
Stateful Programming of
High-Speed Network Hardware

Mina Tahmasbi Arashloo

Final Public Oral Presentation

Advisor: Jennifer Rexford

Readers: David Walker, Arvind Krishnamurthy

Examiners: Nick Feamster, Michael Freedman

Networks of Unprecedented Diversity and Scale

!2

Transit Network

Data Center NetworkEnterprise
Network

Networks of Unprecedented Diversity and Scale

!3

Transit Network

Data Center NetworkEnterprise
Network

Modern networks must provide:

• High Performance
• Reliability
• Security

!4

The Evolution of Network Hardware

!4

Switches

The Evolution of Network Hardware

!4

Switches

End-host CPU
Network Interface Card (NIC)

The Evolution of Network Hardware

Early Networks: Stateful Edge, Stateless Core

!5

End Host

Link

Network

Transport

App

End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Switch/
Router

Link

Network

Early Networks: Stateful Edge, Stateless Core

!5

End Host

Link

Network

Transport

App

End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Switch/
Router

Link

Network

Stateless packet processing

Early Networks: Stateful Edge, Stateless Core

!5

End Host

Link

Network

Transport

App

End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Switch/
Router

Link

Network

Stateless packet processing
Stateful packet

processing
Stateful packet

processing

Early Networks: Stateful Edge, Stateless Core

!5

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Switch/
Router

Link

NetworkSoftware

Hardware

End Host

NIC NIC

Early Networks: Stateful Edge, Stateless Core

!5

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Switch/
Router

Link

NetworkSoftware

Hardware

High-Speed

Network

Hardware

End Host

NIC NIC

The Need for Stateful Processing in Hardware

!6

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Switch/
Router

Link

NetworkSoftware

Hardware

High-Speed

Network

Hardware

End Host

NIC NIC

The Need for Stateful Processing in Hardware

!6

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Switch/
Router

Link

NetworkSoftware

Hardware

High-Speed

Network

Hardware

End Host

NIC NIC

Stateful Packet Processing??

!7

High-Speed

Network

Hardware

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Switch/
Router

Link

NetworkSoftware

Hardware

End Host

NIC NIC

Trend #1: In-Network Stateful Processing

Stateful Packet Processing??

!7

High-Speed

Network

Hardware

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Switch/
Router

Link

NetworkSoftware

Hardware

End Host

NIC NIC

Trend #1: In-Network Stateful Processing

Real-time monitoring
(e.g., heavy hitters)

Stateful Packet Processing??

!7

High-Speed

Network

Hardware

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Switch/
Router

Link

NetworkSoftware

Hardware

End Host

NIC NIC

Trend #1: In-Network Stateful Processing

Efficient load balancing
(e.g., flowlet switching)

Real-time monitoring
(e.g., heavy hitters)

Stateful Packet Processing??

!7

High-Speed

Network

Hardware

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Switch/
Router

Link

NetworkSoftware

Hardware

End Host

NIC NIC

Trend #1: In-Network Stateful Processing

Security
(e.g., stateful firewall)

Efficient load balancing
(e.g., flowlet switching)

Real-time monitoring
(e.g., heavy hitters)

Stateful Packet Processing??

!8

High-Speed

Network

Hardware

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

NetworkSoftware

Hardware

End Host

MiddleboxMiddlebox

NIC NIC

Trend #1: In-Network Stateful Processing

Deploying stateful functionality:

• Adding middleboxes

• Modifying switch hardware

Stateful Packet Processing??

Trend #2: Increasing Link Speeds

!9

High-Speed

Network

Hardware

10Gbps ⇒ 40Gbps ⇒ 100Gbps ⇒ 400Gbps?

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

NetworkSoftware

Hardware

End Host

MiddleboxMiddlebox

NIC NIC

Stateful Packet Processing??

!10

High-Speed

Network

Hardware

10Gbps ⇒ 40Gbps ⇒ 100Gbps ⇒ 400Gbps?

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Software

Hardware

End Host

NIC NIC

Middlebox

Trend #2: Increasing Link Speeds

Stateful Packet Processing??

!11

High-Speed

Network

Hardware

10Gbps ⇒ 40Gbps ⇒ 100Gbps ⇒ 400Gbps?

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Software

Hardware

End Host

NIC NIC

Middlebox

Trend #2: Increasing Link Speeds

Stateful Packet Processing

What about Flexibility?

!12

High-Speed
Network

Hardware Stateful Packet Processing

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Software

Hardware

End Host

NIC NIC

Middlebox

What about Flexibility?

