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Abstract

Traffic management refers to controlling how much traffic traverses each path in a

network. On the Internet today, end hosts run congestion control to adapt sending

rates, routers route traffic on shortest paths based on link weights, and operators

tune link weights to direct traffic away from heavily-loaded links. This dissertation

performs a top-down redesign of traffic management to support diverse application

requirements, leveraging emerging technology trends in network virtualization and

multipath routing.

We begin by analyzing, then redesigning today’s traffic-management system. In

the ’bottom-up’ approach, we study the interaction of congestion control and traffic

engineering using established optimization models. We find congestion control and

traffic-engineering interact in a stable, though not always efficient manner. Efficiency

can be improved by tuning the operator’s traffic-engineering function, but at the cost

of robustness.

In the ’top-down’ approach, we propose a new objective function that captures

the goals of both end users and network operators. Next, using various optimization

decomposition techniques, we generate four distributed algorithms that divide traffic

over multiple paths based on feedback from the network links. These distributed

algorithms are provably stable and optimal, but can converge slowly and are sensi-

tive to tuning parameters. Finally, combining the best features of these distributed

algorithms, we construct TRUMP: TRaffic-management Using Multipath Protocol.

TRUMP converges quickly and contains a single easy to tune parameter. Packet-level

simulations show TRUMP behaves well with realistic topologies, feedback delays, ca-

pacities, and traffic loads.

Since applications today may have different performance objectives, we next re-

design traffic management to handle multiple traffic classes. A natural objective for

an ISP is to maximize aggregate performance objectives across multiple traffic classes.
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Decomposing the ISP’s problem leads to a stable and optimal solution where each

traffic class optimizes according to its own performance objective, with an algorithm

to dynamically allocate bandwidth shares. The distributed protocols can be imple-

mented using DaVinci: Dynamically Adaptive VIrtual Networks for a Customized

Internet. In DaVinci, each virtual network runs traffic-management protocols opti-

mized for a traffic class, and link bandwidth is dynamically allocated between virtual

networks through separate queues.

Overall, we show that using optimization theory as a foundation, simulations as

a building block, and engineering intuition as a guide can be a principled approach

to architecture and protocol design.
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Chapter 1

Prologue

The Internet today provides a best-effort packet-delivery service for many popular

applications including e-mail, web, file sharing, IPTV, online gaming and voice-over-

IP. As the Internet grows in size and complexity, managing how packets traverse

the Internet has become an increasingly important and challenging task. Traffic

management controls how much traffic traverse each path in a network, which directly

impacts the congestion experienced by each data packet, as well as how efficiently

the network resources are utilized. Due to its practical importance and intellectual

breadth, traffic management has been an active area of networking research for many

years.

1.1 Case for Rethinking Traffic Management

Traffic management includes three players: users, routers, and operators. In today’s

Internet, users run congestion control to adapt their sending rates at the edge of the

network depending on network conditions. Inside a single Autonomous System (AS),

routers run shortest-path routing based on link weights. Operators tune link weights

to minimize congested links [30]. Routing, congestion control and traffic engineering

sequentially became part of traffic management as the Internet itself evolved from a
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small research network (ARPAnet) in 1969 to the huge commercial networks of today.

Since the first transmission of packets between two end hosts in 1969, routing

protocols have been used to route packets through the network. In the 1970s, the

ARPAnet attempted to implement a routing protocol that automatically selected the

shortest-delay path (to improve efficiency), but observed oscillatory behavior [63].

The routing can be stabilized, but at the cost of efficiency, thus the design decision

at the time was to keep routers from automatically adapting to traffic shifts. This

historical decision led researchers and practitioners alike to believe it was fundamen-

tally challenging to attain both stability and efficiency. This dissertation, and other

recent research [46, 28], suggests otherwise.

In October 1986, the first congestion collapse was observed when NSFnet’s (re-

search network funded by the National Science Foundation) capacity dropped three

orders of magnitude from 32kbps to 40bps [2]. The congestion collapse occurred be-

cause the Internet has no admission control, so end hosts can send as much traffic as

they like. When packets are lost, the earlier congestion control mechanisms would im-

mediately retransmit packets, without reducing the sending rate, causing even more

packet loss. To avoid congestion collapse, end hosts implemented new congestion

control mechanisms where sending rates are decreased whenever a packet has been

lost. Overall, congestion control allocates network resources fairly amongst greedy

users.

Following commercialization in the 1980s and introduction of privately run Inter-

net Service Providers (ISPs) [3], the Internet is now composed of multiple commercial

entities, each responsible for managing how traffic traverse its network. Further, In-

ternet’s expansion into mass popular use in the 1990s placed an increased strain on

network resources. As bandwidth is expensive, ISP operators started to monitor their

networks for signs of overloaded links and adapt the routing of traffic to alleviate con-

gestion in a process called traffic engineering. Traffic engineering allows operators to
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use existing bandwidth more efficiently, thus reducing costs. In addition, for a given

set of network resources, traffic engineering allows operators to provide better packet

delivery services for their customers.

Internet traffic management has significantly improved since the ARPAnet. Still,

due to the organic evolution of traffic management, there are several shortcoming.

First, operators tune link weights assuming that traffic is static, and end hosts adapt

their sending rates assuming routing is fixed. Second, tuning link weights is an

indirect way to control traffic flow through a network; further, the link-weight setting

problem is computationally challenging, forcing operators to resort to heuristics that

can lead to highly suboptimal solutions. Third, since this offline optimization occurs

at the timescale of hours, it does not adapt to changes in the offered traffic. Finally,

traffic management today is designed to maximize throughput for users, and does

not consider that some applications have different performance objectives, such as

minimizing delay.

These shortcomings prompts us to rethink the traffic-management system as a

whole. A natural objective for an ISP is to maximize aggregate performance across

multiple traffic classes, where each traffic class has a different performance objective.

Our design goals for the overall traffic-management system are:

1. Fair: bandwidth should be fairly allocated between multiple traffic classes.

2. Efficient: bandwidth should be efficiently utilized to maximize aggregate per-

formance objectives.

3. Distributed: in order to adapt on a small timescale, all protocols should

be possible with distributed computation. When possible, message passing

between network elements should be minimized.

4. Robust: all protocols should be robust to traffic shifts and topology changes.
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5. Implementable: all protocols should be implementable using existing tech-

nology.

To accomplish these design goals, we leverage both optimization theory and tech-

nology trends. Section 1.2 discusses how optimization theory can help design dis-

tributed traffic-management protocols that are fair and efficient. In addition, numer-

ical experiments and simulations can test the robustness of the resulting protocols

under realistic network conditions. Section 1.3 reviews current technology trends in

traffic management to determine the deployability of a protocol. Finally, Section 1.4

highlights how each chapter of this dissertation contributes to Internet traffic man-

agement.

1.2 Role of Optimization in Traffic Management

Of the many mathematical tools available, optimization theory is a natural choice for

analyzing and redesigning Internet traffic management. Due to its role in analysis

and design of various components of traffic management, optimization can place new

traffic-management protocols on a strong foundation.

Traffic engineering and congestion control both solve, explicitly or implicitly, op-

timization problems defined for the entire network. Traffic engineering consists of

collecting measurements of the traffic matrix—the observed load between each pair

of entry and exit points—and performing a centralized minimization of a cost function

that considers the resulting utilizations on all links (e.g., [30, 74]). In contrast, TCP

(Transport Control Protocol) congestion control can be viewed as implicitly solving

an optimization problem in a distributed fashion (e.g., [48, 59, 58, 82]), where the

many variants of TCP differ in the shape of user utility as a function of the source

rate. Further, optimization theory is used to analyze proposed traffic-engineering

protocols, e.g., [24], as well as to design distributed congestion control protocols,
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e.g., [90].

Distributed solutions can be derived using optimization decomposition: a standard

optimization technique for decomposing a single optimization problem into multiple

sub-problems. Each subproblem can be solved by an individual network element such

as a router, an end host or a link. In order for the distributed solution to achieve an

overall objective, the network elements coordinate with each other explicitly through

message passing, or implicitly through measuring locally observable quantities such

as link load, delay and packet loss. To ensure convergence, distributed solutions de-

rived from optimization decomposition often contain iterative updates with tunable

parameters. The tunable parameters serve to moderate the rate of adaptation. Op-

timization decomposition has been widely used to derive distributed solutions to a

variety of networking problems, as surveyed in [21].

This dissertation leverages optimization theory in three distinct ways to rethink

the traffic-management system as a whole. First, in chapter 3, we use established

optimization models to analyze today’s interaction between congestion control and

traffic engineering. Second, optimization decomposition is used to design distributed

traffic-management protocols for throughput sensitive traffic in Chapter 4 and re-

source allocation between multiple traffic classes in Chapter 5. Third, optimization

theory is used to dictate the placement of function in Chapter 5.

While optimization theory puts our work on a rigorous foundation, it has limita-

tions, as with any mathematical tool. First, mathematics do not specify the trans-

lation from an algorithm into a packet-level protocol. Second, when simplifying as-

sumptions made in modeling do not hold, the derived algorithms do not naturally

handle them. Third, while distributed algorithms derived using optimization prov-

ably converge to a stable and optimal point, optimization theory only provides loose

bounds on the rate of convergence, and provides little guidance on setting tunable

parameters. Fortunately, properties which can be proven mathematically are just a
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subset of properties which are true. To further understand the capabilities of the sys-

tem, we supplement optimization theory with numerical experiments and packet-level

simulations.

Numerical experiments are useful for sweeping a large parameter space, and can

serve as early indicators of an algorithm’s potential. For example, we can compare

multiple distributed algorithms derived using different decomposition methods [70].

While useful, numerical experiments cannot fully capture realistic network conditions.

So after translating an algorithm into a packet-level protocol, packet-level simulations

can be used to understand the behavior of a distributed protocol under realistic

feedback delays and traffic loads.

1.3 Technology Supporting Traffic Management

Optimizing for performance is not the sole design goal. For an architecture or a pro-

tocol to succeed, an equally important, though sometimes opposing goal is simplicity.

Simplicity can be defined as the ease of implementing a protocol or an architecture

with existing technology, while keeping the overhead low. In this dissertation, current

technology trends are used to guide modeling assumptions, as well as understand the

implementation possibilities for an algorithm derived from optimization.

A key assumption in this dissertation is that routers can flexibly divide traffic

over multiple paths. Most current routing protocols select a single path between

two end hosts in spite of existing path diversity. Today, support for Internet-wide

multipath routing faces two significant deployment barriers. First, multipath routing

could impose significant computational and storage overheads in a network the size

of the Internet. Second, the independent networks that comprise the Internet will not

relinquish control over the flow of traffic without appropriate incentives. Fortunately,

having one or two extra paths is enough for significant gains in security, performance,
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and reliability.

In fact, today’s routers are already capable of establishing multiple paths between

each other using MultiProtocol Label Switching (MPLS) technology, and there are

existing options for traffic engineering using MPLS. This dissertation proposes dis-

tributed multipath traffic-management protocols, which can be implemented using

MPLS. Unlike existing traffic engineering using MPLS, implementing the distributed

multipath protocols in this dissertation also requires changes to the computations

performed by the routers. Router programmability, ability to run customized proto-

cols, is a flexible and extensible way to implement a variety of distributed protocols.

Though not yet a reality, vendors have recently indicated their interest in supporting

programmable routers [4, 5].

Figure 1.1: Two virtual networks are shown. The shaded regions identify the portion
of node and link resources allocated to one virtual network. The remaining resources
are allocated to the second virtual network.

To support multiple traffic classes in parallel, optimization theory indicates the

need for separate resources for each traffic class. One potential implementation is to

run each traffic class on a virtual network. Virtual networks are constructed over

a substrate network by first subdividing each physical node (i.e., router) and each

physical link into multiple virtual nodes and virtual links, as in Figure 1.1. A virtual
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node controls a subset of the underlying node resources (such as CPU and bandwidth).

A virtual link can span several substrate links, taking up a portion of the bandwidth

of each underlying substrate link. Each virtual link has its own queue and possibly

customized forwarding logic. The substrate runs schedulers that arbitrate access to

the shared node and link resources, to give each virtual network the illusion that it

runs on a dedicated physical infrastructure. Today, network virtualization is moving

from fantasy to reality. Major router vendors already support router virtualization

(to run multiple virtual routers in parallel on a single router) [62, 1], and MPLS

technology can be used to establish virtual links.

1.4 Contributions of Thesis

This dissertation provides a holistic view of traffic management, using a mixture of

theoretical and practical tools. To lay the background for the technical chapters,

Chapter 21 surveys multipath routing techniques in existing literature. In particular,

Chapter 2 focuses on techniques which are both scalable and incentive compatible.

The analysis and redesign of today’s traffic management proceeds in two phases.

First, taking a “bottom-up” approach that analyzes and characterizes the interac-

tion between TCP congestion control and conventional traffic-engineering practices

in Chapter 3.2 Then taking a “top-down” approach where we redesign and evaluate

a new, dynamic, distributed algorithm in Chapter 4.3 The two systems differ in four

ways, summarized in Table 1.1.

In the “bottom-up” approach, we find the TE model is stable, but does not max-

imizes aggregate user utility. By tuning the cost function used for traffic engineering,

we prove the joint system can maximize aggregate utility. Such a change is unde-

1Chapter 2 has been published as [39].
2Chapter 3 appeared as [37], and was later published as the first half of [35].
3Some of the ideas in this Chapter 4 has been published as [36] and in the second half of [35]. The

main publication is [40], and an journal version has been submitted to Transactions of Networking.
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TE Model TRUMP
Focus analysis design
Approach bottom-up top-down
Timescale of route adaptation offline online
Computation of routes centralized distributed

Table 1.1: Differences between “TE Model” in chapter 3 and “TRUMP” in 4.

sirable, however, since the system will be fragile to traffic bursts. This is one of the

motivations for redesigning traffic management in the subsequent chapter.

In the “top-down” approach, we propose a new objective function that captures

the goals of both end users and network operators. Next, using various optimization

decomposition techniques, we generate four distributed algorithms that divide traffic

over multiple paths based on feedback from the network links. These distributed

algorithms are provably stable and optimal, but can converge slowly and be sensi-

tive to tuning parameters. Finally, combining the best features of these distributed

algorithms, we construct TRUMP: TRaffic-management Using Multipath Protocol.

TRUMP converges quickly and contains a single easy to tune parameter. Packet-level

simulations show TRUMP behaves well with realistic topologies, feedback delays, ca-

pacities, and traffic loads.

Today’s traffic management is a ’one-size-fits-all’ packet-delivery service, not tai-

lored to suit the needs of any specific application. Since different applications today

may have different performance objectives, we extend our redesign of traffic manage-

ment to handle multiple traffic classes in Chapter 5. Taking an ISP’s perspective,

the objective is to maximize aggregate performance objectives across multiple traffic

classes. Decomposing the ISP’s problem leads to a stable and optimal solution where

each traffic class optimizes for its own performance objective, with an algorithm to

dynamically allocate bandwidth shares.

To tie together the ideas presented in the dissertation, the second half of Chapter 5

presents a novel architecture DaVinci: Dynamically Adaptive Virtual Networks for
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a Customized Internet. In DaVinci, each virtual network runs its own set of traffic-

management protocols optimized for a particular traffic class, and a link coordinator

assigns bandwidth shares dynamically between the virtual networks. In addition, a

traffic shaper on each queue prevents virtual networks from claiming excess bandwidth

on a small timescale. DaVinci has the following properties:

• Stability: The bandwidth shares computed by each link coordinator converge

to a stable value, without requiring information about the bandwidth shares of

other links.

• Efficiency: The multiple virtual networks and the link coordinator collectively

maximize the aggregate performance of all virtual networks.

• Independence: Although bandwidth shares are changing over time, each vir-

tual network can design and run its traffic-management protocols as if it had

dedicated resources.

Finally, Chapter 6 wraps up the dissertation by exploring configuration complex-

ity.
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Chapter 2

Multipath Routing

2.1 Introduction

Researchers and practitioners alike agree multipath routing provides performance

benefits to traffic management. Still, most currently deployed routing protocols select

only a single path for the traffic between each source-destination pair. This chapter

explores techniques that allow a flexible division of traffic over multiple paths. That

is, a source (an end host or edge network) has access to multiple paths through the

Internet, and direct control over which traffic traverses each path. Though sources

have limited knowledge of and control over multiple paths today, flexible multipath

routing is feasible with existing technology.

2.1.1 Motivation for Flexible Multipath Routing

Flexible Internet-wide multipath routing would offer many benefits, including the

following:

• Customizing to application performance requirements: Different applications

have different needs. If multiple paths exist, VoIP and online-gaming traffic

can use a low-delay path, while file-sharing traffic uses a high-throughput path.
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In addition, an application can access more bandwidth by using multiple paths

simultaneously.

• Improving end-to-end reliability: If multiple paths exist, traffic can switch

quickly to an alternate path when a link or router fails. Similarly, if an ad-

versary drops packets along a path, the traffic could be moved to an alternate

path to circumvent the adversary [91]. This is particularly useful if disjoint

paths are available.

• Avoiding congested paths: When multiple paths are available, traffic can move

to an alternate path to circumvent congestion. Despite problems with routing

oscillation in the early ARPANET, recent work has shown how to dynamically

split traffic over multiple paths in a stable fashion [46]. In fact, by just having

two paths and flexible splitting between them, protocols can be easily tuned to

efficiently utilize network resources.�� �� � �� �� �� � �
� 	�

(a) Topology between 4 networks: B and C
(b) Topology inside network C

are ISPs, A and D are enterprise networks

Figure 2.1: Sample inter-network topology, with a close-up on one network.

Past work indicates that the Internet’s network-layer topology has significant un-

derlying path diversity.1 Each network is a collection of routers and links under the

1This chapter focuses on the path diversity at the network layer. There is a large body of research
on path diversity at the physical layer which is important for reliability and security, but the shared
risks at the physical layer are not visible to the IP routing system.
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control of one entity, such as an Internet Service Provider (ISP) that offers con-

nectivity to other networks or a stub network that just provides connectivity to its

own users and services. This chapter explores how to give stub networks greater

end-to-end path diversity. Extra end-to-end paths may arise because a stub network

is connected to multiple ISPs, individual ISPs have intradomain path diversity, or

ISPs connect to each other in multiple locations. In fact, a measurement study of a

large ISP found that almost 90% of Point-of-Presence (PoP) pairs have at least four

link-disjoint paths between them [85]. Another study showed that, although Internet

traffic traverses a single path, 30% to 80% of the time, an alternate path with lower

loss or smaller delay exists [78].

2.1.2 Challenges: Scalability and Incentives

Unfortunately much of the existing path diversity in today’s Internet is never ex-

ploited. The scalability challenges of multipath routing is one of the reasons. Mul-

tipath routing would introduce extra overhead in both the control plane and data

plane of the routers. In the control plane, routers exchange information and compute

the forwarding tables that the data plane then uses to direct incoming packets to

outgoing links. Multipath routing would increase the overhead in both the control

and data planes:

• Control-plane overhead: First, exchanging the extra topology or path infor-

mation required for multipath routing would consume extra bandwidth and

processing resources. Second, storage overhead at each router would grow with

the number of paths. Third, computing multiple paths would require more

computational power.

• Data-plane overhead: Forwarding traffic on different paths requires the data

packets to carry an extra header or label. In addition, forwarding tables need
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extra entries for each destination, thus consuming more memory; in addition,

this data-plane memory is expensive, due to the need to forward packets at high

speed.

The ultimate flexibility would be for sources to see the entire Internet-wide topol-

ogy and utilize any path to each destination. This would create a large scaling

problem, however, since the Internet has more than 25,000 networks and many more

paths. Even if the scalability challenges were surmountable, accessing all paths would

require many (or even all) networks to cooperate, which may be unrealistic. Instead,

it is more likely for ISPs to allow other networks to select from a small set of paths,

under a specific business agreement. Since business models in the Internet today

are bilateral, multipath solutions based on cooperation between pairs of networks

are much more likely to succeed than solutions that require widespread cooperation

between many (sometimes competing) networks. Fortunately, multipath routing solu-

tions that limit the number of additional paths and the coordination between different

networks are aligned with both goals—scalability and business incentives. As such,

this chapter focuses on solutions where stub networks select amongst a small set of

paths provided by a limited number of bilateral agreements, rather than techniques

that require a stub network to compute and signal a complete, end-to-end path.

