses one

Bloom filter for each (next hop, prefix length) pair and discusses its effect on false positives. It

also proposes the idea of using CBF to assist the BF update and resizing. We consider flat address

lookup in SPAF networks in this paper, and thus eliminate the effect of various prefix lengths.

We also propose a mechanism to handle false positives in the network without extra memory. We

perform extensive analysis, simulation, and prototype implementation to evaluate our scheme.
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2.10 Summary

With recent advances in improving control plane scalability, it is possible now to build large

layer-2 networks. The scalability problem in the data plane becomes challenging with increasing

forwarding table sizes and link speed. Leveraging flat addresses and shortest path routing in SPAF

networks, we proposed BUFFALO, a practical switch design based on Bloom filters. BUFFALO

performs the entire packet forwarding in small, fast memory including those packets experiencing

false positives. BUFFALO gracefully degrades under higher memory loads by gradually increasing

stretch rather than crashing or resorting to excessive flooding. Our analysis, simulation and

prototype demonstrate that BUFFALO works well in reducing memory cost and improving the

scalability of packet forwarding in enterprise and data center networks.
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Chapter 3

DIFANE: Scaling Flexible Policy

Support on Switches

This chapter focuses on the scalability challenges of supporting flexible policies. Ideally, enterprise

administrators could specify fine-grain policies that drive how the underlying switches forward,

drop, and measure traffic. However, existing techniques for flow-based networking rely too heavily

on centralized controller software that installs rules reactively, based on the first packet of each

flow. In this chapter, we propose DIFANE, a scalable and efficient solution for enforcing flexible

policies at switches.

DIFANE keeps all traffic in the data plane by selectively directing packets through intermediate

switches that store the necessary rules. DIFANE relegates the controller to the simpler task of

partitioning these rules over the switches. DIFANE can be readily implemented with commodity

switch hardware, since all data-plane functions can be expressed in terms of wildcard rules that

perform simple actions on matching packets. Experiments with our prototype on Click-based

OpenFlow switches show that DIFANE scales to larger networks with richer policies.

3.1 Introduction

The emergence of flow-based switches [14, 15] has enabled enterprise networks that support flexible

policies. These switches perform simple actions, such as dropping or forwarding packets, based
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on rules that match on bits in the packet header. Installing all of the rules in advance is not

attractive, because the rules change over time (due to policy changes and host mobility) and the

switches have relatively limited high-speed memory (such as TCAMs). Instead, current solutions

rely on directing the first packet of each “microflow” to a centralized controller that reactively

installs the appropriate rules in the switches [13, 10]. In this thesis, we argue that the switches

themselves should collectively perform this function, both to avoid a bottleneck at the controller

and to keep all traffic in the data plane for better performance and scalability.

3.1.1 DIFANE: Doing It Fast ANd Easy

Our key challenge, then, is to determine the appropriate “division of labor” between the controller

and the underlying switches, to support high-level policies in a scalable way. Previous work has

demonstrated that a logically-centralized controller can track changes in user locations/addresses

and compute rules the switches can apply to enforce a high-level policy [10, 11, 12]. For ex-

ample, an access-control policy may deny the engineering group access to the human-resources

database, leading to low-level rules based on the MAC or IP addresses of the current members

of the engineering team, the IP addresses of the HR servers, and the TCP port number of the

database service. Similar policies could direct packets on customized paths, or collect detailed

traffic statistics. The controller can generate the appropriate switch rules simply by substituting

high-level names with network addresses. The policies are represented with 30K - 8M rules in the

four different networks we studied. This separation of concerns between rules (in the switches)

and policies (in the controller) is the basis of several promising new approaches to network man-

agement [13, 49, 50, 51, 52].

While we agree the controller should generate the rules, we do not think the controller should

(or needs to) be involved in the real-time handling of data packets. Our DIFANE (DIstributed Flow

Architecture for Networked Enterprises) architecture, illustrated in Figure 3.1, has the following

two main ideas:

• The controller distributes the rules across (a subset of) the switches, called “authority

switches,” to scale to large topologies with many rules. The controller runs a partitioning

algorithm that divides the rules evenly and minimizes fragmentation of the rules across

multiple authority switches.
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Figure 3.1: DIFANE flow management architecture. (Dashed lines are control messages. Straight
lines are data traffic.)

• The switches handle all packets in the data plane (i.e., TCAM), diverting packets through

authority switches as needed to access the appropriate rules. The “rules” for diverting

packets are themselves naturally expressed as TCAM entries.

All data-plane functionality in DIFANE is expressible in terms of wildcard rules with simple

actions, exactly the capabilities of commodity flow switches. As such, a DIFANE implementation

requires only modifications to the control-plane software of the authority switches, and no data-

plane changes in any of the switches. Experiments with our prototype, built on top of the Click-

based OpenFlow switch [53], illustrate that distributed rule management in the data plane provides

lower delay, higher throughput, and better scalability than directing packets through a separate

controller.

Section 3.2 presents our main design decisions, followed by our DIFANE architecture in Sec-

tion 3.3. Next, Section 3.4 describes how we handle network dynamics, and Section 3.5 presents

our algorithms for caching and partitioning wildcard rules. Section 3.6 presents our switch imple-

mentation, followed by the performance evaluation in Section 4.5. Section 3.8 describes different

deployment scenarios of DIFANE. The chapter concludes in Section 4.9.

59



3.1.2 Comparison to Related Work

Recent work shows how to support policy-based management using flow switches [14, 15] and

centralized controllers [10, 11, 12, 13]. The most closely related work is the Ethane controller

that reactively installs flow-level rules based on the first packet of each TCP/UDP flow [13]. The

Ethane controller can be duplicated [13] or distributed [54] to improve its performance. In contrast,

DIFANE distributes wildcard rules amongst the switches, and handles all data packets in the data

plane. Other recent work capitalizes on OpenFlow to rethink network management in enterprises

and data centers [49, 50, 51, 52]; these systems could easily run as applications on top of DIFANE.

These research efforts, and ours, depart from traditional enterprise designs that use IP routers

to interconnect smaller layer-two subnets, and rely heavily on inflexible mechanisms like VLANs.

Today, network operators must configure Virtual LANs (VLANs) to scope broadcast traffic and

direct traffic on longer paths through routers that perform access control on IP and TCP/UDP

header fields. In addition, an individual MAC address or wall jack is typically associated with

just one VLAN, making it difficult to support more fine-grained policies that treat different traffic

from the same user or office differently.

Other research designs more scalable networks by selectively directing traffic through inter-

mediate nodes to reduce routing-table size [5, 55, 56]. However, hash-based redirection tech-

niques [5, 55], while useful for flat keys like IP or MAC addresses, are not appropriate for look-ups

on rules with wildcards in arbitrary bit positions. ViAggre [56] subdivides the IP prefix space,

and forces some traffic to always traverse an intermediate node, and does not consider on-demand

cache or multi-dimensional, overlapping rules.

3.2 DIFANE Design Decisions

On the surface, the simplest approach to flow-based management is to install all of the low-level

rules in the switches in advance. However, preinstalling the rules does not scale well in networks

with mobile hosts, since the same rules would need to be installed in multiple locations (e.g., any

place a user might plug in his laptop). In addition, the controller would need to update many

switches whenever rules change. Even in the absence of mobile devices, a network with many

rules might not have enough table space in the switches to store all the rules, particularly as the
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network grows or its policies become more complex. Instead, the system should install rules on

demand [13].

To build a flow-processing system that has high performance and scales to large networks,

DIFANE makes four high-level design decisions that reduce the overhead of handling cache misses

and allow the system to scale to a large number of hosts, rules, and switches.

3.2.1 Reducing Overhead of Cache Misses

Reactively caching rules in the switches could easily cause problems such as packet delay, larger

buffers, and switch complexity when cache misses happen. More importantly, misbehaving hosts

could easily trigger excessive cache misses simply by scanning a wide range of addresses or port

numbers — overloading TCAM and introducing extra packet-processing overhead. DIFANE han-

dles “miss” packets efficiently by keeping them in the data plane and reduces the number of “miss”

packets by caching wildcard rules.

Process all packets in the data plane: Some flow management architectures direct the first

packet (or first packet header) of each microflow to the controller and have the switch buffer the

packet awaiting further instructions [13].1 In a network with many short flows , a controller that

handles “miss” packets can easily become a bottleneck. In addition, UDP flows introduce extra

overhead, since multiple (potentially large) packets in the same flow may be in flight (and need to

visit the controller) at the same time. The switches need a more complex and expensive buffering

mechanism, because they must temporarily store the “miss” packets while continuing to serve

other traffic, and then retrieve them upon receiving the rule. Instead, DIFANE makes it cheap

and easy for switches to forward all data packets in the data plane (i.e., hardware), by directing

“miss” packets through an intermediate switch. Transferring packets in the data plane through a

slightly longer path is much faster than handling packets in the control plane.

Efficient rule caching with wildcards: Caching a separate low-level rule for each TCP or UDP

microflow [13], while conceptually simple, has several disadvantages compared to wildcard rules.

For example, a wildcard rule that matches on all destinations in the 123.132.8.0/22 subnet would

require up to 1024 microflow rules. In addition to consuming more data-plane memory on the

1Another solution to handle cache miss is for the switch to encapsulate and forward the entire packet to the
controller. This is also problematic because it significantly increases controller load.
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switches, fine-grained rules require special handling for more packets (i.e., the first packet of each

microflow), leading to longer delays and higher overhead, and more vulnerability to misbehaving

hosts. Instead, DIFANE supports wildcard rules, to have fewer rules (and fewer cache “misses”)

and capitalize on TCAMs in the switches. Caching wildcard rules introduces several interesting

technical challenges that we address in our design and implementation.

3.2.2 Scaling to Large Networks and Many Rules

To scale to large networks with richer policies, DIFANE divides the rules across the switches

and handles them in a distributed fashion. We also keep consistent topology information among

switches by leveraging link-state protocols.

Partition and distribute the flow rules: Replicating the controller seems like a natural way

to scale the system and avoid a single point of failure. However, this requires each controller

to maintain all the rules, and coordinate with the other replicas to maintain consistency when

rules change. (Rules may change relatively often, not only because the policy changes, but also

because host mobility triggers changes in the mapping of policies to rules.) Instead, we partition

the space of rules to reduce the number of rules each component must handle and enable simpler

techniques for maintaining consistency. As such, DIFANE has one primary controller (perhaps

with backups) that manages policies, computes the corresponding rules, and divides these rules

across the switches; each switch handles a portion of the rule space and receives updates only

when those rules change. That is, while the switches reactively cache rules in response to the data

traffic, the DIFANE controller proactively partitions the rules across different switches.

Consistent topology information distribution with the link-state protocol: Flow-based

management relies on the switches having a way to communicate with the controller and adapt

to topology changes. Relying on rules for this communication introduces circularity, where the

controller cannot communicate with the switches until the appropriate rules have been installed.

Rather than bootstrapping communication by having the switches construct a spanning tree [13],

we advocate running a link-state protocol amongst the switches. Link-state routing enables the

switches to compute paths and learn about topology changes and host location changes without

involving the controller, reducing overhead and also removing the controller from the critical path

62



of failure recovery. In addition, link-state routing scales to large networks, enables switches to

direct packets through intermediate nodes, and reacts quickly to switch failure [5]. As such,

DIFANE runs a link-state routing protocol amongst the switches, while also supporting flow rules

that allow customized forwarding of traffic between end hosts. The controller also participates in

link-state routing to reach the switches and learn of network topology changes.2

3.3 DIFANE Architecture

The DIFANE architecture consists of a controller that generates the rules and allocates them to

the authority switches, as shown in Figure 3.1. Authority switches can be a subset of existing

switches in the network (including ingress/egress switches), or dedicated switches that have larger

memory and processing capability.

Upon receiving traffic that does not match the cached rules, the ingress switch encapsulates

and redirects the packet to the appropriate authority switch based on the partition information.

The authority switch handles the packet in the data plane and sends feedback to the ingress

switch to cache the relevant rule(s) locally. Subsequent packets matching the cached rules can be

encapsulated and forwarded directly to the egress switch.

In this section, we first discuss how the controller partitions the rules and distributes the

authority and partition rules to the switches. Next, we describe how a switch directs packets

through the authority switch and caches the necessary rules, using link-state routing to compute

the path to the authority switch. Finally, we show that the data-plane functionality of DIFANE

can be easily implemented on today’s flow-based switches using wildcard rules.

3.3.1 Rule Partition and Allocation

As shown in Figure 3.2, we use the controller to pre-compute the low-level rules, generate partition

rules that describe which low-level rules are stored in which authority switches, and then distribute

the partition rules to all the switches. The partition rules are represented by coarse-grained

wildcard rules on the switches.

2The links between the controller and switches are set with high link-weights so that traffic between switches do
not go through the controller.
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Figure 3.2: Rule operations in the controller.

Precompute low-level rules: The controller pre-computes the low-level rules based on the

high-level policies by simply substituting high-level names with network addresses. Since low-level

rules are pre-computed and installed in the TCAM of switches, we can always process packets in

the fast path. Most kinds of policies can be translated to the low-level rules in advance because

the controller knows the addresses of the hosts when the hosts first connect to the ingress switch,

and thus can substitute the high-level names with addresses. However, precomputation is not

an effective solution for policies (like traffic engineering) that depend on dynamically changing

network state.

Use partitioning to subdivide the space of all rules: Hashing is an appealing way to

subdivide the rules and direct packets to the appropriate authority switch. While useful for flat

keys like an IP or MAC address [5, 55], hashing is not effective when the keys can have wildcards

in arbitrary bit positions. In particular, packets matching the same wildcard rule would have

different hash values, leading them to different authority switches; as a result, multiple authority

switches would need to store the same wildcard rule. Instead of relying on hashing, DIFANE

partitions the rule space, and assigns each portion of rule space to one or more authority switches.

Each authority switch stores the rules falling in its part of the partition.
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(a) Low-level rules and the partition

Type Priority F1 F2 Action Timeout Note

Cache 210 00** 111* Encap, forward to B 10 sec R3

rules 209 1110 11** Drop 10 sec R7

... ... ... ... ... ... ...

110 00** 001*
Encap, forward to D, ∞ R1Authority trigger ctrl. plane func.

rules
109 0001 0***

Drop, ∞ R2trigger ctrl. plane func.
15 0*** 000* Encap, redirect to B ∞ Primary

Partition 14 0*** 1*** Encap, redirect to C ∞
rules 13 11** **** Encap, redirect to D ∞

5 0*** 000* Encap, redirect to B′ ∞ Backup
... ... ... ... ... ... ...

(b) Wildcard rules in the TCAM of Switch A

Figure 3.3: Wildcard rules in DIFANE (A-D are authority switches).