!12

High-Speed
Network

Hardware Stateful Packet Processing

Hard-Coded Vendor-Specific Protocols and Algorithms

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Software

Hardware

End Host

NIC NIC

Middlebox

Requirements of Today’s Network Hardware

!13

High-Speed
Network

Hardware Stateful Packet Processing
Programmable

End Host

Link

Network

Transport

App

End Host End Host

Link

Network

Transport

App
Switch/
Router

Link

Network

Software

Hardware

End Host

NIC NIC

Middlebox

Network Hardware Design Space

!14

Speed

Programmability Stateful
Packet Processing

Network Hardware Design Space

!14

Speed

Programmability Stateful
Packet Processing

Network Hardware Design Space

!14

Speed

Programmability
Stateful

Packet Processing

Network Hardware Design Space

!14

Speed

Programmability Stateful
Packet Processing

Programmable
Switches

Network Hardware Design Space

!14

Speed

Programmability Stateful
Packet Processing

Programmable
Switches

Network Hardware Design Space

!14

PISA

Speed

Programmability Stateful
Packet Processing

Programmable
Switches

Programmable
NICs

Network Hardware Design Space

!14

PISA

Speed

Programmability Stateful
Packet Processing

Programmable
Switches

Programmable
NICs

Network Hardware Design Space

!14

PISAFPGASoC

Speed

Programmability Stateful
Packet Processing

Programmable
Switches

Programmable
NICs

Network Hardware Design Space

!15

PISAFPGASoC

Speed

Programmability Stateful
Packet Processing

Notoriously Difficult to Program

Programmable
Switches

Programmable
NICs

Network Hardware Design Space

!15

PISAFPGASoC

Speed

Programmability Stateful
Packet Processing

Notoriously Difficult to Program
Interfaces are

Programmable
Switches

Programmable
NICs

Network Hardware Design Space

!15

PISAFPGASoC

Speed

Programmability Stateful
Packet Processing

Notoriously Difficult to Program
Interfaces are

• Low-level

Programmable
Switches

Programmable
NICs

Network Hardware Design Space

!15

PISAFPGASoC

Speed

Programmability Stateful
Packet Processing

Notoriously Difficult to Program
Interfaces are

• Low-level
• Tied to each device’s architecture

Programmable
Switches

Programmable
NICs

Network Hardware Design Space

!15

PISAFPGASoC

Speed

Programmability Stateful
Packet Processing

Notoriously Difficult to Program
Interfaces are

• Low-level
• Tied to each device’s architecture
• Only suitable for programming a single device

This Dissertation

Design and implementation of

modular and high-level programming abstractions

for stateful programming of high-speed network hardware

!16

!17

This Dissertation

!17

Tonic
[Under revision for

NSDI’20]

FPGA

FPGA

This Dissertation

!18

Tonic
[Under revision for

NSDI’20]

SNAP
[SIGCOMM’16]

PISA

PISA

PISA

PISA

PISA

PISA

PISA

FPGA

FPGA

This Dissertation

!19

Tonic
[Under revision for

NSDI’20]

SNAP
[SIGCOMM’16]

PISA

PISA

PISA

PISA

PISA

PISA

PISA

FPGA

FPGA

This Dissertation

!19

Tonic
[Under revision for

NSDI’20]

SNAP
[SIGCOMM’16]

PISA

PISA

PISA

PISA

PISA

PISA

PISA

FPGA

FPGA

This Dissertation

• With an emphasis on

• modularity

• minimizing development effort

Enabling Programmable Transport
Protocols on High-Speed NICs

Mina Tahmasbi Arashloo1, Alexey Lavrov1,

Manya Ghobadi2, Jennifer Rexford1,

David Walker1, and David Wentzlaff1

1 Princeton University, 2 MIT

TCP 101

 21

TCP 101

• The most common transport protocol

 21

Sender

TCP

App

Receiver

TCP

App

TCP 101

• The most common transport protocol
• Performs reliable data delivery and congestion control

 21

Sender

TCP

App

data

Receiver

TCP

App

data

TCP 101

• The most common transport protocol
• Performs reliable data delivery and congestion control

 21

Sender

TCP

App

data

Transport State

Receiver

TCP

App

data

TCP 101

• The most common transport protocol
• Performs reliable data delivery and congestion control

 21

Sender

TCP

App

data

Transport State

Receiver

TCP

App

data

…

TCP 101

• The most common transport protocol
• Performs reliable data delivery and congestion control

 21

Sender

TCP

App

data

Transport State

Receiver

TCP

App

data

…

sliding window

TCP 101

• The most common transport protocol

• Performs reliable data delivery and congestion control

 22

Sender

TCP

App

data

Transport State

Receiver

TCP

App

data

…

sliding window

Bytes 1-5

TCP 101

• The most common transport protocol

• Performs reliable data delivery and congestion control

 23

Sender

TCP

App

data

Transport State

Receiver

TCP

App

data

…

sliding window

Acks for 1-5

TCP 101

• The most common transport protocol

• Performs reliable data delivery and congestion control

 24

Sender

TCP

App

data

Transport State

Receiver

TCP

App

data

…

sliding window

Bytes 6-10

6 is dropped!

TCP 101

• The most common transport protocol

• Performs reliable data delivery and congestion control

 25

Sender

TCP

App

data

Transport State

Receiver

TCP

App

data

…

sliding window

TCP 101

• The most common transport protocol

• Performs reliable data delivery and congestion control

 25

Sender

TCP

App

data

Transport State

Receiver

TCP

App

data

…

sliding window

Byte 6

Retransmission

TCP 101

• The most common transport protocol

• Performs reliable data delivery and congestion control

 26

Sender

TCP

App

data

Transport State

Receiver

TCP

App

data

…

sliding window

Byte 6

Window Adjustment

TCP 101

• The most common transport protocol

• Performs reliable data delivery and congestion control

 27

Sender

TCP

App

data

Transport State

Receiver

TCP

App

data

…

sliding window

Byte 6

Stateful Event Processing!

