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Abstract

Managing today’s data networks is highly expensive, difficand error-prone. At the
center of this enormous difficulty lies configuration: a Qisgan task of updating opera-
tional settings of numerous network devices and protoddisch has been done to mask
this configuration complexity intrinsic to conventionatwerks, but little effort has been
made to redesign the networks themselves to make them éasi@nfigure.

As part of a broad effort toearchitect networks with ease of configuration in mind
this dissertation focuses on enablisgif-configuratiorin edge networks- corporate or
university-campus, data-center, or virtual private nekso- which are rapidly grow-
ing and yet significantly under-explored. To ensure widelagpent, however, self-
configuring networks must be scalable and efficient at theegame. To this end, we first
identify three technical principlegtat addressingenabling self-configuration;affic in-
direction (enhancing scalability), anasage-driven optimizatiofimproving efficiency).
Then, to demonstrate the benefits of these principles, wigremplement, and deploy
practical network architectures built upon the principles

Ouir first architecture, SEATTLE, combines Ethernet's seliffiguration capability
with IP’s scalability and efficiency. Its key contributios & novel host-information res-
olution system that leverages the strong consistency oftwank-layer routing proto-
col. The resulting architecture is suitable for entermgiaad campuses to build a large-
scale plug-and-play network. Extensive simulation and latian tests, conducted by
replaying real-world traffic traces on various real netwtwgologies built with prototype
SEATTLE switches, confirm that SEATTLE efficiently handletwork failures and host
mobility, while reducing control-plane overhead and statguirements by roughly two
orders of magnitude compared with Ethernet bridging.

Our second solution, VL2, enables a plug-and-play netwark farge cloud-computing



data center. The core objective of a data-center networ& isdintain the utilization
of the data-center servers at a uniformly high level, andhga@o requires agility: the
ability to assign any available server to any service. VL2was agility by establish-
ing reachability without addressing and routing configiarat and by furnishing huge
server-to-server capacity. Meanwhile, VL2 offers all thégnefits with only commaodity
IP and Ethernet functions without requiring any expensigé{performance component.
We built a prototype VL2 network using commodity Etherneitshes interconnecting
hundreds of servers. Tests with various real and synthetfid patterns confirm the
VL2 design can achieve 93% of the optimal utilization in therst case. Our prototype
network will soon be expanded for a cloud-computing clustenposed of more than a
thousand servers offering real-world service to customers
Then we turn our focus to VPNs, networks that interconneciggaphically dis-

tributed corporate sites through public carrier netwoMBNSs today are built with an effi-
cient self-configuring architecture, which allows customsiges to autonomously choose
their own address blocks and communicate with one anotmeudi the shortest (i.e.,
most efficient) paths. This architecture, however, blirdlylicates customers’ routing in-
formation at every router in the VPN provider network andshapidly depletes routers’
memory to cope with more customers, significantly impairseglability. Our solution,
based on traffic indirection, lowers routers’ memory foaipby choosing a small num-
ber of hub routers in each VPN that maintain full routing imf@tion, and by allowing
non-hub routers to keep a single default route to a hub. Thigisn can be implemented
via a slight modification to the routers’ configuration withi@equiring router hardware
or software upgrade. Extensive evaluations using redidrafatrices, routing configu-
rations, and VPN topologies demonstrate that Relayingaesluouting tables by up to

90%, while hiding the increase of latency and workload due thréction.
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Chapter 1

Introduction

Networked services, such as e-mail, Web, and on-line beseas have become insepa-
rable from our everyday lives. Ensuring the performance ratidbility of these critical
services requires managing the communication networks wgltich the services are
running. This comprehensive activity, callegtwork managemenéncompasses vari-
ous operational tasks, including provisioning, runningnitoring, controlling, and trou-
bleshooting networking devices and networked softwaréesys. While the high-level
goals and approaches of these management tasks differ fnenarmther, carrying out
these tasks in today’s networks always involgesfiguration- a process of determining
specific operational settings of networking devices andgmals, and applying them to
appropriate points in a network.

Although it does not look particularly daunting at a glancenfiguration is indeed
the Sisyphean task of network managemé€nnfiguring a network introduces enormous
costs [1, 2], correctly configuring a network is notoriousdifficult [3, 4, 5, 6], and yet,
configuration settings must be frequently and repeatedtjatgal just to maintain the

status quo, rather than build up value-added features fetwaank [7].



The reasons are many. Most importantly, configuration isyallgidevice-centric ad-
hoc task, retrofitted to diverse underlying devices andqmuis. This makes it extremely
difficult to come up with an elegant unifying solution for dmguration and thus forces
administrators to rely on domain-specific knowledge abautous protocols, types of
devices, and proprietary configuration-support soluti@®]. The process of configu-
ration can also be highly inefficient and labor-intensivechese some configuration tasks
(e.g., bootstrapping routers) are inherently hard to aatenor perform from a remote
location. Worse yet, all the distributed settings over gdanumber of heterogeneous
devices have to be frequently updated for various reasared, & maintenance, failure
recovery, natural growth of the organization, and humaouece re-assignment. This
forces administrators to keep repeating the onerous caafign tasks. Finally, despite
the distributed and highly-dynamic nature of the task, atifguration settings have to
be semantically consistent in order to achieve a networ&tigoal. This requirement
steeply increases the configuration complexity and malesdhwork highly susceptible
to disruptions caused by configuration errors [3].

Unfortunately, the prospects are bleak. Network sizesraeeasing very fast today,
inflating the configuration workload rapidly. Networks irrda corporate or university
campuses easily contain tens of thousands of end hosts, datg-center networks are
built with hundreds of thousands of servers interconnegigtens of thousands of routers
and switches, and metro-area provider networks are tagyéir more than a million sub-
scribers. Worse yet, networks themselves are becomindyhalyimamic, due to technical
advances such as host mobility, virtualization, and cloachjguting [10]. Since this
trend allows networks’ sizes and topologies to be freqyesdjusted for varying input
workloads, the overall configuration overhead also in@easibstantially. Meanwhile,

networks are also being increasingly deployed in non-mfttion-technology industries



and developing regions, where network management is ceresiednly a supporting duty,
and thus technical and financial support for network managertends to be signifi-
cantly limited. All these observations lead us to concluds €ase of configuration is

paramount

1.1 Re-designing Networks with Ease of Configuration
in Mind

This dissertation focuses on addressing these huge diffisuf network configuration.
Although we are not the first to look at this broad problem, gaal, approach, and

solutions are substantially different from previous work.

1.1.1 Towards self-configuring networks

The past decade has seen the proliferation of network-negneugt solutions that aim to
facilitate configuration. Those conventional solutionsga over approaches that try to
automate common configuration patterns [11, 12, 13], oféertralized views that help
administrators realize network-wide objectives [14, DBJunderstand existing configura-
tion settings and diagnose syntactic or semantic errosepien them [6, 16]. While suc-
ceeding in offering some benefits, thasanagement-layeapproaches (i.e., approaches
running upon existing un-modified networks) are less likelyield solutions with mo-
mentous improvement because they only mask the configaratimplexity intrinsic to
the underlying networks. In fact, there has been relatilitlg effort on making the un-
derlying networks easy to configure in the first plasech as eliminating configuration

altogether.



This dissertation tackles the latter issuerbydesigning the underlying network ar-
chitectures themselves while focusing on ease of configaratSpecifically, to cope
with the rapidly growing networks with low configuration otead and cost, and to deal
with frequent network and host churns without configuratorors, we put forwardelf-
configuration— enabling networks to maintain basic reachability andqrerince in a
configuration-free (also known as plug-and-play) fashioas-the first-order technical

goal.

1.1.2 Making self-configuring networks practical

Attempting to realize a self-configuring network architeetuseful for a wide variety of
environments is a highly ambitious task, especially ifraged in a single dissertation.
Hence, as part of on-going research, this dissertatiorsgEgxon two key issues towards

this broad goal.

Focus on edge networks

First, we focus oredge networks- networks that typically have little to no interdepen-
dence with other networks because they do not offer netwgrkervices for other net-
works. Corporate-campus networks, university-campusowds, data-center networks,
or virtual private networks are all good examples. Theresaneeral reasons for specifi-
cally looking at this kind of network. Most of all, network magement rarely receives
sufficient attention in edge networks and, therefore, hdsetdone correctly with only
limited technical and financial support. At the same timeg tlulittle interdependence
with other networks, edge networks can easily (and are eviingwo) adopt new net-
work architectures without consideration of interopeligpwith other networks. Addi-

tionally, edge networks are growing in size very quickly amad are significantly under-



explored by the research community.

Emphasis on workable solutions
Second, we emphasizeorkable solutions The huge workloads and difficulties of net-
work configuration are afflicting administrators in opeoaial networks today. As such,
real-world deployment (or deployability at the least) mstconsidered the key measure
of success. Therefore, even though we propose new netwarkitectures”, we always
consider prototyping and testing with real-world trafficiategral parts of design and
evaluation. By the same token, we sometimes deliberatelyeragvay from architec-
turally pure or clean-slate approaches, and we insteadaalaubstituting backwards-
compatible techniques, if doing so ensures more pradiycali

Meanwhile, this emphasis on workable solutions also leads a more specific goal
of this dissertation. That is because self-configuratimmalis not sufficiently practi-
cal for real-world deployment. For example, Ethernet bimdgsupports plug-and-play
networking by allowing hosts to communicate with each otlng their own unique
and permanent identifiers — MAC (Media Access Control) askle — regardless of their
locations in a network, and by letting a network self-leaosts’ address and location
information. This mechanism, though effective in elimingthost-address configuration
(i.e., assigning location-dependent identifiers to hoatg) routing configuration (i.e.,
informing routers/switches of hosts’ identifiers and legas), does not permit the net-
work to grow beyond a small-scale deployment. This limitatarises from the fact that
the self-learning capability relies on frequent networkievdissemination of individual
hosts’ information, known as broadcasting and flooding. édoer, since broadcasting
over a physically-rich topology can lead to forwarding Isppn Ethernet network must
forward traffic only through a single spanning tree even whkeveral alternative paths

are available. This approach significantly lowers the dubig and efficiency (in terms

5



of path lengths, link utilization, etc.) of an Ethernet netlvas its size grows.

On the other hand, the Internet Protocol (IP) ensures séidly hierarchically ag-
gregating host-address and routing information, and iteaes efficiency using the short-
est paths between routers. This approach makes it impegsibttain self-configuration,
however, because the hierarchy in a network must be spdlyifstauctured and also
frequently updated (for maintenance, supporting host titpletc.) by administrators.

In summary, networks today need self-configuration with&atrificing scalability
and efficiency. As such, this dissertation specificallyratits todesign, build, and deploy

architectural solutions that enable scalable and effice#it-configuring edge networks

1.2 Principles for Scalable and Efficient Self-configuring
Networks

This dissertation makes two sets of contributiopsnciplesandapplications The first
set of contributions includes generic technical prinapleseful for designing scalable
and efficient self-configuring networks. Additionally, tkecond set includes specific
edge-network architectures that are built upon those gepenciples. We introduce the
principles first in this section and defer the discussionmpliaations to the next section.
While working on different edge networks with varying puges, requirements, ca-
pabilities, and constraints, we were able to draw three kieples below that are highly

useful for various networks.

e Self-configuration via flat addressing: We allow hosts to autonomously choose
their own permanent location-independent identifiers, thechetwork to self-learn

and replicate hosts’ identifiers and locations, as opposedaving administra-



tors specifically assign hierarchical addresses (i.eagtlon-dependent temporary
identifiers) at hosts and routing information (i.e., hietacally-aggregated host-
address blocks) at network devices. This enables selfgmafiion and thus al-
lows administrators to forgo address and routing configometb ensure reachabil-
ity. This approach, however, can significantly increaseotterhead for storing and
disseminating host information because such informasarot aggregatable. The

following two principles offer solutions for this problem.

Scalability via traffic indirection : Network devices deliver traffic indirectly
through a small number of intermediate devices — rather thasugh shortest
paths — that are chosen either randomly or systematicallis Mechanism seems
counter-productive at first glance, as using indirect patbseases, rather than de-
creases, the total amount of traffic carried through a nétvaod the end-to-end
latency as well. While these costs do exist, in edge netwaniesbenefits of traf-
fic indirection often significantly exceed the costs for twaimreasons. First,
on the cost side, the indirection penalty is often neglegids detour paths are
only slightly longer in edge networks) and easily avoidgbkone can deliberately
choose only highly-popular traffic sources and sinks agnméeliaries, or forward
only a small fraction of traffic through the intermediarigsdmploying caching —
our third technical principle explained below). Secondtiemnms of benefits, traffic
indirection enables a network to grow very large withoutuiegg a concomitantly
large amount of resources and thus enhances scalabiligcifi@ally, traffic indi-
rection exempts non-intermediate devices from the overbéatoring and dissem-
inating the information for all hosts because those devieesl to maintain just the

information about other network devices (or just the intedmte devices), but not



about all the hosts. Traffic indirection is also useful foresgaling traffic over a
large number of paths and thus enables a network to cope with &dnd skewed or
drastically-varying traffic patterns without requiringa®ssive link capacities that

are mostly squandered.

o Efficiency via usage-driven optimization: Network devices populate routing and
host information only when and where it is needed by actuwadfitrand cache
only frequently-used information, rather than blindly shsninating the informa-
tion across the entire network. This approach improvesieffay by allowing
network devices to maintain only popular host and routinigrimation and yet
make it possible to offer direct communication paths forydap communication
patterns. Since in most edge networks only a small fractidrosts are highly pop-
ular, caching only those popular hosts’ information oftebstantially improves a
network’s efficiency in terms of the usage of expensive netwesources (e.g.,

fast-access memory to store host information).

