
Stateful Programming of  
High-Speed Network Hardware

Mina Tahmasbi Arashloo

Final Public Oral Presentation

Advisor: Jennifer Rexford

Readers: David Walker, Arvind Krishnamurthy

Examiners: Nick Feamster, Michael Freedman



Networks of Unprecedented Diversity and Scale

!2

Transit Network

Data Center NetworkEnterprise  
Network



Networks of Unprecedented Diversity and Scale

!3

Transit Network

Data Center NetworkEnterprise  
Network

Modern networks must provide:


• High Performance 
• Reliability 
• Security
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• Modifying switch hardware

Stateful Packet Processing??



Trend #2: Increasing Link Speeds

!9

High-Speed

Network  

Hardware

10Gbps ⇒ 40Gbps ⇒ 100Gbps ⇒ 400Gbps?

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

NetworkSoftware

Hardware

End Host

MiddleboxMiddlebox

NIC NIC

Stateful Packet Processing??



!10

High-Speed

Network  

Hardware

10Gbps ⇒ 40Gbps ⇒ 100Gbps ⇒ 400Gbps?

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Software

Hardware

End Host

NIC NIC

Middlebox

Trend #2: Increasing Link Speeds

Stateful Packet Processing??



!11

High-Speed

Network  

Hardware

10Gbps ⇒ 40Gbps ⇒ 100Gbps ⇒ 400Gbps?

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Software

Hardware

End Host

NIC NIC

Middlebox

Trend #2: Increasing Link Speeds

Stateful Packet Processing



What about Flexibility?

!12

High-Speed
Network  

Hardware Stateful Packet Processing

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Software

Hardware

End Host

NIC NIC

Middlebox



What about Flexibility?

!12

High-Speed
Network  

Hardware Stateful Packet Processing

Hard-Coded Vendor-Specific Protocols and Algorithms

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Software

Hardware

End Host

NIC NIC

Middlebox



Requirements of Today’s Network Hardware

!13

High-Speed
Network  

Hardware Stateful Packet Processing
Programmable

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Software

Hardware

End Host

NIC NIC

Middlebox



Network Hardware Design Space

!14

Speed

Programmability Stateful 
Packet Processing



Network Hardware Design Space

!14

Speed

Programmability Stateful 
Packet Processing



Network Hardware Design Space

!14

Speed

Programmability
Stateful 

Packet Processing



Network Hardware Design Space

!14

Speed

Programmability Stateful 
Packet Processing



Programmable 
Switches

Network Hardware Design Space

!14

Speed

Programmability Stateful 
Packet Processing



Programmable 
Switches

Network Hardware Design Space

!14

PISA

Speed

Programmability Stateful 
Packet Processing



Programmable 
Switches

Programmable  
NICs

Network Hardware Design Space

!14

PISA

Speed

Programmability Stateful 
Packet Processing



Programmable 
Switches

Programmable  
NICs

Network Hardware Design Space

!14

PISAFPGASoC

Speed

Programmability Stateful 
Packet Processing



Programmable 
Switches

Programmable  
NICs

Network Hardware Design Space

!15

PISAFPGASoC

Speed

Programmability Stateful 
Packet Processing

Notoriously Difficult to Program



Programmable 
Switches

Programmable  
NICs

Network Hardware Design Space

!15

PISAFPGASoC

Speed

Programmability Stateful 
Packet Processing

Notoriously Difficult to Program
Interfaces are



Programmable 
Switches

Programmable  
NICs

Network Hardware Design Space

!15

PISAFPGASoC

Speed

Programmability Stateful 
Packet Processing

Notoriously Difficult to Program
Interfaces are

• Low-level



Programmable 
Switches

Programmable  
NICs

Network Hardware Design Space

!15

PISAFPGASoC

Speed

Programmability Stateful 
Packet Processing

Notoriously Difficult to Program
Interfaces are

• Low-level
• Tied to each device’s architecture



Programmable 
Switches

Programmable  
NICs

Network Hardware Design Space

!15

PISAFPGASoC

Speed

Programmability Stateful 
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Notoriously Difficult to Program
Interfaces are