(Data segments, Acks, Timeouts, …)

Constant Innovation in Transport Protocols

 28

Constant Innovation in Transport Protocols

 28

Homa
NDP

pHost

DCTCP

RenoNew Reno IRN
DCQCN

TIMELY

BBR TCP Vegas

QUIC

PCC

PCC Vivace

Karuna D3

RCP

XCP

CUBIC Sprout

TahoeBIC

Network Stacks in Data Centers

 29

Network Stacks in Data Centers

Target CPU Overhead Transport
Programmability

 29

Network Stacks in Data Centers

Target CPU Overhead Transport
Programmability

Software kernel
user space 30-40% ✔

 29

Network Stacks in Data Centers

Target CPU Overhead Transport
Programmability

Software kernel
user space 30-40% ✔

Fixed-Function
Hardware NIC ~none ✘

 29

Network Stacks in Data Centers

Target CPU Overhead Transport
Programmability

Software kernel
user space 30-40% ✔

Fixed-Function
Hardware NIC ~none ✘

Programmable
Hardware (Tonic) NIC ~none ✔

 29

Challenges of Hardware Programming
for High-Speed NICs

 30

Challenges of Hardware Programming
for High-Speed NICs

• Timing Constraints
• Median packet size in data centers is 200 bytes

• At 100 Gbps, one 128-byte packet every ~10 ns

• Back-to-back stateful event processing

 30

Challenges of Hardware Programming
for High-Speed NICs

• Timing Constraints
• Median packet size in data centers is 200 bytes

• At 100 Gbps, one 128-byte packet every ~10 ns

• Back-to-back stateful event processing

• Memory Constraints
• A few megabytes of high-speed memory

• More than a thousand active flows

• A few kilobits of per-flow state

 30

Challenges of Hardware Programming
for High-Speed NICs

• Timing Constraints
• Median packet size in data centers is 200 bytes

• At 100 Gbps, one 128-byte packet every ~10 ns

• Back-to-back stateful event processing

• Memory Constraints
• A few megabytes of high-speed memory

• More than a thousand active flows

• A few kilobits of per-flow state

 31

Tonic
• A programmable hardware architecture

• running at 100 Gbps

• within memory limits of commodity NICs

• to implement transport protocols

• with modest development effort

Main Observation

 32

Main Observation

Common transport patterns as reusable components

 32

Main Observation

Common transport patterns as reusable components

• drive the design of an efficient hardware “template” for
transport logic

 32

Main Observation

Common transport patterns as reusable components

• drive the design of an efficient hardware “template” for
transport logic

• reduce the functionality users must specify

 32

Network Stack

App 1

The Transport Layer

 33

send-data
(addr,length)

…App 2

send-data
(addr,length)

App N

send-data
(addr,length)

IP and Below

Network Stack

The Transport Layer

App 1

The Transport Layer

 33

send-data
(addr,length)

…App 2

send-data
(addr,length)

App N

send-data
(addr,length)

IP and Below

Network Stack

The Transport Layer

App 1

The Transport Layer

 33

send-data
(addr,length)

…

Flow 1
- Byte status
 sent, in-flight,
 lost, …
- Credit

Flow 2
- Byte status
 sent, in-flight,
 lost, …
- Credit

Flow m
- Byte status
 sent, in-flight,
 lost, …
- Credit

…

App 2

send-data
(addr,length)

App N

send-data
(addr,length)

IP and Below

Network Stack

The Transport Layer

App 1

The Transport Layer

 33

flow id, segment address

send-data
(addr,length)

…

Flow 1
- Byte status
 sent, in-flight,
 lost, …
- Credit

Flow 2
- Byte status
 sent, in-flight,
 lost, …
- Credit

Flow m
- Byte status
 sent, in-flight,
 lost, …
- Credit

…

App 2

send-data
(addr,length)

App N

send-data
(addr,length)

IP and Below

Network Stack

The Transport Layer

App 1

The Transport Layer

 33

flow id, segment address

send-data
(addr,length)

…

Flow 1
- Byte status
 sent, in-flight,
 lost, …
- Credit

Flow 2
- Byte status
 sent, in-flight,
 lost, …
- Credit

Flow m
- Byte status
 sent, in-flight,
 lost, …
- Credit

…

App 2

send-data
(addr,length)

App N

send-data
(addr,length)

IP and Below

• Credit Management:

Network Stack

The Transport Layer

App 1

The Transport Layer

 33

flow id, segment address

send-data
(addr,length)

…

Flow 1
- Byte status
 sent, in-flight,
 lost, …
- Credit

Flow 2
- Byte status
 sent, in-flight,
 lost, …
- Credit

Flow m
- Byte status
 sent, in-flight,
 lost, …
- Credit

…

App 2

send-data
(addr,length)

App N

send-data
(addr,length)

IP and Below

• Credit Management:
 How many bytes can I send?