This survey focuses on multipath routing schemes with low overhead and minimal

cooperation between networks. The sections progress from deployed techniques to

proposed solutions that are easily deployable, to techniques that rely on new business

models. We start by reviewing how Internet routing works today in Section 2.2, with

an eye towards the limitations of the existing routing system. End-to-end multipath

routing relies on two key capabilities: discovering extra end-to-end paths and directing

packets over them. Section 2.3 covers a range of solutions for flexible forwarding such

as tunneling and tagging, for directing packets to different paths, while Sections 2.4

and 2.5 describe control-plane extensions that enable networks to learn additional
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paths. In particular, Section 2.4 discusses techniques for a single network to achieve

multipath routing, without requiring cooperation from other networks. The impact

of a single network on end-to-end path performance is limited, however, and more

end-to-end paths would be available if networks cooperated. Section 2.5 discusses

techniques which only require cooperation between a pair of networks. Finally, we

conclude in Section 2.6.

2.2 Internet Routing Today

In this section, we introduce the key routing protocols used in today’s Internet.

Routers use the Border Gateway Protocol (BGP) [73] to exchange reachability in-

formation with neighboring networks. BGP is a path-vector protocol, where routing

decisions are made based on local policies. Inside a network, routers communicate

using an Interior Gateway Protocol (IGP) [19, 68]. Most ISPs run link-state proto-

cols that perform shortest-path routing based on configurable link weights. The link

weights in IGP and the policies in BGP are configured by human operators to satisfy

business objectives.

2.2.1 Interdomain: Path-Vector Protocol and Multihoming

Figure 2.1a represents a network-level topology, where each cloud is a network and

each link represents a physical connection, as well as the existence of a business

relationship between two networks. In a path-vector protocol, the entire routing path

is exchanged between neighbors. Edge routers in each network learn multiple paths

to reach a particular destination and store all of them in a routing table. From the list

of paths, a router then applies a set of policies to select a single active route. A router

optionally advertises the active route to each neighboring network, depending on the

business relationship. Using a path-vector protocol allows BGP to support flexible
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local policies that give each network control over its incoming and outgoing traffic.

For example, a stub network, like network D in Figure 2.1a, would not advertise

routes learned from B to C (and vice versa) because D does not wish to carry transit

traffic between the two neighbors.

Today’s BGP has two limitations as a single-path protocol. First, since only

the active path is advertised, customer networks are prevented from seeing alternate

paths, including ones they might prefer. Second, by using only the active path, a

network does not have fine-grained control, and can only balance traffic over multiple

paths at the IP address block (i.e., prefix) level. Extending BGP to a multipath

protocol, however, requires alignment of economic incentives between networks. The

economic incentives are likely to grow stronger in the future as the demand for per-

formance and robustness increase, and customers are willing to pay for value-added

Internet services. Today, two networks usually have a customer-provider relationship

or a peering relationship. In a peering relationship, two networks could mutually pro-

vide additional paths to each other without any economic exchange, similar to how

they carry traffic on peering links for free today. In a customer-provider relationship,

the provider could offer additional paths to its customers as a value-added service.

One such example is multihoming [12], where a stub network pays to connect to

more than one ISP. The use of multihoming has seen a dramatic increase in recent

years for two main reasons. First, as more enterprises rely heavily on the Internet

for their business transactions, having a second provider is important to survive a

failure of the other provider. Second, multihoming can be used to drive down the

cost of Internet access. For example, the multihomed network can use a cheap ISP

for most traffic and an expensive but better ISP for performance-sensitive traffic [75].

In Figure 2.1a, network D is multihomed to networks B and C. Despite having two

upstream routes, network D can only balance load between the two at the prefix level,

and only forwards traffic for each destination on a single path. So, while multi-homing
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provides additional paths to stub networks, fine-grained control remains elusive.

2.2.2 Intra-domain: Link-State Protocol

Unlike the interdomain case, each network has full control of its internal network. In

addition, a network typically has just tens or hundreds of routers, much fewer than

the 25,000 networks in the Internet. Inside a single network, each router is configured

with a static integer weight on each of its outgoing links, as shown in Figure 2.1b. The

routers flood the link weights throughout the network and compute shortest paths as

the sum of the weights using Dijkstra’s algorithm. Each router uses this information

to construct a table that drives the forwarding of each IP packet to the next hop

in its path to the destination. Link-state protocols offer several advantages. First,

routing is based only on a single link metric, i.e. link weights. Second, to reduce

message-passing overhead, routers only disseminate information when the topology

changes. Finally, by flooding the link-weight information, each router has a complete

view of the topology and associated link weights.

On the other hand, even though each router can see the whole topology, the

existing path diversity is under-exploited [85]. Even when alternative paths have

been computed, packets towards a destination are often forwarded on a single path.

Equal-cost multipath is a commonly deployed technique where the routers keep track

of all shortest paths, and then evenly split amongst them. In Figure 2.1b, we see that

router i has two shortest paths to reach router j. In today’s IGPs, the traffic would be

divided evenly between the two paths. Even this limited version of multipath routing

is useful for fast reaction to failures. In fact, some operators tune the link weights to

create equal-cost multipaths [41].

Multiple shortest paths enable the operator to balance load and react quickly to

failures, but does not enable the operator customize paths for different applications.

An existing option for operators to customize paths inside their own network is the
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Constrained Shortest Path First (CSPF) protocol [42], an extension of the shortest-

path protocol. The path computed using CSPF is a shortest path fulfilling a set of

constraints. A constraint could be minimum bandwidth required per link, end-to-end

delay or maximum number of links traversed. CSPF can be useful for a range of

applications, e.g., picking a low-delay path for a VoIP call, but cannot pick paths

based on dynamic constraints such as packet loss.

2.3 Towards Flexible Forwarding

The most prevalent forwarding mechanism in the Internet today is destination-based

hop-by-hop forwarding. Each router forwards a packet to an outgoing link based on

the destination address from the IP packet header and the corresponding longest-

prefix match entry in the forwarding table. For example, in Figure 2.1b, a router

will forward a packet destined for j, independent of where the packet came from.

Destination-based hop-by-hop forwarding leads to small forwarding tables, but cannot

realize flexible forwarding policies. For example, in Figure 2.1a, if network A wanted

to reach D via (B, C), but B wanted to reach D directly, then A is forced to use path

(A, B, D). Even when the forwarding table contains multiple next hops for the same

destination, common practice would divide the traffic evenly amongst the multiple

paths.

In this section, we describe alternative schemes which forward traffic over multiple

paths. This is useful for customizing paths for different applications. In order to

decide which path should carry a packet, an edge router or end host need to first

classify a packet, and then map the packet to a corresponding path:

• Packet classification: Packets can be classified based on the requirements of

the application, [61]. For example, the application may want low delay, high

throughput, or a secure path. The application could be defined by a prefix, a
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destination, or a TCP flow (source and destination addresses and port numbers).

Packets within the same flow are normally classified in the same way. One option

is to mark the Type of Service (ToS) bits in the IP header, and later forward

the packet using the same bits.

• Mapping packets to paths: The edge routers can measure (or infer) path proper-

ties, to determine which path is best-suited to each class of traffic. By examining

the packet header, a packet can be mapped to an appropriate path. Designing

a measurement infrastructure to monitor path performance is challenging. One

reason is that measurements of path performance can be inherently inaccurate;

for example, round-trip time estimation is a classic challenge. In addition, the

inaccuracies can be even greater in a competitive environment where other net-

works may treat probing packets differently than data packets to make paths

look more attractive than they are.

Both steps incur extra data-plane overhead. Though the overhead of marking packets

and processing the marked packets is minimal, the measurement overhead associated

with monitoring path performance can be significant, particularly if the measurements

are fine-grained (e.g., the destination prefix level).

If multiple paths are associated with a particular class of traffic, the router can

send a fraction of the packets on each path, to balance load and circumvent congestion.

In Section 2.3.1, we survey existing techniques for forwarding packets on alternate

paths. In Section 2.3.2, we discuss the pros and cons of splitting traffic at different

granularities. We focus on existing techniques (round-robin, hashing, and flow-cache),

but also describe flowlet-cache, a promising technique that is yet to be deployed.
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2.3.1 Forwarding on Alternate Paths

Tunneling is a widely available alternative to destination-based hop-by-hop forward-

ing that offers much more flexibility. At a high level, tunneling establishes a logical

link between two routers (or hosts). Forwarding packets over a tunnel usually involves

“pushing” a header (or label) at the tunnel ingress and “popping” the header (or la-

bel) at the tunnel egress, in a process called encapsulation. For example, in Figure

2.2, a packet going from B to F could be encapsulated to ensure it travels through

E. At B, an extra header would be “pushed” on the packet to indicate E is the

destination. Once the packet reaches router E, the extra header would be “popped”

from the packet, then E would forward the packet to F hop-by-hop. Encapsula-

tion can be implemented through IP-in-IP tunnels or MultiProtocol Label Switching

(MPLS) [77]. MPLS is a label-based forwarding mechanism that encapsulates packets

using labels. In either case, encapsulation requires packets to carry an extra label

or an extra IP header. In the case of MPLS, each router also stores the label-based

forwarding table, although a label-based look-up is simpler than matching the longest

prefix of the destination address.

tunnelLogical view:
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Dest: F

data
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Figure 2.2: Illustration of how a tunnel works.

The path between the tunnel ingress to tunnel egress can depend on the under-
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lying routing protocol, or the entire path can be specified explicitly. Encapsulation

alone is often sufficient for most application needs such as directing a packet to a par-

ticular egress point or through a particular network. When the path between tunnel

endpoints only depends on the underlying protocol, the path adapts automatically

when the topology changes. For example, in Figure 2.2, B could forward the packet

towards E one hop at a time. This implies if the link from C to D fails, the encap-

sulated packets would transparently switch to another path. Still, by only specifying

the endpoints of the tunnel, it is difficult to satisfy certain applications needs, e.g.,

an end-to-end bandwidth requirement. So for those specialized applications, explicit

routing is a useful alternative.

Explicit routing specifies every router (or network) along the path. The routers (or

networks) along the path can be specified directly in the packet header or indirectly

through a label in the packet header. One possibility is to implement explicit routing

by specifying the whole router-level path with IP options. In Figure 2.2, if the path

sequence (A, B, C, D, E, F ) is an explicit path for certain packets traveling from A

to F , then A would know to forward to router B based on the IP options in the

packet header. An alternative is to implement explicit routing with MPLS as a

combination of Constrained Shortest Path First (CSPF) and Resource Reservation

Protocol (RSVP). CSPF selects the path using a variety of metrics, while RSVP is the

signaling protocol used to set-up the path within a single network. RSVP establishes

a hop-by-hop chain of labels to represent the path and it reserves bandwidth along

the path by signaling in advance. At source end of the path, a label would be pushed

onto the packet based on information from the packet header such as source address,

destination address, and port numbers. Each intermediate router would do a label

look-up to find the outgoing label and outgoing link. Compared to tunneling, explicit

routing does impose more data-plane overhead (to swap the labels at each hop),

though the overhead is manageable when the number of explicitly-routed paths is
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limited.

2.3.2 Flexible Splitting Amongst Multiple Paths

The network management system may wish to balance traffic between multiple paths

to achieve certain traffic engineering objectives. For example, sending 40% of traffic on

one path and 60% on another could lead to less congestion in the network. To achieve

a splitting percentage determined by the network management system, traffic can be

switched onto different paths using four major techniques: round-robin, hashing, flow

cache, and flowlet cache [79]. Each technique strikes a different trade-off between

overhead, splitting percentage accuracy, and the likelihood of packet reordering.

A weighted round-robin will switch traffic at the granularity of packets. Since

packets are small in size, round-robin scheduling can achieve very accurate splitting

percentages on a small timescale. Round-robin scheduling also adds very little extra

overhead on today’s forwarding functions. The downside is that since different paths

between the same source-destination pair often have different delays, some packets

which belong to the same TCP flow could arrive out-of-order. This is problematic

as TCP considers out-of-order packet delivery as a sign of network congestion, and

consequently, the TCP sender would slow down the transfer. If the paths have very

similar delay, then weighted round-robin is a good choice due to its low overhead and

accurate splitting percentages.

Hashing involves first dividing the hash space into weighted partitions corre-

sponding to the outbound paths. Then packets are hashed based on their header

information and forwarded on the corresponding path. A flow is defined by the fol-

lowing attributes in the packet header: source IP address, destination IP address,

transport protocol, source port, and destination port. Hashing ensures in-order de-

livery of most packets since a flow is likely to be mapped to a specific path for its

entire duration. On the other hand, since flows vary drastically in their sizes and
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rates, it is difficult to realize accurate splitting percentages. Finally, if splitting per-

centages change or a path fails, a flow is likely to be hashed onto a different path,

possibly causing a few out-of-order packets during the transition. A variant of hash-

ing (consistent hashing) can minimize the fraction of flows that must change paths

when the splitting ratio changes.

The best way to avoid out-of-order packets is to implement a flow cache. A flow

cache is a forwarding table that keeps track which path each active flow traverses.

A flow cache ensures packets belonging to the same flow always follow the same

path. Another advantage of flow caching over hashing is that when new flows arrive,

they can be placed on any path, which leads to better control of dynamic splitting

percentages, although the splitting percentages achieved are less accurate than in

round-robin scheduling. The major drawback is that a high-speed link could easily

carry tens of thousands concurrent flows [79], leading the flow cache to consume a

significant amount of additional memory in the router.

It is possible to reduce data-plane overhead and improve splitting ratios by divid-

ing traffic at the granularity of packet-bursts, using a flowlet cache [79]. If the time

between two successive packets is larger than the maximum delay difference between

the multiple paths, the second packet can be safely forwarded on any available path

without the risk of packet reordering. A flowlet cache is typically much smaller than

a flow cache, since there are significantly fewer active packet bursts than active flows

[79]. In addition, flowlet switching always achieves within a few percent of the desired

splitting percentage, without reordering any packets. Overall, flowlet cache would be

the best choice for most applications, although it is not yet implemented in routers

today.
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2.4 Multipath Routing by a Single Network

In this section, we present incrementally deployable techniques which can be adopted

by a single network. Each ISP can exploit its internal path diversity, and a multi-

homed stub network can split traffic over multiple end-to-end paths.

2.4.1 Intradomain: Non-shortest Paths within an ISP

Each network can select its own IGP, allowing it to change the protocol without

requiring cooperation from others. In link-state protocols, since link weights and

topology information are already flooded to all routers, multipath routing does not

incur extra dissemination overhead. One natural way to extend a link-state protocol

is to compute the K-shortest paths rather than just the shortest path. This is cum-

bersome for several reasons. To start with, computing the K-shortest paths is more

computationally intensive (i.e., O(N log N + KN) for a network with N routers [25])

than computing a single shortest path (i.e., O(N log N)). The forwarding-table size

would also grow with the increase in number of paths per destination. Perhaps the

biggest overhead increase is in the data plane, where K tunnels need to be established

between each source-destination pair. If each router does destination-based hop-by-

hop forwarding, then there is no guarantee packets would travel on the K-shortest

paths from source to destination. This is significantly more cumbersome than the

current hop-by-hop forwarding.

Another approach is to run multiple instances of the link-state routing protocol

[67]. Instead of having a single weight associated with each link, each link has a

vector of weights. Each instance of the link-state protocol can just compute the

shortest path and create a forwarding table for the corresponding topology. The

vector of weights does not lead to the K shortest paths, but rather a shortest path

for each of K sets of link weights. Each set of link weights can be tuned independently
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to customize the paths to different applications; for example, one set of weights could

be tuned for high throughput and another for low delay. The link weights could even

be specialized to handle different failure scenarios. In the control plane, if K routing

instances run simultaneously, the control-plane overhead would be exactly K times

as much as shortest-path routing. In the data plane, there are two ways to forward

packets on the multiple topologies. The simpler (and more restrictive) way is for each

packet to belong to a single topology [53]. Further benefits are possible when packets

can switch between topologies based on network conditions [67].

An alternate approach to multipath routing is to forward traffic on all paths that

make forward progress toward the destination [94, 92], based on a single set of link

weights. Each router can make local forwarding decisions based on the cost of the

shortest path through each of its neighbors [92]. Forwarding packets only to routers

that have a shorter path to the destination guarantees that the path is loop-free [94].

To encourage the use of shorter paths, diminishing proportions of the traffic would be

directed on the longer paths. For example, in Figure 2.1b, i has two outgoing links

along shorter paths to j. Since these paths have costs 8 and 9, less traffic would be

placed on the path with cost 9 [92]. Under this scheme, the path-computation costs

are still O(N log N), since each router will just run Dijkstra’s shortest-path algo-

rithm. Compared to shortest-path routing, forwarding along the “downward” paths

requires more entries in the forwarding tables. In addition, there will be slightly more

data-plane overhead in order to implement the splitting percentages, as explained in

Section 2.3.2. Still, each router can make local forwarding decisions without the use

of tunnels.
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2.4.2 Interdomain: Fine-grained Splitting by a Multihomed

Stub

So far, we have described how to exploit path diversity inside a single network. Next,

we will examine how to exploit interdomain path diversity. Many routers learn mul-

tiple interdomain paths and could conceivably split traffic over them by installing

multiple next-hops in the forwarding table. This is not done in practice due to the

extra control-plane overhead. For ISP networks, edge routers would need to an-

nounce multiple paths to neighboring networks, and the neighboring networks would

now need to store multiple paths. In addition, tunneling would be needed to direct

packets on any non-default path, as explained in Section 2.3.

In a stub network, however, edge routers do not need to propagate any of the

learnt paths. In addition, packet classification is simpler for a stub network since the

data rates tend to be lower and all packets originate from a single domain. There-

fore, stub networks are natural places to deploy flexible splitting. Since applications

are run at the edge, the stub network also has direct knowledge of the application

requirements. Flexible splitting enables a network to place different classes of traffic

onto different paths and balance load across multiple paths. Balancing load between

multiple classes allows for efficient use of network resources and can avoid potential

routing oscillations. For example, if all traffic is forwarded on the least-delay path,

route oscillations can occur [50]. Luckily, flexible path selection adds very little ex-

tra overhead on the data plane for a stub network, since choosing an outgoing link

determines the entire path a packet will follow and no tunneling is required.

2.5 Cross-network Cooperation for Multiple Paths

When multiple networks cooperate, even more paths are available than when a net-

work acts alone. In addition to scalability challenges, new business models must be
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put in place to enable inter-network cooperation, e.g., charging for providing addi-

tional paths. In this section, we focus on proposed schemes which access additional

paths with only limited cooperation between networks. Sources can encapsulate pack-

ets to direct the traffic through a deflection point—an end host or edge router that lies

on an alternate path. This only requires a bilateral agreement between two parties.

Sources can also deflect packets indirectly via tagging, where a few opaque bits in

the packet header are used to indicate dissatisfaction with the current path. Tagging

requires more networks to cooperate since routers need to be modified to forward

packets based on the tags.

2.5.1 Encapsulation: Forwarding through a Deflection Point

Encapsulation can be used to explicitly force traffic onto an alternate path with

better performance properties. A packet would be encapsulated to first arrive at the

deflection point, then follow that deflection point’s default path to the destination [91,

93]. Deflections can occur at the application layer or the network layer.

The easiest way to access another path is by deflecting through another end host,

which does not require cooperation from or coordination between ISPs. First, an

overlay or logical topology can be established between end hosts using tunnels [7].

Then each end host can measure the end-to-end performance properties of paths to a

destination via other end hosts. If a path with better performance is found, packets

can be deflected through another end host as seen in Figure 2.3. In addition to ease of

deployment, application-layer deflections are attractive because they avoid advertise-

ment of additional paths. On the other hand, as the overlay grows in size, probing all

paths through other end hosts imposes a significant amount of measurement overhead

and does not scale beyond tens of end hosts [7]. In addition, sending traffic through

other end hosts consumes edge link bandwidth and potentially incurs extra costs for

the edge network.
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Figure 2.3: The default path, shown in solid line is through network B. Deflection
through network C is possible either with an overlay ( dot-dash line) or through an
ISP (dashed line).

A more scalable and efficient approach is for ISPs to provide alternative paths [91,

93]. As seen in Figure 2.3, the deflection point can be an edge router inside a network,

rather than an end host. While this approach requires more cooperation from (and

between) ISPs, it is still incrementally deployable. To ensure scalability, a network

would only request an alternative path (perhaps with certain properties) from an-

other network if it is unhappy with its default path. For example in Figure 2.3, the

source could request an alternative path from its provider network A for reaching the

destination D, network A can then choose to forward traffic on the alternative path

(A, C, D), possibly for a price. Encapsulation would be used to deflect the packets

through network C. The amount of control-plane overhead is directly proportional

to the portion of networks unhappy with their default paths.
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2.5.2 Tagging: Requesting an Alternate Path

An alternative to encapsulation is for end-hosts to simply tag their packets to request

an alternate path [67, 94], without knowing the details of the path. A router forwards

an incoming packet on the default path or an alternate path, based on the associated

tag. Alternative paths inside an ISP can be constructed by one of the methods

described in Section 2.4.1.

