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ABSTRACT
Network applications often define policies to manage net-
work traffic based on its attributes. For example, service
chaining forwards traffic to reach the middleboxes it wants
to visit, and access control restricts traffic by checking the
permission flags it carries. These policies match against pack-
ets’ attributes in switches before being applied. However, the
prior works of attribute encoding all incur a high memory
cost to identify the attributes in the data plane. This pa-
per presents MEME, an encoding scheme that clusters the
attributes which tend to appear together in the traffic to
reduce the memory usage. Naive clustering would still fail
since it is ineffective when a cluster contains an excessive
number of attributes. To tackle this, MEME breaks the clus-
ters into smaller ones by encoding a minimal number of
attributes separately and by taking advantage of the spe-
cial structures within the attributes. MEME also leverages
match-action tables and reconfigurable parsers on modern
hardware switches to achieve a final 87.7% lower memory us-
age, and applies an approximate graph algorithm to achieve
1-2 orders of magnitude faster compilation time than the
prior state of the art [13]. These performance gains pave
the way for deployment of a real traffic management system
desired by the world’s largest Internet Exchange Points.

1 INTRODUCTION
With the rise of SDN switches come new opportunities in
managing traffic based on sophisticated policies rather than
conventional routing protocols. Some examples include:

• Service Chaining [7]: Service chaining involves having
network traffic traverse a sequence of middleboxes. To
traverse flexibly, each packet carries in its header the
set of middleboxes to visit.
• Software-Defined Internet Exchange Points (SDX) [9, 10]:
At an Internet exchange point (IXP), hundreds of au-
tonomous systems (AS’s) exchange routing informa-
tion and network traffic. A traditional IXP uses BGP
to select a single next-hop AS from the set of AS’s that
announced routes to an IP destination. In contrast, an
SDX allows AS’s to define finer-grained policies using
various packet-header fields to choose next-hops from
those available.

Figure 1: Membership encoding in applications.

• Traffic Management with Host Attributes [11]: Network
operators oftenwant to apply access-control or quality-
of-service policies based on user groups. To achieve
this, each packet is tagged with a set of user attributes,
which the policies match on.

In these applications, a packet travels with a set of at-
tributes (e.g., middleboxes, next-hop AS’s, or host attributes).
Policies match on these attributes to make routing, quality
of service, or access control decisions. Identifying which
attributes the packet carries, also known as membership en-
coding, is a fundamental building block of these functions.
A membership encoding scheme encodes each attribute

set as a tag and each attribute as one or more match strings
in the control plane. It guarantees that a set contains an
attribute if and only if the tag matches any of the attribute’s
match strings. Thus, a membership encoding scheme has no
false positives, unlike a Bloom filter [2, 16] which can falsely
report some attributes as set members.
In order to identify packet attributes in the data plane,

each packet is assigned a tag that represents its attribute
set. Network policies are then combined with match strings
and compiled into a switch match-action table as rules that
query the existence of attributes before applying policies.
In Figure 1, a packet is first tagged by the switch 𝑆𝑊1 be-
fore traversing the switch 𝑆𝑊2 that contains the compiled
policies. 𝑆𝑊2 parses out the tag and compares it with match
strings before applying a policy to the packet. This design can
be adopted by any switches that have customizable match-
action processing, such as OpenFlow switches [14].

However, due to the limited parsing capability of 𝑆𝑊2, tags
must be short enough to parse at line rate. Moreover, due
to the limited memory of 𝑆𝑊2, match strings should require
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as little memory as possible to fit in the match-action table.
For instance, 𝑆𝑊2 in an SDX is the IXP fabric, which installs
interdomain forwarding policies defined by hundreds of AS’s.
If the SDX simply uses the IP destination to tag the set of
next-hop AS’s and the IP prefixes, of which there are over
500,000, as match strings, it takes at least half a million rules
in total for a single AS to define one forwarding policy for
each peer AS, overwhelming even high-end switches [10].
𝑆𝑊1, in contrast, may use existing tables to assign tags, such
as an edge router’s ARP table, so 𝑆𝑊1 is not the bottleneck
in resource constraints.
Prior works [7, 9, 10, 13] in membership encoding have

succeeded in lowering tag width, but they all incur a high
memory cost in the switches because they generate a large
number of match strings. Our evaluation shows that with the
prior state-of-the-art scheme, PathSets [13], only a limited
number of policies fit in commodity switches. There have
been works on reducing forwarding entries in TCAM tables
to reduce memory [5, 12, 17, 20], but these techniques do
not shorten tags at the same time. They generate semanti-
cally equivalent TCAM tables with fewer rules, while our
work constructs an encoding scheme directly from attribute
membership.
To improve the scalability of membership encoding, we

present MEME, aMemory-EfficientMembership Encoding
scheme. It reduces tag width and optimizes the number
of match strings at the same time, reaching the minimal
memory cost compared to all the existing works on real-
world datasets in SDN switches. Moreover, capitalizing on
the emerging PISA (Protocol Independent Switch Architec-
ture) switches capable of parsing an arbitrary portion of
headers [3], MEME further cuts the memory cost by splitting
a big match-action table into multiple smaller ones. Finally,
MEME computes the encoding fast in the control plane, fin-
ishing within seconds on our largest dataset. We evaluated
MEME on a 691-attribute dataset from the world’s largest
IXP, showing that MEME cuts the memory cost of match
strings by 87.7% and the computation time by one order of
magnitude compared to PathSets.