Network Stack

The Transport Layer

App 1

The Transport Layer

 33

flow id, segment address

send-data
(addr,length)

…

Flow 1
- Byte status
 sent, in-flight,
 lost, …
- Credit

Flow 2
- Byte status
 sent, in-flight,
 lost, …
- Credit

Flow m
- Byte status
 sent, in-flight,
 lost, …
- Credit

…

App 2

send-data
(addr,length)

App N

send-data
(addr,length)

IP and Below

• Credit Management:
 How many bytes can I send?

• Segment Selection:

Network Stack

The Transport Layer

App 1

The Transport Layer

 33

flow id, segment address

send-data
(addr,length)

…

Flow 1
- Byte status
 sent, in-flight,
 lost, …
- Credit

Flow 2
- Byte status
 sent, in-flight,
 lost, …
- Credit

Flow m
- Byte status
 sent, in-flight,
 lost, …
- Credit

…

App 2

send-data
(addr,length)

App N

send-data
(addr,length)

IP and Below

• Credit Management:
 How many bytes can I send?

• Segment Selection:
 Which bytes do I send?

Segment Selection Patterns

 34

Segment
Selection

(reliable delivery)

Pick Bytes for
Next Segment

Update Byte
Status

Segment Selection Patterns

 34

Segment
Selection

(reliable delivery)

Pick Bytes for
Next Segment

Update Byte
Status

Cannot maintain per-byte
state on the NIC

Segment Selection Patterns

 35

Segment
Selection

(reliable delivery)

Select Next Segment

Update
Segment Status

Pre-Calculate
Segment Boundaries

Segment Selection Patterns

 35

Segment
Selection

(reliable delivery)

Select Next Segment

Update
Segment Status

Pre-Calculate
Segment Boundaries

Tonic

Segment Selection Patterns

 35

Segment
Selection

(reliable delivery)

Select Next Segment

Update
Segment Status

Pre-Calculate
Segment Boundaries

Tonic

1. Only a few bits of state per segment

Segment Selection Patterns

 35

Segment
Selection

(reliable delivery)

Select Next Segment

Update
Segment Status

Pre-Calculate
Segment Boundaries

Tonic

1. Only a few bits of state per segment
• acked, rtxed, lost

Segment Selection Patterns

 35

Segment
Selection

(reliable delivery)

Select Next Segment

Update
Segment Status

Pre-Calculate
Segment Boundaries

Tonic

1. Only a few bits of state per segment
• acked, rtxed, lost

• fixed function modules for common state updates

Segment Selection Patterns

 35

Segment
Selection

(reliable delivery)

Select Next Segment

Update
Segment Status

Pre-Calculate
Segment Boundaries

Tonic

1. Only a few bits of state per segment
• acked, rtxed, lost

• fixed function modules for common state updates

• programmable modules only for loss detection

Segment Selection Patterns

 35

Segment
Selection

(reliable delivery)

Select Next Segment

Update
Segment Status

Pre-Calculate
Segment Boundaries

Tonic

1. Only a few bits of state per segment
• acked, rtxed, lost

• fixed function modules for common state updates

• programmable modules only for loss detection

2. Loss detection: acks and timeouts

Segment Selection Patterns

 35

Segment
Selection

(reliable delivery)

Select Next Segment

Update
Segment Status

Pre-Calculate
Segment Boundaries

Tonic

1. Only a few bits of state per segment
• acked, rtxed, lost

• fixed function modules for common state updates

• programmable modules only for loss detection

2. Loss detection: acks and timeouts
• only two programmable modules

Segment Selection Patterns

 35

Segment
Selection

(reliable delivery)

Select Next Segment

Update
Segment Status

Pre-Calculate
Segment Boundaries

Tonic

1. Only a few bits of state per segment
• acked, rtxed, lost

• fixed function modules for common state updates

• programmable modules only for loss detection

2. Loss detection: acks and timeouts
• only two programmable modules

•mutually exclusive → fewer concurrent state updates

Segment Selection Patterns

 35

Segment
Selection

(reliable delivery)

Select Next Segment

Update
Segment Status

Pre-Calculate
Segment Boundaries

Tonic

1. Only a few bits of state per segment
• acked, rtxed, lost

• fixed function modules for common state updates

• programmable modules only for loss detection

2. Loss detection: acks and timeouts
• only two programmable modules

•mutually exclusive → fewer concurrent state updates

3. Lost segments first, new segments next

Segment Selection Patterns

 35

Segment
Selection

(reliable delivery)