Tagging without path visibility is effective when an end-to-end path is undesirable

due to one particular segment of the path. For example, the path could contain a

low capacity link, a high delay link, or a point of congestion. In these cases, routing

around the problem link or router does not require direct knowledge of the route. By

trying out a few tag values, the source network is likely to find a better path.

Tagging is quite scalable in the control plane since intermediate networks do not

need to disseminate extra information or store network-level paths. An intermediate

network can merely exploit the path diversity inside its own domain. There is little

extra data-plane overhead, since the tag can use some rarely used bits in the existing

IP header [94]. The extra data-plane overhead only comes from an ISP processing

the received tag, and directing the packet onto an alternate path based on its tag

value. Although tagging imposes less overhead than forwarding through a deflection

point, it may require business relationships between the stub network and multiple

ISPs. The incentives for honoring the tags are the most obvious in the context of

hosts served by a single ISP.

2.6 Conclusions

The ability to forward traffic on multiple paths would be useful for customizing paths

for different applications, improving reliability, and balancing load. Yet Internet-

wide multipath routing remains elusive, due to scalability and economic challenges.
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This chapter surveys a variety of deployed and incrementally deployable techniques

which achieve flexible multipath routing. Routers already have data-plane support for

forwarding on alternate paths through tunneling: encapsulation and explicit routing,

though such techniques should be used in moderation for scalability reasons. We

believe flowlet-cache is the most accurate and scalable technique for fine-grained traffic

division. To access more end-to-end paths, stub networks can continue the trend of

multihoming and extend it to perform fine-grained load balancing. Inside an ISP,

multi-topology routing and forwarding on “downward” paths are both light-weight

and easily deployable methods to leverage internal path diversity. Finally, we argue

that deflecting packets at the network layer is a promising way to access more end-to-

end paths with limited cooperation between networks, though new business models

are needed to enable inter-network cooperation.

Though outside the scope of this dissertation, we believe that more research could

be done to better quantify the trade-off between overhead and performance for the

more heavy-weight solutions, including end-to-end signaling techniques [10, 23] not

surveyed in this chapter. As technology advances, routers may become more capable

of handling the overhead, making a wider range of solutions viable in practice. In

addition, the economic incentives for providing value-added services will likely grow in

the future and hopefully motivate the creation of new inter-network business models

that enable Internet-wide multipath routing.
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Chapter 3

Can Congestion Control and

Traffic Engineering Be at Odds?

3.1 Introduction

In the Internet today, end hosts running the Transmission Control Protocol (TCP)

adapt their sending rates in response to network congestion. Separately, network op-

erators monitor their networks for signs of overloaded links and adapt the routing of

traffic to alleviate congestion, in a process known as traffic engineering. TCP conges-

tion control assumes that the network paths do not change, and traffic engineering

assumes that the offered traffic does not change. Due to the layered network architec-

ture, congestion control and traffic engineering operate independently, though their

individual decisions are inevitably coupled. This chapter investigates whether the

joint system is stable and optimal.

Traffic engineering and congestion control both solve, explicitly or implicitly, op-

timization problems defined for the entire network. Traffic engineering consists of

collecting measurements of the traffic matrix—the observed load between each pair

of edge routers—and performing a centralized minimization of a cost function that
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considers the resulting utilizations on all links (e.g., [29, 74]). In contrast, TCP

congestion control can be viewed as implicitly solving an optimization problem in a

distributed fashion (e.g., [48, 59, 58, 82]), where the many variants of TCP differ in

the shape of user utility as a function of the source rate.

Previous analysis of congestion control and traffic engineering used congestion

price as link weights (e.g., [89, 38]) rather than modeling the current traffic engineering

practices. In this chapter, we use the established optimization models (e.g., [29, 74, 48,

59, 58, 82]) to study the interaction between traffic engineering and congestion control,

and examine the following key questions through both analysis and simulation:

• Stability: Do the joint dynamics of congestion control and traffic engineering

converge to an equilibrium?

• Optimality: If the joint system does converge, does the equilibrium maximize

the aggregate user utility, over both the routing parameters and source rates?

• Better design: Can we modify the current system to guarantee stability and

optimality?

In our joint congestion control and traffic engineering (CC-TE) model, TCP con-

gestion control converges under a fixed routing configuration, before any routing

changes are made. From our analysis and simulation experiments, we obtain the

following insights:

• Confirming the intuition of network operators: Our simulation results

show the CC-TE model is stable for a variety of topologies.

• Tension between performance and robustness: A modified CC-TE model

is provably stability and optimality (Theorem 1), but at the cost of robustness.

The rest of the chapter is organized as follows. Section 3.2 introduces our joint

congestion control and traffic engineering model. We simulate the CC-TE model
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in Section 3.3 and analyze a modified version in Section 3.4. Finally, Section 3.5

concludes the chapter.

3.2 Network Model

We focus on traffic engineering and congestion control in a single Autonomous System,

where the operator has full view of the offered traffic load and a multipath routing

model where traffic between source-destination pairs can be split arbitrarily across

multiple paths. This is not the OSPF [68] or IS-IS [19] protocols used today, but

can be implemented using MPLS [77] as explained in Chapter 2. The CC-TE Model

considers average TCP traffic profiles.

Our notation follows the work in [89, 38]: in general, boldface are used to denote

vectors and small letters are used to denote its components, e.g., x with xi as its ith

component; capital letters to denote matrices, e.g., R, or constants, e.g., L and N .

Superscript is used to denote vectors, matrices, or constants pertaining to source i,

e.g., wi and Hi. Also t is used to denote the iteration number, e.g., x(t), in iterative

algorithms. Table 3.1 presents a summary of the notation used.

Symbol Meaning
xi Rate of source i.
Rli Fraction of traffic on link l for source i.
wi

j The fraction of source i on its jth path.

cl Capacity of link l.
Ui(xi) Utility function for source i.
α Parameterizing the TCP utility function.
Uα(x) Utility function modeling α-fairness.
β Step size of the TCP algorithm.
ul Utilization of link l.
f(ul) Cost function.

Table 3.1: Summary of notation used in Chapter 3
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3.2.1 Network Topology and Routing

A network is modeled as a set of L bidirectional links with finite capacities c = (cl, l =

1, . . . , L), shared by a set of N source-destination pairs, indexed by i; we often refer

to a source-destination pair simply as “source i.” 1

We consider a traffic engineering model for best-effort packet-switched networks

that closely reflects the operational practices in Internet Service Provider (ISP) back-

bones [29, 74]. We represent the current routing through a matrix Rli that captures

the fraction of i’s flow that traverses each link l; as such, we do not explicitly model the

assignment of link weights, which has been explored in depth in previous work [29, 74].

The operators measure the offered load between each ingress-egress pair xi. Based

on the known network topology and the traffic matrix, the operators try to find the

best routing matrix R to minimize network congestion2.

For a given routing configuration, the utilization of link l is ul =
∑

i Rlixi/cl. To

penalize routing configurations that congest the links, candidate routing solutions

are evaluated based on a cost function f(ul) that is strictly convex and increasing.

In a recent comparison study [11], the cost function we consider is found to be the

best network-wide traffic-engineering objective for a range of traffic conditions and

performance metrics. The following optimization problem over R, for fixed x and c,

captures the traffic-engineering practices:

minimize
∑

l f(
∑

i Rlixi/cl). (3.1)

This optimization problem avoids solutions that operate near the capacity of the

links and shifts flows to less utilized links where they can increase more freely. In

1Index i here refers to a TCP session between two physical nodes in a topology where there could
be multiple sessions between two physical nodes.

2By focusing on the operational practices in IP networks, our model differs substantially from
earlier work on quality-of-service routing in connection-oriented networks (e.g. [20, 52] and refer-
ences therein), where arriving connections are routed dynamically and each link performs admission
control.
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practice, the network operators often use a piecewise-linear f for faster computation

time [29, 74].

3.2.2 TCP Congestion Control

While the various TCP congestion-control algorithms were originally designed based

on engineering heuristics, recent work, such as those surveyed in [58, 82], has shown

through reverse engineering that they implicitly solve a convex optimization problem

in a distributed fashion. Consider a network where each source i has a utility func-

tion Ui(xi) as a function of its total transmission rate xi. The basic network utility

maximization problem over source rate vector x, for a given fixed routing matrix R,

is:

maximize
∑

i Ui(xi)

subject to Rx � c.
(3.2)

The goal is to maximize aggregate user utility by varying x (but not R), subject to the

linear flow constraint that link loads cannot exceed capacity. TCP congestion-control

algorithms implicitly solve (3.2), with different TCP variants maximizing different

(increasing and concave) utility functions.

It is well-known that the utility functions can be picked based on several different

grounds. First, a utility function can capture a user’s degree of satisfaction with

a particular throughput. Second, a utility function can be viewed as a measure of

the elasticity of the traffic. Third, the aggregate utility captures the efficiency of

the system in allocating bandwidth to the traffic. Fourth, some utility functions can

lead to fair resource allocation. A particular family of widely-used utility functions

is parameterized by α ≥ 0 [65]:

Uα(x) =











log x, α = 1

(1 − α)−1x1−α, α 6= 1.
(3.3)
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Maximizing these α-fair utilities over linear flow constraints leads to rate-allocation

vectors that satisfy the definitions of α-fairness in the economics literature.

The notion of α-fairness from [65] led to many TCP variants with different α-

fairness interpretations. A utility function with α = 2 was linked to TCP Reno.

Through reverse engineering, TCP Vegas can be interpreted as α = 1 [59], as can

FAST [90]. XCP [47] is shown to be maximizing for Uα as α → ∞ in the single-link

case. One exception to this family of α-fair utility functions is TCP Tahoe, which has

been reverse engineered to be maximizing the utility function U(x) = arctan x [58].

3.2.3 Traffic Engineering Model of Joint System


� ����� �� ������� ���� �� ����� � ��
��� �� �!" #$"%"& ���

Figure 3.1: A detailed view of the TE Model of joint congestion control and routing
system.

Our TE Model of the joint congestion control and routing system has two

steps in a feedback loop, as shown in Figure 3.1. At time t+1, the congestion-control

step computes new source rates based on the routing configuration from time t:

x(t + 1) = argmaxx

∑

i

Ui(xi), subject to R(t)x � c. (3.4)

Then the routing step computes new paths based on the source rates:

R(t + 1) = argminR

∑

l

f

(

∑

i

Rlixi(t + 1)/cl

)

. (3.5)
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The iterations of (3.4,3.5) repeat over time, with congestion control adapting the

source rates to the new routes, and traffic engineering adapting the routes to the

measured traffic.

3.3 Simulation of The TE Model
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(a) N nodes, N sources (b) N nodes, 1 destination

Figure 3.2: Two N -node ring topologies with different traffic patterns.
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(a) Access-Core topology (b) Abilene topology

Figure 3.3: Two realistic topologies.

We first illustrate some interesting numerical observations before presenting theo-

rems on stability and optimality in the next section. Our numerical experiments use

a combination of the Matlab and MOSEK [66] environments.
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3.3.1 Simulation Set-up

We evaluate two variants of TCP congestion control: α = 2 (e.g., TCP Reno) and

α = 1 (e.g., TCP Vegas). For the cost-function f(ul), we use an exponential func-

tion, which is the continuous version of the function used in various studies of traffic

engineering [29, 74].

Our initial experiments evaluate a simple N -node ring topology, where we can

easily scale the size of the network. To evaluate the influence of the traffic patterns,

we consider two scenarios. In the first scenario, each node is a source sending to its

clockwise neighbor; each source has two possible paths: a direct one-hop path and

an indirect (N − 1)-hop path. In the second scenario, node 1 is the destination and

the remaining N − 1 nodes are sources; each source xi has an i-hop path and an

(N − i)-hop path. Our experiments vary the number of nodes N and the capacity of

link 1 (between nodes 1 and N).

To study realistic topologies with greater path diversity, we also experiment with

the two networks in Figure 3.3. On the left is a tree-mesh topology, which is represen-

tative of a common network structure. In the middle is a full mesh representing the

core of the network with rich connectivity. On the edge are three access tree subnet-

works. Of the twelve possible source-destination pairs, 1−3, 1−5, 2−4, 2−6, 3−5,

and 4 − 6 are chosen, and for each source-destination pair, the three minimum-hop

paths are chosen as possible paths. On the right is the Abilene backbone network [6].

Of the many possible source-destination pairs, we choose 1 − 6, 3 − 9, 7 − 11, and

1 − 11. For each source-destination pair, we choose the four minimum-hop paths as

possible paths. For the access-core and Abilene topologies, the simulations assume

the link capacities follow a truncated (so as to avoid negative values) Gaussian dis-

tribution, with an average of 100 and a standard deviation that varies from 0 to 50.

We simulate twenty random configurations for each value of the standard deviation.

In all experiments, we start with an initial routing configuration that splits traffic
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evenly among the paths for each source-destination pair.

3.3.2 Suboptimality Gap Simulations
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(a) α = 1 (e.g., TCP Vegas) (b) α = 2 (e.g., TCP Reno)

Figure 3.4: Aggregate utility gap for the N -node, N -source ring.
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Figure 3.5: Aggregate utility gap for the N -node, 1-destination ring.

Given the structure of (3.2), it is natural to wonder if the interaction of congestion

control and traffic engineering maximizes aggregate user utility. Previous work [57, 89]
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Figure 3.6: Aggregate utility gap for two realistic topologies (with α = 1). A -x-
marker denotes an individual test point and a -o- marker denotes the average.

has proposed the following joint optimization problem:

maximize
∑

i Ui(xi)

subject to Rx � c, x � 0
(3.6)

where both R and x are variables.

Our experiments quantify the gap in aggregate utility between that at the equi-

librium of the joint system and the optimal aggregate utility of (3.6). Such a gap

between the achieved utility and the maximum utility signifies a loss in user satisfac-

tion, and often implies also a loss in fairness or efficiency. Table 3.2 summarizes the

key observations from the numerical experiments.

Figure(s) Key Message
3.4a versus 3.5a Traffic pattern can have a significant effect.
3.4a versus 3.4b TCP variants give the same trend.
3.5a versus 3.5b
All figures Relatively small suboptimality gap.
All figures Homogeneity minimizes suboptimality gap.

Table 3.2: Summary of results on suboptimality gap.

In Figure 3.4, we vary the capacity of link 1 and plot the gap in aggregate utility
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for ring topologies with three, five, and ten nodes, where each node communicates

with its clockwise neighbor. The two graphs plot results for α = 1 (e.g., TCP Vegas)

and α = 2 (e.g., TCP Reno), respectively. The graphs show trends that are very

similar across a range of topology sizes, suggesting that the number of sources alone

does not have a significant influence on the suboptimality gap. Similarly, the two

TCP variants lead to very similar results.

The vertical line in the middle of the two graphs highlights the configuration

where all links have unit capacity. The suboptimality gap is zero for a wide range of

capacity configurations. When one link has much lower capacity than the other links,

a suboptimality gap emerges. This occurs because the traffic-engineering step in the

joint system stops making use of this low-capacity link, since the penalty for placing

even a small amount of load on this link exceeds the cost of forcing the traffic on a

longer path that places load on multiple links. When link 1 has an extremely low

capacity, even the optimal solution cannot place much traffic on this link, leading to

a small suboptimality gap.

The graphs in Figure 3.5 confirm that variations in link capacities affect the sub-

optimality gap. These graphs evaluate the N -node ring with one destination node,

for two values of N and two TCP variants. In contrast to Figure 3.4, having either

a smaller or a larger capacity on link 1 leads to a suboptimality gap. This is not

surprising because link 1 is a bottleneck link for this traffic pattern. If the link has a

small capacity, the traffic-engineering step does not make use of the link, making the

left part of these curves closely resemble the plots in Figure 3.4. If the link has a high

capacity, the traffic-engineering step tries to direct more sources through the link;

however, this is not the best solution when the capacity of link 1 is just slightly larger

than the other links because traffic traverses longer paths, placing load on a larger

number of links. Comparing Figures 3.4 and 3.5 illustrates the important role the

traffic pattern plays in determining whether the joint system successfully maximizes
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aggregate utility.

The graphs in Figure 3.6 illustrate the effects of a variation in link capacities on

realistic topologies. We show how the suboptimality gap depends on the standard

deviation of the link capacities, which are all varied according to a truncated Gaussian

distribution. We plot separate points for each of the 500 experiments for each value

of standard deviation, as well as a curve that highlights the mean values. The trend

that a more homogeneous capacity distribution (smaller standard deviation) leads to

a smaller suboptimality gap exists, but it is much more subdued than in the ring

topology and it is dominated by the variance. This suggests that, with realistic

topologies, the relationship between link capacity and utility gap is more complex.

One possible explanation is that the bottleneck link on each path is what matters,

and, while that is easily correlated with varying a single link in the ring topology, the

effect is coupled in a more complex topology. In addition, for the Abilene topology,

a suboptimality gap exists even for a homogenous capacity distribution. While the

results for the ring topology suggest that network operators could favor network

configurations that enable (near) optimal solutions, the results for the access-core and

Abilene networks suggest this may be quite challenging for more realistic topologies.

3.4 Analysis of the TE Model

Our simulations showed that the TE Model (3.4,3.5) is stable and close to optimal

for a range of topologies. We speculate, but have not yet shown it is provably stable

for general topologies. In this section, we show how relaxing the constraint for (3.4)

can lead to a provably stable and optimal joint system. By imposing conditions on

f , the joint system can be brought arbitrarily close to optimality with respect to

(3.6). This comes at the expense of robustness, however, and is not recommended for

implementation.

42



Theorem 3.4.1. If (3.4) is replaced by the following unconstrained problem:

x(t + 1) = argmaxx�0

∑

i

Ui(xi) −
∑

l

f

(

∑

i

Rli(t)xi/cl

)

, (3.7)

then the TE Model converges to the optimum of

argmax(x,R)

∑

i

Ui(xi) −
∑

l

f

(

∑

i

Rli(t)xi/cl

)

, (3.8)

for sufficiently concave utilities (i.e., sufficiently elastic traffic): U
′′

i (xi) ≤ −
U ′

i(xi)

xi
. In

particular, it converges for α-fair utilities when α ≥ 1 and for arctan utility of TCP

Tahoe.

Proof. First we show that the joint traffic engineering and modified congestion control

system (3.5,3.7) is equivalent to a successive, alternating optimization of (3.8) over

R and then x. Then we provide a sufficient condition to guarantee convergence to

optimality. Finally the condition is examined for α-fair utilities and arctan utility.

Consider the unconstrained minimization of

g(x,R) = −
∑

i

Ui(xi) +
∑

l

f

(

∑

i

Rlixi/cl

)

, (3.9)

which is equivalent to (3.8). The two steps in the alternating optimization method of

Gauss-Seidel algorithm [16] are as follows:

x(t + 1) = argminx�0 −
∑

i

Ui(xi) +
∑

l

f(
∑

i

Rli(t)xi/cl)

R(t + 1) = argminRg(x(t + 1),R(t))

= argminR

∑

l

f(
∑

i

Rli(t)xi(t + 1)/cl).

The minimization of g(x,R) over R is clearly equivalent to (3.1).

So far we have constructed an optimization problem (minimization of g(x,R))
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whose Gauss-Seidel solution algorithm is equivalent to the system model of joint traf-

fic engineering and modified congestion control. Now we will examine the conditions

for convergence of this Gauss-Seidel Algorithm. From [16], the Gauss-Seidel Algo-

rithm will converge to the minimizer of g if g is bounded from below, differentiable,

marginally strictly convex in x and R, and jointly convex in x and R.

The first three conditions are already satisfied through the constraints placed in

the system model definition. Condition 1 is satisfied since x � 0, R � 0 by definition.

Condition 2 is satisfied since U and f are differentiable, so is g. The third condition

is satisfied since U is strictly concave in x, and f is marginally strictly convex in x

and R. The last condition is not satisfied in general since the function f(
∑

l Rlixi/cl)

is not jointly convex in R and x.

