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Abstract

Modern data centers must meet many challenges and expectations: (a) They must scale to a large

number of servers, while offering high bisection bandwidth and flexible placement of virtual machines.

(b) They must allow tenants to specify network policies and realize them by forwarding traffic

through the desired sequences of middleboxes. (c) They must allow tenants to bring their own IP

address space to the cloud to ease transition of enterprise applications and middlebox configuration.

The traditional approach of connecting layer-two pods through a layer-three core constrains VM

placement. More recent “flat” designs are more flexible but have scalability limitations due to

flooding/broadcasting or querying directories of VM locations. Rather than reactively learn VM

locations, our PARIS architecture has a controller that pre-positions IP forwarding entries in the

switches. Switches within a pod have complete information about the VMs beneath them, while each

core switch maintains complete forwarding state for part of the address space. PARIS offers network

designers the flexibility to choose a topology that meets their latency and bandwidth requirements.

PARIS also allows tenants to bring their own IP address space and utilizes lightweight virtualization

using Linux namespaces to offer middlebox service in a manner that truly reflects the pay-as-you go

model of cloud computing. It utilizes MPLS label forwarding and aggregation in the network core and

uses source routing at the network edge to realize middlebox policies specified by tenants. Finally,

we evaluate our PARIS prototype built using Openflow-compliant switches and NOX controller.

Using PARIS we can build a data center network that can support up to 500K VMs.
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1 Introduction

Recent years have seen rapid growth in migration of enterprise applications to public clouds and

this trend will continue to rise in the coming years [1]. Similar trends have been observed for

private clouds as well [2]. This is driving creation of large data centers with thousands of switches

that interconnect tens of thousands of servers running hundreds of thousands of Virtual Machines

(VMs) [3, 4]. Operating at this large scale puts tremendous pressure on the design of network

topologies, routing architectures, and addressing schemes. With this knowledge in mind, we come

up with the following set of requirements that a data center network must satisfy:

1. Scalability: This is the first and most important requirement. Data center networks should

be able to support hundreds of thousands of virtual machines and thousands of tenants.

2. Virtual machine migration: The data center network should not put any restrictions on

host mobility. Any host/VM should be allowed to migrate to any physical server within the

data center. Seamless host mobility helps lower power consumption by dynamically consoli-

dating VMs on fewer servers and powering off underutilized servers. Apart from this, virtual

machine migration also helps in dealing with hardware failures, malicious attacks, and system

upgrades.

3. Multi-pathing: Big Data and High Performance Computing applications have led to the

creation of low oversubscription, high-capacity network interconnects like Clos [5], Fat-tree [6]

etc. The data center network should be able to leverage these high-capacity interconnects

by spreading traffic across the redundant links in these topologies and achieve high bisection

bandwidth.

4. Easy manageability: Network management must be automated for scalability. A data

center network has a large quantity of network switches. Maintenance of switches is costly and

configuring them is an error-prone task [7].

5. Low cost: Network architects must make use of off-the-shelf commodity components for

building the network to keep costs low.

6. Middlebox support: Middleboxes are network appliances that provide services other than

packet forwarding. Common examples of these appliances are Firewalls, Load Balancers,

Network Address Translators, Intrusion Detection Systems etc. Enterprises (small and large)

make use of these middleboxes in their networks and should continue to be able to use these
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services when they migrate to the cloud. Cloud providers provide load balancing and limited

packet filtering services today. However, none provide the flexibility to tenants to specify their

network policies eg. forward all traffic going to destination port 80 through a firewall followed

by a load balancer.

7. Multi-tenancy: There should be no restriction on a tenant’s choice of IP address. This lowers

the barrier for migrating legacy applications to the cloud. This also minimizes changes required

in middlebox configuration, which might have hardcoded IP addresses. Bring-your-own-IP-

address (BYOIP) is already supported by public clouds (eg. Amazon Virtual Private Cloud [8],

Windows Azure Virtual Network [9]). Private clouds don’t need to support multi-tenancy but

they must satisfy the remaining requirements.

Traditional approaches of building layer-2 Ethernet switch networks or connecting islands of

Ethernet LANs using layer-3 switches, fail to achieve these data center goals.

Layer-2 networks built using Ethernet switches are not scalable because they use flooding-based

Source MAC Learning which does not scale beyond a couple of hundred hosts [10]. We can limit

broadcasts in layer-2 networks by using VLANs but they are limited (4094) and require careful

configuration. Another fundamental limitation of layer-2 networks is that they do forwarding on

flat MAC addresses. As a side effect of Source MAC Learning, each Ethernet switch may have to

store forwarding information for all hosts in the network. Typical commodity data center switches

can store ∼64K MAC entries. Thus, the layer-2 table size of the switches puts an upper bound on

the size of the network. Layer-3 networks on the other hand are easier to scale. Figure 1 shows

a common data center topology with layer-2 switches in the edge layer and layer-3 switches in the

aggregation and core layer. The data center address space is divided into subnets and each edge layer

switch stores forwarding information for hosts belonging to a subnet. The aggregation switches store

forwarding information for all subnets within its pod and aggregate the subnets before advertising

them to the core layer. Switches in other pods store these aggregated IP prefixes and hence, the

amount of information stored inside switch forwarding information base reduces.

Virtual machine migration requires layer-2 adjacency; since migrating VMs should not change

their IP addresses as doing so will break their pre-existing TCP connections. Unlike MAC addresses,

IP addresses are topologically significant. This restricts mobility of VMs to within a subnet in layer-3

networks, while layer-2 networks provide seamless host mobility. Seamless host mobility is possible

at layer-3 as well [11] but it requires modification of end-host application.
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Figure 1: Common data center hierarchical topology.

Multi-pathing can be achieved in layer-3 networks through Equal-Cost Multi-path (ECMP [12])

routing which load-balances traffic over multiple paths of equal cost. Routing protocols like Open

Shortest Path First (OSPF) and Intermediate System to Intermediate System (ISIS) explicitly allow

ECMP routing. Data center switches supporting 32-way and 64-way ECMP are common these days.

However, in layer-2 networks multi-pathing is a problem because Spanning Tree Protocol (STP)

limits available bandwidth by disabling links, to avoid forwarding loops. STP also puts a lot of

load on the root switch which becomes a single point of congestion and failure. This necessitates

deployment of a high port-density and high bandwidth switch as the root switch, which increases

the cost of network deployment.

Layer-3 networks require significant configuration effort which is error-prone [13, 14]. For each

layer-3 switch, network operators have to configure its interfaces, configure the routing protocol, and

configure route summarization on the switches. Also, since the network size is big, operators typi-

cally partition it into routing areas for scalability. This further complicates configuration. Finally,

network administrators have to partition the data center address space into subnets and configure

switch interfaces and DHCP servers with this subnet information. For layer-2 networks, the switch

parameters must be configured properly so that STP chooses the desired high capacity switch as

the root. Besides this, Ethernet switches require zero-configuration and provide plug-and-play func-

tionality.