Select Next Segment

Update
Segment Status

Pre-Calculate
Segment Boundaries

Tonic

1. Only a few bits of state per segment
• acked, rtxed, lost

• fixed function modules for common state updates

• programmable modules only for loss detection

2. Loss detection: acks and timeouts
• only two programmable modules

•mutually exclusive → fewer concurrent state updates

3. Lost segments first, new segments next
• fixed-function module for segment generation

Segment Selection

Concurrent State Update

 36

Segment Selection

Concurrent State Update

 36

Memory for per-flow state:
segment status, window size, …

Segment Selection

Concurrent State Update

 36

Memory for per-flow state:
segment status, window size, …

Select Next Segment
active
flow

Segment Selection

Concurrent State Update

 36

Memory for per-flow state:
segment status, window size, …

Select Next Segment
active
flow

Incoming

Loss Detection
and Recovery

Common
Segment Updates

ACK

Segment Selection

Concurrent State Update

 36

Memory for per-flow state:
segment status, window size, …

Select Next Segment
active
flow

Periodic Updates
(Timeout-based loss detection

and recovery)
Timeout

Incoming

Loss Detection
and Recovery

Common
Segment Updates

ACK

Segment Selection

Concurrent State Update

 36

Memory for per-flow state:
segment status, window size, …

Select Next Segment
active
flow

Periodic Updates
(Timeout-based loss detection

and recovery)
Timeout

Incoming

Loss Detection
and Recovery

Common
Segment Updates

ACK

Segment Selection

Concurrent State Update

 36

Memory for per-flow state:
segment status, window size, …

Select Next Segment
active
flow

Periodic Updates
(Timeout-based loss detection

and recovery)
Timeout

Incoming

Loss Detection
and Recovery

Common
Segment Updates

ACK

M
er

ge

Segment Selection

Concurrent State Update

 36

Memory for per-flow state:
segment status, window size, …

Select Next Segment
active
flow

Periodic Updates
(Timeout-based loss detection

and recovery)
Timeout

Incoming

Loss Detection
and Recovery

Common
Segment Updates

ACK

M
er

ge

Segment Selection

Concurrent State Update

 36

Memory for per-flow state:
segment status, window size, …

Select Next Segment
active
flow

Periodic Updates
(Timeout-based loss detection

and recovery)
Timeout

Incoming

Loss Detection
and Recovery

Common
Segment Updates

ACK

M
er

ge

…

Segment Selection

Concurrent State Update

 36

Memory for per-flow state:
segment status, window size, …

Select Next Segment
active
flow

Periodic Updates
(Timeout-based loss detection

and recovery)
Timeout

Incoming

Loss Detection
and Recovery

Common
Segment Updates

ACK

M
er

ge

…

Credit Management Patterns

 37

Credit Management Patterns

 37

Credit
Management
(congestion control)

Credit Management Patterns

 37

Control Loop

Monitor Adjust
Params

Credit
Management
(congestion control)

Credit Management Patterns

 37

Control Loop

Monitor Adjust
Params

Credit
Management
(congestion control)

Calculate
Credit

window/rate

Credit Management Patterns

 37

Control Loop

Monitor Adjust
Params

Credit
Management
(congestion control)

Calculate
Credit

window/rate

1. Three common credit calculation schemes

Credit Management Patterns

 37

Control Loop

Monitor Adjust
Params

Credit
Management
(congestion control)

Calculate
Credit

window/rate

1. Three common credit calculation schemes

• congestion window, rate, grant tokens

Credit Management Patterns

 37

Control Loop

Monitor Adjust
Params

Credit
Management
(congestion control)

Calculate
Credit

window/rate

1. Three common credit calculation schemes

• congestion window, rate, grant tokens

2. Two main parameter adjustment signals

Credit Management Patterns

 37

Control Loop

Monitor Adjust
Params

Credit
Management
(congestion control)

Calculate
Credit

window/rate

1. Three common credit calculation schemes

• congestion window, rate, grant tokens

2. Two main parameter adjustment signals
• external signals, e.g., acks and CNPs

Credit Management Patterns

 37

Control Loop

Monitor Adjust
Params

Credit
Management
(congestion control)

Calculate
Credit

window/rate

1. Three common credit calculation schemes

• congestion window, rate, grant tokens

2. Two main parameter adjustment signals
• external signals, e.g., acks and CNPs

• periodic internal signals, .e.g., counters

Credit Management Patterns

 37

Control Loop

Monitor Adjust
Params

Credit
Management
(congestion control)

Calculate
Credit

window/rate

1. Three common credit calculation schemes

• congestion window, rate, grant tokens

2. Two main parameter adjustment signals
• external signals, e.g., acks and CNPs

• periodic internal signals, .e.g., counters

• aligns with existing programmable modules for
segment selection

Tonic

The Two Engines

 38

Segment
Selection

Credit
Management

flow ID,
segment ID

segment transmitted

Integration into the Network Stack

 39

Host

NIC Outgoing
Link

Integration into the Network Stack

 39

Host

NIC

Application Layer

Memory

IP Layer
and

Below

Outgoing
Link

Integration into the Network Stack

 39

Host

NIC

Application Layer

Memory Transport Layer - on the host

 - Connection Management
 - Segmentation

IP Layer
and

Below

Outgoing
Link

Integration into the Network Stack

 39

Host

NIC

Application Layer

Memory Transport Layer - on the host

 - Connection Management
 - Segmentation

Transport Layer - on the NIC
 - Data Transfer IP Layer

and
Below

Outgoing
Link

Integration into the Network Stack

 39

Host

NIC

Application Layer

Memory Transport Layer - on the host

 - Connection Management
 - Segmentation

Transport Layer - on the NIC
 - Data Transfer IP Layer

and
Below

Outgoing
Link

add/remove connection

send N segments from memory address A

Integration into the Network Stack

 39

Host

NIC

Application Layer

Memory Transport Layer - on the host

 - Connection Management
 - Segmentation

Transport Layer - on the NIC
 - Data Transfer IP Layer

and
BelowTransport Logic

(Tonic)