In order to satisfy the condition on joint convexity in x and R, consider a log

change of variable. Let x̃i = log xi, R̃li = log Rli, then Rlixi = exp(R̃li + x̃i). With the

change of variable, it can be readily verified that f is still jointly convex in x̃i and R̃li,

but the utility function may no longer be concave in x̃. If the utility function is concave

in x̃, then g would be strictly convex in x̃ since f is strictly convex in x̃. Denote the

new utility function (after the log change of variable) as Wi(x̃i). A sufficient condition

for convergence of the Gauss-Seidel algorithm is for W to be concave in x̃. A simple

derivation shows that such a condition reduces to the following simple bound on the

curvature of the utility function: U
′′

i (xi) ≤ −U ′
i(xi)/xi.

Now we specialize to the α-fairness model for U which covers TCP Reno (currently

deployed) and several proposed variants. In this case, Wα(x̃) can be written as follows:

Wα(x̃) =











x̃, α = 1

(1 − α)−1 exp(x)1−α, α 6= 1.
(3.10)

Examining W
′′

(x̃) shows that W (x̃) is concave for α ≥ 1.

Finally, TCP Tahoe is examined. Recall that U(x) = arctan(x) for TCP Tahoe,
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and W
′′

(x̃) = arctan(x). It follows that W
′′

(x̃) = (exp(x̃)− exp(3x̃))/(1 + exp(2x̃))2

and W is concave. Therefore, convergence of (3.8) is guaranteed for TCP algorithms

with α ≥ 1 and TCP Tahoe.

A more general version of Theorem 1 states that convergence of the TE Model is

guaranteed under the following two conditions.

Condition 1: g is marginally strictly convex in x̃. Denote f(exp x̃) as F (x̃), then

algebraic manipulation shows this is equivalent to:

W ′′ < γ
∑

l

F ′′(x̃).

It is known that F ′′(x̃) > 0, and in the proof of Theorem 1, the simple lower bound

of 0 is used. If W ′′ > 0, γ is sufficiently large and f is sufficiently convex, g(x)R) is

still marginally strictly convex in x̃.

Condition 2: g is jointly convex in x̃ and R̃. This condition can be written

mathematically as

vT ▽2 g(exp(x̃), exp(R̃))v ≥ 0, ∀v.

Algebraic manipulation shows:

vT ▽2 g(exp(x̃), exp(R̃))v =

−vT
1 ▽2 W (x̃)v1 + γvT ▽2 f(exp(x̃), exp(R̃))v,

(3.11)

where v1 is the first N elements of v. Since f is jointly convex in x̃ and R̃, we do

require

vT
1 ▽2 W (x̃)v1 ≤ γvT ▽2 f(exp(x̃), exp(R̃))v.

This can be rewritten as

vT
1 ▽2 W (x̃)v1 ≤ γvT

1 ▽2 f(exp(x̃), exp(R̃))v1.
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Again, for sufficiently large γ and/or sufficiently convex f , g(x)R) is jointly convex

in x̃ and R̃ even if U(exp(x̃)) itself is not concave in x̃.

Theorem 3.4.2. The cost function f can be chosen so that (3.8) is arbitrarily close

to (3.6). In this asymptote, the TE model (3.4, 3.5) converges to the global optimum

(R∗,x∗) of (3.6).

Proof. From Theorem 1, the joint system (3.5,3.7) converges to (3.8). If (3.8) is

arbitrarily close to (3.6), and (3.4) to (3.7) then (3.4, 3.5) will converge to the solution

of (3.6).

By the penalty-function method (see [14] for details), there exists a penalty func-

tion P and a constant γ so that (3.6) is equivalent to (3.12):

maximize(x,R)

∑

i

Ui(xi) − γ
∑

l

P

(

∑

i

Rlixi/cl

)

, (3.12)

and (3.4) is equivalent to (3.7) provided that γ is sufficiently large, and P is convex,

increasing, and zero for Rx � c (positive otherwise). Essentially, in (3.12) and (3.7),

−γ
∑

l P (
∑

i Rlixi/cl) in the objective function replaces the constraint Rx � c when

γ is sufficiently large. If the operators choose a cost function f which is zero until

ul = 1, and sufficiently large afterwards, then it can match γP exactly. Such a

function can be approximated as closely as desired, e.g. by choosing sufficiently large

n in f(ul) = nun
l where n > 0 is a parameter that modulates the approximation

accuracy with respect to the original TCP model.

Simulations confirm that the joint model converges arbitrarily closely to the opti-

mum of (3.6) when the TE penalty function in (3.5) is replaced by f(ul) = nun
l and n

is allowed to go to infinity. For example, Figure 3.7 plots the utility gap as a function

of n for the Abilene topology with a standard deviation of 50. For larger values of

n, the utility gap grows arbitrarily small, in contrast to the large gap seen earlier in

Figure 3.6(b). Although larger values of n narrow the optimality gap, we find that
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Figure 3.7: Using the function f(ul) = nun
l in the TE model (3.5) and alternating

iterations with TCP (3.4) results in a arbitrarily small gap in utility as n → ∞.

the joint system requires more iterations for convergence, leading to a sometimes

substantial increase in convergence time. For simpler, more uniform topologies, we

find that even small values of n suffice to close the optimality gap. These plots are

omitted due to space limitations.

While modifying the traffic-engineering penalty function f will allow us to be

arbitrarily close to the optimum of (3.6), it will also drive the network increasingly

close to a solution with multiple links operating near capacity. This is a fragile point

of operation for the network since a small burst in traffic would cause the traffic

on certain links to exceed capacity. Once the traffic exceeds capacity, congestion is

inevitable and so is the subsequent packet loss and delay increase. Here we have a

trade-off between stability and optimality (with respect to (3.6)) on the one hand and

robustness (with respect to short, high-volume traffic bursts) on the other.

3.5 Conclusion

In this chapter, we have studied the interaction of congestion control and traffic

engineering from a network operator’s perspective. Congestion control and traffic
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engineering both try to make efficient use of link bandwidth to improve network

performance for end users. In today’s IP networks, however, these two mechanisms

operate independently, though they are coupled because they both adapt to network

congestion. In this chapter, we find through simulation that congestion control and

traffic engineering work effectively together to reach a stable equilibrium, with a small

optimality gap. A modification to the operator’s cost function leads to a provably

stable and optimal system, but at the cost of robustness. This highlights the potential

tension between performance and robustness, which the next chapter addresses.
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Chapter 4

TRUMP: TRaffic-management

Using Multipath Protocol

4.1 Introduction

Today’s traffic management has three players: users, routers, and operators. Users

run congestion control to adapt their sending rates at the edge of the network. Inside

a single Autonomous System (AS), routers run shortest-path routing based on link

weights. Operators monitor the network for congestion, and tune link weights to

direct traffic away from congested links [30]. The current division of labor between

the three players slowly evolved over time without any conscious design, resulting

in a few shortcomings. First, the previous chapter observed today’s traffic engineer-

ing and congestion control interact stably, but not always efficiently. Modifying the

traffic engineering objective can lead to maximizing aggregate utility, but at the cost

of robustness. Second, tuning link weights is an indirect way to control traffic flow

through a network; further, the link-weight setting problem is NP-hard, forcing oper-

ators to resort to heuristics that can lead to highly suboptimal solutions [30]. Finally,

since this offline optimization occurs at the timescale of hours, it does not adapt to
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changes in the offered traffic, causing an inefficient use of the underlying resources.

These shortcomings motivate the need to rethink the division of labor between these

three players.

In this chapter, we rethink Internet traffic management using optimization decom-

position as a foundation. Optimization decomposition is the process of decomposing

a single optimization problem into many sub-problems. The resulting distributed

algorithm is provably stable and optimal, but two challenges remain. First, any

mathematical modeling makes simplifying assumptions. Second, while multiple de-

composition methods exist, it is unclear how to compare them. Our contributions are

two-fold:

• Protocol Design using Decompositions: We demonstrate how to create

a practical network protocol by deriving multiple distributed algorithms, com-

paring their practical properties, and synthesizing their best features into a

practical protocol.

• Redesigned Traffic Management: We introduce TRUMP: an easy to man-

age distributed protocol, that performs well for diverse topologies, capacities,

feedback delays and traffic loads.

Figure 4.1: Three paths between source node 9 and destination node 6.
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In our top-down redesign of traffic management, we start by selecting an intuitive

and practical objective function in Section 4.2 that balances the objectives of users

and operators. Using optimization decomposition techniques discussed in [70], Sec-

tion 4.3 derives four specific distributed solutions where sources adapt sending rates

on multiple paths to a destination. This is illustrated in Figure 4.1, source node 9

computes its sending rate on each of its three paths to destination node 6, based on

feedback regarding the path congestion conditions. An advantage of our distributed

algorithms is that they adapt at a single timescale (on the order of RTTs), and is able

to respond quickly to traffic shifts. The four algorithms differ in the computation of

path rates and congestion feedback. Optimization theory guarantees that these algo-

rithms converge to a stable and optimal point, while simulations allow us to compare

rate of convergence and robustness to tunable parameters in Section 4.4. Although

these distributed algorithms work well, they can be sensitive to tunable parameters.

We combine the best features of each of these algorithms to construct a simple

TRaffic-management Using Multipath Protocol (TRUMP) in Section 4.5. TRUMP

converges faster than the four algorithms presented in Section 4.3, and has the fewest

tunable parameters. Although TRUMP is not derived from a particular optimization

decomposition, we are able to prove its convergence when the network is tuned to

have low packet loss. As with any mathematical modeling, the TRUMP algorithm

leaves many protocol details unspecified such as how to handle heterogenous feedback

delays. We use engineering intuition to address these details in Section 4.5.

In Section 4.6, the TRUMP protocol is evaluated using packet-level simulations

with a wide range of topologies and traffic loads. We use a simple heuristic to set

TRUMPs parameter such that it converges smoothly for a wide range of topologies,

capacities, feedback delays, and traffic loads. When many flows share the same bot-

tleneck link, there is a small amount of packet loss during convergence, but TRUMP

still converges within a few RTTs. In contrast, the other distributed solutions be-
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come unstable when such links exist. We also study the impact of number of paths

on the performance of TRUMP. First, TRUMP is more likely to split traffic over mul-

tiple paths when there are fewer concurrent source-destination pairs. Second, while

TRUMP can achieve higher throughput if all sources can access two paths rather

than a single path, though access to more than two paths does not provide significant

gains. This chapter discusses related work in Section 4.7 and concludes in Section 4.8.

4.2 Choosing An Objective Function

In this section, we use optimization as a modeling language to formalize traffic man-

agement. Every optimization problem consists of an objective function, a constraint

set and variables. For traffic management, by having both routing and source rate as

optimization variables, we have the most flexibility in resource allocation, such an idea

was first proposed in Section 6.5.1. of [15] (we clarify the similarities and difference

in 4.2.2). In our problem, the constraint is that link load does not exceed capacity.

The objective function remains to be designed. We first propose an objective that

maximizes aggregate user utility, but simulations reveal the solution converges slowly

and is sensitive to stepsize. In addition, maximizing user utility leads to bottlenecks

in the network, making the network fragile to traffic bursts. To address these prac-

tical challenges, we design an objective which balances maximizing user utility with

minimizing operator’s cost function. Table 4.1 presents a summary of the notation

used.

4.2.1 Maximizing Aggregate Utility: DUMP

One natural objective for the traffic management system is to maximize aggregate

user utility, where utility Ui(xi) is a measure of “happiness” of source-destination

pair i (as introduced in the previous chapter) as a function of the total transmission
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Symbol Meaning
xi Rate of source i.
Ui(xi) Utility function for source i.
α Parameterizing the TCP utility function.
Uα(x) Utility function modeling α-fairness.
Rli Fraction of traffic on link l for source i.
cl Capacity of link l.
ul Utilization of link l.
f(ul) Cost function.
w Weight between U and f
H Network topology as the set of all paths.
zi

j Rate of source i on its jth path.

βz Step size for update of path rate.
yl Effective capacity on link l.
sl Feedback price on link l.
βs Step size for update of feedback price.
pl Consistency price on link l.
βp Step size for update of consistency price.
γ Pacing parameter for TRUMP protocol.

Table 4.1: Summary of notation used in Chapter 4

rate xi. U is a concave, non-negative, increasing and twice-differentiable function,

e.g. log(xi), that can also represent the elasticity of the traffic or determine fairness

of resource allocation. This is the objective implicitly achieved by TCP congestion

control today [48, 58]. We represent the routing by matrix Rli that captures the

fraction of source i’s flow that traverses link l, and we let cl denote the capacity of

link l. As proposed in [57, 89], the resulting optimization problem is:

maximize
∑

i Ui(xi)

subject to Rx � c, x � 0
(4.1)

where both R and x are variables.

A distributed solution to (4.1) can be derived through dual decomposition if (4.1)

is a convex optimization problem. In its current form, (4.1) has a non-convex con-

straint set, which can be transformed into a convex set if the routing is allowed to be
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multipath. To capture multipath routing, we introduce zi
j to represent the sending

rate of source i on its jth path. We also represent available paths by a matrix H

where

H i
lj =











1, if path j of source i uses link l

0, otherwise.

H does not necessarily present all possible paths in the physical topology, but a subset

of paths chosen by operators or the routing protocol. Then we can rewrite (4.1) as:

maximize
∑

i Ui(
∑

j zi
j)

subject to
∑

i

∑

j H i
ljz

i
j ≤ cl, ∀l.

(4.2)

In this form, (4.2) is a convex optimization problem. A distributed solution to (4.2)

can be derived using dual decomposition [57], where a dual variable is introduced to

relax the capacity constraint. The resulting Dual-based Utility Maximizing Protocol

(DUMP) is summarized in Figure 4.2. Similar to the reverse engineering of the

congestion-control protocol in [58], s can be interpreted as link prices.

Feedback price update at link l:

sl(t + 1) =

[

sl(t) − βs(t)

(

cl(t) −
∑

i

∑

j

H i
ljz

i
j(t)

)]+

,

where βs is the feedback price stepsize.

Path rate update at source i, path j:

zi
j(t + 1) = maximizezi

j

(

Ui

(

∑

j

zi
j

)

− zi
j

∑

l

sl(t)H
i
lj

)

Figure 4.2: The DUMP algorithm.

Here t represents the iteration number and each iteration is at the same timescale
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as the longest Round Trip Time (RTT) of the network. At each link, sl is updated

based on the difference between the link load
∑

i

∑

j H i
ljz

i
j and the link capacity. As

indicated by []+, sl is only positive when the link load exceeds the link capacity, i.e.

when the network is congested. Each source updates zi
j based on explicit feedback

from the links, in the form of feedback prices sl. In particular, each source maximizes

its own utility, while balancing the price of using path j. The path price is the product

of the source rate with the price per load for path j (computed by summing sl over

the links in the path). DUMP is similar to the TCP dual algorithm in [58] except

the local maximization is conducted over a vector zi, as opposed to only a scalar xi,

to capture the multipath nature of DUMP.

From optimization theory, certain choices of stepsizes, such as βs(t) = β/t where

β > 0 is a constant, guarantee that DUMP will converge to the joint optimum as

t → ∞ [14]. However, such diminishing stepsize is difficult to implement in practice

as it requires synchronization of time across the nodes, and particularly difficult to

do with dynamic arrivals of new flows. Previous work indicates that even under

the simplest of topologies and assuming greedy flows, DUMP has poor convergence

behavior [57]; our own Matlab experiments [34] confirm this. When the stepsize is too

large, DUMP will constantly overshoot or undershoot, never reaching the ideal utility.

On the other hand, when the stepsize is too small, DUMP converges very slowly.

Even at the optimal stepsize, DUMP only converges after about 100 iterations. This

highlights that choosing an appropriate stepsize for DUMP is challenging.

4.2.2 New Objective for Traffic Management

Let us reflect for a moment on why DUMP has poor convergence behavior. If we

look at the form for feedback price, we see it is only nonzero when links are over-

loaded, therefore, the feedback from the links is not fine-grained. This corresponds

to the congestion control mechanism of TCP Reno where sources only reduce their
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sending rates once packets are already lost, causing the sawtooth behavior. In fact,

the feedback price in DUMP has the same formulation as the congestion price in [58].

In addition, utility is only based on throughput, while having low delay is also im-

portant to traffic management. In addition, the authors of [35] suggest the network

is driven to a solution where some links are operating near capacity when only utility

is maximized. This is an undesirable operating point which is very fragile to traffic

bursts. This indicates that maximizing the aggregate utility enhances performance

of the individual users, but leaves the network as a whole fragile.

To avoid the poor convergence properties of DUMP, we look for an alternative

problem formulation which also takes into account the operator’s objective. Today,

traffic engineering solves (3.1) as introduced in the previous chapter. f is a con-

vex, non-decreasing, and twice-differentiable function that gives increasingly heavier

penalty as link load increases, e.g. e
∑

i Rlixi/cl. The intuition behind choosing this f is

two-fold. First, f can be selected to model M/M/1 queuing delay. Second, network

operators want to penalize solutions with many links at or near capacity and do not

care too much whether a link is 20% loaded or 40% loaded [30]. If we solve (3.1) with

both x and R as variables, then the solution would end up with zero throughput,

which is also undesirable.

A better traffic management objective could be to combine performance metrics

(users’ objective) with network robustness (operator’s objective), leading to the fol-

lowing formulation as a joint optimization over (x,R):

maximize
∑

i Ui(xi) − w
∑

l f(
∑

i Rlixi/cl)

subject to Rx � c, x � 0.
(4.3)

This objective favors a solution that strikes a trade-off between high aggregate util-

ity and a low overall network congestion, to satisfy the need for performance and

robustness. Similar problem formulations were proposed in [35, 33], though without
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w. Here w is a parameter which adjusts the balance between the utility function and

the cost function. When w is small, (4.3) is very close to (4.1) since the utility term

dominates. When w is large, the solution is more conservative and avoids high link

utilization. Today, operators perform traffic engineering by adjusting link weights

depending on the instantaneous traffic load. In our case, they can adjust a single

parameter w.

Aside from performance, fairness is another important consideration. From a

theoretical perspective, the solution to (4.3) is α-fair as w → 0, where α-fairness is

defined in [65]. While this does not hold for general values of w, our experimental

results in Section 4.6.6 are encouraging.

Before generating distributed solutions in Section 4.3, we first transform (4.3) to

a convex optimization problem:

maximize
∑

i Ui(
∑

j zi
j) − w

∑

l f(yl/cl)

subject to y � c,

yl =
∑

i

∑

j H i
ljz

i
j , ∀l.

(4.4)

Note that to decouple the objective which contains U (a per-source function) and f

(a per-link function), we introduce an extra variable yl to provide feedback before

link load exceeds the actual capacity.

Our formulation (4.3) bears several similarities and differences to the classic joint

optimal flow control and multipath routing presented in Section 6.5.1. of [15]. In

both cases, there are two functions in the objective: a convex per link cost function,

and a concave per source utility function. In (4.3), the cost function is a function of

link utilization, where as [15] considers a function of link load. In (4.3), we consider

the family of α-fair utility functions [65], whereas [15] has −(a/x)b, where a and b are

constants. In [15], rates are upper bounded by a target rate for a source-destination

pair, there is no upper bound in (4.3). The formulation in both cases are general
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enough to be equivalent under certain conditions. The key difference lies in how the

problem is solved. In [15], they analyze optimality conditions, and the existence of

flow control depends heavily the upper bound for the throughput. Basically, the rate

is equal to the desired rate until it exceeds the capacity of the system, in which case

congestion control kicks in. In the next section, we derive distributed solutions to

(4.3) using optimization decomposition.

4.3 Multiple Decompositions

In this section, we describe the distributed algorithms generated from optimization

decompositions of (4.3) (the decomposition techniques are surveyed in [70, 48]). All

four resulting algorithms update the path rates based on feedback prices from links.

There are a number of other similarities between the four algorithms. First, the op-

erations performed by links including measuring the link load present only a small

overhead. Second, all four algorithms incur the same small message passing overhead:

only the sum of the link prices on the end-to-end path needs to be communicated.

Third, while computations can involve solving a local optimization problem and tak-

ing derivatives, U and f are twice differentiable, and therefore closed-form solutions

exist and they are just simple function evaluations. Finally, the computational com-

plexity of all four algorithms is constant per link and linear per source. The main

difference, then, is the number of tunable parameters of each algorithm, which varies

from one to three. Optimization decomposition leads us to three constructs that are

generally applicable: effective capacity, consistency price and direct path-rate update.

4.3.1 Effective Capacity

The first three algorithms (partial-dual, primal-dual, and full-dual) prevent link loads

from reaching link capacity by providing feedback based on effective capacity rather
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than actual capacity. In the resulting algorithms, the sources update the path rates

based on feedback price just as in Figure 4.2. The feedback price is similar to that in

Figure 4.2, except it is based on effective capacity yl:

sl(t + 1) = sl(t) − βs

(

yl(t) −
∑

i

∑

j

H i
ljz

i
j(t)

)

. (4.5)

As in Section 4.2.1, we consider constant stepsize for practical reasons, thus we remove

the dependence on t from all stepsizes.