1.3 Architectures for Enterprises, Data Centers, and
Virtual Private Networks

By building upon the principles introduced in the previoestson, this dissertation pro-
poses three architectures which are customized for diffeygoes of edge networks —
enterprise networks, data-center networks, and virtuahpeg networks (VPNs). An en-
terprise network, as we define it in this dissertation, idtlaunid administered by a single
organization and offers networking service only to the bastthat organization. Often

this type of network covers a limited geographical areahsag a corporate campus, a



university campus, a few residential/commercial dissricr a government organization.
Nonetheless, it is technically possible to construct aenpnise network that spans mul-
tiple geographically distributed campuses (sites) byrauenecting them via VPNs —
networks that offer dedicated and protected wide-areaectivity among the distributed
sites through large public carrier networks (i.e., the inét). A data-center network is a
specialized enterprise network that interconnects a latgeber (typically tens to hun-
dreds of thousands) of servers located in a data center. @@ahpo ordinary enterprise
networks, data-center networks are more regular — in tefrtgomlogy and components
— and usually aim to ensure a higher degree of performanceshadility.

The reasons we explore specifically these three types ofank$vare many and var-
ious. First, by offering solutions for different types oftmerks, we intend to show the
generality of our key principles upon which the solutions built. Second, while there
are certainly other types of networks that can adopt thaseiptes, we believe that these
three types of networks represent the most important kiheéslge networks existing to-
day. Third, the problem of ensuring scalability, efficienagd self-configuration for non-
edge networks, most importantly for service-provider bmmies or the Internet, has been
actively investigated by various previous and ongoingasesework [17, 18, 19, 20, 21].

We briefly introduce each of these network architectureshia section and defer
thorough explanation of the architectures to Chapters 2 tbat a quick overview, we

summarize key issues and design features of each archéectliable 1.1.



Table 1.1: Summary of network architectures this dissierigiroposes

SEATTLE VL2 Relaying
(Chapter 2) (Chapter 3) (Chapter 4)
Target Enterprise Data-center VPN-provider
networks networks networks
Self-configuration is Self-configuration VPN providers are
paramount in enterprises, improves scalability in dire need of
Motivation because support for and agility (i.e. capability memory capacity
network management | of assigning any resources to cope with fast-growing
is often highly to any services) of a cloud- numbers and sizes
limited in those networks computing data center of customer VPNs
Problems Self-configuring Poor agility and Replicating every
with networks do not scale; limited server-to-server customer site’s
existing scalable and efficient capacity lower servers’ information at every

architecture

networks bear huge
configuration overhead

and links’ utilization
in a data center

customer-facing router
impairs scalability

Combine IP’s scalability
(low overhead to maintain

Offer the image of
a huge layer-2 switch

Reduce routers’ memory
footprint required for

Goal hosts’ state) and furnishing full storing customers’
efficiency (shortest-path non-blocking capacity information without
forwarding) with Ethernet’s among servers and harming end-to-end
self-configuration support for agility performance
Key Huge heterogeneity of Limited programmaubility Need forimmediate
constraint end-host environments at switches and routers deployment and
transparency to custome
Approach Clean slate on network Clean slate on hosts Backwards-compatible
Several independent Are expected to be Passed pre-deployment
Deployment prototypes are built by deployed for a large tests and are expected

different research groups

public cloud-computing

to be deployed for large

infrastructure

customer VPNs

1.3.1 SEATTLE: A scalable Ethernet architecture for large enter-

prises

For most enterprises (especially those in non-IT sectoet)york management in essence

is a supporting duty, rather than a core, value-generatutg. dAdministrators of those

networks, therefore, suffer most from a huge configuratimrkioad because techni-
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cal and financial support for network management is oftehlizigmited. Our first ar-

chitecture, SEATTLE, precisely addresses this problemATSEE allows enterprises
to build a large-scale plug-and-play network that ensueashability entirely by itself,
without requiring any addressing and routing configuratignadministrators. Mean-
while SEATTLE employs shortest-path forwarding and thusuges traffic-forwarding
efficiency equivalent to that of existing IP networks.

To ensure these features, SEATTLE propodes highly-scalable host-information
resolution system leveraging the consistency offered bgtaark-layer routing protocol,
i) a traffic-driven host-information resolution and cachmgchanism taking advantage
of strong traffic locality in enterprise networks, aiid a scalable and prompt cache-
update protocol ensuring eventual consistency of hostnmdtion in a highly dynamic
network. Despite these novel mechanisms, SEATTLE stillaies compatible with ex-
isting applications and protocols — Address Resolutiortdea (ARP), Dynamic Host
Configuration Protocol (DHCP), link-local broadcast, Wt LAN (VLAN), etc. — run-
ning at end hosts.

SEATTLE is available as several independent prototypesemented by different
research groups (for example, the system by De Carli, ef223]), including our own
prototype built with open-source routing platforms [23].h&h instantiated as a Linux
kernel-thread module, this prototype SEATTLE switch candia the high-speed links
(gigabits per second) commonly used in corporate and wityecampuses today. To
attain this level of practicality, we deliberately adju$taur design to the unique require-
ments, technical constraints, and available options iarprise networks. First, to ensure
fast prototyping and easier deployment, SEATTLE re-usesynexisting network-layer
functions (e.g., link-state routing, encapsulation/geacdation) simply by re-factoring

and re-arranging them in a novel fashion. Second, we delibgrchoose to modify only
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network devices, offering exactly the same simple semaiasd=thernet. This is because
enterprise networks often have significant host-leveldogieneity; each departmentin a
university has numerous custom applications that work onlgertain versions of host
operating systems, and corporations often use diverseslafidievices and operating
systems for various historical, business, and managemepbogpes. By taking a purely
network-based approach, SEATTLE substantially lowersaberall design and imple-
mentation complexity of the system and enables rapid angamesive development and

deployment as well.

1.3.2 VL2: A scalable and flexible data-center network

Many features of SEATTLE are also useful for other types divoeks, most importantly
for large cloud-computing service providers whose ultiengbal is administering their
data centers in a configuration-free fashion. We addressctiacial issue by proposing
a highly scalable network architecture for cloud-compgitiiata centers, called VL2. In
addition to eliminating configuration for addressing andtnag, this architecture also
allows administrators to forgo sophisticated and frequeamifiguration for traffic engi-
neering — a task of controlling the amount of traffic flowingahgh each link to avoid
congestion — by delivering traffic through a large numberafdomly-chosen indirect
paths. Additionally, this approach can substantially sdthe cost of building a data-
center network because spreading traffic over multiple pattables a network to cope
with highly skewed or drastically-varying traffic worklogavith only a huge aggregate
capacity (i.e., with a large number of inexpensive commpodimponents), rather than
with huge individual links (i.e., expensive high-perfomea components). Together, the
plug-and-play capability and the low-cost high-bandwigénver-to-server capacity en-

able administrators to assign any available servers to anyices sharing the cloud-
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computing infrastructure, and thus can substantiallyaase the statistical multiplexing
gain (i.e., utilization) of a data center.

Despite these novel features, VL2 requires only netwoyetladechnologies avail-
able today and thus is immediately deployable. In fact, weehimplemented a VL2
prototype network serving an 80-server cluster using ooMdy-tost commodity Ethernet
switches. Our pre-deployment tests in this test settingahstnate that the prototype net-
work can offer a uniformly high capacity among served3% of optimal), and the way
the prototype network achieves this performance is diyeggbplicable to up to hundreds
of thousands of servers. VL2 is also expected to be rolledayutal-world deployment
for a large cloud-service provider.

To attain this level of practicality, VL2 leverages add-amdétions in end hosts’ op-
erating systems without requiring any novel functions ireawork, server hardware, or
application software. Our observations on common datdecetesigns and operational
settings justify this design decision. Unlike general gmiee networks, host operating
systems in data centers are already highly customized taradater-specific needs (e.qg.,
virtualization), and adding a few more novel functionalior VL2 in the host operating
systems is relatively straight-forward and convenientdifidnally, end-hosts’ environ-
ments are highly homogeneous in a data center and offerramifaich programmability

at a relatively low cost.

1.3.3 Relaying: A scalable routing architecture for VPNs

Finally, we turn our focus to VPN, a fast-growing networkisgyvice used by corporate
customers to interconnect geographically distributegksiThe conventional network ar-
chitecture to support VPNs over a service-provider netwadléws provider routers to

receive customer sites’ addresses (i.e., route prefixes) frustomer routers. Provider
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routers then exchange this information with one anotheris Bpproach ensures self-
configuration, as the customer sites can autonomouslyrassig announce their own
address blocks, and the provider routers self-learn amtilylidisseminate this varying
information across the entire provider network without apgcific changes to their con-
figuration settings. The problem, however, is that this naetdm unnecessarily replicates
customer routing information at a huge number of provideiteos and thus significantly
impairs the provider’s scalability to cope with the rapidjsowing sizes and number of
customer VPNs; more specifically, routers consume too mugh-$peed memory to
store the routing information about all sites.

We solve this problem via a novel routing architecture chRelaying. The Relaying
architecture substantially lowers routers’ memory footpoy allowing routers connected
to highly-popular customer sites (namely hub routers) tentazn complete routing in-
formation about all customer sites, while letting routeosimected to less-popular sites
(namely spoke routers) maintain only a single routingeaitry pointing to a hub router.
Thus any hub router can reach any customer site directlyijirthe shortest paths, while
spoke routers can reach other customer sites only througi aduter. Since the traffic
distribution of customer sites is highly skewed (i.e., a kmamber of highly popular
sites generate and receive most traffic in a VPN), choosigtbose small number of
routers connected to popular sites as hubs can significatlyce the amount of routing
information stored in expensive memory and yet ensureyfgidod end-to-end perfor-
mance for most traffic as well. To help administrators makermed decisions, we also
design a number of optimization algorithms. Given traffitt@ans among customer sites
and the locations of customer-facing routers, these dlgos can choose the smallest
number of hub routers, such that the increase of end-to@eddy due to indirection is

bounded above by a certain parameter. We also develop aatesigpport tool imple-
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menting these algorithms.

The dire scalability problem that VPN providers experietagay demands a solution
that is immediately deployable; implementing Relayingudtaely only on router mech-
anisms readily available today. Meanwhile, service-lagreements (SLAS) between a
provider and customers require that a solution is transpacecustomers; the impact of
Relaying must be unnoticeable in terms of perceived enghtbperformance. Satisfying
these requirements, our Relaying design can be implemevitbanly slight modifica-
tion to conventional router-configuration settings for V& Nithout requiring any new
router hardware or software. Relaying has passed pre-giaglot laboratory tests (in-
cluding experiments to examine line-rate packet-relayppgormance at a hub router)
by a large tier-1 carrier in the U.S. and is expected to beaegul for large corporate

VPNs served by the carrier.

1.4 How to Read This Dissertation

In the remainder of this dissertation, we describe the betadesign, implementation,
and evaluation results of the three network architecturnes$pintroduced in the previous
section. We begin with SEATTLE in Chapter 2 as it provideglera with background
knowledge on typical edge networks. It also describes howusesthe key technical
principles (introduced in Section 1.2) to enable self-agunfation in a large yet famil-
iar network, without unnecessarily delving into advancetinorking issues covered in
the subsequent chapters. While Chapter 2 focuses mainlysuriag reachability and
control-plane scalability in a plug-and-play fashion, wegent VL2 in Chapter 3 and thus
also deal with issues of avoiding congestion and enablitarpliane scalability in a plug-

and-play fashion. Finally, we describe Relaying in Chagtein addition to introducing
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a highly-scalable routing architecture that preservesétieconfiguring semantics of the
VPN service, this work also studies the question of how tanaglly deploy the new
architecture in an operational network.

While solving the same high-level problem via the same segdinical principles,
these architectures also reflect on various strategic appes chosen for different types
of networks under investigation. Understanding the braautext of these different ap-
proaches will help readers with different backgrounds amerests to efficiently navigate
through the chapters of this dissertation.

The SEATTLE and the Relaying work aim to improve the scaighdf existingself-
configuring networks (i.e., Ethernet and VPNs respectivéDn the other hand, the VL2
work intends to present a novel architecture foeamergingype of network: huge cloud-
computing data-center networks.

This difference leads to the varying backwards-compditybilecisions made in this
dissertation. SEATTLE ensures complete backwards-cabifigt with existing hosts,
as they are designed for “existing” networks. By the samengRelaying works without
requiring any modification to customer sites (address rgasgent, software or hard-
ware upgrade on customer routers, etc.). On the other han@ déliberately employs
programmability available at end hosts — mostly becausedetmmputing data-center
networks are being built today — and thus has significantifsaeto incorporate new end-
host primitives. Note, however, that VL2 does not requiristxg applications (running
on data centers) to be modified, simplifying VL2’s deploymen

While both SEATTLE and Relaying rely on new mechanisms,(r@uting and for-
warding) running inside the network, we decides to chooséaneslate approach in
SEATTLE (i.e., proposing a new type of network device défer both from IP routers

and Ethernet bridges), whereas in Relaying we choose ardéstjcan be realized with
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existing router functions only. These decisions are relédehow urgent the challenges
each type of network faces are. In enterprises, though, latdeaEthernet is highly
desirable, administrators can get by with a short-termipatdution — for example, inter-
connecting small Ethernet networks with IP routers — whidating for SEATTLE or any
other fundamental solutions to become available. Unfateiy, VPN providers are left
with no interim solution but extremely inefficient over-pisioning. As such, they need
a solution that works immediately on existing routers, withrequiring any hardware or
software upgrade. This also affects our research direatitine Relaying work, as VPN
providers are as much interested in management-supporithlgns and tools needed to

deploy and run Relaying as the Relaying architecture itself
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Chapter 2

SEATTLE: A Scalable Ethernet

Architecture for Large Enterprises

IP networks today require massive effort to configure andagan Ethernet is vastly
simpler to manage, but does not scale beyond small localree®eorks. This chapter
describes an alternative network architecture called SEHATthat achieves the best of
both worlds: the scalability of IP combined with the simplicof Ethernet. SEATTLE
provides plug-and-play functionality via flat addressimgnile ensuring scalability and
efficiency through shortest-path routing and hash-bassadugon of host information. In
contrast to previous work on identity-based routing, SEREEnsures path predictability
and stability and simplifies network management.