2 MEMBERSHIP ENCODING PROBLEM
In this section, we formalize the membership encoding prob-
lem using an SDX example. At an SDX, AS’s can define
policies to forward packets to specific next-hop AS’s. For
instance, an AS may want to forward TCP traffic to different
next-hops based upon the service type (i.e., TCP ports). One
policy can be to forward all HTTP traffic to AS𝐴 (Figure 2b).
However, 𝐴 may not have a BGP route for every destination
IP prefix. Thus, the policy also needs to check whether 𝐴 ex-
ists in 𝑆 , the set of next-hop AS’s that announce the packet’s
destination IP prefix.

Figure 2: The overall information flow of the bitmap
encoding scheme at an SDX.

Figure 3: A 9×8 attribute matrix.

2.1 Input: Attribute Matrix
The input to a membership encoding problem can be formal-
ized as an attribute matrix, where each column represents an
attribute, and each row represents a possible set of attributes.
For instance, Figure 3 is an attribute matrix of 9 attribute
sets 𝑆1 = {𝐴, 𝐵}, 𝑆2 = {𝐴, 𝐵,𝐶}, 𝑆3 = {𝐵,𝐶}, 𝑆4 = {𝐶, 𝐷, 𝐸},
𝑆5 = {𝐷, 𝐸}, 𝑆6 = {𝐶, 𝐹,𝐺}, 𝑆7 = {𝐶, 𝐹,𝐺, 𝐻 }, 𝑆8 = {𝐹, 𝐻 }
and 𝑆9 = {𝐹 }. We define the matrix width (the number of
attributes) as 𝑁 , height (the number of attribute sets) as𝑀 ,
and density as 𝐷 .

Figure 2a shows a truncated attribute matrix in the context
of the SDX. Its columns are all the AS’s connecting to the
IXP; its rows are the sets of AS’s that reach the same IP prefix.
Such a matrix from a real IXP can contain 𝑂 (103) columns
and𝑂 (106) rows, but its density can be less than 1%—setting
the stage for compression in membership encoding.
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Figure 4: Traditional solution space w/o PISA switches
on a log-log scale. Solutions on the same dashed line
require the samememory , and solutions closer to the
origin require less memory.

2.2 Output: Packet Tags and Match Strings
Given an attribute matrix, each row is encoded as a tag and
each column as one or more match strings (Figure 2c,d). A
row’s tag matches one of a column’s match strings if and
only if the corresponding cell has a value of 1.

The control plane augments policies with thematch strings
to generate rules in the match-action table. A policy query-
ing for an attribute is converted to match-action rules that
match the tag with the attribute’s match strings. For example,
the HTTP policy inspecting the set 𝑆 of next-hop AS’s for
𝐴 in Figure 2b is turned into a rule that matches the dPort
and the tag with𝐴’s match string in Figure 2e. If an attribute
requires multiple match strings, the table rules must be dupli-
cated with every match string individually. This duplication
increases the memory requirements, so it is preferable that
each attribute has only one match string.
A packet is first given a tag at an edge router, either as a

new field or an existing one (e.g. dstMAC in the SDX [9, 10]).
In the network, the packet eventually enters a switch that
implements the match-action table augmented from policies.
There, the tag is parsed and, together with other header
fields, matched with the table rules. Figure 2 shows that an
HTTP packet gets the tag of {𝐴, 𝐵,𝐶}, “11100000”, from the
edge router. After entering the IXP fabric, the packet’s tag
matches the first rule and is forwarded to 𝐴.

Traditionally, match strings are assumed to be of the same
width as tags, so the memory cost of match strings is the
product of tag width and the number of match strings. This
generates the solution space in Figure 4, where the lower
bound of tag width is the entropy log2 (𝑁 ) bits, the lower
bound of the number of match strings is 𝑁 , and the lower
bound of memory cost is the origin 𝑁 log2 (𝑁 ) bits. Minimiz-
ing tag width and minimizing the number of match strings
give the two strawman approaches.

Bitmap encoding translates each matrix row to a tag with
a one bit for the contained attributes and zero bit for the oth-
ers. Each column of the matrix requires one ternary match

string with a one bit for itself and wildcards for the others.
This scheme is optimal in the number of match strings. How-
ever, it suffers from prohibitively long tags, of the samewidth
𝑁 as the matrix. As seen in Figure 4, 𝑁 2 bits are needed in
total to store match strings, which correspond to 64 bits even
for the very small attribute matrix in Figure 3.

Flat tags are adopted in SDX [10] and FlowTags [7]. The
flat tag scheme encodes each unique row with an ID. In
Figure 3, since no rows are duplicated, their tags are simply
the row numbers starting from 0. This scheme achieves a
small tag width upper bounded by ⌈log2𝑀⌉ bits. However,
for each attribute, its match strings include the IDs of all
the rows that contain the attribute, leading to an enormous
number of match strings. As a result, when 𝐷 is the matrix
density, 𝐷𝑁𝑀 ⌈log2𝑀⌉ bits are needed in the worst case. For
instance, Figure 3 requires 22 match strings and 88 bits.
The two strawman approaches are points in the solution

space, optimal in some aspect but poor in total memory. A
key way to remedy this issue is clustering matrix rows, to
trade off short tags for a smaller number of match strings.