• Low-level
• Tied to each device’s architecture
• Only suitable for programming a single device
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Network Stacks in Data Centers

Target CPU Overhead Transport 
Programmability

Software kernel           
user space 30-40% ✔

Fixed-Function 
Hardware NIC ~none ✘

Programmable 
Hardware (Tonic) NIC ~none ✔

 29



Challenges of Hardware Programming  
for High-Speed NICs

 30



Challenges of Hardware Programming  
for High-Speed NICs

• Timing Constraints 
• Median packet size in data centers is 200 bytes

• At 100 Gbps, one 128-byte packet every ~10 ns


• Back-to-back stateful event processing

 30



Challenges of Hardware Programming  
for High-Speed NICs

• Timing Constraints 
• Median packet size in data centers is 200 bytes

• At 100 Gbps, one 128-byte packet every ~10 ns


• Back-to-back stateful event processing

• Memory Constraints 
• A few megabytes of high-speed memory

• More than a thousand active flows

• A few kilobits of per-flow state 

 30



Challenges of Hardware Programming  
for High-Speed NICs

• Timing Constraints 
• Median packet size in data centers is 200 bytes

• At 100 Gbps, one 128-byte packet every ~10 ns


• Back-to-back stateful event processing


• Memory Constraints 
• A few megabytes of high-speed memory

• More than a thousand active flows

• A few kilobits of per-flow state 

 31

Tonic 
•  A programmable hardware architecture

•  running at 100 Gbps

•  within memory limits of commodity NICs 

•  to implement transport protocols

• with modest development effort
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Main Observation

Common transport patterns as reusable components

• drive the design of an efficient hardware “template” for 
transport logic 

• reduce the functionality users must specify
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1. Only a few bits of state per segment
• acked, rtxed, lost
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• programmable modules only for loss detection

2. Loss detection: acks and timeouts
• only two programmable modules

•mutually exclusive → fewer concurrent state updates

3. Lost segments first, new segments next
• fixed-function module for segment generation
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Control Loop

Monitor Adjust 
Params

Credit  
Management 
(congestion control)

Calculate  
Credit

window/rate

1. Three common credit calculation schemes

• congestion window, rate, grant tokens

2. Two main parameter adjustment signals
• external signals, e.g., acks and CNPs

• periodic internal signals, .e.g., counters

• aligns with existing programmable modules for 
segment selection



Tonic

The Two Engines

 38

Segment 
Selection

Credit 
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Evaluation - Programmability

• Implemented six representative protocols
• Reno, New Reno
• SACK (Selective ACK)
• NDP (Receiver-driven data-center transport)
• DCQCN, IRN (Improved RoCE NIC)

• All meet timing for 100 Gpbs (10-ns clock)

• Implemented within 200 lines of Verilog code
• uses 0.5% of total logic resources

• Re-usable modules are 8K lines of Verilog code
• uses 35% of total logic resources
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Evaluation - End-to-End Simulations
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• Cycle-accurate hardware simulator for Tonic within NS3

• Compared existing protocols with Tonic implementations


• TCP New Reno (plots shown below) and DCQCN 
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Summary

• Tonic is a programmable hardware architecture

• Enables implementing transport protocols at high-speed

• with modest development effort

• Exploits domain-specific optimizations

• Implementing common transport patterns as re-usable modules 
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Programmable switches expose

data plane state through

a programming interface!



Distributed Stateful Programming is Challenging

 47



Distributed Stateful Programming is Challenging

 47



Distributed Stateful Programming is Challenging

 47

Use one switch?



Distributed Stateful Programming is Challenging

 47

Use one switch?

Shard/Distribute across 
multiple switches?



Distributed Stateful Programming is Challenging

 47

Use one switch?

Shard/Distribute across 
multiple switches?

which switches 
to use?



Distributed Stateful Programming is Challenging

 47

Use one switch?