3



Architecture Scalability Host Mobility Multi-pathing Manageability Low cost
Ethernet × X × X X

IP with Ethernet X ∼ X × X
TRILL × X X X X
SPAIN × X X X X
PAST × X X X X
VL2 ∼ X X × X

PortLand ∼ X X X X
SEATTLE × X X × ×

No-Stretch PARIS X X ∼ X X
High-BW PARIS X X X X X

Table 1: Comparison of recent data center network architectures.

Multi-tenancy can be easily supported in layer-2 networks, unless the tenant VMs have the same

MAC address. Supporting multi-tenancy in layer-3 networks requires tunneling/encapsulation, since

two tenant VMs can have the same IP address. Middlebox policies can be supported in an ad-hoc

fashion in both networks. There are two ways we can do this—Tunneling [15] packets from one

middlebox to another or by installing policy rules on all switches [16]. The latter approach is not

scalable, since it consumes a lot of space on switch TCAMs, which are limited in size. The former

approach is scalable but inflexible.

1.1 Related Work

There has been a lot of work in this problem space but none of the existing solutions provide all the

desired properties. Table 1 compares recent data center network architectures with PARIS.

TRILL [17], SPAIN [18], and PAST [19] solve the limitations of the spanning tree protocol in

layer-2 networks and achieve high aggregate bandwidth by spreading traffic across the links of the

network topology. Since they are Ethernet-based solutions, they are able to support seamless host

mobility and maintain plug-and-play functionality as well. However, since forwarding is still done

on flat MAC addresses, the size of MAC table becomes a bottleneck and limits scalability.

TRILL runs link-state routing protocol (ISIS) in the network between TRILL Switches or

RBridges (Routing Bridges) for dissemination of end-host and switch reachability information. Core

RBridges need to know the MAC addresses of only the Edge RBridges, however, Edge RBridges

learn MAC address forwarding information for all hosts in the network. Since Rbridges run link-state

routing protocol among themselves, traffic through the core can take advantage of multi-pathing.

RBridges still rely on flooding for unknown destination Ethernet frames and flood broadcast traffic

(ARP, DHCP).
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SPAIN achieves multi-pathing by calculating multiple disjoint spanning trees (each tree is as-

signed a VLAN ID) and spreading traffic across them through an end host “driver”. However,

switches now have to store multiple table entries (for each (VLAN ID, destination MAC) pair) and

resort to flooding in case MAC table overflows. PAST builds a spanning tree for each host in the

network which is more scalable but it still requires one Ethernet table entry per routable address in

each switch. Also, it does multiple costly spanning tree computations each time a link/switch fails.

Another approach, taken by VL2 [20], NVP [21] and PortLand [22], is to use indirection to

separate a host’s location from its identity. Each host is given both a location address and an

identity address. VL2 uses layer-3 addresses — topologically significant Locator Address (LA) and

flat Application Address (AA) while PortLand uses layer-2 addresses — topologically significant

Pseudo MAC (PMAC) address and flat Actual MAC (AMAC) address. The topologically significant

address provides scalability and multi-pathing, while the flat address provides host mobility. Both

schemes use indirection to translate between these addresses and this translation is cached at the

end host. However, this location-identity split scheme has a few disadvantages. The scheme relies on

directory servers that store mapping from a VM’s address to its location. These directories introduce

scalability challenges of their own, requiring many servers to handle the load of queries and updates.

In addition, host/edge switches incur delay to query the directory, and overhead to cache the results

and encapsulate packets, particularly for the high volume of traffic entering the data center from

the Internet.

Monsoon [23], a pre-cursor to VL2, works at layer-2 and uses MAC-in-MAC tunneling instead

of IP-in-IP encapsulation. Both VL2 and Monsoon use Valiant Load Balancing [24], a technique

we leverage in our solution as well. Similar to PortLand, MOOSE [25] also proposes making MAC

addresses hierarchical but it does not talk about multi-pathing.

SEATTLE [26] proposes using consistent hashing for scaling Ethernet by distributing directory

information over the switches and directing traffic through an intermediate switch on a cache miss

at the ingress switch. However, reactive caching can lead to large forwarding tables, unless the

traffic matrix is sparse—a reasonable assumption in enterprise networks but not necessarily in data

centers. SEATTLE cannot be implmented on commodity data center switches, since it requires

switch modifications. Manageability is also an issue, since all switches need to be configured to run

OSPF among themselves.

VL2 does not talk about how to achieve multi-tenancy and none of the above approaches talk

about middlebox support.
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1.2 ProActive Routing In Scalable DCs

In this paper, we present PARIS, a more scalable way to provide “one big virtual switch” in both

public and private clouds.

We saw that networks built using flat MAC addresses provide seamless host mobility and require

zero configuration but are not scalable and cannot support multi-pathing. Networks built using

hierarchical IP addresses provide scalability and multi-pathing but they do so at the cost of host

mobility and manageability. A natural question to ask is whether we can combine the best of both

these approaches. PortLand [22] and MOOSE [25] explored one point in this design space by making

MAC addresses hierarchical. In this work, we take the alternative route by building a network based

on flat IP addresses to satisfy all our design requirements.

Since we treat IP addresses as flat addresses, running distributed routing protocols among the

switches will not be scalable. Our design has a controller that pre-positions forwarding state in the

network, based on knowledge of each VM’s address and location. We leverage Software Defined

Networking (SDN) enabled by OpenFlow [27] for this purpose. SDN separates switch control plane

from its data plane, giving us control over what goes inside switch flow tables. Rather than en-

capsulate packets at the network edge, the bottom few levels of switches store a forwarding entry

for all VMs beneath them. While clearly not scalable to the entire network, commodity switches

have enough forwarding-table space for the IP addresses of all VMs in the same pod. To avoid

a state explosion further up the hierarchy, the controller partitions the forwarding state across the

core switches, so each core switch maintains fine-grained forwarding state for a portion of the data

center’s IP address space. However, partitioning the forwarding state across the core switches may

lead to lower path diversity. Fortunately, this challenge is surmountable through careful design of

the core-layer topology and by maintaining fine-grained forwarding entries for popular destinations.

The main contributions of this work are as follows:

• We come up with two data center forwarding schemes—No-Stretch PARIS and High-

Bandwidth PARIS which are scalable, support host mobility and easy manageability, and

provide good bisection bandwidth through multi-pathing.

• We implement multi-tenancy and middlebox support for both these schemes.