A clustering-based encoding scheme: (i) clusters multiple
rows in the attribute matrix, (ii) assigns each cluster a unique
ID, and (iii) generates tags and match strings in the form of
concatenation of a cluster ID and a bitmap of the same width
as the cluster. (The cluster width, in analogy to matrix width,
is the number of attributes in all rows of the cluster.) The key
feature of the clustering schemes is that they generate one
match string for every attribute in a cluster. An attribute’s
match string is a concatenation of the cluster ID and the
bitmap whose bit is one for the attribute and wildcard for
the others. A row’s tag is a concatenation of the cluster ID
and the bitmap whose bit is one for the attributes in the row
and wildcard for the others. For practical reasons, all tags
are padded with zeros and match strings with wildcards to
the same length (represented as “-” to avoid confusion), so
the tag width takes the maximum of (cluster width + cluster
ID length) among all the clusters. For example, in Figure 5
with three clusters, C1 = {𝑆1, 𝑆2, 𝑆3}, C2 = {𝑆4, 𝑆5} and C3 =
{𝑆6, 𝑆7, 𝑆8, 𝑆9}, if we use the IDs “00", “01", “10" respectively,
the tag of 𝑆3 is “00|011−”, the tag of 𝑆4 is “01|111−”, the tag
of 𝑆6 is “10|1110" and the match strings of𝐶 are “00| ∗ ∗ 1 −”
in C1, “01|1 ∗ ∗ −” in C2 and “10|1 ∗ ∗ ∗” in C3.

2.3 Related Work: Clustering Matrix Rows
PathSets [13], adopted by iSDX [9], relies on clustering.
PathSets starts by treating every row as a cluster. It uses a
greedy algorithm to iteratively merge intersecting clusters,
i.e., clusters that share at least one attribute, until no merging
results in a memory reduction. In general, clustering reduces
the number of match strings by generating only one match
string for each attribute in a cluster, while at the potential
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Figure 5: PathSets clustering.

cost of increasing the cluster width and hence the tag width.
PathSets follows a path from flat tags (every row as a cluster
eliminates bitmaps) to bitmaps (clustering all rows eliminates
IDs), finding the solution closest to the origin in the middle.
For the example matrix, this yields the clustering rendered
in Figure 5.
PathSets also proposes the variable-length cluster ID al-

gorithm to shorten tag width. Instead of using IDs of the
same length, it assigns larger clusters, which need longer
bitmaps, shorter IDs, and vice versa, in order to reduce the
total tag width. Given a list of𝑚 clusters of size 𝑙1, 𝑙2, . . . , 𝑙𝑚 ,
the minimum tag width is𝑤 = ⌈log2

∑𝑚
𝑖=1 2𝑙𝑖 ⌉ bits based on

Kraft’s Inequality [1, 13]. Since encoding a cluster 𝑖 requires a
bitmap of 𝑙𝑖 bits, its cluster ID must be no longer than (𝑤 −𝑙𝑖 )
bits. The algorithm builds a binary tree from top down and
places each cluster 𝑖 as a leaf node on or above the level
(𝑤 − 𝑙𝑖 ) along the way. By assigning the left branches with
bit 0 and the right branches with bit 1, a path from the root
node to a leaf node yields the ID for its cluster (Figure 6a).
With variable-length IDs, PathSets generates ten 5-bit match
strings, taking 50 bits in total (Figure 6b).
Nevertheless, as the matrix grows, the memory require-

ment of PathSets still overwhelms commodity switches. Sec-
tion 5 shows that PathSets only supports 108 out of 691 AS’s
to define one policy for each AS in the IXP. Also, the greedy
clustering algorithm runs 𝑀 iterations, and for each itera-
tion, considers every pair of intersecting clusters for merging.
Thus, PathSets has time complexity 𝑂 (𝑁𝑀3), becoming ex-
tremely slow as the matrix size grows.

(a) Binary ID tree (b) Cluster IDs

Figure 6: Tags width is 6 bits with fixed-length cluster
IDs, and 5 bits with variable length IDs.

3 MEME CLUSTERING ALGORITHM
No current approaches scale well for all three metrics: tag
width, memory cost, and computation time. MEME achieves
significant scalability gains by capitalizing on common prop-
erties of attributematrices. MEME lowers the tagwidthwhile
always generating the optimal number of match strings.

3.1 Extracting Bridging Attributes
The minimum possible number of match strings is 𝑁 since
there must be at least one string for each column in the ma-
trix. To achieve this, MEME first conducts complete clustering,
i.e., MEME iteratively clusters any intersecting attribute sets
until all clusters are mutually exclusive in columns. This
guarantees that each attribute appears in only one cluster.
Since every attribute in a cluster has only one match string,
complete clustering leads to 𝑁 strings.
However, complete clustering can force some clusters to

be very wide. As a result, the tag, consisting of a cluster ID
and a bitmap of the same width as the cluster, can become
unacceptably long. In Figure 3, complete clustering outputs
the entire matrix as a cluster, falling back to the bitmap
scheme with 8-bit tags.
We found that the “culprit” of the wide clusters is a few

attributes that “bridge” over an excessive number of distinct
sets. The bridging attributes make some clusters extremely
wide. For instance,𝐶 is the bridging attribute in Figure 5, forc-
ing the merging ofC1,C2 andC3. This observation also holds
in real-world matrices. In our IXP matrix, complete merging
produces only three clusters, the largest one of which has
563 attributes resulted from 147 bridging attributes.