Run the partitioning algorithm on the controller: Running the partitioning algorithm on

the switches themselves would introduce a large overhead, because they would need to learn the

rules from the controller, run the partitioning algorithm, and distribute the results. In contrast,

the controller is a more natural place to run the partitioning algorithm. The controller is already

responsible for translating policies into rules and can easily run the partitioning algorithm period-

ically, as the distribution of low-level rules changes. We expect the controller would recompute the

partition relatively infrequently, as most rule changes would not require rebalancing the division of

rule space. Section 3.4 discusses how DIFANE handles changes to rules with minimal interruption

to the data traffic.
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Represent the partition as a small collection of partition rules: Low-level rules are defined

as actions on a flow space. The flow space usually has seven dimensions (source/destination IP

addresses, MAC addresses, ports, the protocol) or more. Figure 3.3(a) shows a two-dimensional

flow space (F1, F2) and the rules on it. The bit range of each field is from 0 to 15 (i.e., F1=F2=

[0..15]). For example, F1, F2 can be viewed as the source/destination fields of a packet respectively.

Rule R2 denotes that all packets which are from source 1 (F1=1) and forwarded to a destination

in [0..7] (F2=[0..7]) should be dropped.

The controller partitions the flow space into M ranges, and assigns each range to an authority

switch. The resulting partition can be expressed concisely as a small number of coarse-grain

partition rules, where M is proportional to the number of authority switches rather than the

number of low-level rules. For example, in Figure 3.3(a), the flow space is partitioned into four

parts by the straight lines, which are represented by the partition rules in Figure 3.3(b). Section 3.5

discusses how the controller computes a partition of overlapping wildcard rules that reduces TCAM

usage.

Duplicate authority rules to reduce stretch and failure-recovery time: The first packet

covered by an authority rule traverses a longer path through an authority switch. To reduce the

extra distance the traffic must travel (i.e., “stretch”), the controller can assign each of the M

ranges to multiple authority switches. For example, if each range is handled by two authority

switches, the controller can generate two partition rules for each range, and assign each switch

the rule that would minimize stretch. That way, on a cache miss,3 a switch directs packets to the

closest authority switch responsible for that range of rules. The placement of multiple authority

switches is discussed in Section 3.5.

Assigning multiple authority switches to the same range can also reduce failure-recovery time.

By pushing backup partition rules to every switch, a switch can quickly fail over to the backup

authority switch when the primary one fails (see Section 3.4). This requires each switch to store

more partition rules (e.g., 2M instead of M), in exchange for faster failure recovery. For example,

in Figure 3.3(b), switch A has a primary partition rule that directs packets to B and a backup

one that directs packets to B′.

3In DIFANE, every packet matches some rule in the switch. “Cache miss” in DIFANE means a packet does not
match any cache rules, but matches a partition rule instead.
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3.3.2 Packet Redirection and Rule Caching

The authority switch stores the authority rules. The ingress switch encapsulates the first packet

covered by an authority switch and redirects it to the authority switch.4 The authority switch

processes the packet and also caches rules in the ingress switch so that the following packets can

be processed at the ingress switch.

Packet redirection: In the ingress switch, the first packet of a wildcard flow matches a partition

rule. The partition rule indicates which authority switch maintains the authority rules that are

related to the packet. For example, in Figure 3.3 a packet with (F1 =9, F2=7) hits the primary

partition rule for authority switch B and should be redirected to B. The ingress switch encapsu-

lates the packet and forwards it to the authority switch. The authority switch decapsulates the

packet, processes it, re-encapsulates it, and forwards it to the egress switch.

Rule Caching: To avoid redirecting all the data traffic to the authority switch, the authority

switch caches the rules in the ingress switch.5 Packets that match the cache rules are encapsulated

and forwarded directly to the egress switch (e.g., packets matching R3 in Figure 3.3(b) are encap-

sulated and forwarded to D). In DIFANE “miss” packets do not wait for rule caching, because

they are sent through the authority switch rather than buffered at the ingress switch. Therefore,

we can run a simple caching function in the control plane of the authority switch to generate

and install cache rules in the ingress switch. The caching function is triggered whenever a packet

matches the authority rules in the authority switch. The cache rule has an idle timeout so that it

can be removed by the switch automatically due to inactivity.

3.3.3 Implement DIFANE with Wildcard Rules

All the data plane functions required in DIFANE can be expressed with three sets of wildcard

rules of various granularity with simple actions, as shown in Figure 3.3(b).

Cache rules: The ingress switches cache rules so that most of the data traffic hits in the cache

and is processed by the ingress switch. The cache rules are installed by the authority switches in

the network.

4With encapsulation, the authority switch knows the address of the ingress switch from the packet header and
sends the cache rules to the ingress switch.

5Here we assume that we cache flow rules only at the ingress switch. We discuss the design choices of where to
cache flow rules in our Section 4.6.
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Authority rules: Authority rules are only stored in authority switches. The controller installs

and updates the authority rules for all the authority switches. When a packet matches an authority

rule, it triggers a control-plane function to install rules in the ingress switch.

Partition rules: The controller installs partition rules in each switch. The partition rules are

a set of coarse-grained rules. With these partition rules, we ensure a packet will always match at

least one rule in the switch and thus always stay in the data plane.

The three sets of rules can be easily expressed as a single list of wildcard rules with different

priorities. Priorities are naturally supported by TCAM. If a packet matches multiple rules, the

packet is processed based on the rule that has the highest priority. The cached rules have highest

priority because packets matching cache rules do not need to be directed to authority switches.

In authority switches, authority rules have higher priority than partition rules, because packets

matching authority rules should be processed based on these rules. The primary partition rules

have higher priority than backup partition rules.

Since all functionalities in DIFANE are expressed with wildcard rules, DIFANE does not require

any data-plane modifications to the switches and only needs minor software extensions in the

control plane of the authority switches.

3.4 Handling Network Dynamics

In this section, we describe how DIFANE handles dynamics in different parts of the network:

To handle rule changes at the controller, we need to update the authority rules in the authority

switches and occasionally repartition the rules. To handle topology changes at the switches, we

leverage link-state routing and focus on reducing the interruptions of authority switch failure

and recovery. To handle host mobility, we dynamically update the rules for the host, and use

redirection to handle changes in the routing rules.

3.4.1 Changes to the Rules

The rules change when administrators modify the policies, or network events (e.g., topology

changes) affect the mapping between policies and rules. The related authority rules, cache rules,

and partition rules in the switches should be modified correspondingly.
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Authority rules are modified by the controller directly: The controller changes the

authority rules in the related authority switches. The controller can easily identify the related

authority switches based on the partition it generates.

Cache rules expire automatically: Cached copies of the old rules may still exist in some

ingress switches. These cache rules will expire after the timeout time. For critical changes (e.g.,

preventing DoS attacks), the authority switches can get the list of all the ingress switches from

the link-state routing and send them a message to evict the related TCAM entries.

Partition rules are recomputed occasionally: When the rules change, the number of au-

thority rules in the authority switches may become unbalanced. If the difference in the number of

rules among the authority switches exceeds a threshold, the controller recomputes the partition of

the flow space. Once the new partition rules are generated, the controller notifies the switches of

the new partition rules, and updates the authority rules in the authority switches.

The controller cannot update all the switches at exactly the same time, so the switches may

not have a consistent view of the partition during the update, which may cause transient loops

and packet loss in the network. To avoid packet loss, the controller simply updates the switches

in a specific order. Assume the controller decides to move some authority rules from authority

switch A to B. The controller first sends the authority rules to authority switch B, before sending

the new partition rules for A and B to all the switches in the network. Meanwhile, switches can

redirect the packets to either A or B for the authority rules. Finally, the controller deletes the

authority rules in switch A. In this way, we can prevent packet loss during the change. The same

staged update mechanism also applies to the partition change among multiple authority switches.

3.4.2 Topology Dynamics

Link-state routing enables the switches to learn about topology changes and adapt routing quickly.

When authority switches fail or recover, DIFANE adapts the rules to reduce traffic interruption.

Authority switch failure: When an authority switch fails, packets directed through it are

dropped. To minimize packet loss, we must react quickly to authority switch failures. We design

a distributed authority switch takeover mechanism. As discussed in Section 3.3.1, the controller

assigns the same group of authority rules to multiple authority switches to reduce stretch and
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failure-recovery time. Each ingress switch has primary partition rules directing traffic to their

closest authority switch and backup partition rules with lower priority that directing traffic to

another authority switch when the primary one fails.

The link-state routing protocol propagates a message about the switch failure throughout the

network. Upon receiving this message, the switches invalidate their partition rules that direct

traffic to the failed authority switch. As a result, the backup partition rule takes effect and

automatically directs packets through the backup authority switch. For the switches that have

not yet received the failure information, the packets may get sent towards the failed authority

switch, but will finally get dropped by a switch who has updated its switch forwarding table.6

Authority switch addition/recovery: We use the controller to handle switches joining in

the network, because it does not require fast reaction compared to authority switch failures. To

minimize the change of the partition rules and authority rules, the controller randomly picks an

authority switch, divides its flow range evenly into two parts. The controller then moves one part

of the flow range to the new switch, and installs the authority rules in the new switch. Finally the

controller updates the partition rules correspondingly in all the switches.

3.4.3 Host Mobility

In DIFANE, when a host moves, its MAC and perhaps IP address stays the same. The rules in

the controller are defined based on these identifiers, and thus do not change as hosts move. As a

result, the partition rules and the authority rules also stay the same.7 Therefore we only need to

consider the changes of cache rules.

Installing rules at the new ingress switch on demand: When a host connects to a new

ingress switch, the switch may not have the cache rules for the packets sent by the hosts. So the

packets are redirected to the responsible authority switch. The authority switch then caches rules

at the new ingress switch.

Removing rules from old ingress switch by timeout: Today’s flow-based switches usually

have a timeout for removing the inactive rules. Since the host’s old ingress switch no longer

6If the switch can decapsulate the packet and encapsulate it with the backup authority switch as the destination,
we can avoid such packet loss.

7In some enterprises, a host changes its identifier when it moves. The rules also change correspondingly. We can
use the techniques in Section 3.4.1 to handle the rule changes.
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receives packets from the moved host, the cache rules at the switch are automatically removed

once the timeout time expires.

Redirecting traffic from old ingress switch to the new one: The rules for routing packets

to the host change when the host moves. When a host connects to a new switch, the controller

gets notified through the link-state routing and constructs new routing rules that map the address

of the host to the corresponding egress switch. The new routing rules are then installed in the

authority switches.

The cached routing rules in some switches may be outdated. Suppose a host H moves from

ingress switch Sold to Snew. The controller first gets notified about the host movement. It then

installs new routing rules in the authority switch, and also installs a rule in Sold redirecting packets

to Snew. If an ingress switch A receives a packet whose destination is H , A may still send the

packet to the old egress point Sold if the cache rule has not expired. Sold then redirects packets

to Snew. After the cache rule expires in switch A, A directs the packets to the authority switch

for the correct egress point Snew and caches the new routing rule.

3.5 Handling Wildcard Rules

Most flow-management systems simply use microflow rules [13] or transform overlapping wildcard

rules into a set of non-overlapping wildcard rules. However these methods significantly increase

the number of rules in switches, as shown in our evaluation in Section 4.5. To the best of our

knowledge, there is no systematic and efficient solution for handling overlapping wildcard rules in

network-wide flow-management systems. In this section, we first propose a simple and efficient

solution for multiple authority switches to independently insert cache rules in ingress switches.

We then discuss the key ideas of partitioning overlapping wildcard rules

3.5.1 Caching Wildcard Rules

Wildcard rules complicate dynamic caching at ingress switches. In the context of access control,

for example in Figure 3.4, the packet (F1 =7, F2=0) matches an “accept” rule R3 that overlaps

with “deny” rule R2 which has higher priority. Simply caching R3 is not safe. If we just cache

R3 in the ingress switch, another packet (F1 = 7, F2 = 5) could incorrectly pass the cached rule
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Rule F1 F2 Action

R1 4 0-15 Accept
R2 0-7 5-6 Drop
R3 6-7 0-15 Accept
R4 14-15 0-15 Accept

(a) Wildcard rules listed in the decreasing
order of priority. (R1 > R2 > R3 > R4)

Cut A

F1

F2

R3 R4
Cut B

A1 A2

B1

B2

R1

R2

(b) Graphical view and two partition solutions.

Figure 3.4: An illustration of wildcard rules.

R3, because the ingress switch is not aware of the rule R2. Thus, because rules can overlap with

each other, the authority switch cannot solely cache the rule that a packet matches. This problem

exists in all the flow management systems that cache wildcard rules and therefore it is not trivial

to extend Ethane controllers [13] to support wildcards.

To address this problem, DIFANE constructs one or more new wildcard rules that cover the

largest flow range (i.e., a hypercube in a flow space) in which all packets take the same action. We

use Figure 3.4 to illustrate the solution. Although the rules overlap, which means a packet may

match multiple rules, the packet only takes the action of the rule with the highest priority. That is,

each point in the flow space has a unique action (which is denoted by the shading in each spot in

Figure 3.4(b)). As long as we cache a rule that covers packets with the same action (i.e., spots with

the same shading), we ensure that the caching preserves semantic correctness. For example, we

cannot cache rule R3 because the spots it covers have different shading. In contrast, we can safely

cache R1 because all the spots it covers has the same shading. For the packet (F1=7, F2=0), we

construct and cache a new rule: F1=[6..7], F2=[0..3].

The problem of constructing new wildcard rules for caching at a single switch was studied

in [57]. Our contribution lies in extending this approach to multiple authority switches, each of
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which can independently install cache rules at ingress switches. Given such a setting, we must

prevent authority switches from installing conflicting cache rules. To guarantee this, DIFANE

ensures that the caching rules installed by different authority switches do not overlap. This is

achieved by allocating non-overlapping flow ranges to the authority switches, and only allowing

the authority switch to install caching rules in its own flow range. We later evaluate our caching

scheme in Section 4.5.

3.5.2 Partitioning Wildcard Rules

Overlapping wildcard rules also introduce challenges in partitioning. We first formulate the parti-

tion problem: The controller needs to partition rules into M parts to minimize the total number of

TCAM entries across all M authority switches with the constraint that the rules should not take

more TCAM entries than are available in the switches. There are three key ideas in the partition

algorithm:

Allocating non-overlapping flow ranges to authority switches: As discussed in the

caching solution, we must ensure that the flow ranges of authority switches do not overlap with

each other. To achieve this goal, DIFANE first partitions the entire flow space into M flow ranges

and then stores rules in each flow range in an authority switch. For example, the “Cut A” shown

in Figure 3.4(b) partitions the flow space on field F1 into two equal flow ranges A1 and A2. We

then assign R1, R2 and R3 in A1 to one authority switch, and R4 to another.