• We evaluate our PARIS prototype built using NOX [28] OpenFlow controller and emulated

OpenFlow switches over Mininet-HiFi.
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The next section illustrates the main architectural principles underlying our design. We begin

by looking at the first five data center network requirements and describe forwarding schemes (No-

Stretch PARIS and High-Bandwidth PARIS) that satisfy them in Section 3. Section 4 extends

our design to public clouds, where we can have multiple tenants; each with their own IP subnets.

Section 5 extends PARIS to provide support for middlebox policies. We present the evaluations in

Section 6 and Section 7 concludes the paper.

2 Architectural Principles

In rethinking how to design scalable data-center networks, we identify four main principles:

Flat layer-three network: Having the entire data center form one IP subnet simplifies host

and DHCP configuration, and enables seamless VM migration. However, forwarding on MAC ad-

dresses introduces scalability challenges, since the address space is large and flat—forcing the use of

broadcasting/flooding which has the side effect of each switch learning location of all hosts in the

network. In contrast, IP addresses are easily aggregated, with switches forwarding traffic based on

the longest-matching prefix.

Proactive installation of forwarding state: Installing forwarding-table entries before the

traffic arrives reduces packet latency and avoids the overhead of learning the information reactively.

However, injecting flat addresses into routing protocols (e.g., OSPF or IS-IS) leads to large forward-

ing tables in every switch. Instead, a logically-centralized controller can pre-position the necessary

forwarding-table entries in each switch, based on a network-wide view of the topology and the

locations and addresses of VMs. This enables much smaller tables.

Complete forwarding information within a pod: Storing a forwarding-table entry for every

VM in every switch would not scale. Yet, a switch could easily store the forwarding information

for all VMs in the same pod. Today’s low-end switches have enough space for storing forwarding

information for thousands of servers. OpenFlow-enabled switches have separate tables for wildcard

and exact-match entries [19]. Wildcard entries are stored in a TCAM, which is smaller in size (∼4K-

24K), while exact-match entries are stored in conventional memory like SRAM, which is much larger

(∼16K-64K layer-3 table). Assuming we have 48 port switches at the edge layer, each connected

to a physical server hosting 64 VMs, a quick back-of-the-envelope calculation shows that each pod

aggregation switch in Figure 1 will store ∼13K entries—easily storable in layer-3 table. Future

switches will have larger tables, to accommodate multi-core servers hosting even more VMs. Storing
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complete information enables short paths and good path diversity within a pod, and default routes

up the hierarchy to the rest of the network.

Partitioned forwarding state in the core: Moving up the hierarchical topology, the number

of VMs lying “below” a switch grows exponentially. We can no longer store complete forwarding

information inside the core-layer switch. So, we divide the data center address space and store full

forwarding state for a portion of the IP address space in each core switch. For example, we can

divide a /14 address space into four /16 Virtual Prefixes [29] and a core switch with a layer-3 table

size of 64K can store forwarding information for an entire /16 virtual prefix. Since we treat IP as

a flat address within a pod, VMs with IP address within this prefix may be spread across multiple

pods.

3 PARIS Architecture

In this section, we first discuss how PARIS achieves scalability and multi-pathing by proposing new

forwarding schemes and core-layer topology. Next, we describe how to reduce stretch and increase

path diversity in PARIS by having fine-grained forwarding entries for popular destinations in core

switches. Finally, we look at the PARIS architecture components and network dynamics. We initially

assume a private cloud setting where all VMs belong to the same institution and have unique IP

addresses. Later, we extend the forwarding schemes for multi-tenant scenario in Section 4.

Figure 2: No-Stretch topology with core-layer switches aggregating /16 prefixes.
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3.1 No-Stretch PARIS

Based on the architecture principles we described in Section 2, we come with No-Stretch PARIS

forwarding scheme as shown in Figure 2. In No-Stretch PARIS packets always take the shortest

path from source VM to destination VM, hence the name. Each edge switch stores reachability

information of all directly-connected VMs, i.e., all VMs beneath it. Similarly, each aggregation

switch stores reachability information of all hosts in its pod. The core-layer switches store reach-

ability information for a portion of the data center address space. Each Virtual Prefix (VP) has

an Appointed Prefix Switch (APS) in the core layer, responsible for storing reachability information

for all IP addresses that lie within that virtual prefix. Figure 2 shows a data center network with

10.0.0.0/14 host address space, where each switch in the core layer is aggregating a /16 virtual

prefix. We say, for example, that C1 is an APS for virtual prefix 10.1.0.0/16 and stores reachability

information for all VMs with IP address that lies within the virtual prefix 10.1.0.0/16. The actual

virtual prefix length depends on the layer-3 table size of the core switches. The data center address

space size together with layer-3 table size determines the number of core-layer switches.

Since each core switch stores reachability information to only a subset of the address space,

each aggregation switch must be connected to every core switch in a complete bipartite graph

configuration in order to reach all the hosts in the network. In order to reach destination VMs in

other pods, all aggregation switches store low-priority flow entries which match on virtual prefixes.

According to OpenFlow specification [30], packets match flow entries in priority order, i.e., from

the highest priority to the lowest priority entry with the first entry which matches being used

for forwarding. Figure 3 shows flow entries installed on a pod aggregation switch in No-Stretch

PARIS. Traffic to a destination VM attached to a different edge switch in the same pod, matches a

default priority exact-match entry (non-shaded), instead of a low-priority virtual prefix match entry

(shaded).

Parameterized Construction: Assume a physical server can host V VMs, and let k be the port

density of all switches in Figure 2. Since each core-layer switch is connected to all the aggregation-

layer switches, we can have a maximum of k − 4 core switches, k aggregation switches and 2k edge

switches for the pod design of Figure 2. The maximum number of VMs supported by this topology

will be 2k(k − 2) × V . Using this formula, if we have 64 port switches in our data center network

we can support a maximum of ∼500K VMs.

We try to take advantage of equal-cost paths to spread traffic, wherever possible. In Figure 2,

traffic from an edge switch going to an aggregation or core-layer switch has two equal-cost next

9



Figure 3: Forwarding information stored in Aggregation Switch A1 of Figure 2.

hops. OpenFlow specification starting from v1.1 allows spreading of traffic across multiple ports of

a switch through select group type entry in switch group table. Commodity switches have a group

table size of ∼1K [19], enough for our purpose. The implementation of traffic splitting algorithm is

switch dependent and can be done on a per-flow or per-packet granularity. So, in order to spread

traffic across the two equal-cost paths we install on each edge switch in Figure 2, a single low-priority

flow entry which spreads traffic across the two ports connecting it to its pod aggregation switches.

This low-priority entry is matched in case no default-priority entry in edge switch matches, i.e., if

the destination VM is not directly connected to the edge switch.