To handle large clusters after complete clustering, MEME
identifies and extracts the fewest bridging attributes from
the matrix with a minimum vertex cut algorithm to break
up the clusters.
MEME first converts the attribute matrix into a graph,

where each attribute is a vertex, and an edge exists between
the vertices of every pair of attributes in a row. The left of
Figure 7 depicts the graph of the matrix found in Figure 3.
It is easy to see that a row in the matrix is a clique in the
graph. We claim that each cluster from complete clustering of
the matrix corresponds to a connected component in the graph.
To explain that, we note that any row in the cluster shares at
least one attribute with some other row in the cluster by the
definition of complete clustering. This means that the cliques

Figure 7: Extraction of minimum vertex cut.
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(a) (b)
Figure 8: Extracting the bridging attribute yields the 2 submatrices in 8a, which are encoded in 8b.

from all rows in the cluster are connected. On the other hand,
for any attribute 𝑋 from a cluster and any attribute 𝑌 from
another cluster, 𝑋 and 𝑌 never appear together in a row,
again by the definition of complete clustering. This means
that the subgraphs of any two clusters are disconnected.
Therefore, the original problem of breaking up a cluster

by extracting the fewest bridging attributes is converted to
disconnecting its connected component by extracting the
minimum number of vertices, i.e., the minimum vertex cut.
As seen in Figure 7, the minimum vertex cut of the left graph
is indeed the bridging attribute 𝐶 . If there are multiple mini-
mum vertex cuts, MEME picks the one that, if extracted, pro-
duces the most components. MEME extracts the minimum
vertex cut iteratively from the graph till all the components
have fewer than 𝜆 vertices. Equivalently, all the clusters have
fewer than 𝜆 attributes at the end of this process.
This greedy algorithm extracts the minimum number of

bridging attributes to make all clusters bounded in size. The
bridging columns are then combined into a new submatrix,
which is the input to MEME again. This process repeats
until the input submatrix width is below 𝜆. In the example,
by choosing 𝜆 = 5, extracting 𝐶 yields two submatrices,
one with three clusters C1 = {𝐴, 𝐵}, C2 = {𝐷, 𝐸} and C3 =
{𝐹,𝐺, 𝐻 }, and the other with one cluster {𝐶} (Figure 8a).
Each submatrix is then encoded separately to generate

subtags for each row and match substrings for each column.
Figure 8b shows the subtags and match substrings from
Figure 8a. MEME adopts the variable-length cluster ID al-
gorithm from PathSets, assigning a 1-bit ID to C3 and 2-bit
IDs to C1 and C2. Since the cluster in the second submatrix
has a single attribute, no bitmap is needed. Also, the match
substrings for attributes not in the submatrix are simply wild-
cards. In the end, all subtags of a row are concatenated to
construct its full tag; all match substrings of a column are
concatenated to construct its full match string.

Extracting bridging attributes, while keeping the clusters
mutually exclusive and the number of match strings optimal,
avoids huge clusters inflating the tag width. Even though the
new submatrices require multiple subtags to fully represent
the entire rows, the total width becomes much smaller than
after naïve complete clustering. The tags in Figure 8b are 5
bits, 3 bits fewer than before, and the improvement is much
more profound when the matrix is larger. The current tag
width is the same as produced by PathSets in Section 2.3, and
since only one string is required for each attribute, the total
memory cost is already smaller than PathSets’.

3.2 Sibling and Ancestor Attributes
In addition to extracting bridging columns, MEME exploits
two special relationships which can be found among some
columns in the attribute matrix to further shorten the tags: (i)
sibling columns that are identical and (ii) ancestor attributes
that exist in every row of a cluster. Though occurrences of
these relationships are matrix dependent, they are not un-
common. In Figure 8a, column𝐷 and 𝐸 are siblings, column 𝐵
is the ancestor of the cluster C1 and column 𝐹 is the ancestor
of C3.
MEME takes advantage of these two relationships to fur-

ther reduce the tag width. Given an attribute matrix, MEME
detects all siblings and keeps only one in each sibling group.
Since the siblings always appear together in a row, they can
be treated as one attribute, identified with one match string.
In addition, MEME makes use of cluster IDs to encode

ancestors implicitly. The algorithm from Section 3.1 is mod-
ified so that upon encountering a large cluster that has an
ancestor, MEME removes the ancestor. Then MEME assigns
hierarchical cluster IDs so that all the rows in the cluster
share a common cluster ID prefix, which does not overlap
with any other cluster’s ID prefix. Since the ancestor exists
with and only with all the rows in its cluster, MEME encodes
the ancestor implicitly with that common ID prefix.
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(a) (b)
Figure 9: Merging the siblings yields 9a, which is encoded in 9b with hierarchical cluster IDs for the ancestors.