Shard/Distribute across 
multiple switches?

which switches 
to use?

How to coordinate 
between them for correct 

stateful processing?



Distributed Stateful Programming is Challenging

 47

Use one switch?

Shard/Distribute across 
multiple switches?

which switches 
to use?

How to coordinate 
between them for correct 

stateful processing?



SNAP: Stateful Network-Wide  
Abstractions for Packet Processing

 48



SNAP: Stateful Network-Wide  
Abstractions for Packet Processing

 48



SNAP: Stateful Network-Wide  
Abstractions for Packet Processing

 49



SNAP: Stateful Network-Wide  
Abstractions for Packet Processing

 49



Example - Detecting DNS Reflection Attacks

Attacker

Attacker-controlled 
botnet

Small 
spoofed 

DNS 
request

Amplified DNS  
response 
from open  
resolver

Victim

http://ddosandbotnets.blogspot.com 50

DNS Resolvers

http://ddosandbotnets.blogspot.com
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Victim

DNS Resolver

DNS Resolvers

DNS RequestDNS Response

DNS Response

1. Log DNS 
requests

2. Match 
responses

3. Check 
unmatched 

count

Example - Detecting DNS Reflection Attacks
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Stateful Packet Processing Functions

• A function specifying 
• how to process each packet

• based on its fields and the program state

set of packets

updated state

input packet

current state

SNAP 
Program

 53



DNS Reflection Detection in SNAP
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if (scrip in CSNET) & (dstport = DNS) then 
   seen[srcip][dns.id] ← True 
else if (dstip in CSNET) & (srcport = DNS) then 
   if ~seen[dstip][dns.id] then 
      unmatched[dstip]++ 
   if unmatched[dstip] = THRESH then 
      susp[dstip] ← True 
   else id 
else id  

DNS Reflection Detection in SNAP
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Program Composition
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SNAP Compiler



Where to Place State Variables?
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CS

;

EE



How to Forward Packets through State Variables?

 63 63

CSseen

unmatched

susp

;

EE



How to Forward Packets through State Variables?
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CSseen

unmatched

susp

;

EE
DNS Response

to: H1 in CS
ID: 200

??
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Program Analysis

• For each flow, find

• all the state variables that it needs

• the order in which the state variables should be visited

• A flow can be defined at any granularity

• As long as its traffic statistics is available

• E.g., All DNS packets to the CS subnet need all three state variables

• E.g., All packets from the CS subnet need seen.
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Mixed-Integer Linear Program (MILP)
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CS

MILPProgram Analysis 
Results

Traffic 
Matrix
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Placement
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How to distribute a SNAP program?

??
Intermediate

Representation!
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Extended Forwarding Decision Diagrams (xFDDs)

 69

dstip = 10.0.0.1

srcip = dstip

s[srcip] = 2

{s[dstip] ← 2} {drop}

 69

Intermediate Nodes 
Tests on header fields 


and state

Leaves 
Sets of action sequences
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Partitioning and Distribution  
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Partitioning and Distribution  
of the xFDD

• The stateless tests and actions 
are at the top.

• Stateful tests and actions on the 
same variable form subtrees.
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Compiler Evaluation

• 7 Campus and ISP topologies

• Order of 100s of switches and links

• Scenarios

• Cold start (freq. weeks)

• Policy change (freq. days)

• Topology/TM change (freq. minutes)
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Compiler Evaluation - Results
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Summary

• SNAP is a network-wide programmable platform for 
stateful packet processing

• SNAP Language

• One big stateful switch abstraction

• Intuitive and flexible composition

• SNAP Compiler

• Decides state placement and routing

• Distributes an intermediate representation of the program across the 

network
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Stateful Programming of  
High-Speed Network Hardware

Tonic  
[Under revision for 

NSDI’19]

SNAP  
[SIGCOMM’16] 

PISA

PISA

PISA

PISA

PISA

PISA

PISA

FPGA

FPGA
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Thank You!
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