We begin by motivating this work in Section 2.1. Before plungginto the detailed
designs, we summarize how conventional enterprise nesvank built in Section 2.2.
Then we describe our main contributions in Sections 2.3 wher introduce a highly-
scalable and flexible host-information management sys&rhsequently in Section 2.4,

we show how we can use this system to build a scalable netwohnkecture that ensures
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the same semantics as Ethernet bridging. Next in Sectigm2 ®nhance existing Eth-
ernet mechanisms to make our design backwards-compatithie@nventional Ethernet.
We then evaluate our protocol using simulations in Secti@gahd an implementation
in Section 2.7. Our results show that SEATTLE scales to netsvoontaining two or-

ders of magnitude more hosts than a traditional Ethernetorkt Additionally, it also

demonstrates that SEATTLE efficiently handles networlufai$ and host mobility while
reducing control overhead and state requirements by rgugld orders of magnitude

compared with Ethernet bridging.

2.1 Motivation and Overview

Ethernet stands as one of the most widely used networkinmtdogies today. Due to
its self-configuring capability, wide availability, anddaost, many enterprise and access
provider networks utilize Ethernet as an elementary boddblock. Each host in an
Ethernet is assigned a persistent MAC address, and Ethaiidges automatically learn
host addresses and locations. These “plug-and-play” seraaimplify many aspects of
network configuration. Flat addressing simplifies the higngddf topology changes and
host mobility without requiring administrators to reassegddresses.

However, Ethernet is facing revolutionary challenges. ayosl layer-2 networks are
being built on an unprecedented scale and with highly demgrréquirements in terms
of efficiency and availability. Large data centers are béingt, comprising hundreds
of thousands of computers within a single facility [24], andintained by hundreds of
network operators. To reduce energy costs, these datarsemtgloy virtual machine
migration and adapt to varying workloads, placing add#iorequirements on agility

(e.g., host mobility and fast topology changes). Additibndarge metro Ethernet de-
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ployments contain over a million hosts and tens of thousahtsdges [25]. Ethernet is
also being increasingly deployed in highly dynamic envinamts, such as backhaul for
wireless campus networks, and transport for developingnsg26].

While an Ethernet-based solution becomes all the more itapbin these environ-
ments because it ensures service continuity and simpli6efiguration, conventional
Ethernet has some critical limitations. First, Ethernetifpng relies on network-wide
floodingto locate end hosts. This results in large state requiresnamd control mes-
sage overhead that grows with the size of the network. Sedeth@rnet forces paths to
comprise aspanning tree Spanning trees perform well for small networks which often
do not have many redundant paths anyway, but introduce antirt inefficiencies on
larger networks that have more demanding requirementfeidtency, high availabil-
ity, and traffic engineering. Finally, popular bootstrapgpiprotocols, such as Address
Resolution Protocol (ARP) and Dynamic Host Configuratioaot&col (DHCP), rely on
broadcasting This not only consumes excessive resources, but alsaluntes security
vulnerabilities and privacy concerns.

Network administrators sidestep Ethernet’s inefficieadieday by interconnecting
small Ethernet LANSs using routers running the Internet &ot (IP). IP routing ensures
efficient and flexible use of networking resources via ststypath routing. It also has
control overhead and forwarding-table sizes that are ptapwl to the number of sub-
nets (i.e., prefixes), rather than the number of hosts. Hewaentroducing IP routing
breaks many of the desirable properties of Ethernet. Fomela network administra-
tors must now subdivide their address space to assign IP«gsedicross the topology,
and update these configurations when the network desigrgebBarsubnetting leads to
wasted address space, and laborious configuration taskeugjh DHCP automates host

address configuration, maintaining consistency betweefPHervers and routers still
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remains challenging. Moreover, since IP addresses arearsispent identifiers, ensur-
ing service continuity across location changes (e.g., dugrtual machine migration or
physical mobility) becomes more challenging. Additiogadiccess-control policies must
be specified based on the host’s current position, and upeadten the host moves.
Alternatively, operators may use Virtual LANs (VLANS) toitaiIP subnets indepen-
dently of host location. While the overhead of address candition and IP routing may
be reduced by provisioning VLANSs over a large number of, if alb, bridges, doing so
reduces benefits of broadcast scoping, and worsens data-efciency due to larger
spanning trees. Efficiently assigning VLANSs over bridged &nks must also consider
hosts’ communication and mobility patterns, and hence id kmautomate. Moreover,
since hosts in different VLANSs still require IP to commurteavith one another, this

architecture still inherits many of the challenges of IP timred above.

2.1.1 Ethernet’s simplicity + IP’s scalability and efficiercy

= SEATTLE

In this chapter, we address the following questitsit possible to build a protocol that
maintains the same configuration-free properties as Etbtdoridging, yet scales to large
networks?To answer, we present a Scalable Ethernet ArchitecturedogeEnterprises
(SEATTLE). Specifically, SEATTLE offers the following faakes:

A one-hop, network-layer DHT:SEATTLE forwards packets based on end-host MAC
addresses. However, SEATTLE daest require each switch to maintain state for every
host, nor does it require network-wide floods to disseminate hosttiona. Instead,
SEATTLE uses the global switch-level view provided by a istlte routing protocol to

form a one-hop DHT [27], which stores thacation of each host. We use this network-
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layer DHT to build a flexible directory service which also foems address resolution
(e.g., storing the MAC address associated with an IP adgrasd more flexible service
discovery (e.g., storing the least loaded DNS server ont@riwithin the domain). In
addition, to provide stronger fault isolation and to supmtalegation of administrative

control, we present a hierarchical, multi-level one-hopTDH

Traffic-driven location resolution and caching: To forward packets along shortest
paths and to avoid excessive load on the directory serwekglses cache responses to
gueries. In enterprise networks, hosts typically commateiavith a small number of
other hosts [28], making caching highly effective. Furthere, SEATTLE also provides
a way to piggyback location information on ARP replies, whaiminates the need for
location resolution when forwarding data packets. Thisvedl data packets to directly
traverse the shortest path, making the network’s forwaythehavior predictable and sta-

ble.

A scalable, prompt cache-update protocdlinlike Ethernet which relies on timeouts
or broadcasts to keep forwarding tables up-to-date, SEAI ptoposes an explicit and
reliable cache update protocol based on unicast. This esthat all packets are delivered
based on up-to-date state while keeping control overheadiocontrast to conventional
DHTSs, this update process is directly triggered by netwlasler changes, providing fast
reaction times. For example, by observing link-state dis@ments, switches determine
when a host’s location is no longer reachable, and evictethoglid entries. Through
these approaches, SEATTLE seamlessly supports host tyamlil other dynamics.
Despite these features, our design remains compatibleexighing applications and
protocols running at end hosts. For example, SEATTLE allbests to generate broad-
cast ARP and DHCP messages, and internally converts thenumcast queries to a

directory service. SEATTLE switches can also handle gérieea, non-ARP and non-
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DHCP) broadcast traffic through loop-free multicasting.offer broadcast scoping and
access control, SEATTLE also provides a more scalable axitblidemechanism that al-

lows administrators to create VLANS without trunk configtima.

2.1.2 Related work

Our quest is to design, implement, and evaluate a pracepdhcement for Ethernet that
scales tdarge and dynamimetworks. Although there are many approaches to enhance
Ethernet bridging, none of these are suitable for our puepo&Bridges [29, 30] lever-
age a link-state protocol to disseminate information alimih bridge connectivity and
host state. This eliminates the need to maintain a spanréegnd improves forwarding
paths. CMU-Ethernet [31] also leverages link-state anthmgs end-host broadcasting
by propagating host information in link-state updates. iMk[32] uses multiple span-
ning trees for faster fault recovery, which can be dynanhycatijusted to conform to
changing load. SmartBridges [33] allows shortest-pativémding by obtaining the net-
work topology, and monitoring which end host is attachedaoheswitch. However, its
control-plane overheads and storage requirements aréasitoiEthernet, as every end
host’s information is disseminated to every switch. Tho@&HATTLE was inspired by
the problems addressed in these works, it takes a radicéiéreht approach thaglim-
inatesnetwork-wide dissemination of per-host information. Ttesults in substantially
improved control-plane scalability and data-plane efficie While there has been work
on using hashing to support flat addressing conducted inl@lanath our work [34, 35],
these works do not promptly handle host dynamics, requingespackets to be detoured
away from the shortest path or be forwarded along a spannéeg &nd do not support
hierarchical configurations to ensure fault/path isolatmd the delegation of adminis-

trative control necessary for large networks.
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The design we propose is also substantially different freaent work on identity-
based routing (ROFL [21], UIP [36], and VRR [37]. Our solutig suitable for building
a practical and easy-to-manage network for several reasbinst, these previous ap-
proaches determine paths based on a hash of the destisatlentifier (or the identifier
itself), incurring a stretch penalty (which is unboundedhe worst case). In contrast,
SEATTLE doesnot perform identity-based routing. Instead, SEATTLE usesld®n
to map a MAC address to a host’s location, and then uses thédodo deliver packets
along theshortest patho the host. This reduces latency and makes it easier toatontr
and predict network behavior. Predictability and contbility are extremely important
in real networks, because they make essential managers&st(tag., capacity planning,
troubleshooting, traffic engineering) possible. Secohe, fiath between two hosts in
a SEATTLE network does not change as other hosts join ane lgee network. This
substantially reduces packet reordering and improvestanoyg of path performance. Fi-
nally, SEATTLE employs traffic-driven caching of host infieation, as opposed to the
traffic-agnostic caching (e.g., finger caches in ROFL) useprévious works. By only
caching information that is needed to forward packets, SHAT significantly reduces
the amount of state required to deliver packets. Howevar,design also consists of
several generic components, such as the multi-level opeéT and service discovery

mechanism, that could be adapted to the work in [21, 36, 37].

2.2 Today’s Enterprise and Access Networks

To provide background for the remainder of the chapter, anchotivate SEATTLE,
this section explains why Ethernet bridging does not scdleen we describe hybrid

IP/Ethernet networks and VLANS, two widely-used approaalvbich improve scalabil-
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ity over conventional Ethernet, but introduce managementpexity, eliminating the

“plug-and-play” advantages of Ethernet.

2.2.1 Ethernet bridging

An Ethernet network is composed égmentseach comprising a single physical layer
Ethernetbridgesare used to interconnect multiple segments into a multi+metvork,
namely a LAN, forming a singlbroadcast domainEach host is assigned a unique 48-bit
MAC (Media Access Control) address. A bridge learns how szhehosts by inspecting
the incoming frames, and associating the source MAC adarigisshe incoming port. A
bridge stores this information infarwarding tablethat it uses to forward frames toward
their destinations. If the destination MAC address is nespnt in the forwarding table,
the bridge sends the frame on all outgoing ports, initiatirdpmain-wide flood. Bridges
also flood frames that are destined to a broadcast MAC add8sse Ethernet frames
do not carry a TTL (Time-To-Live) value, the existence of tiplé paths in the topology
can lead tdroadcast stormsvhere frames are repeatedly replicated and forwardedjalon
a loop. To avoid this, bridges in a broadcast domain cootditmcompute &panning
tree [38]. Administrators first select and configure a singlet bridge then, the bridges
collectively compute a spanning tree based on distancé®tmobdt. Links not present in
the tree are not used to carry traffic, causing longer pattisreefficient use of resources.
Unfortunately, Ethernet-bridged networks cannot grow targe scale due to following

reasons.

Globally disseminating every host’s locatiorfzlooding and source-learning introduce

two problems in a large broadcast domain. First, the forvmgrdable at a bridge can

YIn modern switched Ethernet networks, a segment is just@tpoipoint link connecting an end host
and a bridge, or a pair of bridges.
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grow very large because flat addressing increases the tablpreportionally to the total
number of hosts in the network. Second, the control overlegdired to disseminate
each host’s information via flooding can be very large, wagtink bandwidth and pro-
cessing resources. Since hosts (or their network intesjagewer up/down (manually,
or dynamically to reduce power consumption), and changatioe relatively frequently,
flooding is an expensive way to keep per-host informationaidate. Moreover, mali-
cious hosts can intentionally trigger repeated networtesfloods through, for example,

MAC address scanning attacks [39].

Inflexible route selection: Forcing all traffic to traverse a single spanning tree makes
forwarding more failure-prone and leads to suboptimal paiid uneven link loads. Load
is especially high on links near the root bridge. Thus, cirapghe right root bridge is
extremely important, imposing an additional administratburden. Moreover, using a
single tree for all communicating pairs, rather than shatrpaths, significantly reduces
the aggregate throughput of a network.

Dependence on broadcasting for basic operatioi3HCP and ARP are used to assign
IP addresses and manage mappings between MAC and IP addressgectively. A
host broadcasts a DHCP-discovery message whenever wégits network attachment
point has changed. Broadcast ARP requests are generatedimaguently, whenever a
host needs to know the MAC address associated with the IRessldf another host in
the same broadcast domain. Relying on broadcast for thegatogns degrades network
performance. Moreover, every broadcast message must begs®d by every end host;
since handling of broadcast frames is often application $fdpecific, these frames are
not handled by the network interface card, and instead mustugethe CPU [40]. For
portable devices on low-bandwidth wireless links, reaegvARP packets can consume a

significant fraction of the available bandwidth, procegsiand power resources. More-
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over, the use of broadcasting for ARP and DHCP opens vuliigiedbfor malicious hosts

as they can easily launch ARP or DHCP floods [31].

2.2.2 Hybrid IP/Ethernet architecture

One way of dealing with Ethernet’s limited scalability isliaild enterprise and access
provider networks out of multiple LANs interconnected I®/routing. In thesehybrid
networks, each LAN contains at most a few hundred hosts thiatively form anlP
subnet Communication across subnets is handled via certain firelés calledlefault
gateways Each IP subnet is allocated #p prefix and each host in the subnet is then
assigned an IP address from the subnet’s prefix. Assignimgdfxes to subnets, and
associating subnets with router interfaces is typicallyanoal process, as the assign-
ment must follow the addressing hierarchy, yet must reduaste@d namespace, and must
consider future use of addresses to minimize later reassgh Unlike a MAC address,
which functions as a hostlentifier, an IP address denotes the host’s curfecationin
the network.