DIFANE splits the rules so that each rule only belongs to one authority switch. With

the above partitioning approach, one rule may span multiple partitions. For example, “Cut B”

partitions the flow space on field F2, which results in the rules R1, R3, and R4 spanning the two

flow ranges B1 and B2. We split each rule into two independent rules by intersecting it with the

two flow ranges. For example, the two new rules generated from rule R4 are F1=[14..15], F2=[0..7]

→ Accept and F1=[14..15], F2=[8..15]→ Accept. These two independent rules can then be stored

in different authority switches. Splitting rules thus avoids the overlapping of rules among authority

switches, but at the cost of increased TCAM usage.
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To reduce TCAM usage, we prefer the cuts to align with rule boundaries. For example,

“Cut A” is better than “Cut B” because “Cut A” does not break any rules. We also observe that

cut on field F1 is better than F2 since we have more rule boundaries to choose.

Based on these observations, we design a decision-tree based partition algorithm. We first

formulate the rule partition problem as follows: Assume that there are M candidate authority

switches, each of which can store up to S TCAM entries. For a given set of N low-level rules

of K dimensions, we would like to partition the flow space into n hypercubes (n ≤ M), because

hypercubes are easy to represent as wildcard partition rules. Each of the hypercubes is represented

by aK-tuple of ranges, [l1..r1], . . . , [lK ..rK ], and is stored in an authority switch. The optimization

objective is to minimize the total number of TCAM entries in all n authority switches. The flow

partition problem is NP-hard for K ≥ 2.8 Therefore, we instead design a heuristic algorithm for

partitioning rules.

Rule \ Field F1 F2 F3 F4 F5 Action

R1 0-1 14-15 2 0-3 0 accept
R2 0-1 14-15 1 2 0 accept
R3 0-1 8-11 0-3 2 1 deny
R4 0-1 8-11 2 3 1 deny
R5 0-15 0-7 0-3 1 0 accept
R6 0-15 14-15 2 1 0 accept
R7 0-15 14-15 2 2 0 accept
R8 0-15 0-15 0-3 0-3 0-1 deny

(a) A group of wildcard rules

[0,7] [8,11] [12,15]

Cut on

Field 2

Root

R5

R8^{F2=[0,7]}
R8^{F2=[8,11]}

[0,1] [2,3]

R2

R8^{F2=[12,15]}

     ^{F3=[0,1]}

R1, R6, R7

R8^{F2=[12,15]}

     ^{F3=[2,3]}

Cut on Field 3

(b) The decision tree for the rules

Figure 3.5: Construct decision tree for a group of rules.

8The proof of the NP-hardness of the partition problems is omitted due to lack of space.
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Algorithm 1 Heuristic partition algorithm using decision tree

Initialization:

Step 1 k = 0. T0 is the tree node which represents the entire flow range.
Split the flow range:

Step 2 Incrementk. Pick up a tree node Tk to split.
Tk is a leaf node in the decision tree that contain more than S TCAM entries to represent its
hypercube Ck.
If we cannot find such a node, stop.

Step 3 Select a flow dimension i that have maximum number of unique components ui.
Step 4 Pick w boundaries of the unique components that minimizes (

∑
1≤t≤w

f(Ct

k)− f(Ck))/w.
Step 5 Put all the child node of Ti in the tree.
Step 6 Goto Step 2.

The complete algorithm is shown in Algorithm 1, which consists of two key ideas:

Use a decision tree to represent the partition: The root node of the decision tree denotes the

hypercube of the entire flow space. Similarly, each node in the decision tree denotes a hypercube

of flow range and maintains all the rules intersecting with the hypercube. We start with the root

node (Step 1). In each round of the splitting process, we pick a node in the decision tree which

has more than S authority rules, and split it into a group of child nodes, each of which a subset

flow range of its parent node (Step 2). The splitting process terminates when each leaf node has

fewer than S authority rules. In the end, the authority rules in each leaf node will be assigned to

an authority switch.

Cut based on rule boundaries: We first choose the dimension i that has the maximum

number of unique components (i.e., non-overlapping ranges) as the dimension to split (Step 3).

This gives us a better chance to be able to split the flow range into balanced pieces. For example,

in Figure 3.5, field F2 has four unique components [0..7], [8..11], [12..13], [14..15].

The next challenge is to split the hypercube in the selected dimension. As we discussed earlier,

partitioning the flow range equally may not be the best choice. It leads to many rules that span

across multiple partitions, and hence yields more authority rules. Instead, we partition the flow

space based on the boundaries of the unique components (Step 4). Let function f(C) be the

number of required TCAM entries for hypercube C. Assume that Ck is the hypercube we want

to split in the k-th round of our algorithm. We select w boundaries of the unique components in

dimension i (b1 . . . bw) and the resulting sub-hypercubes C1
k . . . C

w
k such that the average increase

of authority rules per cut is minimized: U = (
∑

1≤t≤w f(Ct
k) − f(Ck))/w. We enumerate all the

boundary selections and choose the one with minimal U .
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Figure 3.5 illustrates an example of rule partitioning. Assume that we have S = 4 in each

authority switch. Using our partition algorithm, we can construct a decision tree as shown in

Figure 3.5(b) for the rules shown in Figure 3.5(a). In the first round, we choose the dimension on

field F2 to partition the root node, because it has the maximum number of unique ranges. We

then divided the root node into three children nodes on field F2: [0..7], [8..11], [12..15]. This yields

U=0 because rules R3, R4, R8 that fall in the second child of F2=[8..11] all take the deny actions.

In the second round, since the third child node requires 5 authority rules, we further split it into

two children nodes on field F3.

Note that, although our partition algorithm is motivated by both HiCuts [58] and Hyper-

Cuts [59], which explored the efficient software processing of packet classification rules in one

switch with the help of a decision tree, we differ in our optimization goals. Both HiCuts and

HyperCuts sought to speed up software processing of the rules, while DIFANE aims at minimiz-

ing the TCAM usage in switches, because the partition and authority rules are all processed in

hardware. This leads to two key design differences in our algorithm: (i) We choose to cut the

selected dimension based on the rule boundaries, while HiCuts and HyperCuts cut the selected

dimension equally for c cuts. (ii) We choose the cuts so that the number of TCAM entries per

cut is minimized. In HiCuts and HyperCuts, they optimize on the number of cuts, in order to

minimize the size of the tree (and especially its depth). DIFANE allows a slightly deeper decision

tree if it reduces TCAM usage.

In summary, DIFANE partitions the entire rule space into M independent portions, and thus

each authority switch is assigned a non-overlapping portion. However, within the portion managed

by a single authority switch, DIFANE allows overlapping or nested rules. This substantially reduces

the TCAM usage of authority switches (see Section 4.5).

Duplicating authority rules to reduce stretch: We can duplicate the rules in each partition

on multiple authority switches to reduce stretch and to react quickly to authority switch failures.

Due to host mobility, we cannot pre-locate authority switches to minimize stretch. Instead, we

assume traffic that is related to one rule may come from any ingress switches and place replicated

authority switches to reduce the average stretch. One simple method is to randomly place the

replicated switches to reduce stretch. Alternatively, by leveraging an approximation algorithm for
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the “k-median problem” [60], we can place the replicated authority switches so that they have

minimal average stretch to any pair of switches. Both schemes are evaluated in Section 4.5.

3.6 Design and Implementation

In this section, we present our design and implementation of DIFANE. First, we describe how

our prototype handles multiple sets of rules from different kinds of high-level policies for different

management functions. Second, we describe the prototype architecture, which just add a few

control-plane functions for authority switches to today’s flow-based switches.

3.6.1 Managing Multiple Sets of Rules

Different management functions such as access control, measurement and routing may have totally

different kinds of policies. To make our prototype efficient and easy to implement, we generate

different sets of rules for different policies, partition them using a single partition algorithm, and

process them sequentially in the switch.

Generate multiple sets of low-level rules: Translating and combining different kinds of

high-level policies into one set of rules is complicated and significantly increases TCAM usage.

For example, if the policies are to monitor web traffic, and perform destination based routing,

we have to provide rules for (dst, port 80) and (dst, other ports) for each destination dst. If the

administrator changes the policy of monitoring port 21 rather than port 80, we must change the

rules for every destination. In contrast, if we have different sets of rules, we only need one routing

rule for each destination and a single measurement rule for port 80 traffic which is easy to change.

To distribute multiple sets of rules, the controller first partitions the flow space to minimize

the total TCAM usage. It then assigns all the rules (of different management modules) in one

flow range to one authority switch. We choose to use the same partition for different sets of low-

level rules so that packets only need to be redirected to one authority switch to match all sets of

authority rules.9

9One can also choose to provide a different partition of the flow space for different sets of low-level rules, but
packets may be redirected to multiple authority switches to match the authority rules of different management
modules.
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Figure 3.6: Rules for various management modules.

Processing packets through multiple sets of rules in switches: In switches we have one set

of rules for each management module.10 We process the flow rules sequentially through the rules

for different modules as shown in Figure 3.6. We put access control rules first to block malicious

traffic. Routing rules are placed later to identify the egress switch for the packets. Finally, the

link-state routing constructs a set of switch connection rules to direct the packets to their egress

switches.

To implement sequential processing in the switch where all the rules share the same TCAM, the

controller sets a “module identifier” in the rules to indicate the module they belong to. The switch

first initializes a module identifier in the packet. It then matches the packet with the rules that

have the same module identifier. Next, the switch increments the module identifier in the packet

and matches to the next set of rules. By processing the packet several times through the memory,

the switch matches the packet to the rules for different modules sequentially. The administrator

specifies the order of the modules by giving different module identifiers for the high-level policies

in the controller.

A packet may be redirected to the authority switch when it is in the middle of the sequential

processing (e.g., while being processed in the measurement module). After redirection, the packet

will be processed through the following modules in the authority switch based the module identifier

in the packet.

3.6.2 DIFANE Switch Prototype

Figure 3.7 shows both the control and data plane of our DIFANE switch prototype.

10To make the rule processing simple, we duplicate the same set of partition rules in the management modules.
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Figure 3.7: DIFANE prototype implementation. (Cache manager and authority rules (shaded
boxes) only exist in authority switches.)

Control plane: We use XORP [61] to run the link-state routing protocol to maintain the switch-

level connectivity, and keep track of topology changes. XORP also sends updates of the switch

connection rules in the data plane.

The authority switch also runs a cache manager which installs cache rules in the ingress switch.

If a packet misses the cache, and matches the authority rule in the authority switch, the cache

manager is triggered to send a cache update to the ingress switch of the packet. The cache manager

is implemented in software in the control plane because packets are not buffered and waiting for the

cache rule in the ingress switch. The ingress switch continues to forward packets to the authority

switch if the cache rules are not installed. The cache manager sends an update for every packet

that matches the authority rule. This is because we can infer that the ingress switch does not

have any related rules cached, otherwise it would forward the packets directly rather than sending

them to the authority switch.11

11For UDP flows, they may be a few packets sent to the authority switch. The authority switch sends one
feedback for each UDP flow, because it takes very low overhead to send a cache update message (just one UDP
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Data plane: We run Click-based OpenFlow switch [53] in the kernel as the data plane of DI-

FANE. Click manages the rules for different management modules and encapsulates and forwards

packets based on the switch connection rules. We implement the packet encapsulation function

to enable tunneling in the Click OpenFlow element. We also modify the Click OpenFlow element

to support the flow rule action “trigger the cache manager”. If a packet matches the authority

rules, Click generates a message to the cache manager through the kernel-level socket “netlink”.

Today’s flow-based switches already support actions of sending messages to a local controller in

order to communicate with the centralized controller [10]. We just add a new message type of

“matching authority rules”. In addition, today’s flow-based switches already have interfaces for

the centralized controller to install new rules. The cache manager then just leverages the same

interfaces to install cache rules in the ingress switches.

3.7 Evaluation

Ideally we would like to evaluate DIFANE based on policies, topology data, and user-mobility

traces from real networks. Unfortunately, most networks today are still configured with rules

that are tightly bound to their network configurations (e.g., IP address assignment, routing, and

VLANs). Therefore, we evaluated DIFANE’s approach against the topology and access-control

rules of a variety of different networks toexplore DIFANE’s benefit across various settings. We also

perform latency, throughput, and scalability micro-benchmarks of our DIFANE prototype and a

trace-driven evaluation of our partition and caching algorithms.

To verify the design decisions in Section 3.2, we evaluate two central questions in this section:

(1) How efficient and scalable is DIFANE? (2) How well do our partition and caching algorithms

work in handling large sets of wildcard rules?

3.7.1 Performance of the DIFANE Prototype

We implemented the DIFANE prototype using a kernel-level Click-based OpenFlow switch and

compared the delay and throughput of DIFANE with NOX [10], which is a centralized solution

for flow management. For a fair comparison, we first evaluated DIFANE using only one authority

packet). In addition, we do not need to store the existing cached flow rules in the authority switch or fetch them
from the ingress switch.
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Figure 3.8: Experiment setup. (Dashed lines are control messages; straight lines are data traffic.)

switch. Then we evaluated the throughput of DIFANE with multiple authority switches. Finally

we investigated how fast DIFANE reacts to the authority switch failures.

In the experiments, each sender sends the packets to a receiver through a single ingress switch,

which is connected directly to either NOX or a DIFANE authority switch as shown in Figure 3.8.

(In this way, the network delay from the ingress switch to NOX and the DIFANE authority switch

is minimized. We evaluate the extra delay caused by redirecting through authority switches in

Section 3.7.2.) With NOX, when a packet does not match a cached rule, the packet is buffered

in the ingress switch before NOX controller installs a rule at the ingress switch. In contrast, in

DIFANE the authority switch redirects the packet to the receiver in the data plane and installs

a rule in the ingress switch at the same time. We generate flows with different port numbers,

and use a separate rule for each flow. Since the difference between NOX and DIFANE lies in the

processing of the first packet, we generate each flow as a single 64 Byte UDP packet. Based on

the measurements, we also calculate the performance difference between NOX and DIFANE for

flows of normal sizes. Switches, NOX, and traffic generators (“clients”) run on separate 3.0 GHz

64-bit Intel Xeon machines to avoid interference between them.

(1) DIFANE achieves small delay for the first packet of a flow by always keeping

packets in the fast path. In Figure 3.9, we send traffic at 100 single-packet flows/s and measure

the round-trip time (RTT) of the each packet being sent through a switch to the receiver and an

ACK packet being sent back. Although we put NOX near the switch, the packets still experience

a RTT of 10 ms on average, which is not acceptable for those networks that have tight latency

requirement such as data centers. In DIFANE, since the packets stay in the fast path (forwarded

through an authority switch), the packets only experience 0.4 ms RTT on average. Since all the
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Figure 3.10: Throughput comparison of DIFANE and NOX.

following packets take 0.3 ms RTT for both DIFANE and NOX, we can easily calculate that to

transfer a flow of a normal size 35 packets, which is based on the measurement in the paper [62]),

the average packet transfer time is 0.3 ms (=(0.3*34+0.4)/35) transferring time for DIFANE but

0.58 ms (=(0.3*34+10)/35) for NOX. Others’ tests of NOX with commercial OpenFlow switches

observed similar delay [63].