Traffic between two VMs A and B (10.2.0.24), located in different pods, matches the low-priority

flow entry on A’s edge switch and will be forwarded to one of its pod aggregation switches. Since B

is located in a different pod, aggregation switches in A’s pod do not have forwarding information for

it. Instead, the packet will match the low-priority virtual prefix match entry in A’s pod aggregation

switch. In this example, it will be forwarded to the APS aggregating virtual prefix 10.2.0.0/16 in the

core layer—C2. The APS can forward the traffic to any of the two aggregation switches in B’s pod.

The controller randomly chooses one of them during network bootstrap and installs a forwarding

entry for it in C2. Once the packet reaches the destination pod aggregation switch, it will have

the necessary forwarding information for forwarding the traffic to B’s edge switch, which ultimately

forwards the traffic to B.
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Figure 4: High-Bandwidth topology with a full mesh in the core layer.

While sending northbound traffic, No-Stretch PARIS takes advantage of equal-cost paths that

exist within a pod but it does not take advantage of multiple equal-cost paths that exist between

pods. Instead, it does coarse-grained traffic division at virtual prefix scale. We overcome this

limitation by modifying the core-layer topology in the next section.

3.2 High-Bandwidth PARIS

Data center traffic measurement studies have shown that majority of traffic in a data center stays

within a data center (i.e. “east-west” traffic) and this traffic will continue to rise in the coming

years [31]. It is incumbent on a data center network to support high inter-host communication

bandwidth through multi-pathing. We saw in No-Stretch PARIS that partitioning of forwarding

state across core switches leads to lower path diversity. Also, the network size that No-Stretch

PARIS can support is limited by the port density of the switches. Fortunately, careful design of

the core-layer topology can overcome these limitations. In this section, we propose High-Bandwidth

PARIS that provides higher bisection bandwidth and makes PARIS more scalable.

Instead of having disjoint switches in the core layer, we connect them to form a full mesh (see

Figure 4). We choose a full-mesh topology because it has low diameter and multiple paths for fault

tolerance and load balancing.
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Parameterized Construction: Let’s say we wish to construct a data center with 2h VMs

using k-port switches, with pod design as shown in Figure 4. We assume core-layer switches have a

routing table size of 2r. For connecting these VMs, we will need d 2h

(k−2)×V e edge switches, d 2h−1

(k−2)×V e

aggregation switches and 2h−r core switches, where V is the number of VMs each physical server

attached to an edge switch can host. Each core-layer switch will be connected to (2h−r−1) other core

switches. Each aggregation switch is connected to min(k − 4, E) randomly-selected core switches

where,

E =

⌊
(k − 2h−r + 1)× (k − 2)× 2V

2r

⌋
(1)

Since aggregation and core switches no longer need to be connected in a bipartite graph configuration,

we can support more hosts in High-Bandwidth PARIS.

The aggregation-layer switches no longer have low-priority virtual prefix match entries shown in

Figure 3. Instead, they have a low-priority flow entry which spreads traffic across all the connected

core switches, in case none of the default entries match. This provides us more multi-pathing

compared to No-Stretch PARIS. As before, each core-layer switch is an APS for a virtual prefix.

In order to reach all the hosts in the data center, each APS has low-priority virtual prefix match

entries for all virtual prefixes being aggregated by other APSs in the core layer.

Traffic between two VMs A and B (10.2.0.24), located in different pods, flows through a maximum

of three core switches (two hops). The source pod aggregation switch hashes the five tuple of the

packet and forwards it to one of the core-layer switches (say C0). The ingress core switch looks at

the destination IP address of the packet and forwards it to the appropriate APS (C2). The APS

then tunnels the traffic through the core layer to the destination pod aggregation switch, if it is not

directly connected to it. Tunneling rules have higher priority. For tunneling the packets, we can use

MPLS or VLAN headers. In this example, no tunneling is needed since C2 is directly connected to

the destination pod aggregation switch. Traffic is directly forwarded to the aggregation switch in

B’s pod. In case C2 is connected to both aggregation switches in B’s pod, the controller randomly

chooses one of them during network bootstrap and installs a forwarding entry for it in C2.

3.2.1 Valiant Load Balancing in Core Layer

Measurement studies have shown that traffic pattern inside a data center is highly volatile [20].

Valiant Load Balancing (VLB) is a randomization technique for handling traffic variations under

the hose model [32]. It facilitates efficient link utilization by bouncing the traffic off a random switch
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before forwarding it to its destination. We can further increase multi-pathing in High-Bandwidth

PARIS by implementing VLB in the core layer.

In a full-mesh network of N nodes, where a node can send traffic at a maximum rate r to

another node, the link capacity of mesh links required to support any traffic matrix using VLB is

only r( 2
N ) [33]. For implementing VLB in our topology, the link capacity required between any pair

of core switches will be r( 4
N ), where in the first phase a packet entering the core layer is forwarded to

an APS after bouncing it off a randomly selected core switch, and in the second phase it is forwarded

to an egress core switch from the APS after again bouncing it off a random core switch.

By implementing VLB, we can reduce the bandwidth requirement of the internal links in the

core layer, and also support arbitrary traffic matrices. However, a packet may now travel four

hops instead of two in the core layer, i.e., we trade-off stretch for throughput. This is a reasonable

trade-off in data centers since they have very low network latency.

In conclusion, High-Bandwidth PARIS is more scalable, has higher path diversity and can provide

higher bisection bandwidth compared to No-Stretch PARIS. We verify these properties through

evaluations in Section 6.

3.3 Generalized Core-Layer Topologies

So far we have seen No-Stretch and High-Bandwidth variants of PARIS, with disjoint and fully-

connected core-layer topologies. These are two special examples of core-layer topologies with different

path diversity, stretch, and fault-tolerance properties. We will now look at other graph configurations

for connecting switches in the core layer.

If we have a sparse graph in the core layer with a small number of internal edges, we will have

more spare ports for supporting multi-pathing between the aggregation and core-layer switches. But

a sparse graph will have a larger diameter and lower path diversity within the core layer. We seek a

core-layer topology with high connectivity for fault tolerance and load balancing, low diameter, and

low vertex degree. These properties are satisfied by Expander Graphs which have O
(
log n

)
diameter,

where n is the number of vertices in the graph. There are many constructions [34] for different families

of expander graphs which have varying vertex degree and diameter. Some of them are LPS graph,

Paley graph, Margulis construction for expander graphs, Hypercube graph and superconcentrators.

The network designer can choose a suitable expander graph topology depending upon the latency,

“east-west” bandwidth, and reliability needs of the data center.
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3.4 Fine-Grained Rules for Popular VMs

Traffic to popular destinations may experience stretch in High-Bandwidth PARIS, and low bisection

bandwidth in No-Stretch PARIS. To alleviate these problems, the OpenFlow-based controller can

install fine-grained forwarding entries (/32) for popular destinations in the core-layer switches.