The biggest problem of the hybrid architecture is its massmonfiguration overhead.
Configuring hybrid networks today represents an enormoafiarige. Some estimates
put 70% of an enterprise network’s operating cost as maames and configuration, as
opposed to equipment costs or power usage [7]. In addittmo)ving human adminis-
trators in the loop increases reaction time to faults ance@®es potential for misconfig-

uration.

Configuration overhead due to hierarchical addressingin IP router cannot function
correctly until administrators specify subnets on routgeifaces, and direct routing pro-
tocols to advertise the subnets. Similarly, an end hostaaaccess the network until it

is configured with an IP address corresponding to the subheterthe host is currently
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located. DHCP automates end-host configuration, but intres substantial configura-
tion overhead for managing the DHCP servers. In particufeintaining consistency
between routers’ subnet configuration and DHCP servers'esddallocation configura-
tion, or coordination across distributed DHCP servers atesimple. Finally, network

administrators must continually revise this configuratiomandle network changes.

Complexity in implementing networking policiesAdministrators today use a collection
of access controls, QoS (Quality of Service) controls [4d other policies to control
the way packets flow through their networks. These policresypically defined based
on IP prefixes. However, since prefixes are assigned basduwedopology, changes to
the network design require these policies to be rewritterarévsignificantly, rewriting
networking policies must happen immediately after netwaekign changes to prevent
reachability problems and to avoid vulnerabilities. Idgahdministrators should only

need to update policy configurations when pludicy itself, not thenetwork changes.

Limited mobility support: Supporting seamless host mobility is becoming increaging|
important. In data centers, migratable virtual machinesuing widely deployed to im-
prove power efficiency by adapting to workload, and to miienservice disruption dur-
ing maintenance operations. Large universities or enaproften build campus-wide
wireless networks, using a wired backhaul to support hodiilipacross access points.
To ensure service continuity and minimize policy updateribgad, it is highly desirable
for a host to retain its IP address regardless of its locatidiese networks. Unfortu-
nately, hybrid networks constrain host mobility only witha single, usually small, sub-
net. In a data center, this can interfere with the ability andlle load spikes seamlessly;
in wireless backhaul networks, this can cause service gligms. One way to deal with
this is to increase the size of subnets by increasing breadicanains, introducing the

scaling problems mentioned in Section 2.2.1.
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2.2.3 Virtual LANs

VLANSs address some of the problems of Ethernet and IP nesvoWt. ANs allow ad-
ministrators to group multiple hosts sharing the same nedwg requirements into a
single broadcast domain. Unlike a physical LAN, a VLAN candedinedlogically, re-
gardless of individual hosts’ locations in a network. VLAbBEN also be overlapped by
allowing bridges (not hosts) to be configured with multipleANs. By dividing a large
bridged network into several appropriately-sized VLANdmanistrators can reduce the
broadcast overhead imposed on hosts in each VLAN, and alareensolation among
different host groups. Compared with IP, VLANs simplify nilitly, as hosts may retain
their IP addresses while moving between bridges in the salb#d\V This also reduces

policy reconfiguration overhead. Unfortunately, VLANsroduces several problems:

Trunk configuration overhead:Extending a VLAN across multiple bridges requires the
VLAN to be trunked (provisioned) at each of the bridges pgptting in the VLAN.
Deciding which bridges should be in a given VLAN must consialaffic and mobility
patterns to ensure efficiency, and hence is often done mgnual

Limited control-plane scalability:Although VLANSs reduce the broadcast overhead im-
posed on a particular end host, bridges provisioned witHiplalVLANs must maintain
forwarding-table entries and process broadcast traffie¥eryactive hostireveryWVLAN
visible to themselves. Unfortunately, to enhance resoutitieation and host mobility,
and to reduce trunk configuration overhead, VLANSs are oftevigioned larger than
necessary, worsening this problem. A large forwardinggaiomplicates bridge design,
since forwarding tables in Ethernet bridges are typicathpliemented using Content-

Addressable Memory (CAM), an expensive and power-intentgehnology.

Insufficient data-plane efficiency:Larger enterprises and data centers often have richer
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topologies, for greater reliability and performance. Utidioately, a single spanning tree
is used in each VLAN to forward packets, which prevents e@etiaks from being used.
Although configuring a disjoint spanning tree for each VLABR[ 42] may improve
load balance and increase aggregate throughput, efferstesef per-VLAN trees requires
periodically moving the roots and rebalancing the treesclwvimust be manually updated
as traffic shifts. Moreover, inter-VLAN traffic must be rodteia IP gateways, rather than

shortest physical paths.

2.3 Network-Layer One-hop DHT

The goal of a conventional Ethernet is to route packets tostirdgion specified by a
MAC address. To do this, Ethernet bridges collectively mtevend hosts with a service
that maps MAC addresses to physical locations. Each bridgéiments this service by
maintaining next-hop pointers associated with MAC addressits forwarding table, and
relies on domain-wide flooding to keep these pointers up te.dadditionally, Ethernet

also allows hosts to look up the MAC address associated wglven IP address by
broadcastinghddress Resolution ProtocPARP) messages.

In order to provide the same interfaces to end hosts as ctonahEthernet, SEAT-
TLE also needs a mechanism that maintains mappings betw@eiIRM addresses and
locations. To scale to large networks, SEATTLE operatestiiduted directory service
built using aone-hop, network-level DHWe use ane-hopDHT to reduce lookup com-
plexity and simplify certain aspects of network administma such as traffic engineering
and troubleshooting. We usenatwork-levebpproach that stores mappings at switches,
so as to ensure fast and efficient reaction to network faslared recoveries, and avoid

the control overhead of a separate directory infrastr@ctidoreover, our network-level
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approach allows storage capability to increase naturaillly metwork size, and exploits
cachingto forward data packets directly to the destination withoeding to traverse

any intermediate DHT hops [43, 44].

2.3.1 Scalable key-value management with a one-hop DHT

Our distributed directory has two main parts. First, rurgnanlink-state protocol ensures
each switch can observe all other switches in the networkailows any switch to route
any other switch along shortest paths. Second, SEATTLE asesh functiorto map
host information to a switch. This host information is mained in the form of Key,
valug. Examples of these key-value pairs avXC address, locationand (P address,

MAC addres}k

Link-state protocol maintaining switch topology

SEATTLE enables shortest-path forwarding by running a-stéte protocol. However,
distributingend-hostinformation in link-state advertisements, as advocategr@vious
proposals [31, 29, 33, 30], would lead to serious scalinglgros in the large networks
we consider. Instead, SEATTLE’s link-state protocol maiins only theswitchlevel
topology, which is much more compact and stable. SEATTLEd®weis use the link-state
information to compute shortest paths for unicasting, aotticast trees for broadcasting.
To automate configuration of the link-state protocol, SERETswitches run a dis-
covery protocol to determine which of their links are attad¢ho hosts, and which are
attached to other switches. Distinguishing between théaeht kinds of links is done
by sending control messages that Ethernet hosts do notré$poThis process is similar
to how Ethernet distinguishes switches from hosts wherdimglits spanning tree. To

identify themselves in the link-state protocol, SEATTLEi®hes determine their own
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Figure 2.1: Keys are consistently hashed onto resolvechest §;).

uniqueswitch IDswithout administrator involvement. For example, each switloes

this by choosing the MAC address of one of its interfacessasvititch 1D.

Hashing key-value pairs onto switches

Instead of disseminating per-host information in linktstadvertisements, SEATTLE
switches learn this information in an on-demand fashioa,as/simple hashing mecha-
nism. This information is stored in the form ¢fkey= k£, value= v) pairs. Apublisher
switch s, wishing to publish g%, v) pair via the directory service uses a hash function
F to mapk to a switch identifietF (k) = r,, and instructs switch,, to store the map-
ping (k,v). We refer tor,, as theresolverfor k. A different switchs, may then look up
the value associated withby using the same hash function to identify which switch is
k’s resolver. This works because each switch knows all theraWwitches’ identifiers via
link-state advertisements from the routing protocol, aeddeF works identically across
all switches. Switchs, may then forward a lookup requestitp to retrieve the value.
Switch s, may optionally cache the result of its lookup, to reduce neldunt resolutions.
All control messages, including lookup and publish messagee unicast with reliable

delivery.
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Reducing control overhead with consistent hashingZhen the set of switches changes
due to a network failure or recovery, some keys have to beastud to different re-
solver switches. To minimize this re-hashing overhead, BHA utilizes Consistent
Hashing[45] for F. This mechanism is illustrated in Figure 2.1. A consisteasHing
function maps keys tbinssuch that the change of the bin set causes minimal churn in
the mapping of keys to bins. In SEATTLE, each switch corresisoa bin, and a host’s
information corresponds to a key. Formally, given a Set {sq, so, ..., s,,} of switch

identifiers, and a key,

F(k) = argmings,es{D(H(k), H(s:))}

whereH is a regular hash function, affd(x, y) is a simple metric function computing
the counter-clockwise distance framto y on the circular hash-space ®f. This means
F maps a key to the switch with the closest identifier not exicegthat of the key on the
hash space of{. As an optimization, a key may be additionally mapped to te m
closest switches along the hash ring, to improve resili¢acaultiple failures. However,

in our evaluation, we will assume this optimization is diseakby default.

Balancing load with virtual switches:The scheme described so far assumes that all
switches are equally powerful, and hence low-end switchksi@ed to service the same
load as more powerful switches. To deal with this, we propmsew scheme based
on running multiplevirtual switcheson each physical switch. A single switch locally
creates one or more virtual switches. The switch may thenease or decrease its load by
spawning/destroying these virtual switches. Unlike téghes used in traditional DHTs
for load balancing [44], itimotnecessary for our virtual switches to be advertised to other

physical switches. To reduce size of link-state advertesss) instead of advertising
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every virtual switch in the link-state protocol, switchesly advertise the number of
virtual switches they are currently running. Each switcarthocally computes virtual
switch IDs using the following technique. All switches uke same functiofk (s, 7) that
takes as input a switch identifierand a numbet, and outputs a new identifier unique
to the inputs. A physical switchy only advertises in link-state advertisements its own
physical switch identifieg,, and the numbef of virtual switches it is currently running.
Every switch can then determine the virtual identifierawoby computingR (s,,, i) for

1 <i < L. Note that it is possible to automate determining a desrabimber of virtual
switches per physical switch [46].

Enabling flexible service discoveryThis design also enables more flexible service dis-
covery mechanisms without the need to perform network-veid@dcasts. This is done
by utilizing the hash functior to map a string defining the service to a switch. For
example, a printer may hash the strifRRINTER” to a switch, at which it may store its
location or address information. Other switches can thanlréhe printer using the hash
of the string. Services may also encode additional attegwutuch as load or network lo-
cation, as simple extensions. Multiple servers can reduthdeegister themselves with a
common string to implement anycasting. Services can be daisiag techniques shown

in previous work [47].

2.3.2 Responding to topology changes

The switch-level topology may change if a new switch/linkagded to the network, an
existing switch/link fails, or a previously failed switdimk recovers. These failures may
or may notpartition the network into multiple disconnected components. Linkifas

are typically more common than switch failures, and pantisi are very rare if the network

has sufficient redundancy.
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Figure 2.2: Hierarchical SEATTLE hashes keys or@gions

In the case of a link failure/recovery that does not pantiteo network, the set of
switches appearing in the link-state map does not changee $ihe hash functiof is
defined with the set of switches in the network, the resolveairicular key maps to will
not change. Hence all that needs to be done is to update #stite map to ensure
packets continue to traverse new shortest paths. In SEATTHi&is simply handled by
the link-state protocol.

However, if a switch fails or recovers, the set of switcheghr link-state map
changes. Hence there may be some Keyghose old resolver{'® differs from a new
resolverr?ev. To deal with this, the valué:, v) must be moved from¢' to r2¢v. This
is handled by having the switch), that originally published: monitor the liveness of
k’s resolver through link-state advertisements. Wherdetects that}* differs from
rold, it republishegk, v) to r2¢*. The value(k, v) is eventually removed fromg!¢ after
a timeout. Additionally, when a valuedenotes a location, such as a switchsj@&nds
goes down, each switch scans the list of locally-st@fed) pairs, and remove all entries
whose valuey equalss. Note this procedure correctly handles network partitioesause

the link-state protocol ensures that each switch will be ablsee only switches present
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in its partition.

2.3.3 Supporting hierarchy with a multi-level, one-hop DHT

The SEATTLE design presented so far scales to large, dynaetigorks [48]. How-
ever, since this design runs a single, network-wide lirdkestouting protocol, it may
be inappropriate for networks with highly dynamic infrastture, such as networks in
developing regions [26]. A single network-wide protocolyraso be inappropriate if
network operators wish to provide stronger fault isolattmmoss geographic regions, or
to divide up administrative control across smaller routdamains. Moreover, when a
SEATTLE network is deployed over a wide area, the resolvetdbe far both from the
source and destination. Forwarding lookups over long dcsta increases latency and
makes the lookup more prone to failure. To deal with this, BHAE may be configured
hierarchically, by leveraging multi-level, one-hop DHTThis mechanism is illustrated
in Figure 2.2.

A hierarchical network is divided into severagions and abackbongoroviding con-
nectivity across regions. Each region is connected to tl&bzme via its owrborder
switch and the backbone is composed of the border switches ofgatins. Information
about regions is summarized and propagated in a manneastmdreasin OSPF. In par-
ticular, each switch in a region knows the identifier of thgioa’s border switch, because
the border switch advertises its role through the linkesgabtocol. In such an environ-
ment, SEATTLE ensures that only inter-region lookups arevéwded via the backbone
while all regional lookups are handled within their own k&g, and link-state advertise-
ments are only propagated locally within regions. SEATTIESwes this by defining a
separateegionalandbackbonehash ring. When &k, v) is inserted into a regio#® and

is published to a regional resolvef (i.e., a resolver fok in region P), rf additionally
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forwards(k, v) to one of the regio’s border switche$”. Thenb” hashes: again onto
the backbone ring and publishgs v) to another backbone switéfy, which is a back-
bone resolver fok and a border switch of regia@ at the same time. Switcﬂﬁ2 storesk’s
information. If a switch in regior? wishes to lookugk, v), it forwards the lookup first
to its local resolver, which in turn forwards it td?, andb? forwards it tob?. As an
optimization to reduce load on border switchiggmay hash: and storgk, v) at a switch
within its own region(), rather than storingk, v) locally. Since switch failures are not
propagated across regions, each publisher switch pealtgi®ends probes to backbone
resolvers that lie outside of its region. To improve avdllah (%, v) may be stored at
multiple backbone resolvers (as described in Section ®.arid multiple simultaneous

lookups may be sent in parallel.