Local Optimization: Partial-Dual

The derivation process for the partial-dual algorithm is identical to Section 4.2.1

except with effective capacity y as an additional primal variable. The constraint

y � c is enforced, resulting in the following equation for updating effective capacity:

yl(t + 1) = minimize(yl≤cl)wf(yl/cl) − sl(t)yl. (4.6)

In (4.6), yl is updated by solving a local optimization using information from

the feedback price and the cost function f . An economic interpretation is that the

effective capacity balances the cost of using a link (represented by f) and revenue from

traffic transmission (represented by the product of feedback price with the effective

capacity). There is an explicit solution to (4.6). Note that the effect of the cost

function is proportional to w.

Subgradient Update: Primal-Dual

The primal-dual decomposition first decomposes (4.4) into two subproblems, one

responsible for each primal variable. The master problem solves for y assuming a

given x∗, while the subproblem solves for x assuming a fixed y. The master problem

is as follows:
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maximize
∑

i Ui(x
∗) − w

∑

l f(yl/cl)

subject to y � c,
(4.7)

where x∗ is a solution to the following subproblem:

maximize
∑

i Ui(xi)

subject to Rx � y.
(4.8)

Note that (4.8) is identical to (4.2) except the constraint is on y rather than c.

The solution to the subproblem is then identical to that presented in Figure 4.2 except

for the feedback price update which uses the effective capacity y rather than actual

capacity c.

The master problem can be solved through an iterative update of effective capacity

:

yl(t + k) = min(cl, yl(t) + βy(sl(t) − wf ′(yl(t)))), (4.9)

where βy is the effective capacity stepsize. Taking a closer look at (4.9), the mini-

mization ensures effective capacity stays below the actual capacity. The parameter k

is an integer greater than 1 since (4.7) is updated less frequently than (4.8). The sub-

gradient update itself consists of balancing the price the link can charge (sl), and the

cost that link must pay (f ′
l (yl)). In a nutshell, the primal-dual decomposition is iden-

tical to the partial-dual decomposition except that the effective capacity is updated

iteratively through (4.9) rather than by solving a local minimization problem.

4.3.2 Consistency Price: Full Dual

The full-dual decomposition is quite similar to the partial-dual decomposition in

Section 4.3.1, but a second dual variable p is introduced to relax the constraint y � c.

This dual variable can be interpreted as consistency price as it ensures consistency

between the effective capacity and the capacity constraint at the equilibrium point. As
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with the feedback price, the consistency price is updated over time using a subgradient

method:

pl(t + 1) = [pl(t) − βp(cl − yl(t))]
+,

where βp is the stepsize for consistency price. Consistency price only comes into play

when the capacity constraint is violated, therefore, it is mapped to a non-negative

value. The effective capacity update is based on both link prices:

yl(t + 1) = minimizeyl
wf(yl/cl) − (sl(t) + pl(t))yl.

The path rate update and feedback price update are identical to that of the previous

two algorithms. The full-dual algorithm closely resembles an algorithm presented

in [35], though our objective contains w as a weighing factor. Appendix 2 of [35] also

shows a complete derivation of the full-dual algorithm.

4.3.3 Direct Path Rate Update: Primal

In all the previous algorithms, auxiliary dual variables were introduced to relax the

constraints. In this primal decomposition, we find a direct solution by introducing a

penalty function, as in the appendix of [49]. Let the penalty function gl(
∑

i

∑

j H i
ljz

i
j)

replace the capacity constraint Hz � c. The penalty function is a continuous, increas-

ing, differentiable and convex function that is sufficiently steep such that link loads

will not overshoot capacity. If it is also sufficiently close to zero for values less than

capacity, it will not affect the optimal point [16]. If we add g and the cost function

f to get a penalty-cost function Pl(
∑

i

∑

j H i
ljz

i
j), then (4.4) can be transformed into

the following:

maximize
∑

i

Ui(
∑

j

zi
j) − w

∑

l

Pl(
∑

i

∑

j

H i
ljz

i
j). (4.10)
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The derivative of (4.10) is:

dzi

dt
= βz

∂Ui

∂zi
j

(xi(t)) − w
∑

l

P ′
l (
∑

i

∑

j

H i
ljz

i
j(t)), (4.11)

where βz is the stepsize for path rate. Converting (4.11) into a subgradient update

form and separating link information from source information, we obtain the algo-

rithm in Figure 4.3.

Path rate update:

zi
j(t + 1) = zi

j(t) + βzz
i
j(t)(

∂Ui

∂zi
j

(xi(t)) −
∑

l

H i
ljsl(t))

Feedback price update:

sl(t + 1) = wP ′
l (
∑

i

∑

j

H i
ljz

i
j(t))

Figure 4.3: The Primal algorithm.

The path rates are iteratively updated based on the difference between the rate of

change of the utility function and the associated path feedback price. The feedback

price here directly represents how quickly the penalty function is changing at a given

link load. The primal algorithm in Figure 4.3 differs significantly from the first three

decompositions. First, it uses direct subgradient update on the path rates. Second,

it does not use the concept of effective capacity.

4.4 Convergence Properties

In this section, we study convergence properties of the four algorithms, and make

key observations which will guide our design of a new protocol in Section 4.5. First,

we find that there is a trade-off between the speed of convergence and the achievable
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aggregate utility. Second, we find algorithms which use local minimizations instead of

iterative updates converge faster. Third, we find consistency price can aid convergence

for small w.

4.4.1 Set-up of MATLAB Experiments

Due to the multitude of tuning parameters, finding the optimal values requires fine-

grained sweeping of the parameter space. Thus we use MATLAB simulations along

with simple topologies and simple traffic patterns to identify the key properties that

improve convergence. For all algorithms, we update the source and link variables

at each iteration based on link load from the previous iteration. For the utility

function U , we use a logarithmic function commonly associated with proportional

fairness and TCP Reno today [65]. For the cost-function f , we use an exponential

function, which is the continuous version of the function used in various studies of

traffic engineering [30].

We study three realistic topologies as shown in Figures 3.3 (introduced in previ-

ous chapter) and 4.4. Figure 3.3a is a tree-mesh topology, which is representative

of a common access-core network structure. Figure 3.3b is the Abilene backbone

network [6]. Finally, Figure 4.4 represents a multihoming topology where many mul-

tihomed stubs are all trying to reach the same destination through three ISPs. We

select six source-destination pairs for access core and four pairs for Abilene. For each

of these communicating pairs, three minimum-hop paths are available for access-core

and four minimum-hop paths are available for Abilene. The simulations assume the

link capacities follow a truncated (to avoid negative values) Gaussian distribution,

with an average of 100 and a standard deviation of 10. For this set of experiments,

we define convergence as reaching 99.9% of the optimal aggregate utility of (4.3). We

found the convergence rates to be independent of initial rate assignments. We omit

extra graphs when the same trends are observed across algorithms, topologies and
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Figure 4.4: Topology capturing 20 stub networks connected to 3 ISPs. All networks
are connected to ISP A, networks 1 through 10 are connected to ISP B and networks
1, 2, 3, 11, 12, 13 are connected to ISP C. The links connecting the ISPs to the
destination have feedback delay from 30ms to 80ms.

values of w, more detailed results can be found in [34].

4.4.2 Weighing User Utility and Operator Cost
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(a) w = 1 (b) w = 1/6 (c) w = 1/36

Figure 4.5: Plots of partial-dual algorithm showing dependence of convergence time
on stepsize. ’x’ represent the actual data points and ’o’ represent the average value.
Access-core topology was used.

In this subsection, we study the trade-off between aggregate utility and convergence
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time. In Figure 4.5, we plot the number of iterations before convergence against

stepsize βs for three values of w for the partial-dual algorithm. For each stepsize, each

point corresponds to a set of capacity values, and the average number of iterations

before convergence is highlighted in a solid line. Comparing across Figure 4.5 from

left to right, we see that as w decreases, the convergence time at the optimal stepsize

increases and the range of stepsizes with a good convergence time shrinks.

In Figure 4.6, we plot the aggregate utility achieved by solving (4.3) as a percent-

age of maximal aggregate utility achieved by solving (4.1), for a range of w values.

From the graph, we observe that there is a knee region for all three topologies. For

the Abilene topology, this knee region is w = [1/6, 1/10]; for the access-core topology,

this knee region is w = [1/4, 1/6]; for the multihoming topology, the knee region is

w = [5/4, 3/2]. For w values smaller than the knee region, the algorithm achieves near

maximal aggregate utility, since the cost function f is weighed sufficiently lightly to

not change achieved aggregate utility. For w values larger than the knee region, the

aggregate utility achieved decreases, as the cost function f becomes a significant part

of the objective. The location of the knee region depends on whether bottleneck links

are shared by many source-destination pairs, which is dependent on the topology,

associated capacities, and the source-destination pairs chosen.

In this chapter, we define a flow to be the aggregate connections between a source-

destination pair. In the multihoming topology, the three links connecting the ISPs to

the destination are shared by many flows. If all links have equal capacities, then those

three links are bottleneck links. Since the f function is a sum over all links, when

a bottleneck link is shared by many flows, the penalty associated with pushing that

link to full capacity is compensated by driving all sending rates higher. Consequently,

for a given w value, the gap to maximal achievable utility is smaller when there is a

single bottleneck link shared by multiple flows, than when there are many bottleneck

links. So, in Figure 4.6, we observe the aggregate utility is at 100% even at w = 1 for
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the multihoming topology. Similarly, the access-core topology has a knee at a larger

w than the Abilene topology, since several flows share the mesh at the center in the

access-core topology.
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Figure 4.6: Plot of w versus percentage of maximal utility achieved.

Looking at Figures 4.5 and 4.6 together, at w = 1/36, the maximal aggregate

utility is achieved, but the partial-dual algorithm converges slowly and is very sensitive

to stepsize choice. In comparison, for a mere 3% reduction in aggregate utility, the

convergence properties improve significantly at w = 1/6. As w increases even more,

there is a clear trade-off between aggregate utility achieved, the rate of convergence

and sensitivity to stepsize. At w = 1, the convergence properties are much nicer than

at w = 1/6, but there is a 20% drop in utility. For a given w value, if the topology,

capacities and traffic pattern causes multiple flows to share a single bottleneck link

(e.g., mulithoming topology instead of access-core topology), then there is a higher

utility achieved, but a slower rate of convergence.

4.4.3 Comparing the Algorithms

In this subsection, we do a series of comparisons between convergence time and step-

size sensitivity of the four algorithms, and find partial-dual in Figure 4.5 is the best

overall, with a good convergence profile and fewest tunable parameters. We summa-

rize our observations in Table 4.2.
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Algorithm Partial-Dual Primal-Dual Full-Dual Primal
w = 1, Access-Core 15 25* 15 25

w = 1/6, Access-Core 50* 75** 125* 150*
w = 1, Abilene 15 25* 15 25

w = 1/6, Abilene 125* 100** 50* 150*

Table 4.2: Summary of average number of iterations to convergence for best chosen
tuning parameters. Here * denotes sensitivity to stepsize variation and ** denotes
extra sensitivity to stepsize variation.

Comparing the primal-dual algorithm to the partial-dual algorithm, we find the

two extra tunable parameters do not improve the convergence properties. The con-

vergence times of primal-dual and partial-dual algorithms are almost identical for

well-chosen βy and k. For other values of βy, however, we find the primal-dual algo-

rithm converges more slowly than the partial-dual algorithm.

Comparing the full-dual algorithm in Section 4.3.2 to the partial-dual algorithm,

we find consistency price may improve convergence properties. From Table 4.2, we

note that βp has no effect on the convergence time when w = 1. This is because the

effective capacity stays far below actual capacity when w is high, so consistency price

pl stays at 0 and its stepsize plays no role. For w = 1/6 (which is the edge of the knee

region seen in Figure 4.6), we find that the full-dual algorithm can converge faster

than the partial-dual algorithm. This is because if we allow the capacity constraint

to be violated during transient periods, the algorithm can take more aggressive steps

and potentially converge faster.

Comparing the primal algorithm in Section 4.3.3 to the partial-dual algorithm,

we find local minimization update has better convergence properties than subgradi-

ent update. This is intuitive as the subgradient update with a constant stepsize is

constrained to react with the same strength each time, while local minimization can

react more flexibly. From Table 4.2, the primal algorithm takes longer to converge

at the optimal stepsize (25 iterations versus 15 iterations). In addition, the primal
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algorithm also requires operators to tune a second parameter g.

4.5 TRUMP

While the algorithms introduced in Section 4.3 converge faster than DUMP, we seek

an algorithm with even better convergence properties. In this section, we introduce

Traffic-management Using Multipath Protocol (TRUMP) with only one easy to tune

parameter.

4.5.1 The TRUMP Algorithm

Our simulations in the previous section suggest that simpler algorithms with fewer

tunable parameters converge faster, although having a second link price can help for

small w. Using those observations, we combine the best parts of all four algorithms

to construct the TRUMP algorithm described in Figure 4.7.

In TRUMP, the feedback price has two components as in the full-dual algorithm:

pl and ql. Since we observed that local optimization worked better than subgradient

update, we use the feedback price update from primal algorithm in Figure 4.3 as

our ql. This has the additional benefit of removing one tuning parameter from the

protocol since the update of ql involves no stepsize. By a similar argument, we use

a local optimization for the path rate update as in the dual-based algorithms. The

value of w is only known at the sources where the z’s are computed, and there is only

a single value for the network. The packet-level simulations in Section 4.6.3 reveal

that TRUMP performs well for a large range of w-values when an appropriate stepsize

is chosen.

Through simulations, we find that TRUMP indeed converges to the optimum

of (4.3) for both topologies and a range of w values. When we plot the achieved

aggregate utility at equilibrium versus w, we obtain a plot identical to Figure 4.6. In
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Feedback price update:

sl(t + 1) = pl(t + 1) + ql(t + 1),

pl(t + 1) = [pl(t) − βp(cl −
∑

i

∑

j

H i
ljz

i
j(t))]

+,

ql(t + 1) = wf ′

(

∑

i

∑

j

H i
ljz

i
j(t)/cl

)

,

Path-rate update:

zi
j(t + 1) = maximizezi

j
Ui

(

∑

j

zi
j

)

−
∑

l

sl(t)
∑

j

H i
ljz

i
j

Figure 4.7: The TRUMP algorithm.

10
−7

10
−6

10
−5

10
−4

10
−3

0

50

100

150

200

250

300

β
p

ite
ra

tio
ns

10
−7

10
−6

10
−5

10
−4

10
−3

0

50

100

150

200

250

300

β
p

ite
ra

tio
ns

(a) w = 1 (b) w = 1/6

Figure 4.8: Plots of TRUMP algorithm showing dependence of convergence time on
stepsize. ’x’ represent the actual data points and ’o’ represent the average value.
Access-core topology.

Figure 4.8, we plot convergence time versus stepsize for TRUMP. When the network

sources are reacting strongly to the price q (e.g., w = 1 and the traffic engineering part

is dominating), the price p is unnecessary as observed in Figure 4.8a. In the region

where the network is being less conservative (w = 1/6), price p is a more definitive

indicator of performance than price q, and can be helpful for source rate adjustments.
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Comparing Figure 4.8 to Figure 4.5, we see that TRUMP has nicer convergence

properties than the partial-dual algorithm, while having fewer parameters.

4.5.2 TRUMP Convergence Proof

Unlike the algorithms from Section 4.3, TRUMP is a heuristic and does not correspond

to a known decomposition. Consequently, the convergence and optimality is not

automatically guaranteed by optimization theory. Theorem 4.5.1 below guarantees

convergence of TRUMP when the network is lightly loaded. We consider the region

where w is sufficiently large for p = 0 (as seen in Figure 4.8a), and find a contraction

mapping on z. Overall, TRUMP is simpler than any of the algorithms presented in

Section 4.3, with only one tunable parameter that only needs to be tuned for small

w.

Theorem 4.5.1. TRUMP converges to the optimal value of (4.3) under the following

conditions:

1. pl = 0, ∀l

2. nl < α
f ′

l (ul)
(1/α+1)

f ′′

l (ul)
, ∀l

where nl is the number of flows sharing link l and α refers to α-fair utility [65].

Proof. If p = 0, then the z update is:

zi
j = U ′−1

i (
∑

l

H i
ljf

′
l (
∑

i,j

zi
jH

i
lj/cl)/cl).

We look for a contraction mapping for z as outlined in [16]. First we compute the

Jacobian for zi
j :
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Jij,st = (U ′−1
i )′(

∑

l H
i
ljf

′
l (
∑

i,j zi
jH

i
lj/cl)/cl)

(
∑

l H
i
lj

∑

s,t H
s
ltf

′′
l (
∑

i,j zi
jH

i
lj/cl)/(cl)

2).

Let ul =
∑

i,j zi
jH

i
lj/cl be the link utilization, then:

||J ||∞ = max
ij

(U ′−1
i )′(

∑

l

H i
ljf

′
l (ul))(

∑

l

H i
lj

∑

s,t

Hs
ltf

′′
l (ul)).

Let nl =
∑

s,t H
s
lt represent the number of flows sharing link l, then:

||J ||∞ = max
ij

(U ′−1
i )′(

∑

l

H i
ljf

′
l (ul))(

∑

l

H i
ljnlf

′′
l (ul)).

For convergence of z, ||J ||∞ < 1 is a sufficient condition. For α-utility, we have

(U ′−1
i )′ = − 1

α
x−1/α−1 for α > 1. For U = log(x), α = 1, (U ′−1

i )′ = −x−2, so the same

equation holds. So we can rewrite ||J ||∞ as:

||J ||∞ = max
ij

1

α

∑

l H
i
ljnlf

′′
l (ul)

(
∑

l H
i
ljf

′
l (ul))(1/α+1)

.

||J ||∞ < 1 holds if nl

α
f ′′

l (ul) < f ′
l (ul)

(1/α+1), ∀l.

4.5.3 TRUMP: Transition to Network Protocol

The transition from a mathematical algorithm to a network protocol requires relax-

ation of several simplifying assumptions. First, the algorithm in Figure 4.7 assumes

feedback is signaled explicitly from links to sources. The explicit feedback could

be piggy-backed on acknowledgment packets [47], attached to probe packets [46] or

flooded throughout the network [63]. In all cases, there is delay associated with the

feedback. Second, the algorithm assumes traffic flows fluidly, while real traffic con-

sists of packets. Third, while an algorithm can be broadly defined with a family of
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functions U and f , a specific U and f must be selected. We address these concerns

in the TRUMP protocol.

The time between iterations of the TRUMP algorithm depends on RTTi
j, the time

it takes for source i to receive feedback along all the links of path j. To transition to

a packet-based protocol, the link prices are calculated based on the estimated local

link load: NT the number of bits which arrived in period (t, t + T ) divided by length

of the period. Choosing f as an exponential function, each link updates its prices as:

pl(t + T ) = [pl(t) − βp(cl −
NT

T
)]+, (4.12)

ql(t + T ) = w
cl
∗ exp

(

NT

Tcl

)

, (4.13)

sl(t + T ) = pl(t + T ) + ql(t + T ). (4.14)

Choosing a logarithmic function for U and solving the local minimization, we

obtain the following source rate update:

zi
j(t + T i

j ) = zi
j(t) − γ

∑

j

zi
j(t) +

γ
∑

l H
i
ljsl(t)

. (4.15)

At time 0, the prices are initialized to a constant before real prices are available

after one RTT. New flows after time 0 are set at the calculated path rates according

to the latest (delayed) price, collected by a probe before the flow starts. To control

the rate of convergence for flows with varying RTTs, as commonly done in congestion

control mechanisms, e.g. [90], we introduce a parameter 0 < γ < 1. In general,

path rates are updated every γRTTi
j , but the path rate is recalculated at most once

for any given price update. Thus the path rate adaptation will happen every T i
j =

max(T, γRTTi
j). Note that the extra parameters γ and T are necessary for any

packet-level protocol.
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4.6 TRUMP: Packet-level Evaluation

In our MATLAB simulations, we had made a number of simplifying assumptions.

Moving to packet-level simulations, we study the impact of relaxing the following

assumptions: homogeneous feedback delay, no flow dynamics and no packet-level

burstiness. In addition, we test TRUMP under realistic traffic loads and link failures.

Finally, we examine whether TRUMP shares bottleneck links fairly.