(2) DIFANE achieves significantly higher throughput than NOX. We then increase the

number of switches (p) to measure the throughput of NOX and DIFANE. In Figure 3.10, we show

the maximum throughput of flow setup for one client using one switch. In DIFANE, the switch was

able to achieve the client’s maximum flow setup rate, 75K flows/s, while the NOX architecture was

only able to achieve 20K flows/s. This is because, while all packets remain in the fast path (the

software kernel) in DIFANE, the OpenFlow switch’s local controller (implemented in user-space)

becomes a bottleneck before NOX does. Today’s commercial OpenFlow switches can only send
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60-330 flows/s to the controller due to the limited CPU resources in the controller [64]. Section 3.8

discusses how to run DIFANE on today’s commercial switches.

As we increase the number of ingress switches—each additional data-point represents an ad-

ditional switch and client as shown in the upper x-axis—we see that the NOX controller soon

becomes a bottleneck: With four switches, a single NOX controller achieves a peak throughput

of 50K single-packet flows/s. Suppose a network has 1K switches, a single NOX controller can

only support 50 new flows per second for each switch simultaneously. In comparison, the peak

throughput of DIFANE with one authority switch is 800K single-packet flows/s.

Admittedly, this large difference exists because DIFANE handles packets in the kernel while

NOX operates in user space. However, while it is possible to move NOX to the kernel, it would

not be feasible to implement the entire NOX in today’s switch hardware because the online rule

generation too complex for hardware implementation. In contract, DIFANE is meant for precisely

that — designed to install a set of rules in the data plane.12

We then evaluate the performance of the cache manager in authority switches. When there are

10 authority rules, the cache manager can handle 30K packets/s and generate one rule for each

packet. When there are 9K authority rules, the cache manager can handle 12K packets/s. The

CPU is the bottleneck of the cache manager.

(3) DIFANE scales with the number of authority switches. Our experiments show

that DIFANE’s throughput increases linearly with the number of authority switches. With four

authority switches, the throughput of DIFANE reaches over 3M flows/s. Administrators can

determine the number of authority switches according to the size and the throughput requirements

of their networks.

(4) DIFANE recovers quickly from authority switch failure. Figure 3.11 shows the effect

of an authority switch failure. We construct a diamond topology with two authority switches,

both connecting to the ingress and the egress switches. We set the OSPF hello interval to 1 s,

and the dead interval to 3 s. After the authority switch fails, OSPF notifies the ingress switch. It

takes less than 10 ms for the ingress switch to change to another authority switch after the dead

12Today’s TCAM with pipelined processing only takes 3–4 ns per lookup [65], which is more than three orders
of magnitude faster than in software.
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Figure 3.11: Authority switch failure.

Network # switches/routers # Rules

Campus ∼1700 30K
VPN ∼1500 59K
IPTV ∼3000 5M
IP ∼2000 8M

Table 3.1: Network characteristics.

interval, at which time the ingress switch sets the backup partition rule as the primary one, and

thus connectivity is restored.

3.7.2 Evaluation of Partitioning and Caching

We now evaluate DIFANE’s partitioning algorithm using the topologies and access-control rules

from several sizable networks (as of Sept. 10, 2009) including a large-scale campus network [36]

and three large backbone networks that are operated by a tier-1 ISP for its enterprise VPN, IPTV,

and traditional IP services. The basic characteristics of these networks are shown in Table 3.1. In

these networks, each access control rule has six fields: ingress interface, source IP/port, destination

IP/port, and protocol. Access control rules are configured on the ingress switches/routers. It is

highly likely that different sets of rules are configured at different switches and routers, hence one

packet may be permitted in one ingress switch but denied at another. In addition, as Table 3.1

shows, there are a large number of access control rules configured in these networks. This is due

to the large number of ingress routers that need to have access control rules configured and the

potentially large number rules that need to be configured on even a single router. For example,

ISPs often configure a set of rules on each ingress switch to protect their infrastructures and

important servers from unauthorized customers. This would easily result in a large number of
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rules on an ingress switch if there are a large number of customers connected to the switch and/or

these customers make use of a large amount of non-aggregatable address space.

In the rest of this section, we evaluate the effect of overlapping rules, the number of authority

switches needed for different networks, the number of extra rules needed after the partitioning,

the miss rate of caching wildcard rules, and the stretch experienced by packets that travel through

an authority switch.

(1) Installing overlapping rules in an authority switch significantly reduces the mem-

ory requirement of switches: In our set of access control rules, the use of wildcard rules

can result in overlapping rules. One straight forward way to handle these overlapping rules is to

translate them into non-overlapping rules which represent the same semantics. However, this is

not a good solution because Figure 3.12 shows that the resulting non-overlapping rules require one

or two orders of magnitude more TCAM space than the original overlapping rules. This suggests

that the use of overlapping wildcard rules can significantly reduce the number of TCAM entries.
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(2) A small number of authority switches are needed for the large networks we eval-

uated. Figure 3.13 shows the number of authority switches needed under varying TCAM

capacities. The number of authority switches needed decreases almost linearly with the increase

of the switch memory. For networks with relatively few rules, such as the campus and VPN

networks, we would require 5–6 authority switches with 10K TCAM in each (assuming we need

16B to store the six fields and action for a TCAM entry, we need about 160KB of TCAM in

each authority switch). To handle networks with many rules, such as the IP and IPTV networks,

we would need approximately 100 authority switches with 100K TCAM entries (1.6MB TCAM)

each.13 The number of the authority switches is still relatively small compared to the network size

(2K - 3K switches).

(3) Our partition algorithm is efficient in reducing the TCAM usage in switches. As

shown in Figure 3.4, depending on the rules, partitioning wildcard rules can increase the total

number of rules and the TCAM usage for representing the rules. With the 6-tuple access-control

rules in the IP network, the total number of TCAM entries increases only by 0.01% if we distribute

the rules over 100 authority switches. This is because most of the cuts are on the ingress dimension

and, in the data set, most rules differ between ingresses. To evaluate how the partition algorithm

handles highly overlapping rules, we use our algorithm to partition the 1.6K rules in one ingress

router in the IP network. Figure 3.14 shows that we only increase the number of TCAM entries

by 10% with 10 splits (100–200 TCAM entries per split).

13Today’s commercial switches are commonly equipped with 2 MB TCAM.
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Figure 3.16: The stretch of campus network. (We place 1,3,10 authority switches for each set of
the authority rules using k-median and random algorithms respectively.)

(4) Our wildcard caching solution is efficient in reducing cache misses and cache

memory size. We evaluate our cache algorithm with packet-level traces of 10M packets collected

in December 2008 and the corresponding access-control lists (9K rules) in a router in the IP

network. Figure 3.15 shows that if we only cache micro-flow rules, the miss rate is 10% with 1K

cache entries. In contrast, with wildcard rule caching in DIFANE, the cache miss rate is only

0.1% with 100 cache entries: 99.9% of packets are forwarded directly to the destination, while

only 0.1% of the packets take a slightly longer path through an authority switch. Those ingress

switches which are not authority switches only need to have 1K TCAM entries for cache rules

(Figure 3.15) and 10 - 1000 TCAM entries for partition rules (Figure 3.13).

(5) The stretch caused by packet redirection is small. We evaluated the stretch of two

authority switch placement schemes (random and k-median) discussed in Section 3.5. Figure 3.16

shows the distribution of stretch (delay normalized by that of the shortest path) among all source-

destination pairs in the campus network. With only one authority switch for each set of authority
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rules, the average stretch is twice the delay of the shortest path length in the random scheme.

Though some packets experience 10 times the delay of the shortest path, this usually happens

to those pairs of nodes that are one or two hops away from each other; so the absolute delay of

these paths is not large. If we store one set of rules at three random places, we can reduce stretch

(the stretch is 1.8 on average). With 10 copies of rules, the stretch is reduced to 1.5. By placing

the authority switches with the k-median scheme, we can further reduce the stretch (e.g., with 10

copies of rules, the stretch is reduced to 1.07).

3.8 DIFANE Deployment Scenarios

DIFANE proposes to use authority switches to always keep packets in the data plane. However,

today’s commercial OpenFlow switches have resource constraints in the control plane. In this

section, we describe how DIFANE can be deployed in today’s switches with resource constraints and

in future switches as a clean-slate solution. We provide three types of design choices: implementing

tunneling with packet encapsulation or VLAN tags; performing rule caching in the authority

switches or in the controller; choosing normal switches or dedicated switches as authority switches.

Deployment with today’s switches: Today’s commercial OpenFlow switches have resource

constraints in the control plane. For example, they do not have enough CPU resources to generate

caching rules or have hardware to encapsulate packets quickly. Therefore we use VLAN tags to

implement tunneling and move the wildcard rule caching to the DIFANE controller. The ingress

switch tags the “miss” packet and sends it to the authority switch. The authority switch tags the

packet with a different VLAN tag and sends the packet to the corresponding egress switch. The

ingress switch also sends the packet header to the controller, and the controller installs the cache

rules in the ingress switch.

Performing rule caching in the controller resolves the limitations of today’s commercial Open-

Flow switches for two reasons. (i) Authority switches do not need to run caching functions. (ii)

The authority switches do not need to know the addresses of the ingress switch. We can use

VLAN tagging instead of packet encapsulation, which can be implemented in hardware in today’s

switches.
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This deployment scenario is similar to Ethane [13] in that it also has the overhead of the ingress

switch sending packets to the controller and the controller installing caching rules. However, the

difference is that DIFANE always keeps the packet in the fast path. Since we need one VLAN

tag for each authority switch (10 - 100 authority switches) and each egress switch (at most a

few thousand switches), we have enough VLAN tags to support tunneling in DIFANE in today’s

networks.

Clean slate deployment with future switches: Future switches can have more CPU resources

and hardware-based packet encapsulation techniques. In this case, we can have a clean slate design.

The ingress switch encapsulates the “miss” packet with its address as the source address. The

authority switch decapsulates the packet, gets the address of the ingress switch and re-encapsulates

the packet with the egress switch address as the packet’s destination address. The authority switch

also installs cache rules to the ingress switch based on the address it gets from the packet header.

In this scenario, we can avoid the overhead and single point of failure of the controller. Future

switches should also have high bandwidth channel between the data plane and the control plane

to improve the caching performance.

Deployment of authority switches: There are two deployment scenarios for authority

switches: (i) The authority switches are just normal switches in the network that can be taken

over by other switches when they fail; (ii) The authority switches are dedicated switches that have

larger TCAM to store more authority rules and serve essentially as a distributed data plane of the

centralized controller. All the other switches just need a small TCAM to store a few partition rules

and the cache rules. In the second scenario, even when DIFANE has only one authority switch

that serves as the data plane of the controller, DIFANE and Ethane [13] are still fundamentally

different in that DIFANE pre-installs authority rules in TCAM and thus always keeps the packet

in the fast path.

3.9 Flexible Management Support

Recently proposed flow-based management solutions [13, 49, 50, 51, 52] can easily run on top

of DIFANE, by defining their own policies and translating them into rules, while capitalizing on

our support for distributed rule processing for better scalability and performance. In addition,
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DIFANE is also flexible to support some other proposed techniques and management functions for

managing how rules are handled.

Support scalable routing with packet redirection: SEATTLE [5] performs packet redirec-

tion based on the hash of a packet’s destination MAC address, and reactively caching information

about the host’s current location. SEATTLE can be easily implemented within our architecture

even when the flow-based switches do not support hashing. In particular, the DIFANE controller

could generate routing rules that map a destination MAC address to the switch where the host

is located. The partitioning algorithm could divide the space of rules by cutting along the desti-

nation address dimension to generate partition rules, with wildcards in some bit positions of the

destination address, and with wildcards in all other header fields. When an ingress switch does not

have a cached rule that matches an incoming packet, the partition rule directs the packet through

the appropriate authority switch. This triggers the authority switch to install the rules for the

destination address at the ingress switch.

Similarly, DIFANE could support ViAggre [56] by creating partition rules based on the des-

tination IP address space (rather than MAC addresses), so ingress switches forward packets to

authority switches with more-specific forwarding-table entries.

Handle measurement rules in both authority and ingress switches. In DIFANE packets

may be processed in the ingress switch or in the authority switch. If we have a measurement rule

that accumulates the statistics of a flow, we need to install it in both the ingress and the authority

switch. The controller installs these measurement flow rules in the authority switches, which then

installs the rules in the ingress switches. A packet matches one of the cached rule is counted at

the ingress switch. Otherwise, it is redirected to an authority switch and counted there.

The controller can use either pull or push method to collect flow information from the authority

switches and ingress switches. The cache rules in the ingress switch may be swapped out if the

cache rule is not used for the timeout time or there is not enough memory. In this case, the ingress

switch notifies the controller and sends the data of the cache rule to the controller, which is already

supported by flow-based switches today.

Most network management functions can be achieved by caching rules only at the

ingress switch. We choose to cache rules only at the ingress switch for lower overhead. One
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alternative is to cache rules at every switch on the path a packet transfers. The authority switch

would have to determine all the switches on the packet’s path and install the rule in them.

In fact, caching rules only at the ingress can meet most of the requirements of management

modules. For example, access control rules are checked at the ingress switch to block the malicious

traffic before they enter the network. Measurement rules are usually applied at the ingress switch

to count the number of packets or the amount of traffic. Routing rules are used at the ingress switch

to select the egress point for the packets. Packets are then encapsulated and forwarded directly to

the egress switch without matching routing rules at other switches. Customized routing can also

be supported by tagging the packets and selecting pre-computed paths at the ingress switch.

3.10 Summary

We design and implement DIFANE, a distributed flow management architecture that distributes

rules to authority switches and handles all data traffic in the fast path. DIFANE can handle

wildcard rules efficiently and react quickly to network dynamics such as policy changes, topology

changes and host mobility. DIFANE can be easily implemented with today’s flow-based switches.

Our evaluation of the DIFANE prototype, various networks, and large sets of wildcard rules shows

that DIFANE is scalable with networks with a large number of hosts, flows and rules.
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Chapter 4

SNAP: Scaling Performance

Diagnosis on Hosts

This chapter focuses on scaling the management task of performance diagnosis. Network perfor-

mance problems are notoriously tricky to diagnose, and this is magnified when applications are

often split into multiple tiers of application components spread across thousands of servers in a

data center. Problems often arise in the communication between the tiers, where either the appli-

cation or the network (or both!) could be to blame. In this chapter, we present SNAP, a scalable

network-application profiler on hosts.