2.4 Scaling Ethernet with a One-hop DHT

The previous section described the design of a distribugdaark-level directory service
based on a one-hop DHT. In this section, we describe how tketdry service is used to
provide efficient packet delivery and scalable addresdutiea. We first briefly describe
how to forward data packets to MAC addresses in Section 2Wd then describe our
remaining contributions: an optimization that elimindte heed to look up host location
in the DHT by piggy-backing that information on ARP requéast$ection 2.4.2, and a

scalable dynamic cache-update protocol in Section 2.4.3.

2.4.1 Host location resolution

Hosts use the directory service described in Section 2.8ibtigh and maintain mappings

between their MAC addresses and their current locationgs&mappings are used to
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Figure 2.3: Packet forwarding and lookup in SEATTLE

forward data packets, using the procedure shown in Fig@.eVZhen a host with MAC
addressnac, first arrives at its access switeh), the switch must publish’s MAC-to-
location mapping in the directory service. Switg¢hdoes this by computing (mac,) =
rq, and instructing-, to store(mac,, s,). We refer tor, as thelocation resolverfor
a. Then, if some host connected to switch, wants to send a data packetitaic,, b
forwards the data packet tg, which in turn compute$ (mac,) = r,. Switchs, then and
forwards the packet tg,. Sincer, may be several hops away,encapsulates the packet
with an outer header with,’s address as the destination. Switchthen looks upe’s
locations,, and forwards the packet on towargls In order to limit the number of data
packets traversing the resolvey, also notifiess, thata’s current location is;,. Switch
s, then caches this information. While forwarding the first fpackets of a flow via a
resolver switch increases path lengths, in the next seatéotiescribe an optimization that
allows data packets to traverse only shortest paths, bygiggking location information
on ARP replies.

Note SEATTLE manages per-host information via reactiveltgson, as opposed to

the proactive dissemination scheme used in previous appesd31, 29, 33]. The scal-
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ing benefits of this reactive resolution increase in entsgfdata-center/access provider
networks because most hosts communicate with a small nuaflpepular hosts, such
as mail/file/Web servers, printers, VoIP gateways, andrietegateways [28]. To pre-
vent forwarding tables from growing unnecessarily lardgpe &ccess switches can apply
various cache-management policies. For correctness, ssywhe cache-management
scheme must not evict the host information of the hosts tieadli@ectly connected to the
switch or are registered with the switch for resolution. alEthernet bridging, cache
misses in SEATTLE do not lead to flooding, making the netwedistant to cache poi-
soning attacks (e.g., forwarding table overflow attack) sudden shift in traffic. More-
over, those switches that are not directly connected to esttli.e., aggregation or core

switches) do not need to maintain any cached entries.

2.4.2 Host address resolution

In conventional Ethernet, a host with an IP packet first bcaats an ARP request to
look up the MAC address of the host owning the destinationddtess contained in the
request. To enhance scalability, SEATTLE avoids broadoased ARP operations. In
addition, we extend ARP to return both tleeationand the MAC address of the end host
to the requesting switch. This allows data packets follgnam ARP query to directly
traverse shortest paths.

SEATTLE replaces the traditional broadcast-based ARP aitbxtension to the one-
hop DHT directory service. In particular, switches uSavith an IP address as the key.
Specifically, when host arrives at access switeh), the switch learng’s IP addressp,
(using techniques described in Section 2.5.1), and coreptit®,) = v,. The result of
this computation is the identifier of another switch Finally, s, informs v, of (ip,,

mac,). Switchv,, theaddress resolvefor hosta, then uses the tuple to handle future
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ARP requests foip, redirected by other remote switches. Note that histocation

resolver (i.e..F(mac,)) may differ froma’s address resolver (i.e% (ip,)).

Optimizing forwarding paths via ARPFor hosts that issue an ARP request, SEATTLE
eliminates the need to perform forwarding via the locatiesolver as mentioned in Sec-
tion 2.4.1. This is done by having the address resolver swjtalso maintain the location
of a (i.e., s,) in addition tomac,. Upon receiving an ARP request from some hgshe
address resolver, returns bothnac, ands, back tob’s access switch,. Switchs;, then
caches;, for future packet delivery, and returmsac, to hostb. Any packets sent byto
a are then sent directly along the shortest path.to

Itis, however, possible that hdsalready hasnac, in its ARP cache and immediately
sends data frames destineditac, without issuing an ARP request in advance. Even in
such a case, as long as thealso maintains:’s location associated withac,, s, can
forward those frames correctly. To ensure access switchelsecthe same entries as
hosts, the timeout value that an access switch applies teeitteed location information
should be larger than the ARP cache timeout used by end hadstste that, even if the
cache and the host become out of sync (due to switch rebadt, BEATTLE continues
to operate correctly because switches can resolve a hostitidon by hashing the host’s

MAC address to the host’s location resolver.

2.4.3 Handling host dynamics

Hosts can undergo three different kinds of changes in a SEETetwork. First, a
host may change location, for example if it has physicallywetbto a new location (e.qg.,

wireless handoff), if its link has been plugged into a difer access switch, or if itis a

2The default setting of the ARP cache timeout in most commaraing systems ranges 10 to 20
minutes.
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virtual machine and has migrated to a new hosting systemaitats the VM to retain
its MAC address. Second, a host may change its MAC addresssexémple if its NIC
card is replaced, if itis a VM and has migrated to a new hostiygiem that requires the
VM to use the host’'s MAC address, or if multiple physical miaels collectively acting
as a single server or router (to ensure high availabilityesience a fail-over event [49].
Third, a host may change its IP address, for example if a DH&Rd expires, or if
the host is manually reconfigured. In practice, multiple leése changes may occur
simultaneously. When these changes occur, we need to keejiréttory service up-to-
date, to ensure correct packet delivery.

SEATTLE handles these changes by modifying the contentseoflirectory service
viainsert delete andupdateoperations. An insert operation adds a néw) pair to the
DHT, a delete operation removeg/a v) pair from the DHT, and the update operation
updates the value associated with a given k&y First, in the case of a location change,
the hosth moves from one access switgfi? to anothers?*”. In this cases?* inserts
a new MAC-to-location entry. Sinck’s MAC address already exists in the DHT, this
action will updateh’s old location with its new location. Second, in the case MAC
address changéy’s access switchs;, inserts an IP-to-MAC entry containinys new
MAC address, causingy's old IP-to-MAC mapping to be updated. Since a MAC address
is also used as a key of a MAC-to-location mappisgdeletesh’s old MAC-to-location
mapping and inserts a new mapping, respectively with theanltinew MAC addresses
as keys. Third, in the case of an IP address change, we needuceghat future ARP
requests form’s old IP address are no longer resolvedite MAC address. To ensure
this, s;, deletesh’s old IP-to-MAC mapping and insert the new one. Finally, ifiltiple

changes happen at once, the above steps occur simultapeousl|

Ensuring seamless mobilityAs an example, consider the case of a mobile hasiov-
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ing between two access switcheg? ands?<*. To handle this, we need to updats
MAC-to-location mapping to point to its new location. As debed in Section 2.4.1,
spev inserts(macy, sp) into r, upon arrival ofh. Note that the location resolvey, se-
lected by.F(mac;,) doesnotchange wher'’s location changes. Meanwhiles'? deletes
(macy, s9'4) when it detects is unreachable (either via timeout or active polling). Addi
tionally, to enable prompt removal of stale informatiorg tbcation resolver; informs
sold that (macy,, s¢') is obsoleted bymacy,, spe®).

However, host locations cached at other access switchesbau®pt up-to-date as
hosts move. SEATTLE takes advantage of the fact that, ewen @pdating the infor-
mation atr,, s9'¢ may receive packets destined/tdecause other access switches in the
network might have the stale information in their forwamglitables. Hence, whesf'
receives packets destined &g it explicitly notifies ingress switches that sent the mis-
delivered packets of’s new locationsy<*. To minimize service disruptions?'® also

forwards those misdelivered packafs™.

Updating remote hosts’ caches$n addition to updating contents of the directory service,
some host changes require informing othestsin the system about the change. For
example, if a host: changes its MAC address, the new mappiiyg,, macj<”) must
be immediately known to other hosts who happened to sipfemacs®) in their local
ARP caches. In conventional Ethernet, this is achieved bgdwasting gratuitous ARP
requestoriginated byh [50]. A gratuitous ARP is an ARP request containing the MAC
and IP address of the host sending it. This request is notg éprea reply, but is instead

a notification to update other end hosts’ ARP tables and tectléP address conflicts
on the subnet. Relying on broadcast to update other hostdyclioes not scale to large
networks. SEATTLE avoids this problem by unicasting gratus ARP packets only to

hosts with invalid mappings. This is done by havingmaintain aMAC revocation list
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Upon detectingh’s MAC address change, switch, inserts (ipy,, macg'?, macie®)
in its revocation list. From then on, whenevey receives a packet whose source or
destination(I P, M AC) address pair equalgp;,, mac'?), it sends aunicastgratuitous
ARP request containingpy,, macj¢) to the source host which sent those packets. Note
that, when bothh’s MAC address and location change at the same time, the awoc
information is created dt’s old access switch by’s address resolver, = F(ipy,).

To minimize service disruptiors;, also informs the source host’s ingress switch of
(macp, s,) so that the packets destined#aic;*” can then be directly delivered to
sp, avoiding an additional location lookup. Note this apploéx updating remote ARP
caches does not requisg to look up each packet’s IP and MAC address pair from the
revocation list becauseg, can skip the lookup in the common case (i.e., when its revoca-
tion list is empty). Entries from the revocation list are @rad after a timeout set equal

to the ARP cache timeout of end hosts.

2.5 Providing Ethernet-like Semantics

To be fully backwards-compatible with conventional EtretiiSEATTLE must act like a
conventional Ethernet from the perspective of end hostst,Rhe way that hosts inter-
act with the network to bootstrap themselves (e.g., acqddresses, allow switches to
discover their presence) must be the same as Ethernet. Gexwoitches have to support
traffic that uses broadcast/multicast Ethernet addressgsstinations. In this section, we
describe how to perform these actions without incurringsteability challenges of tra-
ditional Ethernet. For example, we propose to eliminatatoasting from the two most
popular sources of broadcast traffic: ARP and DHCP. Sinceeseribed how SEATTLE

switches handle ARP without broadcasting in Section 2 We&discuss only DHCP in
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this section.

2.5.1 Bootstrapping hosts

Host discovery by access switchéathen an end host arrives at a SEATTLE network,
its access switch needs to discover the host's MAC and IPeadds. To discover a
new host's MAC address, SEATTLE switches use the same MAQilegmechanism as
conventional Ethernet, except that MAC learning is enablag on the ports connected
to end hosts. To learn a new host’s IP address or detect atingxieost’s IP address
change, SEATTLE switches snoop on gratuitous ARP requbgist operating systems
generate a gratuitous ARP request when the host boots upp#ts network interface
or links comes up, or an address assigned to the interfaceyebd50]. If a host does not
generate a gratuitous ARP, the switch can still learn of thet’t [P address via snooping
on DHCP messages, or sending out an ARP request only on thegporected to the host.
Similarly, when an end host fails or disconnects from thewoek, the access switch is
responsible for detecting that the host has left, and awjdtie host’s information from

the network.

Host configuration without broadcasting:For scalability, SEATTLE resolves DHCP
messages without broadcasting. When an access switchree@broadcast DHCP dis-
covery message from an end host, the switch delivers theagestirectly to a DHCP
server via unicast, instead of broadcasting it. SEATTLEIlengents this mechanism us-
ing the existing DHCP relay agent standard [51]. This steshdaused when an end host
needs to communicate with a DHCP server outside the hosiadeast domain. The
standard proposes that a host’s IP gateway forward a DH@®\dsy to a DHCP server

via IP routing. In SEATTLE, a host’s access switch can penfthe same function with
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Ethernet encapsulation. Access switches can discover aFD$#tver using a similar
approach to the service discovery mechanism in Sectiod.2Er example, the DHCP
server hashes the string “DHCFERVER” to a switch, and then stores its location at that

switch. Other switches then forward DHCP requests usindgpéisé of the string.

2.5.2 Scalable and flexible VLANSs

SEATTLE completely eliminates flooding of unicast packétewever, to offer the same
semantics as Ethernet bridging, SEATTLE needs to supporsinission of packets sent
to abroadcast addressSupporting broadcasting is important because some apiplics
(e.g., IP multicast, peer-to-peer file sharing programs,) aely on subnet-wide broad-
casting. However, in large networks to which our designigated, performing broad-
casts in the same style as Ethernet may significantly owedoatches and reduce data
plane efficiency. Instead, SEATTLE provides a mechanisntkvig similar to, but more
flexible than, VLANS.

In particular, SEATTLE introduces a notion gfoup. Similar to a VLAN, a group is
defined as a set of hosts who share the same broadcast dogaidiess of their loca-
tion. Unlike Ethernet bridging, however, a broadcast donm@iSEATTLE does not limit
unicast layer-2 reachability between hosts because a SHABWitch can resolve any
host’s address or location without relying on broadcastiftgus, groups provide several
additional benefits over VLANSs. First, groups do not need eéonfanually assigned to
switches. A group is automatically extended to cover a $wdte soon as a member of
that group arrives at the switthSecond, a group is not forced to correspond to a sin-

gle IP subnet, and hence may span multiple subnets or a partia subnet, if desired.