4.6.1 Experimental Set-up

We implement the TRUMP protocol in NS-2 as described in Section 4.5.3. In particu-

lar, the link prices are updated every 5ms and feedback is piggybacked from the links

to the sources. The path rates are updated with γ = 0.1. Most of the experiments

are performed with w = 1, where there is no packet loss. The calculated source rates

are compared to the ideal rates, which are determined using MOSEK optimization

software.

Our simulations use both synthetic and realistic topologies, which are summarized

in Tables 4.3 and 4.4 respectively. For the topologies that were previously simulated

in MATLAB (Figure 3.3), we use the same paths with link capacities of 100Mb/s.

Link delays on the Abilene topology were selected to approximate the realistic values.

Links in Access-Core topology have a one-way propagation delay of 50ms, a value

chosen to test TRUMP under long feedback delay. Figure 4.4 contains three heavily

loaded links, and hence was chosen for tuning of βp under varying capacities, with

link delays varying from 30ms to 80ms. Specific paths and link delays are selected in

the Share topology (Figure 4.14a) to test the fairness of TRUMP. Links in the Share

topology have a capacity of 200Mbps, except for the bottleneck link from node 7 to

node 8, which has a capacity of 100Mbps.

Since TRUMP with explicit feedback is most easily deployed inside a single AS,
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Topology Nodes Links Flows Paths
Abilene 11 28 4 4
Access Core 10 24 6 3
Multihome 24 40 20 1-3
Share 9 16 3 1

Table 4.3: Summary of synthetic topologies.

we obtained intra-AS topologies, along with link delays from the Rocketfuel topology

mapping engine [80, 81]. The link capacities are 100Mbps if neither endpoint has

degree larger than 7, and 52Mbps otherwise. As summarized in Table 4.4, between

10 and 50 flows were randomly selected. For each source-destination pair, multiple

paths were computed by first selecting a third transit node, then computing the

shortest path containing all the three nodes, and finally removing cycles in the path.

The RTTs on the paths range from 1ms to 400ms.

ISP(AS Number) Cities Links Flows Paths
Genuity(1) 42 110 50 1-4
Telstra(1221) 44 88 20 1-4
Sprint(1239) 52 168 500 1-4
Tiscali(3257) 41 174 25 1-4
Abovenet(6461) 19 68 10 1-4
AT&T(7018) 115 296 1000 1-4

Table 4.4: Summary of ISP topologies.

4.6.2 Tuning Stepsize of TRUMP

We observed in section 4.4.2 that the links connecting the ISPs to the destination are

fully utilized even for the conservative choice of w = 1. Previous MATLAB results

indicate choosing βp is challenging when there are bottleneck links, since packet loss

can easily occur. In this section, we study the impact of link capacity on βp, using

the multihoming topology in Figure 4.4 where there are three bottleneck links.

In our first set of experiments, we vary the capacity of the links uniformly from
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10 Mbps 100 Mbps 1000 Mbps
βp = 1 ∗ 10−11 no no no
βp = 1 ∗ 10−13 no no no
βp = 1 ∗ 10−15 yes no no
βp = 1 ∗ 10−17 slow yes no
βp = 1 ∗ 10−19 slow slow yes
βp = 1 ∗ 10−21 slow slow slow
βp = 1 ∗ 10−23 slow slow slow

Table 4.5: Rate of convergence of TRUMP for different βp values and different link
capacities.

10Mbps to 1000Mbps. In Table 4.5, we observe the best βp for fast convergence is

1∗10−15 for 10Mbps, 1∗10−17 for 100Mbps and 1∗10−19 for 1000Mbps. More precisely,

the appropriate βp value decreases by two orders of magnitude when the link capacities

increase by one order of magnitude. Taking a closer look at (4.12), we observe that for

βp = 0.1, pl is larger than ql by c2
l . Therefore, we let βp equal 0.05/c2

l and repeat the

experiments with different capacities. We find that convergence is achieved with this

setting of βp. To confirm our choice holds in networks with heterogeneous capacities,

we repeated the experiment with topology from Figure 4.4 with randomly assigned

capacities ranging from 10Mbps to 1000Mbps. We confirmed that βp = 0.05/c2
l results

in a smooth convergence even in this challenging scenario.

4.6.3 TRUMP versus Partial-Dual

We confirm our MATLAB results from Section 4.5.1: TRUMP has better convergence

properties than partial-dual under heterogeneous feedback delay and for a range of w

values. In Figures 4.9 and 4.10, we plot the aggregate throughput in the Sprint net-

work with 50 greedy flows. The paths chosen had RTTs ranging from 3ms to 327ms,

with an average of 127ms and a standard deviation of 76ms. Similar to the MATLAB

experiments, we observe TRUMP converges slower for smaller w, though to higher

aggregate rates, as shown in Figure 4.9. When w = 1, the TRUMP aggregate rates
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Figure 4.9: Aggregate throughput of TRUMP with βp = 0.05/c2
l , in the Sprint net-

work with 50 greedy flows.
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Figure 4.10: Aggregate throughput of partial-dual with w = 1/3, in the Sprint net-
work with 50 greedy flows.

increase from 0 at time 0s (when the flows are established), to close to the target

value within 500ms — about 4 times the average RTT. When w = 1/6, the TRUMP

aggregate rates take longer to converge, though they still converge smoothly. Com-

paring Figure 4.9a with Figure 4.9b, for the first second or so, the actual throughput

is lower than the sending rates for small w. This is because if TRUMP’s sending rates

are above the bandwidth in the network, packets are lost. TRUMP converges for a

range of w values with a single βp value, chosen in the previous subsection.
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Similar to the MATLAB experiments, we observe in Figure 4.10 the partial-dual

is quite sensitive to the choice of stepsize at w = 1/3. In Figure 4.10a, we observe for

a stepsize of 10−16, the partial-dual sending rates converge slowly; but for a stepsize

of 3× 10−16 (only three times larger), we find the partial-dual sending rates oscillate

significantly. In Figure 4.10b, we observe when the sending rates oscillate, there

are heavy packet losses. In fact, the actual throughput for a stepsize of 3 × 10−16

is lower than when the stepsize is 10−16. In addition, the same stepsize does not

work across different values of w. By comparing Figures 4.9 and 4.10, we confirm

our MATLAB results from Section 4.5.1: TRUMP has better convergence properties

than partial-dual under heterogeneous feedback delay and for a range of w values.

4.6.4 Topology and Traffic Dynamics

First we consider the impact of a link failure in the Sprint Network. Path failures and

recoveries are detected through active probing. All 50 greedy flows are established

at 0 sec. At 5 sec the link between Pennsauken, NJ and Roachdale, IN fails, and

it recovers at 10 sec. Flows 20 and 39 contain the affected link in at least one of

their paths. In Figure 4.11, we plot the path rates of the flow 20. We observe that

immediately after the failure, traffic is assigned to an alternate path unaffected by

the failure. After the link is repaired at time 10 sec, traffic returns to the original

path quickly. Similar behavior is observed for flow 39.

Second, we study the performance of TRUMP under realistic traffic loads by

using 10 stochastic ON-OFF flows in the Abovenet network. As suggested by [27],

the OFF periods are Pareto with shape 2.0 and average of 0.2s. We consider three

file size distributions: exponential, Pareto with shape 1.2 and Pareto with shape 1.8.

In Figure 4.12, we plot the average file size against the efficiency : fraction of the

actual throughput over the ideal throughput for a 10s period. The ideal throughput

is found by solving (4.4). First, TRUMP’s behavior is independent of the variance
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Figure 4.11: Plot of affected path rates for a link failure in the Sprint network.

of the file-size distribution, since all three curves overlap. Second, TRUMP is more

efficient for larger files as it takes a few RTTs to converge to the ideal throughput. On

the surface, TRUMP performs poorly for small files, only achieving 50% of the ideal

rate. However, given those files are transmitted within a single RTT, achieving 50%

of the ideal rate is much better than TCP today. In addition, TRUMP is optimized

for logarithmic utility, for example log(20, 000)/ log(40, 000) = 0.93. This means

TRUMP achieves close to ideal utility even for short-lived flows.
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Figure 4.12: Plot of average file size versus efficiency for three distributions.
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4.6.5 Selecting the Multiple Paths

There are often many paths available between each source-destination pair. In this

subsection, we study how many paths to provide TRUMP, and how to select such

paths.

Flows Single path Two paths Three paths Shortest path
5 56.6% 36.8% 6.6% 59.8%
10 66.8% 23.8% 6.7% 51%
25 67.2% 32.4% 0.4% 50.2%
50 76.8.4% 20.4% 2.8% 72.6%
100 70% 27.8% 2.2% 64.4%
250 88.6% 11% 0.4% 70.8%
500 91.8% 8% 0.1% 69%

Table 4.6: Impact of varying number of flows on the Sprint network.

We begin by studying how the number of flows (source-destination pairs) affects

whether traffic splits over multiple paths, and whether shortest-hop paths are used.

For the Sprint topology, we summarize in Table 4.6 the number of paths used by

flows at equilibrium and percentage of flows using shortest-hop paths. The number

of flows in the network impacts the likelihood of a flow being split amongst multiple

paths. If there is a single flow in the network, it will use all the paths available to it.

So when there are very few flows, a large percentage of flows place load on multiple

paths simultaneously since there are many uncongested paths. As the number of

flows increases, a larger percentage of flows will just select a single path, since most

of the links are used by at least one flow already.

Further, we observe 50% to 73% of the flows send all their traffic on the shortest-

hop path(s). Given the penalty function f is summed over all links, shorter-hop

paths are generally preferred because if a longer-hop is taken, then more links are

loaded. So if there are two equally loaded paths, the one with fewer hops is preferred.

Longer-hop paths are more likely to be used when the network is under-utilized,

because a flow might split traffic over two or three paths that are not used by any
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other flow. Longer-hop paths are also more likely to be utilized when the network

is very congested, because a slightly longer-hop path that is much less congested is

still attractive. Another advantage of shortest-hop paths is that they can be chosen

a priori, while congestion levels depend on dynamic traffic patterns.
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Figure 4.13: Plot of aggregate throughput versus time for the Abilene topology with
four flows. Different lines correspond to different number of paths available per flow.

Next, we study how the number of paths available to each flow affects the utility

achieved and rate of convergence. In Figure 4.13, we vary the number of paths

available to each flow from one to four. For the Abilene topology with four flows, the

aggregate throughput increases by 25% when there is more than one path available

to a flow, though the gains are much more modest when more than two paths are

provided for each source. This observation is inline with research illustrating the

power of two choices [64, 51]. The number of flows has no visible impact on the rate

of convergence. Looking at Figure 4.13 and Table 4.6 together, we conclude selecting

two (or three) shortest-hop paths per source-destination pair is sufficient for TRUMP

to perform well.

4.6.6 Fairness of Bandwidth Sharing

As mentioned in Section 4.2.2, TRUMP is α-fair as w → 0, but its fairness for general

w values is unknown. For w = 1, we construct a simple topology (Figure 4.14a)
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Figure 4.14: Fairness of bandwidth sharing.

to illustrate whether the bottleneck link is shared fairly. In Figure 4.14b, we plot

throughput of two pairs of flows which differ in RTT or hop-count. All flows have a

shared destination (node 9), and the sources are nodes 1, 2 and 3 respectively. We

observe that flows 1 and 2, which have very different RTT (30ms and 100ms) but the

same number of hops on their paths, share bandwidth fairly. Unlike most congestion

control proposals, TRUMP does not discriminate against long RTTs since (4.3) has

no dependency on RTT. While RTTs does indeed affect the transient behavior as

indicated in the distributed algorithm of (13), fairness is an equilibrium property. On

the other hand, flow 3 with twice as many hops receives roughly half the bandwidth

of flow 1. This is inline with network operator’s goals to penalize against longer-hop

paths since that would require more usage of network resources. If the unshared links

are lightly loaded, the bandwidth sharing would be less unfair since the amount of

penalty depends on link load. It is also possible to change the source rate adaptation

for TRUMP to react to path prices normalized by hop length of that path, to ensure

fair bandwidth sharing for diverse hop lengths.
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4.7 Related Work

Optimization theory is used in traffic management research in areas such as reverse

engineering of existing protocols [48, 58], tuning configuration parameters of exist-

ing protocols [30], and guiding the design of new protocols [90] (for more references

see [21]). In turn, such a broad use has encouraged innovations in optimization the-

ory, for example, [70] introduced multiple decomposition methods. Our chapter takes

advantage of the recent advancements and applies multiple decompositions to design

traffic management protocols.

Most of the proposed traffic management protocols consider congestion control or

traffic engineering alone. Several proposed dynamic traffic engineering protocols also

load balance over multiple paths based on feedback from links [46, 24, 28], but they

do not adapt the source rates. From the methodology perspective, our work bears

the most resemblance to FAST TCP [90]. Other congestion control protocols that

use control theory to prove stability include [47, 55, 84].

According to recent research, congestion-control and traffic-engineering practices

may not interact well [8, 35, 31]. In response, many new designs are proposed. Some

of them start with a different objective than this chapter, and find poor convergence

properties [89, 57]. Algorithms similar to two of the decomposition solutions (Sec-

tion 4.3) are described briefly in [35] and Appendix of [32], though neither considers

possible design alternatives, nor present a packet-level protocol (and associated ex-

periments).

Some research analyzes stability of joint congestion control and routing algorithms

using theory [33, 69, 88], while we use optimization decomposition to guide the design

of a practical protocol. Some of our evaluation is inspired by [88, 33], which prove

that multipath congestion control can be stable under heterogeneous feedback delay.

In particular, [33] shares a similar problem formulation and analyzes an algorithm

similar to the primal-driven algorithm presented in Section 3.3, however, TRUMP
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offers extra flexibility through the tuning parameter w and faster convergence through

an universal stepsize. In [51], they study coordinated path selection in the context

of multipath congestion control, while in this chapter we find selecting two or three

shortest-hop paths is sufficient for TRUMP to perform well.

4.8 Conclusions

This chapter presented a traffic-management protocol which is distributed, adaptive,

robust, flexible and easy to manage. We followed a top-down design process starting

with an objective which balances the goals of users and operators. We generated

four provably optimal distributed solutions using known decomposition techniques.

Using insight from simulations comparing the four algorithms, we combined the best

parts of each algorithm to construct TRUMP. TRUMP is easy to manage, with just

one optional tunable parameter. Our packet-level evaluations confirmed TRUMP

is effective in reacting to topology changes and traffic shifts on a small timescale,

with realistic feedback delay. We also found TRUMP’s performance is only weakly

dependent on the properties of file size distribution. In addition, TRUMP performs

very well with access to just two or three shortest-hop paths.

This chapter started from an abstract model, and ended with a practical traffic

management protocol based on feedback from the links along each path. In our

ongoing work, we are exploring a version of TRUMP where the sources adapt the

path rates based on observations of end-to-end delay and loss. We show that using

optimization decompositions as a foundation, simulations as a building block, and

engineering intuition as a guide can be a principled approach to protocol design.
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Chapter 5

Supporting Multiple Traffic Classes

with DaVinci

5.1 Introduction

In the previous chapter, our redesign of traffic management assumes the same traffic-

management protocol for all end-host applications. In practice, different applications

can have different performance objectives, for example, voice-over-IP and gaming

traffic perform better over low-delay paths, whereas large file transfers perform better

over high-bandwidth paths. In this context, TRUMP in the previous chapter was

optimized for throughput-sensitive traffic. This chapter performs a top-down redesign

of the traffic-management system to support multiple traffic classes.

A natural objective for an ISP is to maximize aggregate performance across mul-

tiple traffic classes. This chapter starts with an optimization formulation which cap-

tures this objective, then decomposes it into a subproblem for each traffic class, and an

algorithm for dynamically adjusting the fraction of each link’s bandwidth allocated

to each traffic class. At the timescale of RTTs (tens or hundreds of milliseconds),

each traffic class runs its own traffic-management protocol to optimize for its own
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objective, and allocate resources amongst its users. At a longer timescale (tens of

seconds), the ISP adjusts the bandwidth shares (per link bandwidth resources allo-

cated to each traffic class) based on information regarding its performance relative

to its objective function. Using optimization theory, the following properties hold for

the overall system:

• Stability: The bandwidth shares converge to a stable value, without requiring

information about the bandwidth shares of other links.

• Efficiency: The bandwidth-share adaptation maximizes the aggregate perfor-

mance of all traffic classes, if each traffic class optimizes for its own performance

objective.

• Independence: Although bandwidth shares are changing over time, each traf-

fic class can design and run its traffic-management protocols as if it had dedi-

cated resources.

An interpretation of the mathematics naturally leads to a novel architecture

DaVinci: Dynamically Adaptive Virtual Networks for a Customized Internet. In

DaVinci, each virtual network runs its own traffic-management protocols to adjust

how much traffic traverses each path in its virtual topology. In DaVinci, each sub-

strate link has a coordinator that periodically computes the bandwidth share for each

virtual network, and a shaper that limits the amount of traffic sent over the link based

on these shares. Two technology trends today makes DaVinci feasible. Network vir-

tualization can provide a platform for running multiple protocols in parallel, each

with dedicated resources; router programmability enables customized protocols.

In general, DaVinci provides a platform for running the different algorithms pre-

sented in this dissertation. In particular, Section 5.2 presented an algorithm for adapt-

ing bandwidth shares between multiple classes, and Chapter 4 showed one example of

a distributed traffic-management protocol optimized to maximize throughput. The
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method presented in Chapter 4 can also be used to design other distributed traffic-

management protocols, such as one optimized for delay-sensitive traffic presented in

Section 5.3.

The key features of DaVinci are customized protocols, separate queues, and dy-

namic adaptation of bandwidth shares. For a quantitative understanding of DaVinci’s

features, we consider a concrete example: a system with two traffic classes, optimized

for low delay and high throughput, respectively. The delay-sensitive traffic prefers low

propagation-delay paths and small queues. The throughput-sensitive traffic prefers

high-bandwidth paths and tolerates longer queues in exchange for more efficient band-

width usage. For a basic understanding of the system properties, we focus on a

simple topology that emphasizes the interaction between delay and throughput. Us-

ing numerical examples, we illustrate that the bandwidth shares converge quickly

under a wide range of settings. Using analysis, we illustrate that customized traffic-

management protocols and separate queues are both important.

The rest of the chapter is organized as follows. The first few sections use optimiza-

tion theory in three distinct ways. First, optimization theory is used to prove that the

overall system converges to maximize aggregate performance (Section 5.2). Second,

optimization is used to design both the bandwidth allocation across traffic classes

(Section 5.2) and the distributed traffic-management protocols running inside each

traffic class (Section 5.3). Numerical experiments on the adaptation of bandwidth

shares are presented in Section 5.4. Third, optimization is used to model alterna-

tive architectures in Section 5.5 (customized protocols, but a single queue; a single

routing protocol and separate queues). Section 5.6 provides a high-level overview of

the DaVinci architecture. Section 5.7 places DaVinci in the context of other research

trends: QoS, overlays, and network virtualization. Finally, we conclude the chapter

and point to several directions for future work in Section 5.8.
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5.2 ISP’s Model of Multiple Traffic Classes

In this section, we first formalize the ISP’s optimization problem. Next, we decompose

this into an optimization problem for each traffic class and the bandwidth shares on

each link. Then we prove stability and optimality of the distributed solution under

certain conditions and discuss its benefits and limitations. We assume there are N

traffic classes (TC), indexed by k, the notation is summarized in Table 5.1.

Symbol Meaning

s(k) Congestion prices in TC k.
Used by TC k to compute path rates.
Computed by ISP.
Used by ISP to compute y(k)

β
(k)
s Step size for updating s(k).

y(k) Bandwidth assigned to TC k.
Computed by ISP.

βy Step size for updating y(k).
Cl Capacity of link l.

U (k)(·) Performance objective function for TC k.

w(k) Weight the ISP assigns to U (k)(·).

z(k) Path rates for TC k.

H(k) Mapping from links to paths for TC k.
pl Propagation delay of link l.

x(1) Demand of the delay-sensitive traffic.
ul Utilization of link l.
f(ul) Penalty function.
ri
j Fraction of traffic source i places on path j

Table 5.1: Summary of notation.

5.2.1 ISP’s Objective

Each traffic class has a performance objective function U (k)(·), with source rates and

routing as variables controlled by that traffic class. Performance objective functions

can include maximizing utility (e.g., logarithmic function of throughput), and min-

imizing system congestion (e.g., exponential function of link utilization [30]). The
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objective function U (k)(·) may depend on the traffic volume exchanged between a

source-destination pair i, as well as the routing that determines the fraction of traf-

fic between each source-destination pair i that traverses each link l. In general, a

source-destination pair may have multiple paths between each other, indexed by j.