In No-Stretch PARIS, if the controller installs fine-grained forwarding entries for popular desti-

nations on all core-layer switches, the aggregation switches can install high priority flow entries for

spreading traffic across the core layer and achieve higher bisection bandwidth for these destinations.

For High-Bandwidth PARIS, installing individual destination rules on all the core-layer switches,

instead of aggregating them at APSs, ensures that all the traffic to these destinations always takes

the shortest path through the core layer.

Traffic measurements for identifying popular destinations incur little overhead. We can collect

traffic statistics in the virtual switches inside the hypervisor or in the commodity switches, if they

support it. OpenFlow-enabled switches keep traffic statistics for all flow entries, by default.

3.5 Elements and Dynamics

In this section, we discuss various architecture components of PARIS and how they interact with

each other. Also, we describe how the network handles external traffic and copes with failure.

3.5.1 Network Elements

Controller/Fabric Manager: The controller has complete visibility into the network topology and

knows the address and location of all VMs. Using this initial information the controller performs

the following tasks: (i) tracking switch-level topology and host location, (ii) optimally placing and

updating forwarding information in switches after startup/failure, and (iii) monitoring network traffic

to perform traffic engineering. We use NOX [28] OpenFlow controller for this job in our evaluations.

Switches: We do not run any intra-domain routing protocol between the switches. In order to

learn about topology changes, the switches must support neighbor discovery via protocols like LLDP

and send notification events to the controller. OpenFlow-enabled commodity switches provide all

the features we need to build No-Stretch and High-Bandwidth forwarding schemes.

Hosts: Hosts send a variety of broadcast traffic which needs to be managed in order to make the

network scale and save precious bandwidth. We place each VM in its own /32 subnet with a default

route to its aggregation switch, so that it no longer sends ARP broadcasts. In location-identity split

schemes, the first packet of each new flow is sent to the controller for address-mapping. Measurement
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studies have shown that more than 99% of flows in a data center network are latency-sensitive “mice”

flows that last for tens of milliseconds [20]. The additional latency incurred for translation lookup is

detrimental to these flows. Moreover, extra hardware is needed to create a scalable directory service.

A network with 2 million VMs requires about 667 directory servers for handling address-mapping

queries [35]. Unlike other approaches [22, 20, 26], we don’t need these directory servers.

Host DHCP messages are intercepted by the edge switches and forwarded to the controller, which

can assign any unallocated IP address to any VM. This is a one-time lookup and it greatly simpli-

fies host configuration. For handling multicast traffic, we can create virtual prefixes for multicast

addresses and aggregate forwarding information for multicast groups in the core layer. The switches

forward IGMP join messages to the controller which installs relevant forwarding information on the

core, aggregation, and edge switches to ensure delivery of multicast traffic.

3.5.2 External Traffic

Architectures that use packet encapsulation or header rewriting to separate host location and iden-

tity [23, 22, 21] must perform these action on a large volume of diverse traffic arriving from the

Internet. For example, Nicira’s network-virtualization platform has special gateway servers for this

purpose. VL2 [20] uses an externally visible Location Address for servers which need to be reachable

from the Internet. So, it doesn’t need special gateway servers but it restricts the movement of these

externally visible servers as a result. In contrast, PARIS does not extend or modify the packet

header, greatly simplifying the handling of traffic entering the data center from the Internet.

For handling external traffic in No-Stretch PARIS, we need a border router which is attached

to all the core-layer switches and which stores forwarding information for all the virtual prefixes.

For High-Bandwidth PARIS, we do not need this border router as all the core-layer switches are

connected to each other in a full-mesh topology.

3.5.3 Network Dynamics

Since the controller has a network-wide view, it plays a crucial role in coping with network dynamics.

Switch Dynamics: If an edge switch fails, the VMs attached to that edge switch become

unreachable. Unless there are redundant edge switches, there is nothing that can be done to restore

reachability. If one of the links connecting an edge switch to the aggregation-layer switches goes

down or one of the aggregation switches goes down, the group entry in edge switch can detect that

one of its ports is down and start forwarding traffic to its live port. If a core-layer switch fails,

the virtual prefix being aggregated by it can be sub-divided into smaller sub-prefixes and stored on
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other core-layer switches until a new core-layer switch comes up. This provides graceful degradation

and load balancing properties to the architecture. In both No-Stretch and High-Bandwidth PARIS

having redundant core switches can help increase fault tolerance and also provide multi-pathing

benefits.

Link Dynamics: Since we have multiple paths between any pair of hosts, simple re-routing of

traffic by the controller can restore reachability after a link failure. The High-Bandwidth topology

is more resilient to link failures than No-Stretch topology.

Host Dynamics: When a VM migrates to a new pod, the controller installs forwarding infor-

mation on the new edge and aggregation switches for reaching the migrated VM. It also updates

the APS entry, so that the APS forwards the packets to the new pod aggregation switch. Finally,

the controller deletes forwarding entries from old edge and aggregation switches. The controller can

orchestrate VM migration or it can learn that the VM has moved through gratuitous ARP from the

migrated VM.

4 Multi-tenancy

Our architecture so far was geared towards private clouds, where all VMs have unique IP addresses.

However, it can be easily extended to provide multi-tenancy support, where a tenant can request

any (possibly overlapping) IP address.

To uniquely identify each VM in the data center network, we allocate each tenant a unique Tenant

ID. In PARIS, we use MPLS Label Value field for this purpose. MPLS is a “layer 2.5” protocol with

a 20-bit field called Label Value. We allocate each tenant a unique Label Value starting from 16.1

We tag all outgoing packets of a tenant VM with the appropriate Tenant ID and remove this tag

from all incoming packets. MPLS Label Value along with IP address, now uniquely identifies a VM.

We choose MPLS Labels over VLAN Identifiers because using VLAN Identifiers as Tenant IDs

would allow us to support only 4094 tenants. The number of tenants inside a public cloud can be

large and MPLS Labels allow us to support over a million tenants. MPLS support was added to

OpenFlow starting from v1.1.

The edge, aggregation, and core-layer switches continue to store the information that they were

storing previously. The edge and aggregation switches store forwarding information for all VMs

beneath them and the APSs aggregate virtual prefixes as before. The only difference is that these

switches now match on both MPLS Label Value and destination IP address of an incoming packet.

1Label Values 0-15 are reserved.
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OpenFlow specification as of v1.3 does not allow switches to match on both MPLS Label Value

and destination IP address simultaneously. To get around this limitation, we make use of two flow

tables—Flow Table 1 and Flow Table 2. OpenFlow specifications starting from v1.1 allows switches

to have multiple flow tables. A flow entry which previously matched on the destination IP address

of a VM and forwarded that packet out of a switch port, now matches on both the destination IP

address and MPLS Label Value of the tenant that owns the VM. Packet processing will now be done

as follows:

• In Flow Table 1, we have entries that match on valid MPLS Label Values. On a successful

match we store the MPLS Label Value inside a Metadata register (introduced in OpenFlow

Specification v1.2 [36]), pop-off the MPLS header, and send the packet down the switch pipeline

to match on entries stored in Flow Table 2.