Figure 9a depicts these two techniques, and Figure 9b lists
the resulting tags and match strings. The siblings 𝐷 and 𝐸

are merged, sharing the same match string “01 − ∗”. Also,
after removing the ancestor 𝐹 from C3, all the rows in C3
share a cluster ID prefix, “1”, so MEME encodes 𝐹 as “1 ∗ ∗
∗”. Indeed, this matches the tags of any attribute set that
contains 𝐹 , namely {𝑆6, 𝑆7, 𝑆8, 𝑆9}. Similarly, the ancestor 𝐵
is encoded as “00 ∗ ∗”, matching the tags of {𝑆1, 𝑆2, 𝑆3}.
Before describing how to assign such hierarchical clus-

ter IDs, we take a look at the overall algorithm of MEME.
Combining the designs on bridging, sibling and ancestor
attributes, Algorithm 1 shows the full pseudocode. After re-
moving the siblings from the input matrix (Line 3), MEME
splits every submatrix into clusters by removing ancestors
and extracting bridging attributes until all the resulting clus-
ters are below the threshold 𝜆 and do not contain any an-
cestors (Line 16-33). Compared to bridging attributes which
are encoded explicitly in new submatrices, siblings and an-
cestors are removed and encoded implicitly. MEME reduces
the memory cost of the example matrix to 32 bits with eight
4-bit match strings.

3.3 Hierarchical Cluster IDs
Variable-length IDs have effectively shortened tags, but the
algorithm from PathSets [13] does not take into account
the ID hierarchy required by the ancestors. To remedy that,
MEME constructs the ID hierarchy and binarizes it to assign
IDs of vairable length.

For each submatrix, MEME constructs a tree of ancestors
and clusters so that every one of them is the child node of
the previously removed ancestor in Algorithm 1 (Line 19, 26).
For example, MEME removes the ancestors 𝐵 and 𝐹 from
the matrix in Figure 9a and generates a tree as shown in
Figure 10a. This tree also corresponds to the hierarchy of
IDs in that the ID of an node is the prefix of another if and
only if the latter is the descendant of the former in the tree.

For instance, the ID of {𝐺,𝐻 } must match 𝐹 ’s IDs but not
𝐵’s or 𝐷’s. A single-element cluster, such as {𝐴} and {𝐷}, is
regarded as an ancestor with width equal to 0.
One case that requires special handling is a matrix row

consisting solely of ancestors. After removing the ancestors,
such a row becomes empty, like 𝑆3 and 𝑆9 in Figure 8a. There
are two situations. If the final ancestor removed has in the
hierarchy any direct child that represents a cluster, the empty
row can be encoded by its ID with an all-zero bitmap. For
example, 𝑆9 is encoded with the ID of {𝐺,𝐻 }, “1", leading to
the tag “1000". However, if the final ancestor removed only
has ancestor children, that empty row cannot be encoded
with any of their IDs since that would falsely imply the exis-
tence of the child. For example, since 𝐵 only has an ancestor
child, 𝐴, encoding 𝑆3 with its IDs would match the match
string of 𝐴. To handle this, an 𝜖 node is added to the final
ancestor to assign a distinct ID to the empty row (Line 21-
22, 27), such as 𝜖𝐵 in Figure 10a. Similarly, an 𝜖 node is added
to the root as the place holder for the empty set if needed
(Line 8- 9), such as 𝜖𝑟 in Figure 10a.

After building the ID hierarchy, MEME uses the variable-
length ID algorithm as a subroutine to binarize it from bottom
up. When binarizing the children of an ancestor, this portion
of the hierarchy has a known minimum tag width and is
equivalent to a cluster of the same size as its tag width for

(a) ID hierarchy (b) Binary ID tree
Figure 10: Tagswidth is 6 bits with fixed-length cluster
IDs, while with variable length IDs it is 5 bits.
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further binarization at the upper node. In Figure 10a, the por-
tions under 𝐵 and 𝐹 , after binarization, are regarded as two
“clusters” of size 1 and 2 respectively, and 𝐷 , as an ancestor,
has width 0. Then binarizing those three children at the root
gives the minimum tag width of 3 bits. With 𝐵 placed at or
above the level 2, 𝐷 at or above the level 3, and 𝐹 at or above
the level 1, a binary tree is generated to assign IDs to every
ancestor and cluster (Figure 10b).

3.4 Computation Optimization
Finding bridging attributes depends on the minimum vertex
cut algorithm [6]. On a graph 𝐺 = ⟨𝑉 , 𝐸⟩, this algorithm
calls a subroutine that finds the minimum vertex cut be-
tween a pair of vertices. This subroutine, of time complexity
𝑂 ( |𝐸 | |𝑉 |2/3), is run on 𝑂 ( |𝑉 |) pairs of vertices to search for
the actual minimum vertex cut for 𝐺 . Thus, its total time
complexity is 𝑂 ( |𝐸 | |𝑉 |5/3) = 𝑂 (𝐻𝑁 8/3), where 𝐻 = 𝐷𝑁 is
the average set size, which can be treated as a constant due
to the sparse nature of the matrix. Thus, in the worst case,
the time complexity of MEME is𝑂 (𝑁 11/3). Even though this
is a tighter bound than PathSets since𝑀 >> 𝑁 for attribute
matrices in practice, it is still slow when 𝑁 increases.