H
(k)i
lj =























1, if path j of source-destination pair i

in traffic class k uses link l

0, otherwise.

Then each traffic class k can adapt the amount of traffic source-destination pair

i places on path j, captured by z
(k)i
j . We let z

(k)i
j to take on any non-negative value,

which implicitly assumes there is flexible splitting between the multiple paths. Then

H(k)z(k) is the portion traffic class k contributes to the link loads. Finally, U (k)(·) may

also depend on the share of each link’s capacity that the physical network allocated

to class-k traffic y(k), which could also affect the performance achieved.

The ISP’s objective is to maximize social welfare: the aggregate performance of

all traffic classes, subject to the capacity constraint on the physical links. This is

captured by (5.1):

maximize
∑

k

w(k)U (k)(z(k),y(k))

subject to
∑

k

H(k)z(k) � C,

z(k) � 0,

variables z(k),y(k)

(5.1)

where w(k) is the weight the ISP assigns to represent the relative importance of traffic

class k. If the ISP wants to give traffic class k strict priority, then w(k) can be assigned

a value several orders of magnitudes larger than the other weights. Here, y(k) is a
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vector capturing the share of each link’s capacity that the physical network allocated

to class-k traffic, which could also affect the performance achieved.

Using primal decomposition [56, 14], (5.1) can be decomposed into subproblems

for each traffic class, and a bandwidth share adaptation algorithm which allocated

resources between the traffic classes. The traffic-management protocols running in

each network can be viewed as maximizing U (k)(·), as captured by (5.2) below:

maximize U (k)(z(k),y(k))

subject to H(k)z(k) � y(k),

z(k) � 0,

variables z(k)

(5.2)

Given its share of the bandwidth resources y(k), each traffic class can run dis-

tributed protocol(s) to maximize its own performance objective, as demonstrated in

Chapter 4. A distributed protocol that implicitly maximizes (5.2) can be derived

through a standard optimization method, dual decomposition. The bandwidth con-

straints to each traffic class can be relaxed through the introduction of a congestion

price s
(k)
l . In economic terms, s

(k)
l represents the price traffic class k would pay for

violating the bandwidth constraint on link l, similar to interpretations of congestion

control [58].

5.2.2 Adaptation of Bandwidth Shares

To determine the bandwidth share assignments yl amongst traffic classes at each link

l, the ISP needs to perform a two-step process described in Figure 5.1. The ISP

first monitors link load and computes sl as in (5.3). At each link, s
(k)
l is updated for

traffic class k based on the difference between the link load (due to that traffic class)
∑

i

∑

j

H
(k)i
lj z

(k)i
j and its share of the bandwidth y

(k)
l . The amount of the update is

based on its previous value is moderated by βs. The [ ]+ implies sl is only positive
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Small timescale (every T ): Update s
(k)
l for each k

s
(k)
l (t + T ) =

[

s
(k)
l (t) − β(k)

s

(

y
(k)
l (t) −

∑

i

∑

j

H
i(k)
lj z

i(k)
j (t)

)]+

, (5.3)

where t is time and T is at the same timescale as the longest Round Trip Time
(RTT) of the network, e.g., 100ms. Let the converged value of s

(k)
l be denoted s

∗(k)
l ,

this is the input for updating yl.

Large timescale (every Ty >> T ): Update yl

v
(k)
l (t + Ty) = [y

(k)
l (t) + βy(w

(k)(λ
(k)
l (t)) + ∇y(k)U∗(k)(z∗(k),y(k))]+

y
(k)
l (t + Ty) = argmin

y
(k)
l
||y

(k)
l − v

(k)
l (t + T )||,

subject to
∑

k

y
(k)
l ≤ Cl

(5.4)

where Ty is the time period between bandwidth assignments, usually several orders
of magnitude larger than T , e.g., 10s.

Figure 5.1: The bandwidth share computation at each link l is a two step process:
where sl is updated at a smaller timescale than yl.

when the link load exceeds or achieves y
(1)
l , i.e. when the traffic class is fully utilizing

its assigned bandwidth.

Then the bandwidth share allocated to traffic class k is updated with (5.4), in two

steps. First, we introduce v
(k)
l as an intermediate variable to facilitate the computation

of y
(k)
l . The increase in v

(k)
l is proportional to how much the ISP weighs the importance

of traffic class k (denoted by w(k)), and how much traffic class k needs extra bandwidth

(indicated by (s
(k)∗
l (t)+∇y(k)U∗(k)(z∗(k),y(k))). The parameter βy dictates how much

the new bandwidth allocation is based on the dual variables computed in the last time

period. The [ ]+ ensures that all traffic classes are allocated a nonnegative amount

of bandwidth. Then to enforce the capacity constraint
∑

k

y
(k)
l ≤ Cl, where C is a

vector of link capacities, the vector ŷl needs to be projected onto the feasible region.

The standard projection is to minimize the Euclidean distance between the feasible
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region and the original point v
(k)
l . From Figure 5.1, the bandwidth shares at each

link are computed with only local link loads and the computation is simple.

Depending on the traffic class, the computation of the bandwidth shares could

be simplified. In particular, whenever the objective function of a traffic class does

not depend on y(k), ∇y(k)U∗(k)(z∗(k),y(k)) is zero, so the bandwidth share update is

only dependent on the dual variables. In practice, this case corresponds commonly

to the notion of utility functions for elastic traffic which only depend on the sending

rates. Of course, some traffic classes may have objective functions which naturally

depend on y(k). For example, queuing delay depends on the available capacity, so an

objective which minimizes delay depends on y(k).

5.2.3 Convergence and Optimality

So far, we have derived the optimization problems solved by each traffic class and the

adaptation of bandwidth shares by decomposing (5.1), now we take a closer look at

the conditions for convergence.

Theorem 5.2.1. The bandwidth allocation algorithm (5.4), together with each traffic

class solving (5.2), converges to maximize (5.1) under the following conditions:

1. The problem (5.1) is a convex optimization.

2. The bandwidth allocation is updated after convergence of the primal variables z

and the dual variables s in each subproblem (5.2).

3. The parameters βy are diminishing with time.

Proof. Starting with the master optimization problem (5.1), the first step in primal

decomposition separates the capacity constraints into N parts. More specifically, the

capacity constraint
∑

k

H(k)z(k) � C is rewritten as two sets of constraints: H(k)z(k) �

y(k), ∀k, and
∑

k

y(k) ≤ C. Then we can apply standard primal decomposition
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techniques [56, 14] to decompose (5.1) into N subproblems, each in the form of (5.2),

keeping
∑

k

y(k) ≤ C as a constraint in the master problem. Each subproblem can be

solved for both its original variables and Lagrangian multipliers (technical term for

congestion prices) s
(k)
l introduced to relax the capacity constraint per link for traffic

class k. Then the master problem can update y(k) based on a gradient update, which

corresponds to (5.4). The weighing factors w(k) do not affect the optima of (5.2),

but they do scale the Lagrangian multiplier as well as ∇y(k)U∗(k)(z∗(k),y(k)) at the

optima. Consequently, the weights w(k) in (5.1) are reflected in (5.4). From [56, 14],

the bandwidth share allocation algorithm (5.4) converges to the maximum of (5.1) if

the problem is convex and the parameters βy(t) are diminishing with time.

Theorem 5.2.1 has several interesting implications. As implicitly assumed in the

problem formulation, each traffic class requires a separate queue, in order for the

bandwidth shares to be meaningful. At equilibrium, (5.1) maximizes the aggregate

performance across all traffic classes, i.e., the social welfare. The adaptive bandwidth

allocation algorithm is distributed per link and only relies on local information.

There are three major limitations of the theorem: convexity, selection of βy, and

timescale of adaptation. Convex objective functions apply to most performance ob-

jectives [21], so the problem formulation is still broad. Convexity of the constraint

can be obtained if traffic can be split flexibly amongst multiple paths (when they ex-

ist). As shown in Chapter 2 multipath routing has become increasingly feasible over

the years and certainly deployable within a single ISP. The choice of βy will impact

the speed of convergence: a smaller βy means convergence is slower, but a larger βy

can cause divergence. We take a closer look at how to select βy in the next section.

Finally, the timescale of adapting the bandwidth shares must be chosen judiciously.

If the timescale is too close to that of the distributed protocols in each traffic class,

then the system could be unstable. On the other hand, if the resources are adapted

very slowly, then the system might be operating inefficiently.
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5.3 Two Traffic Classes

Most of the traffic in the Internet falls naturally into one of two categories: delay-

sensitive and throughput-sensitive. Delay-sensitive traffic includes Voice-over-IP,

video conferencing, online gaming and live video streaming. Throughput-sensitive

traffic includes file transfers, Web browsing, e-mail and peer-to-peer file sharing.

Since we already studied the throughput-sensitive traffic in Chapter 4, we present

only the distributed protocol for the delay-sensitive traffic here. Let the delay-

sensitive traffic be allocated a bandwidth share of y(1), we drop the superscripts

for the other variables and constants since they are local to the delay-sensitive traffic

class.

In the delay-sensitive traffic class, we assume the traffic is inelastic, i.e., it does

not change its sending rate based on network conditions. The delay-sensitive traffic

wants to minimize the end-to-end delay it experiences. The delay along a path is

the sum of the delays experienced in traversing each link. Delay on a link is the

sum of propagation delay and queueing delay at that link. The delay-sensitive traffic

would like to choose low propagation-delay paths, and keep the queues small to limit

queuing delay.

Propagation delay pl on a link is independent of the traffic load on it and depends

primarily on the length of the link and its physical properties. To keep the queues

small, we heavily penalize large queues in the objective function at link l with a

convex function f(ul), where ul = (Hz)l/y
(1)
l represents the link utilization. An

example function for f could be the exponential function, which also approximates

M/M/1 queueing delay. Since the traffic is inelastic, we let the source rates xi be

fixed and each source-destination pair i can decide on the percentage of traffic to

place on each path based on the path delay. So the overall problem solved by the

delay-sensitive traffic class is:
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minimize
∑

i

∑

j

zi
jH

i
lj(pl + f((Hz)l/y

(1)
l ))

subject to Hz � y(1)

1Tz = x(1)

z � 0

variables z

(5.5)

where
∑

j

zi
j = xi enforces that all the delay-sensitive traffic will be delivered. In

reality, there may not be sufficient capacity to satisfy the demand, though in general,

the delay-sensitive traffic should only be a small portion of the overall traffic in the

Internet. Still, it is possible to use admission control to only accept delay-sensitive

traffic if there is sufficient bandwidth to support it. Another approach would be to

relax the
∑

j

zi
j = xi constraint as a penalty function as shown in [14], which would

tolerate deviations from meeting the demand precisely.

Similar to [71], the distributed solution to (5.5) can be found using standard

optimization techniques. As shown in Section 5.6, congestion price s is updated by

the ISP and sent to each traffic class. The path rates are then updated via a local

minimization:

zi(t + 1) = minimizezi
j

∑

j

zi
j

(

∑

l

H i
lj(pl + f(ul) + sl(t))

)

(5.6)

where ul = (Hz)l/y
(1)
l . The local minimization is subject to the constraint

∑

j

zi
j = xi.

For a continuous, differentiable and convex f function, the local minimization has an

analytical solution and is just a function evaluation. Each source minimizes the cost

of using path j, which is dependent on the end-to-end propagation delay, plus the

aggregate penalty of loading that path and the path price (which reflects how much
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the path is being used by other sources). The path price is the product of the source

rate with the congestion price per unit load for path j (computed by summing sl

over the links in the path). In fact, (5.6) is like shortest-path routing, except the

weights are dynamic: the propagation delay is constant, but the penalty function

and price functions are load-sensitive. The distributed solution is provably stable

and maximizes the performance objective of interest if the stepsize associated with

the congestion price βs is diminishing with time [16]. As with the work in the earlier

chapters, the delay-sensitive traffic protocol can converge with well-tuned constant

βs, the experiments are summarized in [44].

5.4 Convergence Properties

The convergence of the overall system depends on the convergence of the individual

traffic classes (on a small timescale) and the bandwidth shares (on a medium time-

scale). Previous work has shown how to tune protocols like the ones in Section 5.3 to

converge within a few tens of iterations [40]. With the timescale separation between

the convergence of s and the adaptation of bandwidth shares y, we study the stability

of y using the converged values of s. Consequently, we do not simulate the distributed

protocols for each traffic class, and instead use the values of s computed by solving the

optimization problems directly. We use numerical experiments on a simple topology

to study the convergence rate of y and associated sensitivity to tuning parameters.

5.4.1 Experimental Set-up

Our experiments evaluate the adaptation of the bandwidth shares on a medium

timescale, based on the optimal values of s. Since the bandwidth shares y are com-

puted based only on local information, there are no feedback delays that could influ-

ence their adaptation. As such, we numerically simulate each iteration of computing

95



y using MATLAB. For the throughput-sensitive traffic, we use the same set-up as

in Chapter 4, with the penalty weight set to 1. For the cost-function f , we use an

exponential function, which is the continuous version of the penalty function used in

various studies of traffic engineering [30].

To gain initial insight into the stability of the bandwidth shares, we study the two-

link, two-node topology in Figure 5.2. The links have disparate delays and capacities,

so that the delay-sensitive traffic clearly prefers the top link. The set-up is purposely

simple so that it is easy to understand the intended steady-state behavior. In addition,

this topology is useful for understanding the importance of customized protocols and

separate queues in the next section. In our ongoing work, we leverage the same

experimental framework to study larger and more realistic topologies.

Figure 5.2: Topology with two paths between a pair of nodes. The two links have very
different properties: the top link has propagation delay 5ms and bandwidth 100Mbps;
the bottom link has propagation delay 50ms and bandwidth 1Gbps.

5.4.2 Sensitivity to Tunable Stepsize

The tunable stepsize βy controls how quickly bandwidth shares y are reassigned be-

tween traffic classes, by reacting to changes in s. Optimization theory allows us to

prove the convergence of the bandwidth shares under the condition that βy dimin-

ishes with each iteration of bandwidth-share computation. We relax this condition

by studying the convergence rate of bandwidth shares for constant βy, where conver-

gence is defined as being within 0.001% of the optimal bandwidth shares, obtained

by solving the master problem directly. In particular, we are interested in studying
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Figure 5.3: The rate of convergence versus βy.

the sensitivity to βy.

This experiment sweeps the values of βy to observe the rate of convergence. Since

sl is independent of the actual link capacity Cl, we propose to scale βy by Cl so that

the bandwidth shares are adjusted quickly. First, we observe that the bandwidth

shares do converge to their ideal values for constant βy. Second, from Figure 5.3 we

observe that convergence in under 250 iterations occurs for βy values between 0.5 and

0.05. In particular, above a βy value of 0.5, the bandwidth shares may not converge.

The reason being as βy gets large, there is a tendency to overshoot beyond the feasible

region every single iteration.

Below βy value of 0.5, the rate of convergence slows as we move to smaller values

of βy. In practice, simulations should be run to tune the βy value for a rate of

convergence. If oscillatory behavior is observed at some point, βy can be decreased

to ensure convergence.

5.4.3 Delay-sensitive and Throughput-sensitive Traffic

In this experiment, we set the volume of the delay-sensitive traffic to be 110 Mbps, so

that it cannot be accommodated solely by the low-delay link. The ideal bandwidth

share assigned to the delay-sensitive traffic is all of the low-delay link plus 32Mbps of
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Figure 5.4: Assigned bandwidth and actual rates for delay-sensitive traffic versus
iteration number. The dotted lines are the optimal bandwidth allocations. βy is set
to 0.5.

the high-delay link. Although the delay-sensitive traffic will not use all of its assigned

bandwidth, this allows it to keep the queues small and thus the end-to-end delays

small. The extra 22Mbps of bandwidth makes very little difference to the throughput-

sensitive traffic, since it already has 968Mbps of bandwidth. On the other hand, the

extra penalty caused by a fully loaded link versus a 30% loaded link is significant for

the delay-sensitive traffic. Since the goal is to maximize the aggregate performance

of the two traffic classes, this is a reasonable trade-off for the system to make.

As seen in Figure 5.4, the delay-sensitive traffic is initially assigned 50% of the

bandwidth, thus the y-axis intercepts are 500 Mbps and 50 Mbps respectively. The

initial link loads are set at zero, then jumps to 50 Mbps and 60 Mbps respectively

after one iteration to satisfy the demand of 110 Mbps. From Figure 5.4a, we observe

that after one iteration, the delay-sensitive traffic is assigned all of the bandwidth on

the low-delay link. This is due to the large difference between the delay properties

of the two links. After two iterations, the link load on this link is maintained at

100 Mbps. From Figure 5.4b, we observe that the delay-sensitive traffic’s bandwidth

share is consistently reduced on the high-delay link until reaching the ideal value.
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For the throughput-sensitive traffic, a mirroring trend occurs. The throughput-

sensitive traffic is also initially assigned 500 Mbps on the high-delay link and 50 Mbps

on the low-delay link. On the low-delay link, the bandwidth share for the throughput-

sensitive traffic drops to 0 Mbps. On the high-delay link, the bandwidth share for

the throughput-sensitive traffic is increased to consume most of the idle bandwidth.

Overall, the bandwidth in the ISP is efficiently utilized by the two traffic classes,

independent of the initial conditions.

5.5 Alternative Designs

In this section, we illustrate the importance of both customized protocols and separate

queues through the example topology in Figure 5.2. First, we study the case of sep-

arate queues, but a single routing protocol. Second, we study the case of customized

traffic-management protocols, with a single shared queue.

5.5.1 Single Routing; Separate Queues

To understand the importance of customized protocols, we model a system with a

single routing protocol and separate queues for each traffic class. The resources can

be shared between the two queues via strict priority or weighted-fair queuing. For

weighted-fair queuing, it is unclear which class of traffic dictates the routing when

there is one routing matrix. As a result, we look at the strict priority case where the

delay-sensitive traffic is given strict priority over the throughput-sensitive traffic, and

dictates how all traffic is routed.

We model the system: let ri
j be the percentage of traffic source-destination pair

i places on the jth path, where
∑

j ri
j = 1 for flow conservation. Since there is only

one routing protocol we have z(1)i = x
(1)
i ri and z(2)i = x

(2)
i ri. Since the delay traffic

is given strict priority, the capacity constraint is Hrx(1) � C, where C is the total
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capacity in the system.

minimize
∑

l

(Hrx(1))l

(

pl + f

(

(Hrx(1))l

Cl

))

subject to Hrx(1) � C

1Tr = 1T

r � 0

variables r

(5.7)

The solution of (5.7) determines the routing percentages r, which are then con-

sidered to be a constant for throughput-sensitive traffic. The remaining bandwidth

is then given to the throughput-sensitive traffic, so the capacity constraint for this

traffic is Hrx(2) � C − Hrx(1).

maximize
∑

i

U(x
(2)
i )

subject to Hrx(2) � C −Hrx(1)

x(2) � 0

variables x(2)

(5.8)

Note in (5.8), the throughput-sensitive traffic can control the amount of traffic it

places on the network, but not the paths taken by the traffic.

Consider the simple topology presented earlier in Figure 5.2; by varying the delay-

sensitive traffic volume, we can make the following observations analytically:

• Efficiency of resource usage is highly dependent on the volume of delay-sensitive

traffic.

• The throughput-sensitive traffic volume is highly dependent on the volume of

delay-sensitive traffic.
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Since there is only one source-destination pair in Figure 5.2, there is no need to

index the sources by i. The delay-sensitive traffic volume falls into three possible

scenarios (units in Mbps): 0 ≤ x(1) ≤ 100, 100 ≤ x(1) ≤ 1100 and x(1) ≥ 1100.

Considering each case separately:

• Lightly loaded (0 ≤ x(1) ≤ 100): The delay-sensitive traffic routes all its traffic

on the shorter path, so r2 = 0. Then the throughput-sensitive traffic, being

elastic, fills up the rest of the shorter path, i.e., x(2) = 100 − x(1). In this case,

the network is highly under utilized, since the longer path, with capacity of

1000 Mbps is left entirely idle.

• Critically loaded (100 ≤ x(1) ≤ 1100): The delay-sensitive traffic first fills up

the shorter path, then routes the remaining amount on the longer path, so

r2 = (x(1) − 100)/1000. Since there is no space left on the shorter path to

accommodate the throughput-sensitive traffic, in order to maintain the routing

ratio r, throughput-sensitive traffic must be zero.

• Overloaded (x(1) ≥ 1100): In this case, the system lacks the bandwidth to

support the delay-sensitive traffic.