SNAP guides developers in identifying and fixing performance problems. SNAP passively col-

lects TCP statistics and socket-call logs with low computation and storage overhead, and correlates

across shared resources (e.g., host, link, switch) and connections to pinpoint the location of the

problem (e.g., send buffer mismanagement, TCP/application conflicts, application-generated mi-

crobursts, or network congestion). Our one-week deployment of SNAP in a production data center

(with over 8,000 servers and over 700 application components) has already helped developers un-

cover 15 major performance problems in application software, the network stack on the server,

and the underlying network.
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4.1 Introduction

Modern data-center applications, running over networks with unusually high bandwidth and low

latency, should have great communication performance. Yet, these applications often experi-

ence low throughput and high delay between the front-end user-facing servers and the back-end

servers that perform database, storage, and indexing operations. Troubleshooting network per-

formance problems is hard. Existing solutions—like detailed application-level logs or fine-grain

packet monitoring—are too expensive to run continuously, and still offer too little insight into

where performance problems lie. Instead, we argue that data centers should perform continuous,

lightweight profiling of the end-host network stack, coupled with algorithms for classifying and

correlating performance problems.

4.1.1 Troubleshooting Network Performance

The nature of the data-center environment makes detecting and locating performance problems

particularly challenging. Applications typically consist of tens to hundreds of application compo-

nents, arranged in multiple tiers of front-ends and back-ends, and spread across hundreds to tens

of thousands of servers. Application developers are continually updating their code to add features

or fix bugs, so application components evolve independently and are updated while the application

remains in operation. Human factors also enter into play: most developers do not have a deep

understanding of how their design decisions interact with TCP or the network. There is a constant

influx of new developers for whom the intricacies of Nagle’s algorithm, delayed acknowledgments,

and silly window syndrome remains a mystery.1

As a result, new network performance problems happen all the time. Compared to equipment

failures that are relatively easy to detect, performance problems are tricky because they happen

sporadically and many different components could be responsible. The developers sometimes

blame “the network” for problems they cannot diagnose; in turn, the network operators blame the

developers if the network shows no signs of equipment failures or persistent congestion. Often,

they are both right, and the network stack or some subtle interaction between components is

actually responsible [66, 67]. For example, an application sending small messages can trigger

1Some applications use UDP, and re-implement reliability, error detection, and flow control; however, these
mechanisms can also introduce performance problems.
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Nagle’s algorithm in the TCP stack, causing transmission delays leading to terrible application

throughput.

In the production data center we study, the process of actually detecting and locating even a

single network performance problem typically requires tens to hundreds of hours of the developers’

time. They collect detailed application logs (too heavy-weight to run continuously), deploy dedi-

cated packet sniffers (too expensive to run ubiquitously), or sample the data (too coarse-grained

to catch performance problems). They then pore over these logs and traces using a combination

of manual inspection and custom-crafted analysis tools to attempt to track down the issue. Often

the investigation fails or runs out of time, and some performance problems persist for months

before they are finally caught and corrected.

4.1.2 Lightweight, Continuous Profiling

In this chapter, we argue that the data centers should continuously profile network performance,

and analyze the data in real time to help pinpoint the source of the problems. Given the complexity

of data-center applications, we cannot hope to fully automate the detection, diagnosis, and repair

of network performance problems. Instead, our goal is dramatically reducing the demand for

developer time by automatically identifying performance problems and narrowing them down to

specific times and places (e.g., send buffer, delayed ACK, or network congestion). Any viable

solution must be

• Lightweight: Running everywhere, all the time, requires a solution that is very lightweight

(in terms of CPU, storage, and network overhead), so as not to degrade application perfor-

mance.

• Generic: Given the constantly changing nature of the applications, our solution must detect

problems without depending on detailed knowledge of the application or its log formats.

• Precise: To provide meaningful insights, the solution must pinpoint the component causing

network performance problems, and tease apart interactions between the application and

the network.

Finally, the system should help two very different kinds of users: (i) a developer who needs to

detect, diagnose, and fix performance problems in his particular application and (ii) a data-center
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operator who needs to understand performance problems with the underlying platform so that

he can tune the network stack, change server placement, or upgrade network equipment. In this

paper, we present SNAP (Scalable Network-Application Profiler), a tool that enables application

developers and data-center operators to detect and diagnose these performance problems. SNAP

represents an “existence proof” that a tool meeting our three requirements can be built, deployed

in a production data center, and provide valuable information to both kinds of users.

SNAP capitalizes on the unique properties of modern data centers:

• SNAP has full knowledge of the network topology, the network-stack configuration, and

the mapping of applications to servers. This allows SNAP to use correlation to identify

applications with frequent problems, as well as congested resources (e.g., hosts or links) that

affect multiple applications.

• SNAP can instrument the network stack to observe the evolution of TCP connections di-

rectly, rather than trying to infer TCP behavior from packet traces. In addition, SNAP can

collect finer-grain information, compared to conventional SNMP statistics, without resorting

to packet monitoring.

In addition, once the developers fix a problem (or the operator tunes the underlying platform),

we can verify that the change truly did improve network performance.

4.1.3 SNAP Research Contributions

SNAP passively collects TCP statistics and socket-level logs in real time, classifies and correlates

the data to pinpoint performance problems. The profiler quickly identifies the right location (end

host, link, or switch), the right layer (application, network stack, or network), at the right time.

Our major contributions of the chapter are:

Efficient, systematic profiling of network-application interactions: SNAP provides a sim-

ple, efficient way to detect performance problems through real-time analysis of passively-collected

measurements of the network stack. We provide a systematic way to identify the component (e.g.,

sender application, send buffer, network, or receiver) responsible for the performance problem.

SNAP also correlates across connections that belong to the same application, or share underlying

resources, to provide more insight into the sources of problems.
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Figure 4.1: SNAP socket-level monitoring and analysis

Performance characterization of a production data center: We deployed SNAP in a

data center with over 8,000 servers, and over 700 application components (including map-reduce,

storage, database, and search services). We characterize the sources of performance problems,

which helps data-center operators improve the underlying platform and better tune the network.

Case studies of performance bugs detected by SNAP: SNAP pinpointed 15 significant and

unexpected problems in application software, the network stack, and the interaction between the

two. SNAP saved the developers significant effort in locating and fixing these problems, leading

to large performance improvements.

Section 4.2 presents the design and development of SNAP. Section 4.3 describes our data-center

environment and how SNAP was deployed. Section 4.4 validates SNAP against both labeled data

(i.e., known performance problems) and detailed packet traces. Then, we present an evalua-

tion of our one-week deployment of SNAP from the viewpoint of both the data-center operator

(Section 4.5) and the application developer (Section 4.6). Section 4.7 shows how to reduce the

overhead of SNAP through dynamic tuning of the polling rate. Section 4.8 discusses related work

and Section 4.9 concludes the section.

4.2 Design of the SNAP Profiler

In this section, we describe how SNAP pinpoints performance problems. Figure 4.1 shows the main

components of our system. First, we collect TCP-connection statistics, augmented by socket-level

logs of application read and write operations, in real time with low overhead. Second, we run a
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TCP classifier that identifies and categorizes periods of bad performance for each socket, and logs

the diagnosis and a time sequence of the collected data. Finally, based on the logs, we have a

centralized correlator that correlates across connections that share a common resource or belong

to the same application to pinpoint the performance problems.

4.2.1 Socket-Level Monitoring of TCP

Data centers host a wide variety of applications that may use different communication methods

and design patterns, so our techniques must be quite general in order to work across the space.

The following three goals guided the design of our system, and led us away from using the SNMP

statistics, packet traces, or application logs.

(i) Fine-grained profiling: The data should be fine-grained enough to indicate performance

problems for individual applications on a small timescale (e.g, tens of milliseconds or seconds).

Switches typically only capture link loads at a one-minute timescale, which is far too coarse-grained

to detect many performance problems. For example, the TCP incast problem [67], caused by micro

bursts of traffic at the timescale of tens of milliseconds, is not even visible in SNMP data.

(ii) Low overhead: Data centers can be huge, with hundreds of thousands of hosts and tens of

thousands sockets on each host. Yet, the data collection must not degrade application performance.

Packet traces are too expensive to capture in real time, to process at line speed, or to store on

disk. In addition, capturing packet traces on high-speed links (e.g., 1-10 Gbps in data centers)

often leads to measurement errors including drops, additions, and resequencing of packets [68].

Thus it is impossible to capture packet trace everywhere, all the time to catch new performance

problems.

(iii) Generic across applications: Individual applications often generate detailed logs, but

these logs differ from one application to another. Instead, we focus on measurements that do not

require application support so our tool can work across a variety of applications.

Through our work on SNAP, we found that the following two kinds of per-socket information

can be collected cheaply enough to be used in analysis of large-scale data center applications, while

still providing enough insight to diagnose where the performance problem lie (whether they are

from the application software, from network issues, or from the interaction between the two).
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Statistic Definition
CurAppWQueue # of bytes in the send buffer
MaxAppWQueue Max # of bytes in send buffer

over the entire socket lifetime
#FastRetrans Total # of fast retransmissions
#Timeout Total # of timeouts
#SampleRTT Total # of RTT samples
#SumRTT Sum of RTTs that TCP samples
RwinLimitTime Cumulated time an application

is receiver window limited
CwinLimitTime Cumulated time an application

is congestion window limited
SentBytes Cumulated # of bytes the socket

has sent over the entire lifetime
Cwin Current congestion window
Rwin Announced receiver window

Table 4.1: Key TCP-level statistics for each socket [1]

Locations Problems App/Net Detection method
Sender app Sender app limited App Not any other problems
Send buffer Send buffer limited App and Net CurAppWQueue ≈ MaxAppWQueue

Network
Fast retransmission Net diff(#FastRetrans) > 0

Timeout Net diff(#Timeout) > 0)

Receiver
Delayed ACK App and Net

diff(SumRTT) > diff(SampleRTT)
* MaxQueuingDelay

Receiver window limited App and Net diff(#RwinLimitTime) > 0

Table 4.2: Classes of network performance for a socket

TCP-level statistics: RFC 4898 [1] defines a mechanism for exposing the internal counters

and variables of a TCP state-machine that is implemented in both Linux [69] and Windows [70].

We select and collect the statistics shown in Table 4.1 based on our diagnosis experience2, which

together expose the data-transfer performance of a socket. There are two types of statistics:

(1) instantaneous snapshots (e.g., Cwin) that show the current value of a variable in the TCP

stack; and (2) cumulative counters (e.g., #FastRetrans) that count the number of events (e.g., the

number of fast retransmissions) that happened over the lifetime of the socket. #SampleRTT and

SumRTT are the cumulative values of the number of packets TCP sampled and the sum of the

RTTs for these sampled packets. To calculate the retransmission timeout (RTO), TCP randomly

2There are a few other variables in the TCP stack such as the time TCP spends in SlowStart stage, which are
also useful but we did not mention for simplicity.
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samples one packet in each congestion window, and measures the time from the transmission of a

packet to the time TCP receives the ACK for the packet as the RTT for this packet.

These statistics are updated by the TCP stack as individual packets are sent and received,

making it too expensive to log every change of these values. Instead, we periodically poll these

statistics. For the cumulative counters, we calculate the difference between two polls (e.g.,

diff(#FastRetrans)). For snapshot values, we sample with a Poisson interval. According to the

PASTA property (Poisson Arrivals See Time Averages), the samples are a representative view of

the state of the system.

Socket-call logs: Event-tracing systems in Windows [71] and Linux [72] record the time and

number of bytes (ReadBytes and WriteBytes) whenever the socket makes a read/write call. Socket-

call logs show the applications’ data-transfer behavior, such as how many connections they initi-

ated, how long they maintain each connection, and how much data they read/write (as opposed to

the data that TCP actually transfers, i.e., SentBytes). These logs supplement the TCP statistics

with application behavior to help developers diagnose problems. The socket-level logs are collected

in an event-driven fashion, providing fine-grained information with low overhead. In comparison,

the TCP statistics introduce a trade-off between accuracy and the polling overhead. For example,

if SNAP polls TCP statistics once per second, a short burst of packet losses is hard to distinguish

from a modest loss rate throughout the interval.

In summary, SNAP collects two types of data in the following formats: (i) timestamp, 4-tuples

(source and destination address/port), ReadBytes, and WriteBytes; and (ii) timestamp, 4-tuples,

TCP-level logs (Table 4.1). SNAP uses TCP-level logs to classify the performance problems and

pinpoint the location of the problem, and then provides both the relevant TCP-level and socket-

level logs for the affected connections for that period of time. Developers can use these logs to

quickly find the root cause of performance problems.
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4.2.2 Classifying Single-Socket Performance

Although it is difficult to determine the root cause of performance problems, we can pinpoint the

component that is limiting performance. We classify performance problems in terms of the stages

of data delivery, as summarized in the two columns of Table 4.23:

1. Application generates the data: The sender application may not generate the data fast

enough, either by design or because of bottlenecks elsewhere (e.g., CPU, memory, or disk). For

example, the sender may write a small amount of data, triggering Nagle’s algorithm [73] which

combines small writes together into larger packets for better network utilization, at the expense

of delay.

2. Data are copied from the application buffer to the send buffer: Even when the

network is not congested, a small send buffer can limit throughput by stalling application writes.

The send buffer must keep data until acknowledgments arrive from the receiver, limiting the buffer

space available for writing new data.

3. TCP sends the data to the network: A congested network may drop packets, leading

to lower throughput or higher delay. The sender can detect packet loss by receiving three duplicate

ACKs, leading to a fast retransmission. When packet losses do not trigger a triple duplicate ACK,

the sender must wait for a retransmission timeout (RTO) to detect loss and retransmit the data.

4. Receiver receives the data and sends an acknowledgment: The receiver may

not read data, or acknowledge their arrival, quickly enough. The receiver window can limit the

throughput if the receiver is not reading the data quickly enough (e.g., caused by a CPU starva-

tion), allowing data to fill the receive buffer. A receiver delays sending acknowledgments in the

hope of piggybacking the ACK on data in the reverse direction. The receiver acknowledges every

other packet and waits up to 200 ms before sending an ACK.

The TCP statistics provide direct visibility into certain performance problems like packet

loss and receiver-window limits, where cumulative counts (e.g., #Timeout, #FastRetrans, and

RwinLimitTime) indicate whether the problem occurred at any time during the polling interval.

Detecting other problems relies on an instantaneous snapshot, such as comparing the current

backlog of the send buffer (CurAppWQueue) to its maximum size (MaxAppWQueue); polling with

3The table only summarizes major performance problems and can be extended to cover other problems such as
out-of-order packets.