3The way administrators associate a host with corresporgtiogp is beyond the scope of this disser-
tation. For Ethernet, management systems that can autthiatask (e.g., mapping an end host or flow to
a VLAN) are already available [52], and SEATTLE can emplog #ame model.
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Third, unicast reachability in layer-2 between two difiergroups may be allowed (or
restricted) depending on the access-control policy — agetelefining which groups can
communicate with which — between the groups.

The flexibility of groups ensures several benefits that ard taachieve with conven-
tional Ethernet bridging and VLANs. When a group is aligndthva subnet, and unicast
reachability between two different groups is not permitvgdiefault, groups provide ex-
actly the same functionality as VLANs. However, groups casiude a large number of
end hosts and can be extended to anywhere in the networkwilaoming control-plane
scalability and data-plane efficiency. Moreover, when geoare defined as subsets of
an IP subnet, and inter-group reachability is prohibitedhegroup is equivalent to a pri-
vate VLAN (PVLAN), which are popularly used in hotel/motettworks [53]. Unlike
PVLANSs, however, groups can be extended over multiple @sddrinally, when unicast
reachability between two groups is allowed, traffic betwgengroups takes the shortest

path, without traversing default gateways.

Multicast-based group-wide broadcastingSome applications may rely on subnet-wide
broadcasting. To handle this, all broadcast packets wélgroup are delivered through

a multicast tree sourced at a dedicated switch, namélypadcast roaot of the group.
The mapping between a group and its broadcast root is detediy usingF to hash

the group’s identifier to a switch. Construction of the nuast tree is done in a manner
similar to IP multicast, inheriting its safety (i.e., loopp&édom) and efficiency (i.e., to
receive broadcast only when necessary). When a switch étetts an end host that is a
member of groug, the switch issues a join message that is carried up to thestegraft
point on the tree towarg's broadcast root. When a host depatrts, its access switctiepru

a branch if necessary. When an end host sends a broadcast packet, its access switch

marks the packet with and forwards it along’s multicast tree.
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Separating unicast reachability from broadcast domains:addition to handling broad-
cast traffic, groups in SEATTLE also provide a namespace widooh reachability poli-
cies for unicast traffic are defined. When a host arrives atcaerss switch, the host's
group membership is determined by its access switch andghelol to the host’s re-
solvers along with its location information. Access cohgrolicies are then applied by a
resolver when a host attempts to look up a destination hiogtemation.

In this section, we start by describing our simulation eowiment. Next, we de-
scribe SEATTLE's performance under workloads collectenfrfrseveral real operational
networks. We then investigate SEATTLE’s performance inatgic environments by

generating host mobility and topology changes.

2.5.3 Methodology

To evaluate the performance of SEATTLE, we would ideallgltk have several pieces
of information, including complete layer-two topologiesrih a number of representative
enterprises and access providers, traces of all traffic @emvery link in their topolo-
gies, the set of hosts at each switch/router in the topolaggy,a trace of host movement
patterns. Unfortunately, network administrators (untirdably) were not able to share
this detailed information with us due to privacy concermg] also because they typically
do not log events on such large scales. Hence, we leveragkttaees where possible,
and supplemented them with synthetic traces. To generatsytithetic traces, we made
realistic assumptions about workload characteristicd, \aried these characteristics to
measure the sensitivity of SEATTLE to our assumptions.

In our packet-level simulator, we replayed packet tracdiecied from the Lawrence
Berkeley National Lab campus network by Pang et. al. [54].er€hare four sets of

traces, each collected over a period of 10 to 60 minutesaguny traffic to and from
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roughly 9,000 end hosts distributed over 22 different stdariehe end hosts were running
various operating systems and applications, includingvasd (some of which engaged
in scanning). To evaluate sensitivity of SEATTLE to netwsike, we artificially injected
additional hosts into the trace. We did this by creating addetirtual hosts, which
communicated with a set of random destinations, while pwisg the distribution of
destination-level popularity of the original traces. Weaatried injecting MAC scanning
attacks and artificially increasing the rate at which hostsiqd39].

We measured SEATTLE's performance on four representadpelbgies.Campuss
the campus network of a large (roughly 40,000 students)ausity in the United States,
containing 517 routers and switche&P-small(AS 3967) is a small access provider
network consisting of 87 routers, aWdP-large (AS 1239) is a larger network with 315
routers [55]. Because SEATTLE switches are intended tcacgpboth IP routers and
Ethernet bridges, the routers in these topologies are deresi as SEATTLE switches in
our evaluation. To investigate a wider range of environmegne also constructed a model
topology calledDC, which represents a typical data center network composddunf
full-meshed core routers each of which is connected to a roEstenty one aggregation
switches. This roughly characterizes a commonly-usedidgydn data centers [24].

Our topology traces were anonymized, and hence lack infoaomabout how many
hosts are connected to each switch. To deal with this, werdgeel CAIDA Skitter
traces [56] to roughly characterize this number for netwsodachable from the Internet.
However, since the CAIDA skitter traces form a sample repméative of the wide-area,
it is not clear whether they apply to the smaller-scale néteave model. Hence fddC
andCampuswe assume that hosts are evenly distributed across leglfdeitches.

Given a fixed topology, the performance of SEATTLE and Etkebmidging can vary

depending on traffic patterns. To quantify this variationregeated each simulation run
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25 times, and plot the average of these runs with 99% confedenervals. For each run
we vary a random seed, causing the number of hosts per saitdithe mapping between
hosts and switches to change. Additionally for the casedlwdriBet bridging, we varied
spanning trees by randomly selecting one of the core swstelsea root bridge. Our
simulations assume that all switches are part of the samedbast domain. However,
since our traffic traces are captured in each of the 22 diitesebnets (i.e., broadcast
domains), the traffic patterns among the hosts preservetiaelbast domain boundaries.
Thus, our simulation network is equivalent to a VLAN-basedwork where a VLAN
corresponds to an IP subnet, and all non-leaf Ethernetésidge trunked with all VLANSs

to enhance mobility.

2.6 Simulations

2.6.1 Control-plane scalability

Sensitivity to cache eviction timeouBEATTLE caches host information to route packets
via shortest paths and to eliminate redundant resolutidiha. switch removes a host-
information entry before a locally attached host does (fitstARP cache), the switch
will need to perform a location lookup to forward data pasksént by the host. To
eliminate the need to queue data packets at the ingres$isthitse packets are forwarded
through a location resolver, leading to a longer path. Tduata this effect, we simulated
a forwarding table management policy for switches thattevimused entries after a
timeout. Figure 2.4a shows performance of this strateggsscdifferent timeout values
in the AP-largenetwork. First, the fraction of packets that require datiaesh location

lookups (i.e., lookups not piggy-backed on ARPS) is very lmd decreases quickly
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with larger timeout. Even for a very small timeout valuet6ofseconds, ove$9.98% of

packets are forwarded without a separate lookup. We alsfirged that the number of
data packets forwarded via location resolvers drops to mdren using timeout values
larger than600 seconds (i.e., roughly equal to the ARP cache timeout at estsh

Also control overhead to maintain the directory decreaseskty, whereas the amount
of state at each switch increases moderately with largexdirh Hence, in a network with
properly configured hosts and reasonably small (e.g., les®6 of the total number of

hosts in this topology) forwarding tables, SEATTLE alwayfers shortest paths.

Forwarding table size: Figure 2.4b shows the amount of state per switch in D@
topology. To quantify the cost of ingress caching, we shoSH.E’s table size with
and without cachingSEACA and SEANOCA respectively). Ethernet requires more
state than SEATTLE without caching, because Ethernetsttve hosts’ information
entries at almost every bridge. In a network witbwitches and: hosts, each Ethernet
bridge must be provisioned to store an entry for each desimaresulting inO(sh)
state requirements across the network. SEATTLE requirdég Ofih) state since only
the access and resolver switches need to store locatiomiatmn for each host. In this
particular topology, SEATTLE reduces forwarding-tableesby roughly a factor o22.
Although not shown here due to space constraints, we findlleae gains increase to a
factor of 64 in AP-largebecause there are a larger number of switches in that topolog
While the use of caching drastically reduces the numberdafmdant location resolutions,
we can see that it increases SEATTLE's forwarding-table bizroughly a factor of .5.
However, even with this penalty, SEATTLE reduces table sm@mpared with Ethernet

by roughly a factor ofi6. This value increases to a factor4if in AP-large

Control overhead: Figure 2.4c shows the amount of control overhead generaged b

SEATTLE and Ethernet. We computed this value by dividingtttal number of control
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messages over all links in the topology by the number of $wei¢then dividing by the
duration of the trace. SEATTLE significantly reduces cohtneerhead as compared to
Ethernet. This happens because Ethernet generates nesid#kloods for a significant
number of packets, while SEATTLE leverages unicast to dissate host location. Here
we again observe that use of caching degrades performagh#yslSpecifically, the use
of caching SEACA) increases control overhead roughly frani to 1 packet per sec-
ond as compared tBEANOCAIn a network containing0 K hosts. HowevelSEACAS
overhead still remains a factor of roughl§00 less than in Ethernet. In general, we found
that the difference in control overhead increased roughtlg the number of links in the

network.

Comparison with id-based routing approachedVe implemented the ROFL, UIP, and
VRR protocols in our simulator. To ensure a fair comparisse,used a link-state pro-
tocol to construct vset-paths [37] along shortest pathsiia &hd VRR, and created a
UIP/VRR node at a switch for each end host the switch is agtédb. Performance
of UIP and VRR was quite similar to performance of ROFL withuartbounded cache
size. Figure 2.5a shows the average relative latency permalstretch of SEATTLE
and ROFL [21] in theAP-largetopology. We measured stretch by dividing the time the
packet was in transit by the delay along the shortest patugir the topology. Overall,
SEATTLE incurs smaller stretch than ROFL. With a cache siz&000, SEATTLE of-
fers a stretch of roughly.07, as opposed to ROFL&9. This happens becaugevhen a
cache miss occurs, SEATTLE resolves location via a singlefather than a multi-hop
lookup, andii) SEATTLE's caching is driven by traffic patterns, and hosian enter-
prise network typically communicate with only a small numbé&popular hosts. Note
that SEATTLE’s stretch remains beldweven when a cache size(isHence, even with

worst-case traffic patterns (e.g., every host communicaisall other hosts, switches
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maintain very small caches), SEATTLE still ensures reablyramall stretch. Finally, we
comparepath stabilitywith ROFL in Figure 2.5b. We vary the rate at which hosts leave
and join the network, and measure path stability as the nuwittames a flow changes
its path (the sequence of switches it traverses) in the poesef host churn. We find that

ROFL has over three orders of magnitude more path changesStBATTLE.

2.6.2 Sensitivity to network dynamics

Effect of network changesFigure 2.5¢ shows performance during switch failures. Here
we cause switches to fail randomly, with failure inter-aatitimes drawn from a Pareto
distribution witha = 2.0 and varying mean values. Switch recovery times are drawn
from the same distribution, with a mean &if seconds. We found SEATTLE is able to
deliver a larger fraction of packets than Ethernet. Thigiess because SEATTLE is able
to use all links in the topology to forward packets, while &tet can only forward over
a spanning tree. Additionally, after a switch failure, Htiet must recompute this tree,
which causes outages until the process completes. Althfmuglarding traffic through a
location resolver in SEATTLE causes a flow’s fate to be shavild a larger number of
switches, we found that availability remained higher thaat bf Ethernet. Additionally,
using caching improved availability further.

Effect of host mobility: To investigate the effect of physical or virtual host mdiilon
SEATTLE performance, we randomly move hosts between acegshes. We drew
mobility times from a Pareto distribution with = 2.0 and varying means. For high
mobility rates, SEATTLE’s loss rate is lower than Etherrgiglre 2.6). This happens
because when a host moves in Ethernet, it takes some timevitmhes to evict stale

location information, and learn the host’'s new locationthAlgh some host operating
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systems broadcast a gratuitous ARP when a host moves, theases broadcast over-
head. In contrast, SEATTLE provides both low loss and braatioverhead by updating

host state via unicasts.

2.7 Implementation

To verify SEATTLE’s performance and practicality througheal deployment, we built
a prototype SEATTLE switch using two open-source routinfjveare platforms: user-
level Click [57] andXORP[58]. We also implemented a second version of our prototype
using kernel-level Click [23]. Section 2.7.1 describes $tricture of our design, and

Section 2.7.2 presents evaluation results.

2.7.1 Prototype design

Figure 2.7 shows the overall structure of our implementat®EATTLE’s control plane
is divided into two functional modules) maintaining the switch-level topology, afidl

managing end-host information. We used XORP to realize teeffinctional module,
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and used Click to implement the second. We also extende@ @ionplement SEAT-
TLE’s data-plane functions, including consistent hastang packet encapsulation. Our
control and data plane modifications to Click are impleme g theSeattleSwitclele-

ment shown in Figure 2.7.

SEATTLE control plane: First, we run a XORP OSPF process at each switch to main-
tain a complete switch-level network map. The XORP RIBD (auinformation Base
Daemon) constructs its routing table using this map. RIB&htmstalls the routing ta-
ble into the forwarding plane process, which we implemenhwlick. Click uses this
table, namelyNextHopTableto determine a next hop. The FEA (Forwarding Engine Ab-
straction) in XORP handles inter-process communicatiawéen XORP and Click. To
maintain host information, a SeattleSwitch utilizeblastLocTablewhich is populated
with three kinds of host information: (a) the outbound paont évery local host; (b) the
location for every remote host for which this switch is a teeqg and (c) the location
for every remote host cached via previous lookups. For easériion or deletion of a
locally-attached host, the switch generates a correspgnéigistration or deregistration
message. Additionally, by monitoring the changes of thetNegpTable, the switch can
detect whether the topology has changed, and host renagpstis required accordingly.
To maintain IP-to-MAC mappings to support ARP, a switch alsaintains a separate
table in the control plane. This table contains only the rimfation of local hosts and
remote hosts that are specifically hashed to the switch. Vdemprototype switch is
first started up, a simple neighbor-discovery protocol rstaudetermine which interfaces
are connected to other switches, and over each of theséaitgarit initiates an OSPF
session. The link weight associated with the OSPF adjacisriny default set to be the

link latency. If desired, another metric may be used.