To speed this up, we observe that due to the sparsity of ma-
trices, the minimum vertex cut size is small for large graphs.
Therefore, when the graph size is above some threshold (e.g.,
150), we approximate the minimum vertex cut algorithm by
ceasing to call the subroutine once a small enough cut is
found between any vertex pair (e.g., a cut of fewer than three
vertices). We set multiple thresholds, and the stopping points
are self-adjusted during the computation if they do not end
searching early. This gives MEME considerable speedup with
negligible impact on memory efficiency of encoding results.
For smaller graphs, we still run the original algorithm to
find the minimum vertex cut with the maximum number of
resulting components, but the time cost is affordable.

3.5 Dynamic Updates
Attribute matrices are rarely static, with rows or columns
being added or removed when either network conditions
or policies change. For example, a column is added if a new
AS joins the IXP, and a new row is added if a prefix’s set
of announcers changes. The former happens on the order
of days, while the latter happens several times per second.
When a matrix changes, either its tags, match strings, or both
need to change. In an SDX, tags are updated via gratuitous
ARPs, hence considered low-cost [10]. However, updating
match strings require changing rules in the IXP fabric and
must be done sparingly. For simplicity, we mainly consider
bridging attributes (Section 3.1) and only briefly siblings and
ancestors (Section 3.2) in the following discussion.

Algorithm 1:MEME
Input: Matrix𝑀 , Cluster size threshold 𝜆
Output:Match strings 𝑆 = {𝑠𝑖 |1 ≤ 𝑖 ≤ 𝑁 },

Tags 𝑇 = {𝑡 𝑗 |1 ≤ 𝑗 ≤ 𝑀}
1 Function MainAlgorithm(𝑀, 𝜆):
2 𝑀𝑐𝑢𝑟𝑟 ← 𝑀

3 𝑀𝑐𝑢𝑟𝑟 .delCol(getSibling(𝑀𝑐𝑢𝑟𝑟 ))
4 𝑡𝑟𝑒𝑒_𝑙𝑖𝑠𝑡 ← []
5 while width(𝑀𝑐𝑢𝑟𝑟 )> 0 do
6 𝑀𝑏𝑟𝑑𝑔 ← new Matrix(); 𝑇 ← new Tree()
7 𝑟𝑜𝑜𝑡 ← new Node(); 𝑇 .addNode(𝑟𝑜𝑜𝑡 )
8 if {} ∈ 𝑀𝑐𝑢𝑟𝑟 then
9 𝑇 .addChild(𝑟𝑜𝑜𝑡, 𝜖𝑟𝑜𝑜𝑡 )

10 MatrixSplit(𝑀𝑐𝑢𝑟𝑟 , 𝑀𝑏𝑟𝑑𝑔, 𝜆,𝑇 , 𝑟𝑜𝑜𝑡)
11 𝑀𝑐𝑢𝑟𝑟 ← 𝑀𝑏𝑟𝑑𝑔 ; 𝑡𝑟𝑒𝑒_𝑙𝑖𝑠𝑡 .append(𝑇 )
12 𝐵 ← binarize(𝑡𝑟𝑒𝑒_𝑙𝑖𝑠𝑡 )
13 𝑆 ← generateStrings(𝐵,𝑀)
14 𝑇 ← generateTags(𝑆,𝑀)
15 return 𝑆,𝑇

16 Function MatrixSplit(𝑀𝑐𝑢𝑟𝑟 , 𝑀𝑏𝑟𝑑𝑔, 𝜆,𝑇 , 𝑎𝑛𝑐𝑡):
17 𝑛𝑒𝑤_𝑎𝑛𝑐𝑡 ← getAncestor(𝑀𝑐𝑢𝑟𝑟 )
18 if 𝑛𝑒𝑤_𝑎𝑛𝑐𝑡 ≠ Null then
19 𝑇 .addChild(𝑎𝑛𝑐𝑡, 𝑛𝑒𝑤_𝑎𝑛𝑐𝑡 )
20 𝑎𝑛𝑐𝑡 ← 𝑛𝑒𝑤_𝑎𝑛𝑐𝑡
21 if width(𝑀𝑐𝑢𝑟𝑟 ) > 1 & {𝑎𝑛𝑐𝑡} ∈ 𝑀𝑐𝑢𝑟𝑟 then
22 𝑇 .addChild(𝑎𝑛𝑐𝑡, 𝜖𝑎𝑛𝑐𝑡 )
23 𝑀𝑐𝑢𝑟𝑟 .delCol(𝑎𝑛𝑐𝑡 )
24 else
25 if width(𝑀𝑐𝑢𝑟𝑟 ) < 𝜆 then
26 𝑇 .addChild(𝑎𝑛𝑐𝑡, 𝑀𝑐𝑢𝑟𝑟 )
27 𝑇 .delChild(𝜖𝑎𝑛𝑐𝑡 )
28 return

29 𝑀𝑏𝑟𝑑𝑔 .addCol(getBridging(𝑀𝑐𝑢𝑟𝑟 ))
30 𝑀𝑐𝑢𝑟𝑟 .delCol(getBridging(𝑀𝑐𝑢𝑟𝑟 ))
31 for 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 in𝑀𝑐𝑢𝑟𝑟 do
32 MatrixSplit(𝑐𝑙𝑢𝑠𝑡𝑒𝑟, 𝑀𝑏𝑟𝑑𝑔, 𝜆,𝑇 , 𝑎𝑛𝑐𝑡 )
33 return