100



a Poisson distribution allows SNAP to accurately estimate the fraction of time a connection is

send-buffer limited. Pinpointing other latency problems requires some notion of expected delays.

For example, the RTT should not be larger than the propagation delay plus the maximum queuing

delay (MaxQueuingDelay) (whose value is measured in advance by operators), unless a problem

like delayed ACK occurs. SNAP incorporates knowledge of the network configuration to identify

these parameters.

SNAP detects send-buffer, network, and receiver problems using the rules listed in the last

column of Table 4.2, where multiple problems may take place for the same socket during the same

time interval. If any of these problems are detected, SNAP logs the diagnosis and all the variables

in Table 4.1—as well as WriteBytes from the socket-call data—to provide the developers with

detailed information to track down the problem. In the absence of any of the previous problems,

we classify the connection as sender-application limited during the time interval, and log only

the socket-call data to track application behavior. Being sender-application limited should be the

most common scenario for a connection.

4.2.3 Correlation Across TCP Connections

Although SNAP can detect performance problems on individual connections in isolation, combin-

ing information across multiple connections helps pinpoint the location of the problem. As such,

a central controller analyzes the results of the TCP performance classifier, as shown earlier in

Figure 4.1. The central controller can associate each connection with a particular application and

with shared resources like a host, links, and switches.

Pinpointing resource constraints (by correlating connections that share a host, link, or

switch): Topology and routing data allow SNAP to identify which connections share resources

such as a host, link, top-of-rack switch, or aggregator switch. SNAP checks if a performance

problem (as identified by the algorithm in Table 4.2) occurs on many connections traversing the

same resource at the same time. For example, packet losses (i.e., diff(#FastRetrans) > 0 or

diff(#Timeout) > 0) on multiple connections traversing the same link would indicate a congested

link. This would detect congestion occurring on a much smaller timescale than SNMP could

measure. As another example, send-buffer problems for many connections on the same host could
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indicate that the machine has insufficient memory or a low default configuration of the send-buffer

size.

Pinpoint application problem (by correlating across connections in the same appli-

cation): SNAP also receives a mapping of each socket (as identified by the four-tuple) to an

application. SNAP checks if a performance problem occurs on many connections from the same

application, across different machines and different times. If so, the application software may

not interact well with the underlying TCP layer. With SNAP, we have found several application

programs that have severe performance problems and are currently working with developers to

address them, as discussed in Section 4.6.

The two kinds of correlation analysis are similar, except for (i) sets of connections to compare

S (i.e., connections sharing a resource vs. belonging to the same service) and (ii) the timescale

for the comparison — correlation interval T (i.e., transient resource constraining events taking a

few minutes or hours vs. permanent service code problems that lasts for days).

We use a simple linear correlation heuristic that works well in our setting Given a set of

connections S and a correlation interval T , the SNAP correlation algorithm outputs whether

these connections have correlated performance problems, and provides a time sequence of SNAP

logs for operators and developers to diagnose.

We construct a performance vector
−−−−−→
PT (c, t) = (timek(p1, c), ..., timek(p5, c))k=1..⌈T/t⌉, where t

is an aggregation time interval in T and timek(pi)(i = 1..5) denotes the total time that connection

c is having problem pi during time period [(k − 1)t, kt].4 We pick c1 and c2 in S, calculate the

Pearson correlation coefficient, and check if the average across all pairs of connections (Average

Correlation Coefficient ACC) is larger than a threshold α:

ACC = avg
c1,c2∈S,c1 6=c2

(cor(
−−−−−→
PT (c1, t),

−−−−−→
PT (c2, t)) > α,

where

cor(−→x ,−→y ) =

∑

i(xi − x̄)(yi − ȳ)
√
∑

i(xi − x̄)2(yi − ȳ)2
.

4pi(i = 1..5) are the problems of send buffer limited, fast retransmission, timeout, delayed ACK and receiver
window limited respectively. We do not include sender application limited because its time could be determined
given the times of the first five problems.
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Characteristic Value
#Hosts 8K
#Applications 700
Operating systems Win 2003,2008R2
Default send buffer 8 KB
Maximum segment size (MSS) 1460 Bytes
Minimum retrans. timeout 300 ms
Delayed ACK timeout 200 ms
Nagle’s algorithm mostly off
Slow start restart off
Receiver window autotuning off

Table 4.3: Characteristics in the production data center.

If the correlation coefficient is high, SNAP reports that the connections in S have a common

problem. To extend this correlation for different classes of problems (e.g., one connection’s

delayed ACK problem triggers the sender application limited problem on another connection), we

can extend our solution to use other inference techniques [74, 75] or principal component analysis

(PCA) [76].

In practice, we must choose t carefully. With a large value of t, SNAP only compares the

coarse-grained performance between connections; for example, if t = T , we only check if two

connections have the same performance problem with the same percentage of time. With a small

t, SNAP can detect fine-grained performance problems (e.g., two connections experiencing packet

loss at almost the same time), but are susceptible to clock differences of the two machines and any

differences in the polling rates for the two connections. The aggregation interval t should be large

enough to mask the differences between the clocks and cannot be smaller than the least common

multiple of the polling intervals of the connections.

4.3 Production Data Center Deployment

We deployed SNAP in a production data center. This section describes the characteristics of the

data center and the configuration of SNAP, to set the stage for the following sections.
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4.3.1 Data Center Environment

The data center consists of 8K hosts and runs 700 application components, with the configuration

summarized in Table 4.3. The hosts run either Windows Server 2008 R2 or Windows Server 2003.

The default send buffer size is 8K, and the maximum segment size is 1460 Bytes. The minimum

retransmission timeout for packet loss is set to 300 ms, and the delayed-acknowledgment timeout

is 200 ms. These values in Windows OS are configured for Internet traffic with long RTT.

While the OS enables Nagle’s algorithm (which combines small writes into larger packets) by

default, most delay-sensitive applications disable Nagle’s algorithm using the NO DELAY socket

option.

Most applications in the data center use persistent connections to avoid establishing new TCP

connections whenever they have data to transmit. Slow-start restart is disabled to reduce the delay

arising when applications transfer a large amount of data after an idle period over a persistent

connection.

Receiver-window autotuning—a feature in Windows Server 2008 that allows TCP to dynami-

cally tune the receiver window size to maximize throughput—is disabled to avoid bugs in the TCP

stack (e.g., [77]). Windows Server 2003 does not support this feature.

4.3.2 SNAP Configuration

We ran SNAP continuously for a week in August 2010. The polling interval for TCP statistics

follows the Poisson distribution with an average inter-arrival time of 500 ms. We collected the

socket-call logs for all the connections from and to the servers running SNAP. Over the week, we

collected less than 1 GB on each host per day and the total is just terabytes of logs for the week.

This is a very small amount of data compared to packet traces which take more than 180 GB per

host per day at a 1 Gbps link, even if we just keep packet header information.

To identify the connections sharing the same switch, link, and application, we collect the

information about the topology, routing, and the mapping between sockets and applications in the

data center. We collect topology and routing information from the data center configuration files.

To identify the mapping between the sockets and applications, we first run a script at each machine
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to identify the process that created each socket. We then map the processes to the application

based on the configuration file for the application deployment.

To correlate performance problems across connections using the correlation algorithm we pro-

posed in Section 4.2.3, we chose two seconds as the aggregation interval t to summarize the time

on each performance problems to mask time difference between machines. To pinpoint transient

resource constraints which usually last for minutes or hours, we chose one hour as the correlation

interval T . To pinpoint problems from application code which usually last for days, we chose 24

hours as the correlation interval T . We chose the correlation threshold α = 0.4.5

4.4 SNAP Validation

To validate the design of SNAP in Section 4.2 and evaluate whether SNAP can pinpoint the

performance problems at the right place and time, we take two approaches: First, we inject a few

known problems in our production data center and check if SNAP correctly catches these problems;

Second, to validate the decision methods that use inference to determine the performance class in

Table 4.2 rather than observing from TCP statistics directly, we compare SNAP results against

packet traces.

4.4.1 Validation by Injecting Known Bugs

To validate SNAP, we injected a few known data-center networking problems and verified if SNAP

correctly classifies those problems for each connection. Next, running our correlation algorithm on

the SNAP logs of these labeled problems together with the other logs from the data center, SNAP

correctly pinpointed all the labeled problems. For brevity, we first discuss two representative

problems in detail and then show how SNAP pinpoints problematic host for each of them.

Problems in receive-window autotuning: We first injected a receiver-window autotuning

problem: This problem happens when a Windows Server 2008 R2 machine initiates a TCP con-

nection to a Windows Server 2003 machine with a SYN packet that requests the receiver window

autotuning feature. But due to a bug in the TCP stack of the Windows Server 20036, the 2003

5It is hard to determine the threshold α in practice. Operators can choose the top n shared resources/application
code to investigate their performance problems.

6This bug is later fixed with a patch, but some machines do not have the latest patch.
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server does not parse the request for the receiver window autotuning feature correctly, and returns

the SYN ACK packet with a wrong format. As a result, the 2008 server tuned its receiver window

to four Bytes, leading to low throughput and long delay.

To inject this problem, we picked ten hosts running Windows 2008 in the data center and turn

on their receiver window autotuning feature. Each of the ten hosts initiated TCP connections to

a HTTP server running Windows 2003 to fetch 20 files of 5KB each from a host running Windows

2003.7 It took the Windows 2003 server more than 5 seconds to transfer each 5KB file. SNAP

correctly reported that all these connections are receiver window limited all the time, and SNAP

logs showed that the announced receiver window size (RWin) is 4 Byte.

TCP incast: TCP incast [67] is a common performance problem in data centers. It happens

when an aggregator distributes a request to a group of workers, and after processing the requests,

these workers send the responses back at almost the same time. These responses together overflow

the switch on the path and experience significant packet losses.

We wrote an application that generates a TCP incast traffic pattern. To limit the effect of our

experiment to the other applications in the production data center, we picked 36 hosts under the

same top-of-rack switch (TOR), used one host as the aggregator to send requests to the remaining

35 hosts which serve as workers. These workers respond with 100KB data immediately after they

receive the requests. After receiving all the responses, the aggregator sends another request to the

workers. The aggregator sends 20 requests in total.

SNAP correctly identified that seven of the 35 connections have experienced a significant

amount of packet loss causing retransmission timeouts. This is verified from our application logs

which show that it takes much longer time to get the response through the seven connections than

the rest of the connections.8

Correlation to pinpoint resource constraints for the two problems: We mixed the SNAP

logs of the receiver window autotuning problem and TCP incast with the logs of an hour period

7We ran ten hosts to the same 2003 server to validate if the SNAP can correlate these connections and pinpoint
the server.

8In this experiment, SNAP can only tell that the connections have correlated timeouts. If the same problem
happens for different aggregators running the same application code, we can tell that the application code causes
the timeouts. If SNAP reports all the connections have simultaneous small writes (identified from socket call logs)
and correlated timeouts, we can infer that the application code has incast problems.
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Figure 4.2: PDF of #Machines with different average correlation coefficient.

collected at all other machines in the data center. Then we ran SNAP correlation algorithm across

the connections sharing the same machine.

SNAP correctly identified the Windows Server 2003 servers that have receiver-window limited

problems across 5-10 connections with an average correlation coefficient (ACC) of 0.8. SNAP

also correctly identified the aggregator machine because the ACC across all the connections that

traverse the TOR is 0.45. Both are above the threshold α = 0.4, which is chosen based on the

discussion in Section 4.3.

Our correlation algorithm clearly distinguished the two injected problems with the performance

of connections on the other machines in the data center. Figure 4.2 presents the probability density

function (PDF) of the number of machines with different values of ACC. Only 2.7% of the machines

have an ACC larger than 0.4. In addition to the two injected problems, the other machines with

ACC > 0.4 may also indicate some problems that happen during our experiment, but we have not

verified these problems yet.

4.4.2 Validation Against Packet Traces

We also need to validate the performance-classification algorithm defined in Table 4.2. The detec-

tion methods for the performance class of fast retransmissions, timeouts, receiver window limited

is always accurate because these statistics are directly observed phenomena (e.g., #Timeouts)

from the TCP stack. The accuracy of identifying send buffer problems is closely related to the
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probability of detecting the moments when the send buffer is full in the Poisson sampling, which

is well studied in [78].

There is a tradeoff between the overhead and accuracy of identifying delayed ACK. The accu-

racy of identifying the delayed ACK and small writes classes is closely related to the estimation of

the RTT. However, we cannot get per-packet RTT from the TCP stack because it is a significant

overhead to log data for each packet. Instead, we get the sum of estimated RTTs (SumRTT) and

the number of sampled packets (SampleRTT) from the TCP stack.

We evaluate the accuracy of identifying delayed ACK in SNAP by comparing SNAP’s results

with the packet trace. We picked two real-world applications from the production data center for

which SNAP detects delayed ACK problems: One connection serves as an aggregator distributing

requests for a Web application that has the delayed ACK problems for 100% of the packets9.

Another belongs to a configuration-file distribution service for various jobs running in the data

center, which has 75% of the packets on average experiencing delayed ACK. While running SNAP

with various polling rates, we captured packet traces simultaneously. We then compared the results

of SNAP with the number of delayed-ACK incidents we identify from packet traces.

To estimate the number of packets that experience delayed ACK, SNAP should find a distri-

bution of RTTs for the sampled packets that sum up to SumRTT. Those packets that experience

delayed ACK have a RTT around DelayedACKTimeout. The rest of the packets all experience the

maximum queuing delay. Therefore, we use the equation: (diff(#SumRTT) − diff(#SampleRTT)

* MaxQueuingDelay)/DelayedACKTimeout to count the number of packets experiencing delayed

ACK. We use MaxQueuingDelay = 10 ms and DelayedACKTimeout = 180 ms. The delayed time-

out is set as 200 ms in TCP stack, but TCP timer is only accurate at 10 ms level and thus the real

DelayedACKTimeout varies around 200 ms. So we use 180 ms to be conservative on the delayed

ACK estimation.

Figure 4.3 shows the estimation error of SNAP’s results which is defined by (dt−ds)/dt, where

ds is the percentage of packets that experience delayed ACK reported by SNAP and dt is the

actual percentage of delayed ACK we get from the packet trace. For the application that always

has delayed ACK, SNAP’s estimation error is 0.006 on average. For the application that has 75%

9This application distributes requests whose size is smaller than MSS (i.e., one packet), and waits more than
the delayed ACK timeout 200 ms before sending out another request. So the receiver has to keep each packet for
200 ms before sending the ACK to the sender.
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Figure 4.3: SNAP estimation error of identifying delayed ACK problems.

of packets experiencing delayed ACK, the estimation error is within 0.2 for the polling intervals

that range from 500 ms to 10 sec.