SEATTLE data plane: To forward packets, an ingress switch first learns an incgmin
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Figure 2.7: Implementation architecture.

packet’'s source MAC address, and if necessary, adds thespamding entry in Host-
LocTable. Then the switch looks up the destination MAC asislia the HostLocTable
and checks to seeiif the host is locally attached) the host is remote, and its location is
cached, oiii ) the host is explicitly registered with the switch. In theeafiii ) the switch
needs to send a host location notification to the ingressll bases, the switch then for-
wards the packet either to the locally attached destinatioencapsulates the packet and
forwards it to the next hop toward the destination. Interraxswitches can then simply
forward the encapsulated packet by looking up the destinati their NextHopTables.
In addition, if the incoming packet is an ARP request, theeésg switch executes the
hash functionF to look up the corresponding resolver’s id, and re-writesdistination

to that id, and delivers the packet to the resolver for retsmiu
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2.7.2 Experimental results

Next, we evaluate a deployment of our prototype implemériadn Emulab. To ensure
correctness, we cross-validated the simulator and impi¢gtien with various traces and
topologies, and found that average stretch, control othand table size from imple-
mentation results were withis?o of the values given by the simulator. We first present
a set of microbenchmarks to evaluate per-packet processiadgneads. Then, to eval-
uate dynamics of a SEATTLE network, we measure control ealhand switch state

requirements, and evaluate switch fail-over performance.

Packet processing overheadable 2.1 shows per-packet processing time for both SEAT-
TLE and Ethernet. We measure this as the time from when a pacdkers the switch’s
inbound queue, to the time it is ready to be moved to an outthoueue. We break this
time down into the major components. From the table, we carite# an ingress switch
in SEATTLE requires more processing time than in Ethernéiis happens because the
ingress switch has to encapsulate a packet and then lookeupetti-hop table with the
outer header. However, SEATTLE requires less packet psitg®verhead than Ether-
net at non-ingress hops, as intermediate and egress swiicheot need to learn source
MAC addresses, and consistent hashing (which takes abang) is required only for
ARP requests. Hence, SEATTLE requires less overall praogdsne on paths longer
than3.03 switch-level hops. In comparison, we found the average rarmotswitch-level
hops between hosts in a real university campus netw@edr(pu$ to be over4 for the
vast majority of host pairs. Using our kernel-level implertagion of SEATTLE, we were

able to fully saturate & Gbps link.

Effect of network dynamics:To evaluate the dynamics of SEATTLE and Ethernet, we

instrumented the switch’s internal data structures toquically measure performance
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Table 2.1: Per-packet processing time in micro-sec.

learn | look-up | encap| look-up Total

src | hosttbl nexthop tbl
SEA-ingress| 0.61 0.63 0.67 0.62 2.53
SEA-egress - 0.63 - - 0.63
SEA-others - - - 0.67 0.67
ETH 0.63 0.64 - - 1.27

information. Figures 2.8a and 2.8b show forwarding-taide and control overhead, re-
spectively, measured over one-second intervals. We caths¢ SEATTLE has much
lower control overhead when the systems are first started Hipwever, SEATTLE’s
performance advantages do not come from cold-start effast# retains lower control
overhead even after the system converges. As a side notritarding-table size in
Ethernet is not drastically larger than that of SEATTLE imsthxperiment because we
are running on a small four node topology. However, sincettip@logy has ten links
(including links to hosts), Ethernet’s control overheachagns substantially higher. Ad-
ditionally, we also investigate performance by injectirgghscanning attacks [39] into
the real traces we used for evaluation. Figure 2.8b incltidescanning incidences oc-
curred at around 300 and 600 seconds, each of which involhasgée host scanning
5000 random destinations that do not exist in the networkEthrernet, every scanning
packet sent to a destination generates a network-wide flecause the destination is not
existing, resulting in sudden peaks on it's control ovechearve. In SEATTLE, each
scanning packet generates one unicast lookup (i.e., tmanspdata packet itself) to a

resolver, which then discards the packet.

Fail-over performance: Figure 2.8c shows the effect of switch failure. To evaluate
SEATTLE’s ability to quickly republish host informationghe we intentionally disable

caching, induce failures of the resolver switch, and meaguoughput of TCP when all
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packets are forwarded through the resolver. We set the O8R¥-ihterval to 1 second,
and dead interval to 3 seconds. After the resolver failggtiesome convergence delay
before packets are sent via the new resolver. We found thAl BEE restores con-
nectivity quickly, typically on the order of several hundrmilliseconds after the dead
interval. This allows TCP to recover within several secqradsshown in Figure 2.8c-i.
We found performance during failures could be improved byif@athe access switch
register hosts with the next switch along the ring in advaageiding an additional re-
registration delay. When a switch is repaired, there is alsansient outage while routes
move back over to the new resolver, as shown in Figure 2.8ktiparticular, we were
able to improve convergence delay during recoveries binpwitches continue to for-
ward packets through the old resolver for a grace periodofrirast, optimizing Ethernet
to attain low (a few sec) convergence delay exposes the netiwoa high chance of

broadcast storms, making it nearly impossible to realize lexge network.

2.8 Summary

Operators today face significant challenges in managinganfiguring large networks.
Many of these problems arise from the complexity of admerisgy IP networks. Tra-
ditional Ethernet is not a viable alternative (except ppehiea small LANS) due to poor
scaling and inefficient path selection. We believe that SHA takes an important first
step towards solving these problems, by providing scalsélfeconfiguring routing. Our
design provides effective protocols to discover neighlamis operates efficiently with its
default parameter settings. Hence, in the simplest caseprieadministrators can en-
sure reachability without any configuration settings ommek devices. However, SEAT-

TLE also provides add-ons for administrators who wish taa@omsze network operation.
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Experiments with our initial prototype implementation shilmat SEATTLE provides ef-
ficient routing with low latency, quickly recovers afterlfaies, and handles host mobility
and network churn with low control overhead.

Moving forward, we are interested in investigating the dggbility of SEATTLE in
various other types of networks. We are also interestednifigations on switch archi-
tectures, and how to design switch hardware to efficientjypsut SEATTLE. Finally,
to ensure deployability, this chapter assumes Ethernekstat end hosts are not modi-
fied. It would be interesting to consider what performancenojzations are possible if
end host software can be changed. We intend to answer sorhes# uestions in the

following chapters.
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Chapter 3

VL2: Scalable and Flexible

Data-Center Networks

We introduced in the previous chapter a scalable and effipieig-and-play network ar-
chitecture for conventional corporate-campus or univgrsampus networks. Moving
forward, we are interested in what other types of networkshmnefit by employing the
SEATTLE architecture, or the technical principles used HAFTLE. At the same time,

we are also curious about what other configuration taskgjditian to those for address-
ing and routing, can be handled in a plug-and-play fashioostviotably, we are specif-
ically interested in the configuration activity aiming toseme networking performance
in general, such as traffic engineering. While we delibdyatkose a network-based im-
plementation in the previous chapter, we also recognizentivalifying end hosts might
be recommended, or even unavoidable, in some other typestwbrks. Motivated by

all these questions, in this chapter, we present VL2, anvative yet practical network

architecture that meets the needs of huge data centers.

To be cost effective, data centers must enable any server sssigned to any ser-
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vice. The VL2 network architecture meets the three objestrequired for this agility:
uniform high capacity between servers, performance ismiddetween services, and Eth-
ernet layer-2 semantics. VL2 provides (1) flat addressinglitaw service instances to
be placed anywhere in the network, (2) Valiant Load Balagg¥LB) that uses ran-
domization to spread traffic uniformly across network pafB¥a new end-system-based
address resolution service to achieve layer-2 Ethernetsgos while scaling to large
server pools. To build a scalable and reliable network &echirre, VL2 leverages proven
network technologies that are already available at low ookigh-speed hardware im-
plementations. As a result, VL2 networks can be deployedytodnd we have built a
working prototype. Our VL2 prototype shuffles 2.7 TB of dataang 75 servers in 395
seconds - 93% of the optimal utilization.

We begin in Section 3.1 by giving an overview of cloud-conpgidata centers and
motivating our research. Subsequently in Section 3.2, we gibrief introduction to
conventional data-center networks and clarify our teciingmals. Then in Section 3.3,
we present detailed measurements of traffic and fault daia & large operational cloud
service provider. Based on these data, we derive our desigimaplementation in Sec-
tion 3.4. In Section 3.5, we evaluate the merits of the VL2glesising measurement,
analysis, and experiments. Subsequently, in Section @&daress various operational
issues on VL2, from concerns on the effectiveness of VLB iratadenter, to the es-
timated cost of deploying and operating a VL2 network. Hinale summarize related

work in Section 3.7 and conclude this chapter in Section 3.8.
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3.1 Motivation and Overview

Cloud services are driving the creation of huge data centerisling tens to hundreds
of thousands of servers, that concurrently support a langedynamic number of dis-
tinct services (web apps, email, map-reduce clusters), eithe case for cloud service
data centers depends on a scale-out design: reliabilitparfdrmance achieved through
large pools of inexpensive resources that can be rapidgsigaed between services as
needed. With data centers being built that house over 10Gs6frers, at an amortized
cost approaching $12 million per month [59], the most déd&property for a data cen-
ter isagility — the ability to assign any server to any service. Anythirgsleevitably
results in stranded resources and wasted money.

Unfortunately, the data center network is not up to the té&kng short in several
ways. First, existing architectures do not provide enougacity between the servers
they interconnect. Conventional architectures rely oe-tilee network configurations
built from high-cost hardware. Due to the cost of the equiptnthe capacity between
different branches of the tree is typically oversubscribgdactors of 1.5 or more, with
paths through the highest levels of the tree oversubsciiyefdctors of 1:80 to 1:240.
This limits communication between servers to the pointagments the server pool —
congestion and computation hot-spots are prevalent evemwpare capacity is avail-
able elsewhere in the data center. Second, while data semst multiple services, the
network does little to prevent a traffic flood in one servicenfraffecting the other ser-
vices around it — when one service experiences a traffic flseglcommon for all those
sharing the same network subtree to suffer collateral demabird, the routing design
in conventional networks achieves scale by assigning setepologically significant IP

addresses and dividing servers up among VLANS (i.e., IPatshnHowever, this creates
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an enormous configuration burden when servers must be geassamong services fur-
ther fragmenting the resources of the data center, and thhunvolvement typically
required in these reconfigurations limits the speed of thegss.

Cloud-service application owners do not want to be forcedlter their services to
work around the structure or limitations of the data centetwmork, as they frequently
are doing today. Rather, they want to work with a mental madbdat all the servers
currently assigned to their service, and only those senames connected by a single
non-blocking Ethernet switch — ¥irtual Layer 2 Realizing this vision for the data
center network concretely translates into building a nekwbat meets the following
objectives: First, the network should provideiform high capacitypetween all servers,
meaning the maximum rate of a flow should be limited only by dkiailable capacity
on the network interface cards of the sending and receivéngess and there is no need
to consider network topology when adding servers to a sen&econd, the data center
needgperformance isolationthe traffic of one service should be unaffected by the traffic
handled by any other service, just as if each service wasemed by a separate physical
switch. Third, the network should providayer-2 semanticgust as if the servers were
on a LAN. Because LANs have flat addressing, where any IP add@n be connected to
any port of an Ethernet switch, data center managementa@tean assign any server to
any service and configure that server with whatever IP addtesservice expects. The
network configuration of each server should be identicaltbatit would be if connected
via a LAN, and features like link-local broadcast that maegdcy applications depend

on should work.
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3.1.1 Principles and contributions of VL2

In this chapter we design, implement and evaluate VL2, a otarchitecture for data
centers that meets these three objectives and therebydpsoagility. The design is mo-
tivated by extensive measurements of the traffic in exigtiragluction data centers. In
crafting VL2, we used four design principles that distirgjubur work from other re-
search efforts.

Randomizing to Cope with Volatility: Our measurements show data centers have
tremendous volatility in their workload, their traffic, atldeir failure patterns. Our re-
sponse is to create large pools of resources and then spr&dower them randomly,
trading off some performance on the best-cases to impravevtirst-case to the aver-
age case. We choose a Clos topology for VL2 because of thasxéepath diversity it
possesses, and we route flows across it using the ValiantBakhcing technique of in-
directing through randomly chosen nodes to obtain the lodispe guarantees it offers.
Through application of this principle we are able to achibwe¢h the uniform capacity
and performance isolation objectives.

Embracing End Systems: The software and operating systems on data centers
servers are already extensively modified for use insidedite center, for example, to cre-
ate hypervisors for virtualization or blob filesystems torstdata across servers. Rather
than limit ourselves from altering the software on servers,embrace the opportunity
to leverage the programmability they offer. We instead fiaurselves from making any
changes to the hardware of the switches or servers, and weedbfat legacy applica-
tions work unmodified. By using software on the servers tokweithin the limitations
of the low-cost switch ASICs currently available, we areeafol create a design that can
be built and deployed today. For example, we eliminate théabdity problems created

by broadcast ARP packets by intercepting ARP requests osdiwers and converting
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them into lookup requests to a directory system, rather gtgmpting to control ARPs
via software or hardware changes on the switches.

Separating Names from Locations: As many have recognized [17], separating
names from locations creates a degree of freedom that casdeeta implement new
features. We leverage this principle to enable agility ie ttata center and to improve
utilization by reducing fragmentation that the bindingween addresses and locations
had previously caused. Combining this principle with theviwus one enables VL2 to
meet the layer-2 semantics objective: allowing develofeessign IP addresses without
regard for the network topology and without having to recgufe their applications or
the switches.

Building on proven networking technology: As a pragmatic issue, we have found
that reusing network technologies that have robust, matupéementations in network
switches both simplifies the design of VL2 as well as increaggerator willingness to
deploy it. For example, VL2'’s design reduces the load on trectbry system by lever-
aging the link-state routing protocols already implemdrte the switches to hide certain
failures from servers. This principle supports all thregegbves.