Outgoing
Link

add/remove connection

send N segments from memory address A

Integration into the Network Stack

 39

Host

NIC

Application Layer

Memory Transport Layer - on the host

 - Connection Management
 - Segmentation

Transport Layer - on the NIC
 - Data Transfer

DMA

IP Layer
and

BelowTransport Logic
(Tonic)

Outgoing
Link

add/remove connection

send N segments from memory address A

Integration into the Network Stack

 39

Host

NIC

Application Layer

Memory Transport Layer - on the host

 - Connection Management
 - Segmentation

Transport Layer - on the NIC
 - Data Transfer

DMA

IP Layer
and

BelowTransport Logic
(Tonic)

Outgoing
Link

add/remove connection

send N segments from memory address A

Integration into the Network Stack

 39

Host

NIC

Application Layer

Memory Transport Layer - on the host

 - Connection Management
 - Segmentation

Transport Layer - on the NIC
 - Data Transfer

DMA

IP Layer
and

BelowTransport Logic
(Tonic)

Outgoing
Link

Next
Segment

add/remove connection

send N segments from memory address A

Integration into the Network Stack

 39

Host

NIC

Application Layer

Memory Transport Layer - on the host

 - Connection Management
 - Segmentation

Transport Layer - on the NIC
 - Data Transfer

DMA

IP Layer
and

BelowTransport Logic
(Tonic)

Outgoing
Link

Next
Segment

add/remove connection

send N segments from memory address A

Evaluation - Programmability

 40

Evaluation - Programmability

• Implemented six representative protocols

 40

Evaluation - Programmability

• Implemented six representative protocols
• Reno, New Reno

 40

Evaluation - Programmability

• Implemented six representative protocols
• Reno, New Reno
• SACK (Selective ACK)

 40

Evaluation - Programmability

• Implemented six representative protocols
• Reno, New Reno
• SACK (Selective ACK)
• NDP (Receiver-driven data-center transport)

 40

Evaluation - Programmability

• Implemented six representative protocols
• Reno, New Reno
• SACK (Selective ACK)
• NDP (Receiver-driven data-center transport)
• DCQCN, IRN (Improved RoCE NIC)

 40

Evaluation - Programmability

• Implemented six representative protocols
• Reno, New Reno
• SACK (Selective ACK)
• NDP (Receiver-driven data-center transport)
• DCQCN, IRN (Improved RoCE NIC)

• All meet timing for 100 Gpbs (10-ns clock)

 40

Evaluation - Programmability

• Implemented six representative protocols
• Reno, New Reno
• SACK (Selective ACK)
• NDP (Receiver-driven data-center transport)
• DCQCN, IRN (Improved RoCE NIC)

• All meet timing for 100 Gpbs (10-ns clock)

• Implemented within 200 lines of Verilog code

 40

Evaluation - Programmability

• Implemented six representative protocols
• Reno, New Reno
• SACK (Selective ACK)
• NDP (Receiver-driven data-center transport)
• DCQCN, IRN (Improved RoCE NIC)

• All meet timing for 100 Gpbs (10-ns clock)

• Implemented within 200 lines of Verilog code
• uses 0.5% of total logic resources

 40

Evaluation - Programmability

• Implemented six representative protocols
• Reno, New Reno
• SACK (Selective ACK)
• NDP (Receiver-driven data-center transport)
• DCQCN, IRN (Improved RoCE NIC)

• All meet timing for 100 Gpbs (10-ns clock)

• Implemented within 200 lines of Verilog code
• uses 0.5% of total logic resources

• Re-usable modules are 8K lines of Verilog code

 40

Evaluation - Programmability

• Implemented six representative protocols
• Reno, New Reno
• SACK (Selective ACK)
• NDP (Receiver-driven data-center transport)
• DCQCN, IRN (Improved RoCE NIC)

• All meet timing for 100 Gpbs (10-ns clock)

• Implemented within 200 lines of Verilog code
• uses 0.5% of total logic resources

• Re-usable modules are 8K lines of Verilog code
• uses 35% of total logic resources

 40

Evaluation - Scalability

 41

Evaluation - End-to-End Simulations

 42

• Cycle-accurate hardware simulator for Tonic within NS3

• Compared existing protocols with Tonic implementations

• TCP New Reno (plots shown below) and DCQCN

Summary

 43

Summary

• Tonic is a programmable hardware architecture

 43

Summary

• Tonic is a programmable hardware architecture

• Enables implementing transport protocols at high-speed

• with modest development effort

 43

Summary

• Tonic is a programmable hardware architecture

• Enables implementing transport protocols at high-speed

• with modest development effort

• Exploits domain-specific optimizations

• Implementing common transport patterns as re-usable modules

 43

SNAP: Stateful Network-Wide
Abstractions for Packet Processing

Mina Tahmasbi Arashloo1, Yaron Koral1, Michael
Greenberg2, Jennifer Rexford1, and David Walker1

1 Princeton University, 2 Pomona College

In-Network Stateful Applications

 45

In-Network Stateful Applications

 46

Programmable switches expose

data plane state through

a programming interface!