Recall that MEME partitions the matrix’s attributes into
submatrices, clusters each submatrix’s attributes, and assigns
cluster IDs. When a new row appears, we first attempt to
assign it a tag. The new row is partitioned into submatrices.
If each partition is either empty or contained within a sin-
gle cluster, then a tag can be generated without modifying
the encoding. This is cheap and fast, only requiring finding
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Figure 11: MEME on PISA switches.

matches in a few clusters and concatenating the correspond-
ing IDs and bitmaps. However, if one of the row’s partitions
is not contained within a cluster, then the current encoding is
insufficient. Since this may happen several times per second,
re-encoding the entire matrix in response is infeasible.

To address this issue, we describe an efficient update pro-
cedure that minimizes the number of tag and match string
modifications while keeping the number of strings optimal.
If, in some submatrix, the new row’s partition cannot be
contained by an existing cluster, then it must span multiple
clusters. Connecting these disjoint clusters may result in a
cluster whose size is above the threshold 𝜆. We re-encode
those clusters the usual way, by extracting bridging attributes
to split clusters and then reassigning IDs if needed. The ex-
tracted bridging attributes are moved to the next submatrix,
and any attribute that co-occurs with them in a row of the
next sub-matrix is also re-encoded. The subtags and match
substrings of the affected columns need updates.
This procedure results in only a few updates of match

substrings. Due to the sparse nature of the matrix, rows are
quite small and updates often involve adding one attribute to
an existing row, so it re-encodes only several attributes. The
extraction of new bridging attributes causes the attributes
to migrate from the starting submatrices to the ending ones,
so the ending subtags may grow in size during updates. To
address this, MEME can be configured to reserve bits in the
initial encoding or to insert bridging attributes in the sparsest
submatrix.
Taking siblings and ancestors into account, if an update

disrupts such relationships, all affected clusters need re-
encoding. Since the existence of these relationships implies
an internal hierarchy of attributes, they are expected to rarely
change. If that is untrue, sibling and ancestor encoding can
be disabled to allow faster updates.

4 PISA MATCHING OPTIMIZATION
MEME partitions the columns of an attribute matrix into
multiple submatrices, each encoded independently. The tag
for a row in the original matrix is the concatenation of every
submatrix’s subtag; similarly, the match string for a column
is the concatentation of every submatrix’s match substring.
In prior membership encoding schemes, tags and match

strings are compared in their entirety in switches. However,
this matching design wastes memory. After MEME splits the
matrix into submatrices, each attribute exists in only one

submatrix. Only one subtag determines whether any given
attribute is present or not, and only one match substring
is something other than wildcards. Since it is known in ad-
vance which submatrix an attribute belongs to, we can save
memory by only comparing the subtag with the substring of
the submatrix that the attribute belongs to.
Traditional switches are restricted to operating on com-

plete fields. In order to implement our design, we take ad-
vantages of the reconfigurable parsers in PISA switches that
support flexible definition of header fields to parse each sub-
tag separately. Then, instead of one match-action table for
all policies, one table is created for each submatrix to match
on its subtag. If a policy queries an attribute 𝑎 from a sub-
matrix𝑀 , the policy is augmented with the match substring
of 𝑎 from 𝑀 to generate a rule in 𝑀’s table. In Figure 11,
adopting the encoding scheme from Figure 9b, the original
match-action table (Figure 2e) is split into two, one matching
on the 𝑠𝑢𝑏𝑡𝑎𝑔1 for the attributes {𝐴, 𝐵, 𝐷, 𝐸, 𝐹,𝐺, 𝐻 }, and the
other matching on the 𝑠𝑢𝑏𝑡𝑎𝑔2 for the attribute {𝐶}.
Initially, we calculate the memory cost as the product

of tag width and the number of match strings (Figure 4),
but this is no longer true. The memory required to store
all attributes’ match strings is now the sum of the width of
every match substring. This drastically cuts the memory cost,
making MEME require even less memory than in Figure 4.
The encoding scheme in Figure 9b requires only 22 bits for
the seven 3-bit and one 1-bit match substrings, lower than
the 32 bits derived at the end of Section 3.2.
Even though other membership encoding schemes can

partition the attribute matrix to adopt the same design in
PISA switches, we argue that MEME is a natural fit for this
design. MEME finds the best partition of the attribute matrix
that lowers the width of every substring greedily. In addition,
it is possible to useMEME to find a submatrix partition which
satisfies specific hardware constraints (e.g., the available
number of tables and table width) by adjusting the cluster
size threshold 𝜆 for each iteration of the algorithm.