• Inside Flow Table 2, we store entries that match on both the Metadata register (which contains

the MPLS Label Value) and the destination IP address of the packet. If there is a successful

match, we push a MPLS header on the packet, set its MPLS Label Value to the value inside

the Metadata register, and forward it out of the switch port.

We also need to somehow push a MPLS header (with Label Value = Tenant ID) on to a packet

coming out of a tenant VM and pop this header off before forwarding it back to a tenant VM.

We use the host virtual switch running within the hypervisor for performing this task. The flow

table of a host virtual switch is stored in DRAM, which is both scalable and has low cost. This

allows us to store millions of flows entries in the host virtual switch flow tables. Since the controller

knows all the tenant-VM mappings, it installs flow entries inside host virtual switches. It installs

entries for pushing a MPLS header and setting its MPLS Label Value as the VM Tenant ID, for all

packets coming from a VM before forwarding them to the edge switch. The controller also installs

flow entries for popping off the MPLS header of packets going to a VM, after matching on both its

MPLS Label Value and destination IP address. Also, if the destination VM is directly connected to

the source edge switch, the controller installs high priority flow entries inside the host virtual switch

so that it forwards traffic to the destination VM without pushing and popping MPLS headers.

Since the switches now match on MPLS Label Value along with destination IP address, the

number of forwarding rules stored inside each switch increases. Specifically, we now need switches

with multiple flow tables and the number of flow entries stored inside each switch increases by the

number of tenants. So, the virtual prefix size now not only depends on the routing table size but also

on the number of tenants we wish to support in the data center network. Traffic in both No-Stretch
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and High-Bandwidth PARIS is forwarded as before but now using the combination of MPLS Label

Value and VM IP address to uniquely identify each VM.

5 Middlebox support

Middleboxes are layer 4-7 devices that inspect, filter, and modify network traffic. These services

are highly valued by IT organizations and enterprises migrating applications to the cloud expect

support for these services [37]. However, so far cloud providers have provided only limited sup-

port for them [38, 39]. In this section, we propose new addressing and forwarding schemes that

extend PARIS to enable middlebox support for tenants. Tenants specify middlebox policies and

configuration for each class of middlebox device they need, and the network infrastructure en-

sures that these policies are implemented correctly and efficiently at all times. We provide support

for policies of the form: [Tenant ID, Predicate specifying packet fields that need to be matched] →

Sequence of middleboxes. For example the following policy:

[Tenant ID:16, dest IP:10.1.0.17, dest port:80] → Firewall → Load Balancer (2)

states that all packets from VMs belonging to tenant 16 having destination IP address 10.1.0.17 and

destination port 80 should traverse a firewall followed by a load balancer.

In thinking about how to support middlebox policies in PARIS, we use the following design

principles:

Smart Edge Simple Core [40]: OpenFlow started out by identifying a common set of matching

headers and actions among vendor flow tables. The OpenFlow protocol allowed network operators

to install entries in the switch data plane that exploited this common functionality. Thus, it was

successful in making the network plane programmable and could be supported across many vendor

switches. However, as host requirements are evolving, the OpenFlow standard is expanding the

common set of features to support more services. This complicates the switch hardware and also

slows down packet lookups, since the hardware now has to perform matching on larger number of

bits. Further, since forwarding decision is made at each switch hop, things slow down further.

A much simpler way to implement the same functionality is to keep the core simple and let it do

what it does best: forward packets through simple table lookups. We store the network intelligence

in the programmable network edge. The flow entries in the network edge specify how packets should

be forwarded and the network core simply does what it is told. We follow this philosophy in our

implementation. The edge in our case is implemented in software switches inside hypervisors. An
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added advantage of storing network policies in software is that we are no longer limited by the

limited TCAM size of hardware switches.

Separate Policy from Reachability: We borrow this principle from [16]. Ad-hoc practices

for ensuring middlebox traversal, like removing links to create choke points, are hard to configure

and maintain. By taking middleboxes off the network path, we ensure efficiency and fault tolerance.

No packet traverses unnecessary middleboxes and middlebox failure no longer leads to network

partition. Since data centers have low network latency, a small increase in packet path length due

to off-path middleboxes is acceptable.

Use Source Routing: Source routing helps us realize the previous two design principles. An-

other alternative [15] could be to store network policies inside switches directly attached to middle-

boxes and tunnel packets from one middlebox to another. This approach violates our first design

principle and is inflexible. It is hard to provide strong consistency guarantees [41] in this approach,

in case the middlebox policies are changed. Providing eventual consistency may violate correctness

of policies and can lead to security vulnerabilities [16].

In case of source routing, changing policies is fast and simple. To modify a policy we simply

change the flow entry installed on the host virtual switch in the hypervisor. All packets now either

follow the old policy or the new policy.

We use MPLS label stack for implementing source routing in PARIS. The controller accepts

policies from tenants and proactively installs entries on the host virtual switches to implement

them.

Share Middleboxes: Most middleboxes in enterprise networks operate at moderate to low

utilization [42]. This prompted us to allow sharing of middleboxes among tenants using a pay-

per-use model which amortizes the Capex cost of hosting middleboxes for the cloud provider and

lowers the Opex cost for tenants. This also allows small enterprises who cannot afford to install

middleboxes in their network to leverage their services in the cloud.

Isolation and monitoring are prerequisites for allowing sharing of middleboxes. We provide

isolation by running each tenant’s middlebox instance in a Linux process and network namespace

container. We can configure the amount of CPU fraction allocated to each tenant’s instance and

the core on which the instance runs. We allow monitoring of tenant’s instance with the help of

an OpenFlow virtual switch running inside the middlebox. The virtual switch allows us to poll for

tenant usage statistics which can be used for billing and can also help in making scaling [43] and

source routing decisions.
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Figure 5: Middleboxes attached to network switches in an off-path configuration.

5.1 Addressing and Forwarding

Since our architecture uses source routing for implementing middlebox policies, we need a way

to address the middleboxes inside the data center. A large enterprise today has thousands of

middleboxes—at par with the number of switches in the network [44]. In our implementation, we

make use of MPLS Label Value for addressing middleboxes by assigning each middlebox a unique

Label Value. We used the MPLS Label Value field for supporting tenants too in Section 4. The

MPLS Label Value address space supports over a million unique values. We can easily share this

space among the tenants and the middleboxes.