Distributed Stateful Programming is Challenging

 47

Distributed Stateful Programming is Challenging

 47

Distributed Stateful Programming is Challenging

 47

Use one switch?

Distributed Stateful Programming is Challenging

 47

Use one switch?

Shard/Distribute across
multiple switches?

Distributed Stateful Programming is Challenging

 47

Use one switch?

Shard/Distribute across
multiple switches?

which switches
to use?

Distributed Stateful Programming is Challenging

 47

Use one switch?

Shard/Distribute across
multiple switches?

which switches
to use?

How to coordinate
between them for correct

stateful processing?

Distributed Stateful Programming is Challenging

 47

Use one switch?

Shard/Distribute across
multiple switches?

which switches
to use?

How to coordinate
between them for correct

stateful processing?

SNAP: Stateful Network-Wide
Abstractions for Packet Processing

 48

SNAP: Stateful Network-Wide
Abstractions for Packet Processing

 48

SNAP: Stateful Network-Wide
Abstractions for Packet Processing

 49

SNAP: Stateful Network-Wide
Abstractions for Packet Processing

 49

Example - Detecting DNS Reflection Attacks

Attacker

Attacker-controlled
botnet

Small
spoofed

DNS
request

Amplified DNS
response
from open
resolver

Victim

http://ddosandbotnets.blogspot.com 50

DNS Resolvers

http://ddosandbotnets.blogspot.com

Bohatei: flexible and elastic DDoS defense, Fayaz et.al., USENIX SECURITY 15
 51

Victim

DNS Resolver

DNS Resolvers

Example - Detecting DNS Reflection Attacks

Bohatei: flexible and elastic DDoS defense, Fayaz et.al., USENIX SECURITY 15
 51

Victim

DNS Resolver

DNS Resolvers

DNS Request

1. Log DNS
requests

Example - Detecting DNS Reflection Attacks

Bohatei: flexible and elastic DDoS defense, Fayaz et.al., USENIX SECURITY 15
 51

Victim

DNS Resolver

DNS Resolvers

DNS RequestDNS Response

1. Log DNS
requests

2. Match
responses

Example - Detecting DNS Reflection Attacks

Bohatei: flexible and elastic DDoS defense, Fayaz et.al., USENIX SECURITY 15
 51

Victim

DNS Resolver

DNS Resolvers

DNS RequestDNS Response

DNS Response

1. Log DNS
requests

2. Match
responses

Example - Detecting DNS Reflection Attacks

Bohatei: flexible and elastic DDoS defense, Fayaz et.al., USENIX SECURITY 15
 51

Victim

DNS Resolver

DNS Resolvers

DNS RequestDNS Response

DNS Response

1. Log DNS
requests

2. Match
responses

3. Check
unmatched

count

Example - Detecting DNS Reflection Attacks

SNAP Language

 52

Stateful Packet Processing Functions

• A function specifying
• how to process each packet

• based on its fields and the program state

set of packets

updated state

input packet

current state

SNAP
Program

 53

DNS Reflection Detection in SNAP

 54

if (scrip in CSNET) & (dstport = DNS) then
 seen[srcip][dns.id] ← True
else if (dstip in CSNET) & (srcport = DNS) then
 if ~seen[dstip][dns.id] then
 unmatched[dstip]++
 if unmatched[dstip] = THRESH then
 susp[dstip] ← True
 else id
else id

DNS Reflection Detection in SNAP

DNS Reflection Detection in SNAP

 55

if (scrip in CSNET) & (dstport = DNS) then
 seen[srcip][dns.id] ← True
else if (dstip in CSNET) & (srcport = DNS) then
 if ~seen[dstip][dns.id] then
 unmatched[dstip]++
 if unmatched[dstip] = THRESH then
 susp[dstip] ← True
 else id
else id

DNS Reflection Detection in SNAP

DNS Reflection Detection in SNAP

 56

if (scrip in CSNET) & (dstport = DNS) then
 seen[srcip][dns.id] ← True
else if (dstip in CSNET) & (srcport = DNS) then
 if ~seen[dstip][dns.id] then
 unmatched[dstip]++
 if unmatched[dstip] = THRESH then
 susp[dstip] ← True
 else id
else id

DNS Reflection Detection in SNAP

DNS Reflection Detection in SNAP

 57

if (scrip in CSNET) & (dstport = DNS) then
 seen[srcip][dns.id] ← True
else if (dstip in CSNET) & (srcport = DNS) then
 if ~seen[dstip][dns.id] then
 unmatched[dstip]++
 if unmatched[dstip] = THRESH then
 susp[dstip] ← True
 else id
else id