Compared with (5.1) where all the resources would be consumed at equilibrium

regardless of the delay traffic volume, strict priority queuing is inefficient. Our simple

example serves to highlight the importance to separate routing.

5.5.2 Single Queue; Customized Protocols

To understand the importance of separate queues, we model a system with a single

shared queue and customized protocols for each traffic class. The topologies can be

different, captured by H(1) and H(2) respectively. With a single queue, the queueing

delay is based on the sum of both loads over the entire capacity. We model the

delay-sensitive traffic in (5.9) and the throughput-sensitive traffic in (5.10):
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minimize
∑

l

(H(1)z(1))l(pl + f(
∑

k=1,2

(H(k)z(k))l/Cl))

subject to H(1)z(1) + H(2)z(2) � C

1Tz(1) � x(1)

z(1) � 0

variables z(1)

(5.9)

maximize
∑

i

U(
∑

j

z
i(2)
j )

subject to H(1)z(1) + H(2)z(2) � C

z(2) � 0

variables z(2)

(5.10)

In (5.9), there is a constraint that the delay-sensitive traffic must be satisfied. In

reality, without explicit coordination between the two networks, this constraint might

not be satisfiable.

Consider the simple topology presented earlier in Figure 5.2; by varying the delay-

sensitive traffic volume, we can make the following observations analytically:

• The performance of the delay-sensitive traffic is highly dependent on initial

conditions for the throughput-sensitive traffic.

• Even when the initial conditions favor the delay-sensitive traffic, the overall

delay experienced is still larger than when the queues are separate.

For simplicity, we assume that the delay-sensitive traffic is less than 100 Mbps,

since it is more common for delay-sensitive traffic to be a relatively small part of the

overall traffic. This means the delay-sensitive traffic has a clear preference for the
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shorter path and can be satisfied by using only the shorter path. The throughput-

sensitive traffic can route in three different ways: using both paths, using the shorter

path only or using the longer path only. Considering each case separately, we find:

• Using both paths : The throughput-sensitive traffic can fill up both paths (since

it is elastic), thus not leaving enough room for the delay-sensitive traffic. Even

if there is sufficient space for delay-sensitive traffic across the two links, part of

the delay-sensitive traffic might be forced onto the longer path.

• Using the shorter path only : The throughput-sensitive traffic will fill up the

shorter path, leaving the longer path for the delay-sensitive traffic.

• Using the longer path only : In this case, the delay-sensitive traffic gets its

preferred path, but since there is only one queue for both types of traffic, the

queuing delay is slightly longer than when there are separate resources.

Since the throughput-sensitive traffic is elastic, it can easily overwhelm the delay-

sensitive traffic without the separation of resources. In (5.1), the delay-sensitive traffic

can always be supported as long as it is less than system capacity. In addition, the

delay-sensitive traffic will be routed on its preferred path(s), irrespective of the initial

routing configuration of the throughput-sensitive traffic. Our simple example serves

to highlight the importance of resource separation.

5.6 DaVinci Architecture

This section introduces the basic building blocks of DaVinci and how they work to-

gether. The physical network, which we refer to as the substrate, can leverage existing

router-virtualization technology to run several virtual nodes on the same substrate

node. In addition, virtual links can be established between virtual nodes using stan-

dard tunneling techniques. Each virtual network runs its own traffic-management
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protocols: the adaptation of source rates and routing to efficiently utilize resources.

The substrate, in turn, monitors the load on each virtual link to adapt the bandwidth

shares. The virtual networks and the substrate network, collectively, maximize the

aggregate performance over all virtual networks.

Figure 5.5: Single-link view of DaVinci.

Consider an instance of DaVinci with N virtual networks, denoted by superscript

(k), where k = 1, 2, ..., N . Each virtual network consists of virtual nodes that each

have a share of the CPU and memory of the corresponding substrate nodes for running

the distributed traffic-management protocols. We assume that the virtual nodes have

sufficient processing and memory resources, and instead focus on how the virtual

networks share the bandwidth of the underlying substrate links. Each virtual link

knows its current “capacity” y
(k)
l , as well as a measure of the current level of congestion

s
(k)
l (which we refer to as congestion prices), as shown in Figure 5.5. The virtual

network uses s(k) and y(k) in its traffic-management protocols to make efficient use
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of the allocated resources.

Figure 5.6: Each substrate link computes bandwidth shares for the virtual links that
traverse it.

Substrate link l monitors the load on each virtual link that traverses it to compute

s
(k)
l and feeds this information to a link coordinator, as shown in Figure 5.6. The link

coordinator periodically computes the bandwidth shares yl, using its knowledge of

the objective functions of the virtual networks. In addition, the substrate network

ensures that
∑

k y
(k)
l = Cl, where Cl is the capacity of the substrate link. At a smaller

timescale, the substrate has a shaper for each virtual link that serves incoming data

packets based on the bandwidth share y
(k)
l . The shaper is non-work-conserving, i.e.,

if one virtual link has idle resources, the substrate does not transmit extra packets on

behalf of the remaining virtual links. Instead, the incoming packets for busy virtual

links accumulate in queues awaiting service. Using a non-work-conserving shaper

ensures that isolation between virtual networks is maintained between updates of

bandwidth shares.

All data packets are handled by the substrate at the behest of the virtual networks.
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At an edge node of the substrate, data packets are directed to the appropriate virtual

network using packet classification or some other form of “user opt-in”. In particular,

the substrate has separate forwarding tables for each virtual network, so a packet

is forwarded onto the appropriate outgoing link. At each outgoing link, there are

separate queues corresponding to each virtual link.

Within the same virtual network, each edge virtual node may have multiple (vir-

tual) paths for reaching another virtual node. The virtual nodes can compute these

paths in either a central or a distributed fashion. To distinguish between multiple

paths within the same virtual network, packets are encapsulated with labels at the

edge. Virtual nodes can then populate label tables based on the paths they computed.

In particular, the virtual node i computes a path rate zi
j that determines the amount

of traffic directed over path j.

The main building blocks of DaVinci—such as router virtualization, packet en-

capsulation, traffic shapers, and forwarding engines—are readily available today. The

main novelty of DaVinci is (i) the way these components are combined and (ii) how

the link coordinator adapts the bandwidth shares to ensure that the system maximizes

aggregate performance.

5.7 Related Work

DaVinci is related to several trends in networking research, from the long history

of research on QoS, to recent work on overlay networks and the emerging interest

in network virtualization. Similar to past work on differentiated services, network

virtualization has separate queues for different classes of traffic. Yet, DaVinci’s goals

are quite different than that of traditional QoS. Rather than offering performance

guarantees (at the cost of reserving resources), DaVinci maximizes the aggregate

performance across all traffic classes. Similar to overlays, DaVinci enables multi-
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ple customized protocols to run on top of a shared substrate. Yet, unlike overlays,

DaVinci’s virtual networks run directly on the substrate and have their own shares

of the underlying resources.

5.7.1 Quality of Service (QoS)

There is a rich body of research on Quality-of-Service techniques with the goal of

providing performance guarantees. At one extreme, the IntServ [18] architecture

offers per-flow performance guaranees by having the routers direct traffic to separate

queues (for each flow) and employ packet-scheduling algorithms that arbitrate access

to the shared links. The routers may also run QoS-routing protocols [20, 52] to identify

paths that can satisfy the performance requirements, as well as signalling protocols

to reserve resources along these paths. In contrast, DaVinci does not perform any

resource reservation or any per-flow operations. In that sense, DaVinci is more similar

to DiffServ [17] and Type-of-Service (ToS) routing [61], which manage resources at

the granularity of traffic classes, rather than flows.

DiffServ first classifies packets at the edge of the network based on their Type

of Service (ToS) bits or other header fields (such as IP addresses and port numbers)

to map data packets to the appropriate traffic classes. Then the routers schedule

amongst the queues based on static priority or fixed weights. In contrast, DaVinci

has a link coordinator that assigns the scheduling weights dynamically, to maximize

aggregate performance. In addition to having per class queuing, the routers could

compute separate forwarding tables for each traffic class [61]; this idea has recently

enjoyed renewed interest at the IETF in the form of “multi-topology routing,” where

routers can run multiple instances of the same routing protocol [72]. Recent research

has shown that running two instances of OSPF, with link weights tuned to differ-

ent application performance objectives, offers significant performance benefits over

a single protocol instance [54]. Similar to [54], we consider two traffic classes:delay-
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sensitive traffic and throughput-sensitive traffic. In contrast, we do not consider the

delay-sensitive traffic to have higher priority, and we model the throughput traffic as

elastic. DaVinci takes these ideas one step further by allowing each virtual network

to run its own suite of traffic-management protocols.

5.7.2 Overlay Networks

Overlay networks are a broad concept, including essentially any network constructed

on top of another network. In recent years, the term has been used to describe

networks composed of end hosts or middleboxes that communicate over tunnels that

span the underlying Internet. In sharp contrast to research on QoS, overlay networks

tend not to require any support from, or changes to, the underlying network. As such,

when an overlay node forwards traffic to another overlay node, the packets traverse

the physical links without QoS support from the network. In comparison, DaVinci’s

virtual networks run directly on the substrate nodes and have their own queues and

shares of the bandwidth resources.

Overlay networks have been applied to achieve a wide-range of goals, such as

improving routing reliability [7], running new congestion-control schemes [90], and

deploying new services like multicast [43] or conferencing [22]. Users may connect to

an overlay in a variety of ways, such as establishing a tunnel to an overlay node, con-

figuring a Web browser to use an overlay node as a proxy, or DNS redirection [45, 60].

In addition to running customized routing or congestion-control protocols, an overlay

can perform its own admission control and packet scheduling to manage its own traf-

fic [83]. The research on overlay networks has, among other things, demonstrated the

value of customized traffic-management protocols. In DaVinci, we take these ideas to

their logical conclusion by running the customized protocols inside the network and

providing separate shares of the underlying resources.
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5.7.3 Network Virtualization

Network virtualization builds on several earlier “virtualization” technologies. In or-

der to connect geographically disparate sites, ISPs establish Virtual Private Networks

(VPNs) [76], where each VPN has its own virtual links and forwarding tables. Sepa-

rately, server virtualization has become increasingly common as a way to consolidate

services on a single machine, and support migration to alleviate hot-spots in data cen-

ters. Recently, router vendors have started supporting virtualization to enable router

consolidation [62, 1]. In addition to having separate forwarding tables and links,

virtual routers also run their own instance of the routing software. Though limited

today to running existing vendor-specific routing software, recent press releases by

Cisco and Juniper indicate an emerging commercial interest in supporting router

programmability [4, 5]. DaVinci can leverage these technologies to build customized

virtual networks.

There are two broad usages of virtual networks: experimental research facilities

and platforms for commercial services. The research community has proposed to

build experimental test beds that run multiple virtual networks in parallel [13, 86].

Programmability is a key feature of experimental test beds, so that researchers can

run their own custom protocols. To ensure experiments are repeatable, static resource

partitioning is the natural choice for experimental test beds. ISPs, on the other hand,

are interested in improving the user experience. In this scenario, efficient usage of the

underlying resources becomes more important, thus DaVinci proposes to dynamically

adapt bandwidth shares. Though recent research papers have proposed that ISPs can

run multiple virtual networks in parallel, each with customized protocols [26, 9, 87],

they focused on high-level issues such as economic incentives. In contrast, this chapter

presents a concrete design for efficiently managing resources between multiple virtual

networks.
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5.8 Conclusions and Future Work

We present DaVinci: a simple, flexible, and efficient architecture for supporting

multiple traffic classes. In DaVinci, each virtual network runs customized traffic-

management protocols, and a per-link bandwidth coordinator adjusts bandwidth

shares across virtual networks. The substrate computes bandwidth shares entirely

based on local link loads, imposing no message-passing overhead. A non-work-

conserving shaper at each link ensures the virtual networks are isolated between

bandwidth share computations.

Though this paper used optimization theory to design and analyze DaVinci, op-

timization theory is one of many possible tools to enable a grounded discussion of

adaptive network virtualization. We believe adaptive network virtualization shows

promise as a future architecture and hope our results will encourage more researchers

to explore this topic. In the rest of this section, we discuss future work involving

relaxing the stability and optimality properties of DaVinci.

5.8.1 Impact of System Dynamics

In the problem formulation of (5.1), we implicitly assumed there is a fixed number of

virtual networks, a fixed number of source-destination pairs, and there are no failures

in the physical topology. In a real network, system dynamics can potentially impact

the stability of the bandwidth allocation algorithm and the distributed protocols

that run inside each virtual network. In this subsection, we discuss which of the

system dynamics will likely impact DaVinci, thus providing the direction for further

experimentation.

The convergence condition in Theorem 5.2.1 states that the adaptation of band-

width allocation between the virtual networks only occurs when the distributed pro-

tocols that run inside each virtual network converge. Adapting the bandwidth shares
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too frequently can lead to instability, but adapting bandwidth shares too infrequently

can lead to inefficiency. To avoid devolving to static resource allocation, it is essen-

tial for the distributed protocols inside each virtual network to be tuned for quick

convergence.

While feedback delay can affect the convergence properties of the distributed

traffic-management protocols, previous work has extensively evaluated the effect of

feedback delay and found methods to ensure stability, e.g., [90, 49]. Since the band-

width shares are adapted based only on local information, their stabilities are unaf-

fected by feedback delay.

Since some of the system dynamics occur on a very long timescale, they do not

impact the stability of the bandwidth allocation algorithm as long as the distributed

traffic management protocols are well-tuned to converge quickly. At the timescale

of days, ISPs may embed new virtual networks, or modify existing virtual network

topologies. At the timescale of hours, links and routers in the substrate network

might be upgraded or experience failure. These events act as effective “resets” to the

initial conditions of the system, thus the distributed traffic-management protocols

running in each virtual network will need to converge after such an event occurs.

The key factor that impacts the convergence of the bandwidth shares to an equi-

librium value is traffic fluctuations on the timescale of seconds. This includes both

flows arriving and departing as well as traffic bursts. In general, there may not

be sufficient time for the distributed traffic-management protocol to converge to an

equilibrium value. Consequently, the bandwidth shares might not converge to an

equilibrium value. The non-work-conserving shaper at each link maintains isolation

between virtual networks at some timescale, so that transient traffic bursts in one

virtual network do not compromise the other virtual networks. For flow-level dy-

namics, recent advances in optimization theory have shown that the queue lengths

in the networks will not grow to infinity [82]. In addition, past studies of distributed
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traffic-management protocols derived from optimization decomposition [90, 40] have

performed packet-level evaluations with realistic topologies, delay values and traffic

models. These studies have found that distributed traffic-management protocols can

stay close to the achievable performance for each instance of time (which has a spec-

ified traffic pattern). Still, extensive evaluation of DaVinci is required to understand

whether it tracks the ideal bandwidth shares closely under traffic shifts.

5.8.2 Extensions to DaVinci

An even more interesting direction is to study the trade-offs faced by DaVinci when

important assumptions are relaxed.

What if a traffic class wants guarantees? So far, we have assumed the traffic

in DaVinci is elastic and therefore does not require hard guarantees. In reality, some

traffic is inelastic and might want minimum guarantees. In response, the bandwidth

reservation mechanisms could be applied to DaVinci at two different levels. At a

higher level, some virtual networks might be allocated a minimal guaranteed band-

width with the excess bandwidth shared between remaining virtual networks. Within

each virtual network, providing per-flow-guarantees is also possible by running per-

flow admission control, signaling and bandwidth reservation protocols. To support

per-flow-guarantees, however, the substrate would need to provide per-flow queues,

which is significantly less scalable than per traffic-class queues.

What if some virtual networks are running non-optimized protocols? In

DaVinci, we assume the distributed traffic-management protocols inside each virtual

network are optimized for a distinct performance objective. In reality, an ISP might

want to use simpler traffic-management protocols such as OSPF or TCP Reno, and

simply tune them for a particular traffic class. In fact, recent work has studied running

two instances of OSPF in parallel, each tuned to delay-sensitive and throughput-

sensitive traffic respectively, with strict priority given to the delay-sensitive traffic [54].
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In our ongoing work, we are interested in exploring the trade-off between simplicity

of the traffic-management protocols and the aggregate performance of the system. In

particular, a concrete starting point would be to evaluate running the two instances

of OSPF with our link coordinator computing the bandwidth shares, and compare

the results to [54].

What if the virtual networks span several ISPs? So far, we assume that

DaVinci is deployed by a single ISP with control over both the substrate and all

the virtual networks. In reality, ISPs might host virtual networks as a service and

therefore virtual networks might span several substrate networks [26]. In this envi-

ronment, virtual networks belonging to different entities can coexist, raising concerns

about greedy and malicious behaviors. Fortunately, the bandwidth shares in DaVinci

are directly dependent on the virtual link loads, making it impossible for a virtual

network to acquire more bandwidth without inflating its own virtual link load, which

would negatively impact its own performance. Still, a malicious virtual network can

reduce the bandwidth available to other virtual networks by inserting bogus traffic or

introducing instability. To protect against a malicious virtual network, each virtual

network could be charged a price for the bandwidth it is allocated and the instability

it introduces.
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Chapter 6

Epilogue: Configuration

Complexity

In today’s traffic management, operators configure link weights every few hours, which

can be a cumbersome task. This dissertation has kept configuration complexity in

mind from the beginning. The algorithms proposed in this dissertation do not require

operators (or the management systems) to tweak routing protocols in response to

congestion, so the parameters are set on a much longer timescale. Further, we used

the sensitivity of tuning parameters as a comparison metric in comparing between

multiple distributed protocols.

In the process of designing and analyzing traffic-management protocols, we have

identified two distinct types of protocol parameters: control variables and granu-

larity parameters. Control variables are inputs to a protocol which directly affect

the equilibrium behavior of the protocol, e.g., link weights in OSPF. In contrast,

granularity parameters affect the dynamic behavior of the protocol, e.g. stepsizes in

TRUMP. In the context of an optimization problem, the control variables appears as

part of the problem formulation, while the granularity parameters (such as stepsizes

and timescales) are only part of the distributed solution. Consequently, the control
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variables affect efficiency (at equilibrium), and the granularity parameters affect rate

of convergence towards equilibrium. Table 6.1 summarizes the control variables and

granularity parameters which have appeared earlier in this dissertation.

Algorithm Control Variable Granularity Parameters
DUMP U βs

Partial-dual U , f , w βs

Primal-dual U , f , w βs, βy, Ty

Full-dual U , f , w βs, βp

Primal-driven U , f , w βz

TRUMP w βp, γ

Bandwidth-share adaptation U (k), w(k) βs, βy, Ty

Table 6.1: Control variables and granularity parameters of algorithms presented in
this dissertation.

The results presented in this dissertation also hint at a few potentially promising

future directions for research on configuration complexity. As a start, control variables

and granularity parameters face different configuration challenges. In today’s traffic

management, configuration of control variables is indirect: link weights are tuned so

that congestion is minimized when shortest path routing is used. The indirectness of

this process makes configuring link weights more challenging than tuning U , w, and

f in Chapter 4. On the other hand, today’s traffic engineering is centralized, which

sidesteps the convergence issues of a distributed algorithm.

In contrast, some of the distributed algorithms (such as DUMP) in Chapter 4

have granularity parameters that are difficult to tune. For algorithms derived from

optimization decomposition, the general guideline is that convergence requires small

step-size, while fast convergence requires the step-size to be large (subject to con-

vergence). Because tuning the granularity parameters devolves to running simulation

experiments that sweep their values, having fewer of them might reduce configuration

complexity. Comparing the primal-dual to the partial-dual, we saw that having more

granularity parameters did not improve convergence speed, but increased configura-

115



tion complexity.

Of course, the number of granularity parameters is not the only factor. For ex-

ample, TRUMP and DUMP both contained a single stepsize, but with dramatically

different sensitivities. Though Chapter 4 traded configuring control variables (link

weights) with configuring granularity parameters (stepsizes), the overall configuration

complexity is reduced. First, these stepsizes are set much less often than link weights,

and may have a range of acceptable values. Second, we found a setting for TRUMP’s

stepsize that works well for a range of topologies, capacities, feedback delays and

traffic patterns. Still, more research is require to understand how to find distributed

solutions that avoid sensitive parameters.

Although TRUMP is easier to configure than traffic management today, it requires

multipath routing and forwarding, which imposes extra overhead on the system. In

general, solutions which reduce configuration complexity may pose trade-offs with

scalability, though such trade-offs could evolve with time. As technology advances

with Moore’s Law, previously challenging computations can be done faster. As the-

ory develops, there could be better understanding of configuration complexity, and

improved guidance for protocol design.
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