Giving each middlebox a unique MPLS address has a few more advantages. It allows us to support

transparent middleboxes like firewalls and caches. Also, since MPLS is a “layer-2.5” protocol,

we don’t need to make any modifications to enterprise middlebox configuration which might have

hardcoded IP/MAC addresses. This lowers the barrier for migrating enterprise networks to the

cloud.
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In Section 2, we learnt the design principles for implementing scalable forwarding on flat addresses

in a data center network. MPLS Label Values are flat addresses, so we apply the same principles

here. Figure 5 shows how a middlebox is attached in an off-path configuration to switches in our data

center topology. Edge switches store forwarding information (MPLS Label Value) for all middleboxes

directly attached to them or attached to aggregation switches in their pod. Aggregation switches

store forwarding information for all middleboxes directly attached to them or attached to any of

the edge switches beneath them. Next, we create virtual prefixes called MPLS Prefixes for MPLS

Label Value address space. Each MPLS prefix has an appointed switch in the core layer which stores

forwarding information for all middleboxes with MPLS Label Value within this MPLS prefix. The

controller calculates these prefixes during network bootstrap, making sure that the each core-layer

switch is storing roughly the same number of MPLS Label Values. We do matching on MPLS Label

Values in the Flow Table 1 of the hardware switches.

Now that we can address each middlebox in the data center network using MPLS Label Value and

forward packets addressed to it, we use this capability to implement tenant middlebox policies. The

controller accepts middlebox policies (Eq. 2) from a tenant and runs MBfind algorithm to find specific

middlebox instances for each middlebox class specified in the policy. The MBfind algorithm runs

Dijkstra’s algorithm on a modified graph topology and has a run time complexity of O
(
Ek log V k

)
,

where E, V are the number of links and network appliances in the data center network and k is

the number of middleboxes in the tenant policy. We run this algorithm for each host virtual switch

attached to a VM belonging to the tenant, whose middlebox policy we are implementing.

For finding the sequence of middleboxes to use for implementing the tenant middlebox policy,

we construct a modified graph from the original data center network topology with links connected

in such a way that it forces Dijkstra’s algorithm to find the shortest path that goes through the

desired sequence of middleboxes. We can modify the topology to further optimize MBfind algorithm.

We can remove links which don’t have enough free bandwidth or remove overloaded middlebox

instances from the graph. We use the host virtual switch as the source and the last middlebox in the

policy as the destination for Dijkstra’s algorithm. Now, we run the original Dijkstra’s algorithm in

this modified graph and find the shortest path between the host virtual switch and the destination

middlebox which goes through the desired sequence of middlebox classes.

Once, we know the specific instances for each middlebox class in the policy, we install flow entries

in the host virtual switch for incoming packets from the tenant VMs. The flow entries push a MPLS

Label stack on all incoming packets which match the policy predicate, before forwarding them to the

edge switch. This MPLS Label stack contains multiple MPLS headers, with MPLS Label Values set
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Figure 6: Flow entries stored inside a firewall’s flow table.

to addresses of specific middlebox instances, in accordance with the desired sequence of middlebox

classes that the policy specifies. The Label Value of the bottommost MPLS header in this stack is

set equal to the Tenant ID. The MPLS Label Stack is light-weight, since each MPLS header is only

4 bytes long. This allows us to support long policies efficiently. Also, since the policies are stored

inside host virtual switches, flow table memory is not a constraint.

In our current prototype we have implemented support for only two middlebox classes: firewall

and load balancer. However, extending our approach for providing support to myriad classes of

middleboxes [45] should be easy. Each middlebox instance running on a server consists of an Open-

Flow virtual switch and a Linux process and network namespace container for each of the tenants.

The tenant middlebox configuration is installed inside this container. The virtual switch matches

on the bottom-most MPLS header’s Label Value to identify the correct Linux container to which

the incoming packet must be forwarded.

A tenant container in a firewall has two virtual interfaces connected to the virtual switch (see

Figure 5). Each container has a Linux bridge [46] running inside it, which forwards all incoming

packets coming on one interface out of the other. We use ebtables [47] for bridge filtering. The

configuration for ebtables is provided by the tenant.

A tenant container in a load balancer has one virtual interface connected to the middlebox

virtual switch. For implementing a load balancer, we use Linux Virtual Server [48] (LVS). The

tenant provides the load balancer configuration which contains the slave VMs for every tenant IP

the load balancer is serving. The load balancer uses IP-in-IP tunneling for forwarding the packets

to the slave servers in a round robin fashion. The slave servers reply back directly to the sender VM

without going through the load balancer on the way back. The load balancer can also use source

NAT [49] instead of tunneling in our architecture.
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We now see an example of how forwarding will take place in the topology shown in Figure 5. The

figure shows the implementation of middlebox support for No-Stretch PARIS but we have built a

similar prototype for High-Bandwidth PARIS as well. For this example, let’s say the tenant specifies

the policy given in Eq. 2. The controller will run the MBfind algorithm and install the policy on all

relevant virtual switches. Now, when VM A sends out a packet to destination 10.1.0.17:80, it will

match the following entry on its server virtual switch: [in port: 2, dest IP: 10.1.0.17, dest port:80]→

[PUSH MPLS(16), PUSH MPLS(33), PUSH MPLS(46), out port:1]. According to the OpenFlow

standard, switches match on the field value of the outermost header, by default. So, in this case the

packet will now be forwarded to middlebox with MPLS Label Value 46. Edge switch E1 has for-

warding information for middleboxes attached to all aggregation switches in its pod. It will forward

the packet to A1. All switches store forwarding information for directly connected middleboxes.

So, A1 will forward the packet to the firewall. Figure 6 shows all the flow entries installed on the

firewall’s virtual switch. The firewall’s virtual switch will match on the bottommost MPLS Label

Value and forward the packet to the correct Linux container after popping off the outermost MPLS

header. The container will forward the packet back to the virtual switch, if it is not filtered out. The

middlebox virtual switch will forward it back again to A1 after looking up flow entries in its flow

table. A1 now matches on the new outermost MPLS Label Value—33. The packet will eventually

reach the load balancer via C1, and from there to the slave VM.

5.2 Handling Middlebox Failure

In case a middlebox fails, the controller needs to recalculate a new middlebox instance for all policies

which used the failed middlebox. After recalculating the new middlebox instance, the controller

installs the new policy rule as a high priority entry on host virtual switches. Once the entry gets

installed, new packets coming out from the host will start using it. Since we are using source

routing, at no point during this operation will we violate the correctness of the policy. This process

of recomputing new middlebox instance gives us the new optimal path through the network but it

can be slow.

Another alternative is to make use of fast failover group type in switch group table supported

by OpenFlow standard starting from v1.1. In case the hardware switch supports it, we can make

use of this group type to store precomputed backup routes on a switch and use them in case the link

to a middlebox fails. This scheme might lead to increase in packet latency, since the packet might

take a non-optimal path through the network but it has fast response time.
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Figure 7: CDF of sender bandwidth for No-Stretch and High-Bandwidth PARIS.