5 EVALUATION
We evaluate MEME on memory cost, computation time, and
tag width with two attribute matrices of routing information
basis (RIB) from IXPs. All experiments were run on an Intel
Xeon 4114 2.2Ghz processor with 96GB RAM. Our prototype
has ∼1500 lines in Python and is available on GitHub [15].
The first attribute matrix is converted from the RIB ta-

ble dump of a 691-participant IXP with ∼300K distinct IP
prefixes on November 11, 2019. The second attribute matrix
is constructed from BGP announcements of the PEERING
testbed [18], containing routes from 4 IXPs. Since this pro-
cess basically merges the four matrices, its density is much
higher than the IXP matrix (Table 1).
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Figure 12: Memory cost of IXP

To measure performance with growth of matrix size, we
select subsets of the densest columns from the original matri-
ces and combine them in smaller matrices. Instead of random
sampling, selecting the columns with the most 1’s not only
yields the densest matrices, which are the hardest to com-
press, but also corresponds to real-world applications, where
AS’s tend to define policies for large ISP AS’s rather than
stub AS’s that advertise only one prefix.
Memory Cost in SDN switches.Memory costs of the two
experiments are shown in Figure 12 and 13, showing that
MEME (orange lines) always outperforms PathSets (green
lines). Comparing the two datasets in Figure 14, the memory
usage of PathSets is highly dependent on the density. Specif-
ically, for two matrices of the same width, the denser one
(PEERING) requires on average 5.3× the memory to encode.
In contrast, the memory cost of MEME is almost unaffected
by density. Actually, the PEERING matrix requires slightly
less memory than the IXP matrix because as a union of 4
matrices, it can be broken up by extracting a small number
of bridging attributes. Indeed, only 55 bridging attributes
are extracted from the PEERING matrix compared to 147
from the IXP matrix (Table 1). Consequently, MEME cuts
the memory cost in SDN switches by 26.6% for the full IXP
matrix and 81.1% for the full PEERING matrix.
Memory Cost in PISA switches. The Optimization for
PISA switches brings substantial memory reduction. Our
PISA-based design further cuts MEME’s memory usage by
80.0% on average (red lines in Figure 12, 13). In both datasets,
this leads to a memory cost of only 1.6× the lower bound
(violet lines), 𝑁 log2

𝑁
𝑚
, where 𝑚 is the number of subma-

trices produced by MEME. To quantify the benefits of this
optimization in isolation, we also apply the same design to

Dataset 𝑁 𝑀 𝐷 Brdg. Sibl. Anct.
IXP 691 293,801 0.23% 147 0 11
PEERING 1028 805,865 1.06% 55 2 4

Table 1: Attribute matrix properties

Figure 13: Memory cost of PEERING

Figure 14: SDN-switch memory

PathSets by partitioning the matrix randomly into 𝑚 sub-
matrices and encoding each with PathSets (blue lines). This
also improves PathSets, reaching 2.0× the lower bound for
the IXP dataset and 3.6× the lower bound for the PEERING
dataset.
Computation Time. Throughout our evaluation of MEME,
we use initial stopping points of 2, 3, 4, and 5 for graph sizes
of 200, 300, 400 and 500 (Section 3.4). It affects the memory
cost negligibly (orange and brown lines in Figure 12, 13)
while making the computation time almost flat, reaching
16.6% of PathSets’ for the full IXP matrix and 2.3% for the
full PEERING matrix (Figure 15). It takes MEME longer to
compress the IXP matrix than the PEERING matrix of the
same size since more calls of the minimum vertex cut algo-
rithm are invoked to extract the larger number of bridging
attributes.
Tag Width. Handling the bridging, sibling and ancestor
attributes, MEME generates tags of 62 bits for the IXP ma-
trix and 44 bits for the PEERING matrix (Figure 15). This
tag width is far below the hundreds of bytes that modern
switches can parse. Therefore, even though MEME’s tag
width is ∼2.1× PathSets’, it still permits line-rate processing.
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Figure 15: Time & Tag Width

Practical Implications in SDX. For the full IXP matrix,
MEME with PISA optimization reduces the memory usage
by 87.7%. To visualize this, it requires 10.4 bits to encode one
attribute’s match string(s) on average while PathSets requires
84.5 bits. Assuming that the available memory for match
strings is 6Mb, the typical TCAM size in modern switches,
PathSets allows only ∼74K policies to be defined, which is
107 participants if everyone defines one policy for each peer.
In comparison, MEME with PISA optimization allows ∼607K
policies and supports all the participants. Another practical
benefit of MEME is minimizing policy update churn due to
its optimal number of match strings.

We evaluated the update procedure (Section 3.5) by adding
a random AS to any existing IXP matrix row, and it takes
on average ∼13 ms if such an addition leads to changes in
match strings. On the other hand, simulations on 15 minutes’
updates (∼500,000 BGP messages) of the AMS-IX IXP on Jan.
7, 2020, retrieved from RIPE RIS [19], shows that although
tags change on average 15 times per second, only a single up-
date in the 15 minutes incurs match string changes, echoing
observations from [9] that the vast majority of BGP updates
preserve the matrix’s clustering structure.

6 CONCLUSION
Many network applications rely on membership encoding.
We propose a novel membership encoding algorithm and a
PISA-based matching design. MEME drastically reduces both
memory and computation time on large and real datasets.
Lastly, although this paper focuses on IXP networks as

the application, MEME is potentially useful in other types
of networks as well, For example, MEME could be useful in
virtual networks [4, 8]. In this use case, operator-controlled
virtual switches attach tags that impact forwarding in net-
work core, and MEME is used to reduce the size of routers’
forwarding tables.
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