DNS Reflection Detection in SNAP

DNS Reflection Detection in SNAP

 58

if (scrip in CSNET) & (dstport = DNS) then
 seen[srcip][dns.id] ← True
else if (dstip in CSNET) & (srcport = DNS) then
 if ~seen[dstip][dns.id] then
 unmatched[dstip]++
 if unmatched[dstip] = THRESH then
 susp[dstip] ← True
 else id
else id

DNS Reflection Detection in SNAP

DNS Reflection Detection in SNAP

 59

if (scrip in CSNET) & (dstport = DNS) then
 seen[srcip][dns.id] ← True
else if (dstip in CSNET) & (srcport = DNS) then
 if ~seen[dstip][dns.id] then
 unmatched[dstip]++
 if unmatched[dstip] = THRESH then
 susp[dstip] ← True
 else id
else id

DNS Reflection Detection in SNAP

Program Composition

+

+
; +

;

;()+
+

+(
;

(

)

)()

 60

SNAP Compiler

Where to Place State Variables?

 62 62

CS

;

EE

How to Forward Packets through State Variables?

 63 63

CSseen

unmatched

susp

;

EE

How to Forward Packets through State Variables?

 64 64

CSseen

unmatched

susp

;

EE
DNS Response

to: H1 in CS
ID: 200

??

Program Analysis

 65

Program Analysis

• For each flow, find

• all the state variables that it needs

• the order in which the state variables should be visited

 65

Program Analysis

• For each flow, find

• all the state variables that it needs

• the order in which the state variables should be visited

• A flow can be defined at any granularity

• As long as its traffic statistics is available

• E.g., All DNS packets to the CS subnet need all three state variables

• E.g., All packets from the CS subnet need seen.

 65

Mixed-Integer Linear Program (MILP)

 66

CS

MILPProgram Analysis
Results

Traffic
Matrix

Mixed-Integer Linear Program (MILP)

 67

CS

MILP

RoutingState
Placement

How to distribute a SNAP program?

??

 68

How to distribute a SNAP program?

??
Intermediate

Representation!

 68

Extended Forwarding Decision Diagrams (xFDDs)

 69

dstip = 10.0.0.1

srcip = dstip

s[srcip] = 2

{s[dstip] ← 2} {drop}

 69

Intermediate Nodes
Tests on header fields

and state

Leaves
Sets of action sequences

xFDD for DNS Reflection Detection

 70

xFDD for DNS Reflection Detection

 70

xFDD for DNS Reflection Detection

 70

xFDD for DNS Reflection Detection

 70

Partitioning and Distribution
of the xFDD

 71

CS

Partitioning and Distribution
of the xFDD

• The stateless tests and actions
are at the top.

 71

CS

Partitioning and Distribution
of the xFDD

• The stateless tests and actions
are at the top.

• Stateful tests and actions on the
same variable form subtrees.

 71

CS

CS

Partitioning and Distribution
of the xFDD

• The stateless tests and actions go
to the edge.

• Subtrees of a stateful variable go
the switch storing it.

 72

CS

Partitioning and Distribution
of the xFDD

• The stateless tests and actions go
to the edge.

• Subtrees of a stateful variable go
the switch storing it.

 72

Putting It All Together

 73

ISP1

ISP2

CS

EE

Putting It All Together

 73

ISP1

ISP2

CS

EE

Putting It All Together

 73

ISP1

ISP2

CS

EE

Putting It All Together

 74

ISP1

ISP2

CS

EE

4

Putting It All Together

 74

ISP1

ISP2

CS

EE

4

Putting It All Together

 75

ISP1

ISP2

CS

EE

4

Putting It All Together

 76

ISP1

ISP2

CS

EE

4

Putting It All Together

 76

ISP1

ISP2

CS

EE

4

Compiler Evaluation

 77

Compiler Evaluation

• 7 Campus and ISP topologies

 77

Compiler Evaluation

• 7 Campus and ISP topologies

• Order of 100s of switches and links

 77

Compiler Evaluation

• 7 Campus and ISP topologies

• Order of 100s of switches and links

• Scenarios

• Cold start (freq. weeks)

• Policy change (freq. days)

• Topology/TM change (freq. minutes)

 77

Compiler Evaluation - Results

 0

 50

 100

 150

 200

 250

 300

Stanford

Berkley

Purdue

ISP 1755

ISP 1221

ISP 6461

ISP 3257

Ti
m

e
(s

ec
.)

Topology/TM Change
Policy Change

Cold Start

 78

Summary

 79

Summary

• SNAP is a network-wide programmable platform for
stateful packet processing

 79

Summary

• SNAP is a network-wide programmable platform for
stateful packet processing

• SNAP Language

• One big stateful switch abstraction

• Intuitive and flexible composition

 79

Summary

• SNAP is a network-wide programmable platform for
stateful packet processing

• SNAP Language

• One big stateful switch abstraction

• Intuitive and flexible composition

• SNAP Compiler

• Decides state placement and routing

• Distributes an intermediate representation of the program across the

network

 79

Stateful Programming of
High-Speed Network Hardware

Tonic
[Under revision for

NSDI’19]

SNAP
[SIGCOMM’16]

PISA

PISA

PISA

PISA

PISA

PISA

PISA

FPGA

FPGA

 80

Thank You!

!81