5.3 OpenFlow Standard Modifications

We make two modifications to the OpenFlow standard for implementing our middlebox support

architecture:

• Since we are using MPLS prefixes in the core layer, we need to allow masking of MPLS

Label Values just like IP addresses. OpenFlow standard currently allows masking of source

and destination MAC address, source and destination IP address and the Metadata register.

Masking of MPLS Label Value is easy to implement in hardware using TCAMs. We don’t

see any reason why it should be hard for the standard to include this modification. Also, if

the number of middleboxes is small enough that each core-layer switch can store forwarding

information for all middleboxes, we can go without implementing MPLS prefixes.

• We need to perform matching on MPLS Label Value of bottommost MPLS header instead

of outermost MPLS header in middlebox virtual switches. This this is done only inside the

software switch and we require no hardware support for this. This modification is non-intrusive,

since data center networks provide us the luxury of modifying end-host software as we see fit.
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Figure 8: CCDF of sender bandwidth for No-Stretch and High-Bandwidth PARIS.

5.4 Discussion

In Section 4 and Section 5 we saw how to implement multi-tenancy and middlebox support for

PARIS, while preserving its scalability, host mobility, multi-pathing and easy configurability. The

No-Stretch and High-Bandwidth forwarding schemes that we saw in Section 3 can be used in a private

data centers without requiring external gateway servers. The last two requirements, however, require

the use of gateway servers for handling external traffic. The gateway servers help to implement

middlebox policies and support multi-tenancy by tagging packets with tenant MPLS Label Value.

Source routing at end host and gateway servers makes it easier for us to support both flow affinity

and symmetry properties desired by certain middlebox classes.

6 Evaluation

We built a prototype of our architecture using NOX [28] OpenFlow controller and OpenFlow 1.3

compatible user-space software switches [50]. Our system has ∼6300 LOC in C++ and ∼3800 LOC

in Python.
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Figure 9: Scalability of No-Stretch PARIS.

In this section, we will evaluate the scalability and multi-pathing properties of our architecture.

In the first set of evaluation experiments, we show that High-Bandwidth PARIS is able to achieve

higher inter-host communication bandwidth compared to No-Stretch PARIS. This is because it is

able to spread traffic across the aggregation-core layer links and it uses VLB inside the core layer.

We use Mininet-HiFi [51] for simulating a data-center environment.

For our first experiment we implement a data center network with 32 hosts, 16 edge switches, 8

aggregation switches, and 4 core switches. In High-Bandwidth PARIS, we have a full-mesh in the

core layer with each aggregation switch connected to all core switches. The network has no over-

subscription at any layer. We connect the edge switches to the hosts via 1Mbps links and connect

the switches to each other using 10Mbps links. The link bandwidths were scaled down compared

to those in traditional data centers to make the experiments run faster. Our measurements showed

that the intra-pod RTT is approximately 61µs for both schemes but the inter-pod RTT for No-

Stretch PARIS and High-Bandwidth PARIS is approximately 106µs and 126µs respectively. These

results reflect the fact that RTT increases as the average path length increases. Since the packet

has to travel a longer path through the core layer in High-Bandwidth PARIS, it has slightly higher

inter-pod RTT.
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For our simulations, we use a random traffic pattern, where each host sends traffic to one ran-

domly selected host for 20s. We use iperf [52] for generating TCP traffic between the hosts. Figure 7

shows the CDF of sender bandwidth for both No-Stretch and High-Bandwidth PARIS. Since there

is no oversubscription in the network, a sender can at maximum achieve a bandwidth of 1000kbps

if there is no flow-collision in the switch layers. As expected, given the random traffic pattern, we

see that High-Bandwidth PARIS achieves higher average sender bandwidth compared to No-Stretch

PARIS.

We now bias the topology in favor of No-Stretch PARIS and run the experiment again. This

time, we create a topology with 64 hosts, 32 edge switches, 16 aggregation switches and 8 core-layer

switches. In No-Stretch PARIS, each aggregation switch will be connected to all 8 core switches

but in High-Bandwidth PARIS we connect each aggregation switch to 4 random core switches.

So, the degree of multi-pathing is reduced. We run the experiment again and we find that High-

Bandwidth PARIS still achieves higher average sender bandwidth compared to No-Stretch PARIS.

Figure 8 shows the complementary CDF for this experiment. We can leverage other solutions like

Hedera [53] to make sure flows don’t collide in the data center network.

Though small in scale, our simulations demonstrate the unique properties of No-Stretch and

High-Bisection PARIS.

Next, we run simulations to demonstrate the scalability of No-Stretch PARIS and High-

Bandwidth PARIS. We assume each tenant has 512 VMs and each server hosts 64 VMs in the data

center network. Also, ∼40% of network appliances are middleboxes. We use 64x10Gbps switches

for constructing the network. We vary the flow table size of the switches and find out the number

of hosts we can support in the data center network. Figure 9 and Figure 10 show this simulation for

No-Stretch PARIS and High-Bandwidth PARIS respectively. No-Stretch PARIS can support up to

500K hosts with switches that can store 32K flow entries and can go up over a million hosts if we

use 128 port switches that can store 64K flow entries. For High-Bandwidth PARIS, the flow table

size needed to support 500K is higher because we need to store more rules to perform tunneling in

the core layer. For this purpose we can use external TCAMs [35].

Finally we run an experiment to measure the run time of MBfind algorithm. We calculate the

time for finding the middlebox instances for a single policy (Eq. 2) for all the hosts of a tenant.

Table 2 shows our results.
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Hosts Vertices Edges Time
16384 704 2368 0.27s
65536 2592 9344 4.04s
131072 4368 9792 11.51s

Table 2: Run time analysis of MBfind.

Figure 10: Scalability of High-Bandwidth PARIS.

7 Conclusion

In this work, we demonstrate how Proactive Routing on flat IP addresses can be used to build scalable

and flexible data center networks. We eliminate flooding/broadcasting of packets and avoid querying

directories for VM location. Instead, we use a controller to pre-position forwarding state in each

switch layer. We propose a new core-layer topology which provides us with increased multi-pathing

and bisection bandwidth. We also show how, through installation of fine-grained forwarding entries

for popular destinations, we can further improve performance. We then extend our architecture for

supporting multi-tenancy and middlebox policies. Our solution for multi-tenancy requires OpenFlow

v1.2 supporting switches with two flow tables and our solution for supporting middlebox policies

requires some modifications to the OpenFlow standard. Finally, we evaluate our architecture on

Mininet-HiFi using NOX controller and user-space software OpenFlow switches.
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