Figure 4.3 shows that the estimation error drops from positive (underestimation) to negative

(overestimation) with the increase of the polling interval. When the polling interval is smaller than

200 ms, there is at most one packet experiencing delayed ACK in one polling interval. If a few

packets take less than MaxQueuingDelay to transfer, we would overestimate the part of SumRTT

that is contributed by these packets, and thus the rest of RTT is less than DelayedACKTimeout.

When the polling interval is large, there are more packets experiencing delayed ACK in the same

time interval. Since we have use 180 ms instead of 200 ms to detect delayed ACK, we would

underestimate those packets that take longer than 180 ms delayed ACK. Nine such packets would

contribute enough RTT for SNAP to assume one more delayed ACK.

4.5 Profiling Data Center Performance

We deployed SNAP in the production data center to characterize different classes of performance

problems, and provided information to the data-center operators about problems with the network

stack, network congestion or the interference between services. We first characterize the frequency

of each performance problem in the data center, and then discuss the key performance problems

in our data center—packet loss and the TCP send buffer.
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% of conn. with prob. #Apps with prob.
for >X% of time for >X% of time

Performance limitation >0 >25% >50% >75% >99.9% > 5% > 50%

Sender app limited 97.91% 96.62% 89.61% 59.21% 32.61% 561 557
Send buffer limited 0.45% 0.06% 0.02% 0.01% 0.01% 1 1

Congestion 1.90% 0.46% 0.22% 0.17% 0.15% 30 6
Receiver window limited 0.82% 0.36% 0.21% 0.15% 0.11% 22 8

Delayed ACK 65.71% 33.20% 10.10% 3.21% 1.82% 154 144
(belong to delay sensitive apps) 63.52% 32.82% 9.71% 3.01% 1.61% 136 129

Table 4.4: Percentage of connections and number of applications that have different TCP perfor-
mance limitations.

4.5.1 Frequency of Performance Problems

Table 4.4 characterizes the frequency of the network performance problems (defined in Table 4.2) in

our data center. Not surprisingly, the overall network performance of the data center is good. For

example, only 0.82% of all the connections were receiver limited during their lifetimes. However,

there are two key problems that the operators should address:

Operators should focus on the small fraction of applications suffering from significant

performance problems. Several connections/applications have severe performance problems.

For example, about 0.11% of the connections are receiver-window limited essentially all the time.

Even though 0.11% sounds like a small number, when 8K machines are each running many connec-

tions, there is almost always some connection or application experiencing bad performance. These

performance problems at the “tail” of the distribution also constrain the total load operators are

willing to put in the data center. Operators should look at the SNAP logs of these connections

and work with the developers to improve the performance of these connections so that they can

safely “ramp up” the utilization of the data center.

Operators should disable delayed ACK, or significantly reduce Delayed ACK time-

out: About two-thirds of the connections experienced delayed ACK problems. Nearly 2% of

the connections suffer from delayed-ACKs for more than 99.9% of the time. We manually explore

the delay-sensitive services, and count the percentage of connections that have delayed ACK. Un-

fortunately, about 136 delay-sensitive applications have experienced delayed ACKs. Packets that

have delayed ACK would experience an unnecessary increase of latency by 200 ms, which is three

orders of magnitude larger than the propagation delay in the data center and well exceeds the

latency bounds for these applications. Since delayed ACK causes many problems for data-center

applications, the operators are considering disabling delayed ACK or significantly reducing the de-
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Figure 4.5: Comparing #FastRetrans and #Timeouts of flows with different throughput.

layed ACK timeout. The problems of delayed ACK for data center applications are also observed

in [79].

4.5.2 Packet Loss

Operators should schedule backup jobs more carefully to avoid triggering network

congestion: Figure 4.4 shows the number of fast retransmissions and timeouts per second over

time. The percentage of retransmitted bytes increases between 2 am and 4 am. This is because

most backup applications with large bulk transfers are initiated in this time period.

Operators should reduce the number and effect of packet loss (especially timeouts)

for low-rate flows: SNAP data shows that about 99.8% of the connections have low throughput

(< 1 MB/sec). Although these low-rate flows do not consume much bandwidth and are usually not
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the cause of network congestion, they are significantly affected by network congestion. Figure 4.5

is a scatter plot that shows the ratio of of fast retransmissions to timeouts vs. the connection

sending rate. Each point in the graph represents one polling interval of one connection. Low-rate

flows usually experience more timeouts than fast retransmission because they do not have multiple

packets in flight to trigger triple duplicate ACKs. Timeouts, in turn, limit the throughput of these

flows. In contrast, high-rate flows experience more fast retransmission than timeouts and can

quickly recover from packet losses achieving higher throughput (> 1 MB/sec).

4.5.3 Send Buffer and Receiver Window

Operators should allow the TCP stack to automatically tune the send buffer and receiver window

sizes, and consider the following two factors:

More send buffer problems on machines with more connections: SNAP reports corre-

lated send buffer problems on hosts with more than 200 connections. This is because the larger

the send buffer for each connection, the more memory is required for the machine. As a result,

the developers of different applications on the same machine are cautious it setting the size of the

send buffer; most use the default size of 8K, which is far less than the delay-bandwidth product

in the data center and thus is more likely to become the performance bottleneck.

Mismatch between send buffer and receiver window size: SNAP logs the announced

receiver window size when the connection is receiver limited. From the log we see that 0.1% of

the total time when the senders indicate that their connections are bottlenecked by the receiver

window, the receiver actually announced a 64 KB window. This is because the send buffer is larger

than the announced receiver size, so the sender is still bottlenecked by the receiver window.

To fix the send-buffer problems in the short term, SNAP could help developers to decide

what send buffer size they should set in an online fashion. SNAP logs the congestion win-

dow size (CWin), the amount of data the application expect to send (WriteBytes), and the

announced receiver window size (RWin) for all the connections. Developers can use this infor-

mation to size the send buffer based on the total resources (e.g., set the send buffer size to

Cwinthisconn ∗ TotalSendBufferMemory/
∑

CWin). They can also evaluate the effect of their
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change using SNAP. In the long term, operators should have the TCP stack automatically tune

both the send-buffer and receiver-window sizes for all the connections (e.g., [69]).

4.6 Performance Problems Caught by SNAP

In this section, we show a few examples of performance problems caught by SNAP. In each example,

we first show how the performance problem is exposed by SNAP’s analysis of socket and TCP logs

into performance classifications and then correlation across connections. Next, we explain how

SNAP’s reports help guide developers to identify quickly the root causes. Finally, while outside of

SNAP’s scope, for interest value we discuss the developer’s fix or proposed fix to these problems.

For most examples, we spent a few hours or days discuss with developers to understand how their

programs work and to discover how their programs cause the problems SNAP detects. It then took

several days or weeks to iterate with developers and operators to find out the possible alternative

ways to achieve their programing goals.

4.6.1 Sending Pattern/Packet Loss Issues

Spreading application writes over multiple connections lowers throughput: When

correlating performance problems across connections from the same application, SNAP found one

application whose connections always experienced more timeouts (diff(#Timeout)) than fast re-

transmission (diff(#FastRetrans)) especially when the WriteBytes is small. For example, SNAP

reported repeated periods where one connection transferred an average of five requests per sec-

ond with a size of 2 KB - 20 KB, while experiencing approximately ten timeouts but no fast

retransmissions.

The developers were expecting to obtain far more than five requests per second from their

system, and when this report showing small writes and timeouts was shown to them the cause

became clear. The application sends requests to a server and waits for responses. Since some

requests take longer to process than others and developers wanted to avoid having to implement

request IDs while still avoiding head-of-line blocking, they open two connections to the server and

place new requests on whichever connection is unused.
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However, spreading the application writes over two connections meant that often there were

not enough outstanding data on a connection to cause three duplicate ACKs and trigger fast

retransmission when a packet was lost. Instead, TCP fell back to its slower timeout mechanism.

To fix the problem, the application could send all requests over a single connection, give requests

a unique ID, and use pools of worker threads at each end.10 This would improve the chances there

is enough data in flight to trigger fast retransmission when packet loss occurs.

Congestion window failing to prevent sudden bursts: SNAP discovered that some connec-

tions belonging to an application frequently experience packet loss (#FastRetrans and #Timeout

are both high, and correlate strongly to the application and across time). SNAP’s logs expose

a time sequence of socket write logs (WriteBytes) and TCP statistics (Cwin) showing that be-

fore/during the intervals where packet loss occurs, there is a single large socket write call after

an idle period. TCP immediately sends out the data in one large chunk of packets because the

congestion window is large, but it experiences packet losses. For example, one application makes

a socket call with WriteBytes > 100 MB after an idle period of 3 seconds, the Cwin is 64 KB, and

the traffic burst leads to a bunch of packet losses.

The developers told us they use a persistent connection to avoid three-way handshake for each

data transfer. Since “slow start restart” is disabled, the congestion window size does not age out

and remains constant until there is a packet loss. As a result, the congestion window no longer

indicates the carrying capacity of the network, and losses are likely when the application suddenly

sends a congestion window worth of data.

Interestingly, the developers are opposed to enabling slow start restart, and they intentionally

manipulate the congestion window in an attempt to reduce latency. For example, if they send

64 KB data, and the congestion window is small (e.g., 1 MSS), they need at multiple round-trip

times to finish the data transfer. But if they keep the congestion window large, they can transfer

the data with one RTT. In order to have a large congestion window, they first make a few small

writes when they set up the persistent connection.

To reduce both the network congestion and delay, we need better scheduling of traffic across

applications, allowing delay-sensitive applications to send traffic bursts when there is no network

10Note that the application should use a single connection because its requests are relatively small. For those
applications that have a large amount of data to transfer for each request, they still have to use two connections to
avoid head of line blocking during the network transfer.
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Figure 4.6: Delayed ACK after a retransmission timeout.

congestion, but pacing the traffic if the network is highly used. The feedback mechanism proposed

in DCTCP [80] could be applied here.

Delayed ACK slows recovery after a retransmission timeout: SNAP found that one

application frequently had two problems (timeout and delayed ACK) at almost the same time.

As shown in Figure 4.6, when the fourth packet of the transferred data is lost, the TCP sender

waits for a retransmission timeout (because there are not enough following packets to trigger

triple-duplicate ACKs). However, the congestion window drops to one after the retransmission.

As a result, TCP can only send a single packet, and the receiver waits for a delayed ACK timeout

before acknowledging the packet. Meanwhile, the sender cannot increase its sending window until

it receives the ACK from the receiver. To avoid this, developers are discussing the possibility

of dropping the congestion window down to two packets when a retransmission timeout occurs.

Disabling delayed ACK is another option.

4.6.2 Buffer Management and Delayed ACK

Some developers do not manage the application buffer and the socket send buffer appropriately,

leading to bad interactions between buffer management and delayed ACK.

Delayed ACK caused by setting send buffer to zero: SNAP reports show that some

applications have delayed ACK problems most of the time and these applications had set their

send socket buffer length to 0. Investigation found that these applications set the size of the

socket send buffer to zero in the expectation that it will decrease latency because data is not

copied to a kernel socket buffer, but sent directly from the user space buffer. However, when send

buffer is zero, the socket layer locks the application buffer until the data is ACK’d by the receiver
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so that the socket can retransmit the data in case a packet is lost. As a result, additional socket

writes are blocked until the previous one has finished.

Whenever an application writes data that results in an odd number of packets being sent, the

last packet is not ACK’d until the delayed ACK timer expires. This effectively blocks the sending

application for 200 ms and can reduce application throughput to 5 writes per second. One team

attempted to improve application performance by shrinking the size of their messages, but ended

up creating an odd number of packets and triggering this issue — destroying the application’s

performance instead of helping it. After the developers increased the send buffer size, throughput

returned to normal.

Delayed ACK affecting throughput: SNAP reports showed that an application was writing

small amounts of data to the socket (WriteBytes) and its connections experienced both delayed

ACK and sender application limited issues. For example, during 30 minutes, the application wrote

10K records at only five records per second and with a the record size of 20–100 Bytes.

The developers explained theirs is a logging application where the client uploads records to a

server, and should be able generate far more than five records per second. Looking into the code

with the developers, we found three key problems in the design: (i) Blocking write: to simplify the

programming, the client does blocking writes and the server does blocking reads. (ii) Small receive

buffer: The server calls recv() in a loop with a 200 bytes buffer in hopes that exactly one record

is read in each receive call. (iii) Send buffer is set to zero: Since the application is delay-sensitive,

the developer set send buffer size to zero. The application records are 20–100 Bytes — much

less than the MSS of 1460 Bytes. Additionally, Nagle’s algorithm forces the socket to wait for an

ACK before it can send another packet (record).11 As a result, the single packet containing each

record always experience delayed ACK, leading to a throughput of only five records per second.

To address this problem while still avoiding the buffer copying in memory, developers changed the

sender code to write a group of requests each time. Throughput improved to 10K requests/sec

after the change—a factor of 5000 improvement.

Delayed ACK affecting performance for pipelined applications: By correlating connec-

tions to the same machine, SNAP found two connections with performance problems that co-occur

11A similar performance problem caused by interactions between delayed ACK and Nagle is discussed in [73].
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Figure 4.7: Performance problem in pipeline communication.

repeatedly: SNAP classified one connection as having a significant delayed ACK problem and the

other as having sender application problems.

Developers told us that these two connections belong to the same application and form a

pipeline pattern (Figure 4.7). There is a proxy that sits between the clients and servers and serves

as a load balancer. The proxy passes requests from the client to the server, fetches a sequence of

responses from the server, and passes them to the client. SNAP finds such a strong correlation

between the delayed ACK problem and the receiver limited problem because both stem from the

passing of the messages through the proxy.

After looking at the code, developers figured out that the proxy uses a single thread and a

single buffer for both the client and the server. The proxy waits for the ACK of every transfer (one

packet in each transfer most of the time) before fetching a new response data from the server.12

When the developers changed the proxy to use two different threads with one fetching responses

from the server and another sending responses to the client and a response queue between the two

threads, the 99% tail of the request processing time drops from 200 ms to 10 ms.

12The proxy is using the HTTP.sys library without setting the HTTP SEND RESPONSE FLAG BUFFER DATA
flag [81], which waits for the ACK from the client before sending a “send complete” signal to the application. By
waiting for the ACK, HTTP.sys can make sure the application send buffer is not overwritten until the data is
successfully transferred.

117



 0
 5

 10
 15
 20
 25
 30
 35
 40

50 100 200 500m 1s 2s 5s 10s
C

P
U

 O
ve

rh
ea

d 
(%

)

Interval

poll 5K
rt 5K

poll 1K
rt 1K

poll 100
rt 100

Figure 4.8: The CPU overhead of polling TCP statistics (poll) and reading TCP table (rt) with
different number of connections (10, 100, 1K, 5K) and different intervals (from 50 ms to 10 sec).

4.6.3 Other Problems

SNAP has also detected other problems such as switch port failure (significant correlated packet

losses across multiple connections sharing the same switch port), receiver window negotiation

problems as reported in [77] (connections are always receiver window limited while receiver window

size stays small), receiver not reading the data fast enough (receiver window limited), and poor

latency caused by Nagle algorithm (sender application limited with small WriteBytes

4.7 Reducing SNAP CPU Overhead

To run in real time on all the hosts in the data center, SNAP must keep the CPU overhead

and data volume low. The volume of data is small because (i) SNAP logs socket calls and TCP

statistics instead of other high-overhead data such as packet traces and (ii) SNAP only logs the

TCP statistics when there is a performance problem. To reduce CPU overhead, SNAP allows the

operators to set the target percentage of CPU usage on each host. SNAP stays within a given

CPU budget by dynamically tuning the polling rate for different connections.

CPU Overhead of Profiling Since SNAP collects logs for all the connections at the host, the

overhead of SNAP consists of three parts: logging socket calls, reading the TCP table, and polling

TCP statistics.

Logging socket calls: In our data center, the cost of turning on the event tracing for socket logging

is a median of 1.6% of CPU capacity [82].
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Polling CPU statistics and reading TCP table: The CPU overhead of polling TCP statistics and

reading the TCP table depends on the polling frequency and the number of connections on the

machine. Figure 4.8 plots the CPU overhead on a 2.5 GHz Intel Xeon machine. If we poll TCP

statistics for 1K connections at 500 millisecond interval, the CPU overhead is less than 5%. The

CPU overhead of reading the TCP table is similar.

The CPU overhead is closely related to the number of connections on each machine. Figure 4.9

takes a snapshot of the distribution of the number of established connections per machine. There

are at most 10K established sockets and a median of 150. This means operators can configure the

interval of reading TCP table in most machines to be 500 millisecond or one second to keep the

CPU overhead lower than 5%.13 Since most of the connections in our data center are long-lived

connections (e.g., persistent HTTP connections), we can read the TCP table at a lower frequency

compared to TCP statistics polling. For the machines with many connections, we need to carefully

adjust the polling rate of TCP statistics for each connection to achieve a tradeoff between diagnosis

accuracy and the CPU overhead.

Dynamic Polling Rate Tuning To achieve the best tradeoff between CPU overhead and

accuracy, operators can first configure lCPU (uCPU ) to be the lower (upper) bound of the CPU

percentage used by SNAP. We then propose an algorithm to dynamically tune the polling rate

for different connections to keep CPU overhead between the two bounds. The basic idea of the

algorithm is to have high polling rate for those connections that are having performance issues

and have low polling rate for the others.

13We read TCP tables at 500 millisecond interval in our data collection.
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Figure 4.10: Adjust CPU overhead by dynamically tuning TCP polling rate on a machine with
500 connections (ǫ = 1, r = 2).

We start polling all the connections on one host with the same rate (Step 1). Depending on the

number of connections on the host, we set the polling rate pr0 such that F(pr0,#Connections) <

lCPU , where F(pr,#Connections) is a function to model the polling overhead based on the mea-

surements in Figure 4.8. For example, based on Figure 4.8, if a machine has 1K connections, we

sample at 10 sec interval to keep the CPU overhead within 5%.

In Step 2, if the current CPU overhead is below lCPU , we pick a connection that has the most

performance problems in the past Thistory time, and increase its polling rate for more detailed

data. we use time[tnow−Thistory ,tnow](p, c) to record the time that connection c has problem p

over the sliding time window of size Thistory. Then we summarize all the time(p, c) over all the

performance classes p except sender application limited class that exist in the past Thistory. Note

that we also count the connections that closed in the past sliding window, to ensure we do not

inadvertently “undercount” problems affecting short-lived flows. We pick the connection c with

the largest
∑

p(time[tnow−Thistory ,tnow](p, c)) to increase its polling frequency by r.

Similarly in Step 3, we dynamically increase the polling rate by timing it with a constant

factor r for those connections that do not have many problems. Figure 4.10 shows how fast the

algorithm tunes the polling rate to keep the CPU overhead within the specified range of CPU

overhead range. We pick a machine with 500 connections, let lCPU = 9% and uCPU = 12% at

the beginning, and after 10 seconds switch the threshold to lCPU = 5% and uCPU = 8%. It takes

about 2.5 seconds for our algorithm to select the connections, increase the polling interval, and

reduce the CPU overhead down to 8%.
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4.8 Related Work

Previous work in diagnosing performance problems focuses on either the application layer or the

network layer. SNAP addresses the interactions between them that cause particularly insidious

performance issues.

In the application layer, prior work has taken several approaches: instrumenting application

code [83, 84, 85] to find the causal path of problems, inferring the abnormal behaviors from

history logs [74, 75], or identifying fingerprints of performance problems [86]. In contrast, SNAP

focuses on profiling the interactions between applications and the network and diagnosing network

performance problems, especially ones that arise from those interactions.

In the network layer, operators use network monitoring tools (e.g., switch counters) and active

probing tools (ping, traceroute) to pinpoint network problems such as switch failures or congestion.

To diagnose network performance problems, capture and analysis of packet traces remains the gold-

standard. T-RAT [87] uses packet traces to diagnosis throughput bottlenecks in Internet traffic.

Tcpanaly [68] uses packet traces to diagnose TCP stack problems. Others [88, 89] also infer the

TCP performance and its problems from packet traces. In contrast, SNAP focuses on the multi-

tier applications in data centers where it has access to the network stack, enabling us to create

simple algorithms based on counters far cheaper to collect than packet traces to expose the network

performance problems of the applications.

4.9 Summary

SNAP combines socket-call logs of the application’s desired data-transfer behaviors with TCP

statistics from the network stack that highlight the delivery of data. SNAP leverages the knowl-

edge of topology, routing, and application deployment in the data center to correlate performance

problems among connections, to pinpoint the congested resource or problematic software compo-

nent.

Our experiences in the design, development, and deployment of SNAP demonstrate that it is

practical to build a lightweight, generic profiling tool that runs continuously in the entire data

center. Such a profiling tool can help both operators and developers in diagnosing network per-

formance problems.
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With applications in data centers getting more complex and more distributed, the challenges

of diagnosing the performance problems between the applications and the network will only grow

in importance in the years ahead. For future work, we hope to further automate the diagnosis

process to save developers’ efforts by exploring the appropriate variables to monitor in the stack,

studying the dependencies between the variables SNAP collects, and combining SNAP reports

with automatic analysis of application software.
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Chapter 5

Conclusion

In conclusion, we propose a new management system that scales to many hosts, switches, and

policies, which consists of three components: BUFFALO, DIFANE, and SNAP. In this chapter, we

first discuss how these three components work together. Next, we summarize the key contributions

of the thesis. The thesis ends with a discussion of open issues and future work.

5.1 The Overall Picture of the New Management Systems

In this section, we discuss combining BUFFALO, DIFANE, and SNAP into a single management

system. As shown earlier in Figure 1.3 in Chapter 1, we have a centralized controller that con-

figures the link weights for shortest path routing (BUFFALO), policies (DIFANE), and diagnoses

performance problems (SNAP). BUFFALO and DIFANE are located at switches — with BUF-

FALO providing a scalable forwarding layer and DIFANE providing a way to scalably support

policies. SNAP is located at each of the hosts collecting performance information for diagnosis.

Now we will discuss in more details how the three key components work together.

The data plane behavior of BUFFALO and DIFANE are complementary: Our BUF-

FALO design provides a compact way to store the forwarding table (that maps the destination

MAC addresses to the next hop) in the SRAM which performs exact match. In DIFANE, we

store low-level rules for customized routing, access control, and measurement in the TCAM which

performs wildcard matching.
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Figure 5.1: Combining BUFFALO and DIFANE functions in the same data plane.

When BUFFALO and DIFANE work together, we use DIFANE to handle customized for-

warding rules that match the destination host address to the egress switch, and use BUFFALO

to maintain the forwarding table that provides switch-to-switch reachability (Figure 5.1). We

first match the packets based on the rules in TCAM, which defines whether the packets are to

be dropped/forwarded and/or increments the counters. The routing rules in the TCAM of the

ingress switch or the authority switch only decide the egress switch that a flow of packets should

be forwarded. All the switches on the path match the packets based on the forwarding rules in

SRAM to forward the packets towards the correct egress switch.

Redirection in DIFANE and BUFFALO do not affect the performance: Both BUF-

FALO and DIFANE leverage traffic redirection to overcome the limited memory at switches. With

BUFFALO and DIFANE working together, a packet may be first redirected to an authority switch

to hit the authority rules, and then redirected again at another switch in the path if it experiences

a false positive in the compact forwarding table.

Such redirections would not be a problem because most enterprise and data center networks

have a short end-to-end delay. Moreover, the chance of redirection is low because it only happens

when a packet experiences false positives in the bloom filters in BUFFALO or it experiences a

cache miss at the ingress switch in DIFANE. In general, it is a good tradeoff to save memory space

at switches at the expense of slightly longer latency for enterprise and data center networks.
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The centralized controller combines DIFANE and SNAP functions: In the new man-

agement system, the centralized controller is responsible for the interactions with operators. The

controller performs two major tasks: In DIFANE, the controller will translate the high-level poli-

cies to low-level rules, partition the rules, and then enforce them in the TCAM of the switches;

in SNAP, the controller collects the transport-layer statistics, socket-level logs, and the online

diagnosis results from all the hosts, correlates the performance problems across connections with

the knowledge of network topology, routing, and application deployment, and finally reports the

potential problems to the operators and application developers.

5.2 Deployments in Enterprises and Data Centers Differ

Although the proposed management system works for both enterprise and data center networks,

these two types of networks are different in topology, traffic pattern, and levels of control. As

a result, we find that BUFFALO and DIFANE fit enterprise networks better and SNAP works

better for data center networks. Here we discuss the differences between these two environments.

We also discuss how to make BUFFALO and DIFANE work better for data centers and how to

deploy SNAP in enterprises.

5.2.1 Differences Between Enterprise and Data Center Networks

There are three key differences between enterprise and data center networks:

Topology and traffic: Data centers usually have specific topologies such as a fat tree, torus,

and clos, but enterprises can have any kind of topology. Therefore, for data centers much can

be gained from leveraging the specific topology in the design of the network architecture, but for

enterprises the design should work for any topology. Data centers can have a variety of traffic

patterns depending on the applications. In contrast, enterprise networks are more overprovisioned

than data centers. Therefore, it is fine to send traffic through longer paths but in data centers it is

important to reduce the bandwidth overhead of traffic redirection. Enterprise traffic is also more

sparse in traffic distribution, leading to more efficient caching of routing and access control rules.

Levels of control: In enterprises, hosts are heterogeneous and come and go frequently, so

operators usually have little control over hosts. For example, in campuses and small companies,
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people can bring in different laptops and mobile devices every day, and it is hard to force the

hosts to install any software or configuration.1 However, hosts in data centers have similar types

of hardware and are usually managed by a centralized controller. Therefore, enterprise networks

sometimes cannot take advantage of end-host capabilities while data center networks can.

5.2.2 Customizing the Management System for Enterprises and for Data

Centers

Now let us review the three components in our proposed management system and see how they

fit in enterprises and data centers.

BUFFALO and DIFANE naturally fit enterprise networks because they do not assume specific

topologies. Since the network is lightly loaded in enterprises, traffic indirection would not cause too

much congestion in the network. Data centers have more severe scalability problems and require

more scalable forwarding plane and policy enforcement schemes. In BUFFALO, we have shown

that the bound of extra delay is much smaller in a tree topology, but we still need to prove a better

bound for multi-rooted trees, which are common in data center. It is an interesting problem to

see how we can redesign DIFANE to leverage the specific topologies in data centers.

SNAP was designed for data center applications so it can leverage the topology, routing, and

the application deployment information to pinpoint the performance problems. We chose to deploy

SNAP at hosts to make the monitoring system more scalable and to directly tell the interactions

between applications and the network. In the enterprise environment, it is hard to deploy SNAP

directly because operators may not have control on hosts to install SNAP, or may not trust the

measurement results from the hosts. It would be interesting to find out ways to deploy SNAP at

only the server end in enterprises, or just on proxies that understand TCP. It is also interesting

to develop a secure way to run monitoring code at hosts so that hosts can trust the code and the

operators can trust the measurement results.

1Large corporations have relatively more control on hosts because they can dictate what kinds of computers
users use and what software they can run [28].
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5.3 Summary of Contributions

In this section, we revisit the principles we introduced in Chapter 1, and summarize the major

contributions we have in this thesis.

Placing the right functions at the right place: We revisit the placement of different network

functions to achieve better scalability and flexibility. In DIFANE, we use the centralized controller

to manage policies, but pull the function of rule processing back to the network, and distribute the

rules among authority switches to achieve better performance and scalability. In SNAP, we collect

diagnosis information and perform simple analysis at the hosts so that SNAP is more scalable than

in-network measurements. We then use the centralized controller to perform correlation across

the results from different hosts.

New algorithms and systems design: We propose new algorithms and data structures that

fit in today’s commodity switches and build new systems for enterprise and data center networks.

In BUFFALO, we propose a Bloom filter based forwarding architecture that leverages the flat

addresses and shortest path routing in edge networks. In DIFANE, we build a distributed directory

service of rules to quickly match packets to rules without the involvement of the controller. We

also design the wildcard rule partitioning algorithm which can efficiently handle a large number

of rules. Finally, in SNAP, we build a simple diagnosis system at the hosts leveraging TCP-level

statistics, and develop algorithms that correlate performance problems across connections sharing

the same resources or code.

Prototypes and deployment: To validate our algorithms and systems design, we built proto-

types of BUFFALO with the Click-based modular router, DIFANE with the Click implementation

of OpenFlow, and SNAP with the Windows operating systems. SNAP has been deployed in a

production data center and identified real performance problems there.

5.4 Concluding Remarks

It is an exciting time to study the design and management of edge networks. These networks are

becoming more and more important to both people’s lives and the daily operations of corporations.

In addition, the edge networks are of high research interest because they are significantly different
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from the backbone networks. For example, these edge networks have different types of topology,

different levels of control, and different types of traffic, which require us to rethink the design of

networks from scratch in these new settings. Unlike the Internet, most of enterprise and datacenter

networks are owned by a single entity and therefore are great opportunities for deploying these

clean slate designs in practice.

For future work, we hope to further identify the operators’ desires in edge networks and build

better architectures to support them. We also hope to customize our proposed management system

for enterprise and data center networks separately.
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