In the remainder of this chapter we will make the followingntrdbutions, in roughly

this order.

o Afirst of its kind study of the traffic patterns in productioatd center. We find that
there is tremendous volatility in the traffic, cycling amds@r60 different patterns

during a day and spending less than 100 s in each pattern a@theercentile.
e We present the design of VL2 and the components that comiprise

e Every component of VL2 has been built and deployed in an 8@eseluster. Us-

ing the cluster, we experimentally validate that VL2 has pheperties set out as
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Figure 3.1: The conventional network architecture for dagaters

objectives, such as uniform capacity and performancetisolaWe also demon-
strate the speed of the network, such as its ability to sh2fileTB of data among

75 servers in 395 s.

e We apply Valiant Load Balancing in a new context, the intgitsh fabric of a data
center, and show that flow level traffic splitting achieves@st identical split ratios
(within 1% of optimal fairness index) on realistic data aaritaffic and it smoothes

utilization while eliminating persistent congestion.

o We justify the design trade-offs made in VL2, analyze thd ocbshe network, and

describe how it can be cabled for both open floor plan dateeceand containers.
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3.2 Background

In this section, we first explain the dominant design patterrdata center architecture
today. Then we discuss why this architecture is insufficiergerve large cloud-service
data centers.

As shown in Figure 3.1, the network is a hierarchy reachingifa layer of servers
in racks at the bottom to a layer of core routers at the top.r& laee typically 20 to 40
servers per rack, each singly connected to a Top of Rack (3aRR¢h with 1 Gbps links.
ToRs connect to two aggregation switches for redundanaytlase switches aggregate
further eventually connecting to access routers.

At the top of the hierarchy, core routers carry traffic betwaecess routers and man-
age traffic into and out of the data center. All links use Etleéras a physical-layer
protocol, with a mix of copper and fiber cabling. All the swigs below each pair of
access routers form a single layer-2 domain. The numberreesethat can be con-
nected to a single layer-2 domain is typically limited to & fieundred due to Ethernet
scaling overheads (packet flooding and ARP broadcasts)imibthese overheads and
to isolate different services or logical server groups .(eeqrail, search, web front ends,
web back ends), servers are partitioned into virtual LANEAXS) placed into distinct
layer-2 domains.

Unfortunately this conventional design suffers from thikdfeing fundamental limi-
tations:

Limited server-to-server capacity. As we go up the hierarchy we are confronted
with steep technical and financial barriers in sustainirghtbandwidth. Thus, as traffic
moves up through the layers of switches and routers, thesagscription ratio increases

rapidly. For example, typically servers have 1:1 over-suipsion to other servers in the
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same rack; i.e., they can communicate at the full rate (€ @bps) of their interfaces. We
found that up-links from ToRs are typically 1:5 to 1:20 owdyscribed (i.e., 1 to 4 Gbps
of up-link for 20 servers), and paths through the highestiayf the tree can be 1:240
oversubscribed. This large over-subscription factor ssydimits the entire data-center’s
performance.

Fragmentation of resources As the cost and performance of communication de-
pends on distance in the hierarchy, the conventional desigourages service planners
to cluster servers proximately in the hierarchy. Moreospreading service outside a sin-
gle layer-2 domain frequently requires the onerous taskadnfiguring IP addresses and
VLAN trunks, since the IP addresses used by servers aredgjally determined by the
access routers above them. Collectively, this contriblatéise squandering of computing
resources across the data center. The consequences aj@eagré&ven if there is plen-
tiful spare capacity throughout the data center, it is oé#actively reserved by a single
service (and not shared), so that this service can scal® pubkimate servers quickly to
respond rapidly to spikes in demand or to failures. In fdat,growing resource needs of
one service have forced data center operations to evict sémeices in the same layer 2
domain, incurring significant cost and disruption.

Poor reliability and utilization : Above the ToR, the basic resilience model is 1:1.
For example, if an aggregation switch or access router, ftilsre must be sufficient
remaining idle capacity on the counterpart device to cangy Ibad. This forces each
device and link to be run only at most 50% of its maximum uéifian. Inside a layer-2
domain, use of the Spanning Tree Protocol means that evemavhkiple paths between
switches exist, only a single one is used. In the layer-3igortEqual Cost Multipath
(ECMP) is typically used: when multiple paths of the samegterare available to a

destination, each router uses a hash function to spread @éeardy across the available
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next hops. However, the conventional topology offers attrhwes paths.

3.3 Measurements and Implications

In order to design VL2, we first needed to understand the datdec environment in
which it would operate. Interviews with architects, deycs, and operators led to the
objectives described in Section 3.1, but selecting thenieahmechanisms on which to
build the network requires a quantitative understandintheftraffic matrix (who sends
how much data to whom and when) and churn (how often does alte st the network
change due to switch/link failures and recoveries, etc.g aNalyzed these aspects by
studying production data centers of a large cloud serviogiger, and we use the results
to justify our choices in designing VL2 and in generating kfoads to stress the VL2
testbed.

Our measurement studies found two key results with impbeast for the network
design. First, the traffic patterns inside a data center @f@\hdivergent (as even over
50 representative traffic matrices only loosely cover theadraffic matrices seen) and
change rapidly and unpredictably. Second, the hierartiiganning tree topology is
intrinsically unreliable — even with a huge effort and expeno increase the reliability
of the network devices close to the top of the hierarchy, ilesge failures on those

devices resulting in significant downtimes.

3.3.1 Data center traffic analysis

Analysis of Netflow and SNMP data from the data centers reveayeral macroscopic
trends. First, the internal to external traffic volume ratoolay is typically about 4:1

(except for CDN applications). Second, data center contipités focused where high
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speed access to data on memory or disk is fast and cheap.ughhdata is distributed
across multiple data centers, intense computation and comaation on data does not
straddle data centers due to the cost of long-haul linksrdT lain increasing fraction of
the computation in data centers involves back-end compuatadriving the demands for
network bandwidth and storage.

To uncover the exact nature of traffic inside a data centeipateumented a highly
utilized 1,500 node cluster in a data center that suppottsrdaning on petabytes of data.
The servers are distributed roughly evenly across 75 toaci (ToR) switches, which
are connected in a hierarchical fashion, as shown in FigureV8e collected socket-level

event logs from all machines over a period of two months.

3.3.2 Flow distribution analysis

Distribution of flow size: Figure 3.2 illustrates the nature of flows within the moreibr
data center. The flow size statistics (marked as ‘+'s) shaav the majority of flows
are small (few KB); discussions with developers revealedtnod these small flows to
be hellos and meta-data requests to the distributed filesystTo bring out what is
going on with longer flows, we provide a statistic terntethl bytegmarked as ‘0’s), by
weighting each flow size by its number of bytes. Total bytdls tes, for a random byte,
the distribution of the flow size it belongs to. Almost all thgtes in the data center are
transported in flows whose lengths vary from about 100 MB teva &B. The mode at
around 100 MB springs from the fact that the distributed fylstem breaks long files into
100-MB-long chunks.

Similar to Internet flow characteristics [60], we find tha¢té are myriad small flows
(mice). On the other hand, as compared with Internet flowes diktribution is simpler

and more uniform. The reason is that in data centers, intawes arise in an engineered
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Figure 3.2: Mice are numerous; 99% of flows are smaller thahNIB. However, more
than 90% of bytes are in flows larger than 100 MB.
environment driven by careful design decisions (e.g., t@@-WB-long chunk size is
driven by the need to amortize disk-seek times over readshimed by strong incentives
to use storage and analytic tools with well understoodisssike and performance.
Number of Concurrent Flows: Figure 3.3 shows the probability density function
(as a fraction of time) for the number of concurrent flows goimand out of a machine,
computed over all 1,500 monitored machines for a repretieatday’s worth of flow
data. There are two modes. More than 50% of the time, an aweraghine has about
ten concurrent flows, but for at least 5% of the time an averagehine has greater than
80 concurrent flows. We almost never see more than 100 cardutows.
We use these statistics on flow size distribution and numbeowcurrent flows to

drive VL2 evaluation in Section 3.5.
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Figure 3.3: Number of concurrent connections has two mo¢Es10 flows per node
more than 50% of the time and (2) 80 flows per node for at leasvbite time.

3.3.3 Traffic matrix analysis

Distinct traffic patterns: Next, we ask the questioms there some degree of regularity
in the traffic that might be advantageously exploited thioagreful measurement and
traffic engineering?If traffic in the DC were to follow a few simple patterns, then a
few snapshots of the traffic between all pairs of serversngerthe traffic matrix or TM)
would represent these patterns. Further, optimizing orsghfew representative TMs
would yield a routing design that would be capacity-effitiem most traffic.

A technique due to Zhang et al. [61] quantifies the variabiht traffic matrices by
the approximation error arising when clustering similar $Min short, the technique
recursively collapses the traffic matrices thatsr@st similar to each othento a cluster,
where the distance (i.e., similarity) reflects how muchficafeeds to be shuffled to make
one TM look like the other. We then choose a representativefdivach cluster, such
that any routing that can deal with the representative TMagpers no worse on every TM
in the cluster. Using a single representative TM per clugtdds a fitting error (quantified
by the distances between representative TMs and the adilmltfey represent), which

quickly decreases as the number of clusters increases batrau dip beyond a certain
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Figure 3.4: Lack of short-term predictability: The clusterwhich a traffic matrix be-
longs, i.e., the type of traffic mix in the TM, changes quicihd randomly.

knee point. Finally, we find the fewest number of clusters thduces the fitting error
below the knee point. The resulting set of clusters and tlepiresentative TMs indicates
the number of distinct types of traffic matrices present anght. Surprisingly, we find the
number of representative traffic matrices in our data ceistguite large — even when
approximating withb0 — 60 clusters, the fitting error remains high ( 0.6) and decreases
moderately even beyond that point. For comparison, in amk3®ork with a comparable
TM dimension (AT&T’s PoP level topology), only 12 represatite traffic matrices yield

a good approximation (i.e., fitting errer 0.25) [62].

Instability of traffic patterns: Given the significant variability in traffic, one might
wonder whether traffic is predictable in the near tebwes traffic in the next minute look
similar to the traffic now?Traffic predictability enhances the ability of an operator t
engineer network routing as traffic demand changes. To med#se ability to predict the
traffic pattern in the network, Figure 3.4 plots the index igthdenotes the types of the
top-40 traffic matrices, see above) for each 100-sec-l@ffjamatrix over the day. The
figure shows the traffic pattern changes nearly constanttis, mo periodicity that could
help predict the future. Computing the run lengths (how |tmg network follows the

same matrix), we find the median run length is 1 (i.e., the ngtwhanges matrix every
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100 s or faster): only 1% of the time does the network retagsdime matrix for- 800 s.
The lack of predictability stems largely from fundamentaahanisms used to im-
prove performance of data center applications: randomi@ssexample, the distributed
file system spreads data chunks randomly across serversafdistribution and redun-
dancy. Similarly, the servers assigned to each job are chosee or less randomly from

the pool of available servers.

3.3.4 Failure characteristics

To design VL2 to tolerate failures and churn found in datatees; we collected failure
logs over an year from eight data centers in-production a@simg hundreds of thou-
sands of servers and hosting 100+ cloud services that selvens of active users. We
analyzed both hardware and software failures using SNMknhgdiaps, syslogs, server
alarms, and transaction monitoring frameworks for abow 28ror events resulting in
300k alarm tickets.

How frequent are network element failures? We define a failure as an event that
occurs when a system or component is unable to perform itgnestjfunction and that
lasts over 30 s. We find that as expected, most failures aré snsaze (e.g., 95% of
network device failures involve: 20 devices) while large correlated failures are rare
(e.g., 3700 servers fail within 10 minutes). Further, damets can be significant: 95%
of failures are resolved in 10 min, 98% in1 hour, 99.6% in< 1 day, but 0.09% last
10 days.

What is the pattern of element failure? As discussed in Section 3.2, conventional
data center networks apply 1+1 redundancy to improve nditialt higher layers of the
spanning tree topology. However, these techniques aftenstilfficient — we find that

in 0.3% of failures, all redundant components in a networkigke group became un-
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available (e.g., the pair of switches that comprise eaclemothe conventional network
(Figure 3.1) or both the uplinks from a switch). In one incitethe failure of a core
switch (due to a faulty supervisor card) affected ten millissers for about four hours.
We found the main causes of these downtimes are network nfigooations, firmware
bugs, and faulty components (e.g., ports). With no obvioag W prevent all failures
from the top of the hierarchy, VL2's approach is to broadenttpmost levels of the net-
work so that the impact of failures is muted and performareggades gracefully, moving

from 1+1 redundancy to n+m redundancy.

3.4 Virtual Layer Two Networking

Before describing our design in detail, we briefly revisit dasign principles and preview

how they will be used in the VL2 design.

Randomizing to Cope with Volatility: The huge divergence and unpredictabil-
ity of data-center traffic matrices suggest that optim@atbased approaches will not
be very effective at avoiding congestion. Instead, VL2 ugalsant Load Balancing
(VLB): destination-independent (e.g., random) trafficegaling across multiple inter-
mediate nodes. The theory behind VLB offers provably hatt$pee performance for
arbitrary traffic matrices subject only to ingress/egress capacity bounds [63] alkdn t
hose traffic model [64]. In our context, the ingress/egresstraints correspond to server
line-card speeds. Additionally, traffic spreading allovesta offer huge server-to-server
capacities at a modest cost because doing so requires odinwank with a hugeag-
gregatecapacity, which can be easily built with a large number okpensive devices.
We introduce our network topology suited for traffic sprewdin Section 3.4.1. The

topology offers a huge bisection bandwidth through a langelper of equal-cost paths
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between servers. Then we present our routing mechanisrmtionaly spread traffic
(more specifically, flows) in Section 3.4.2.

VLB, in theory, ensures aon-interferingpacket switched network [65] (the coun-
terpart of a non-blocking circuit switched network) as laagj) the offered traffic pat-
terns conform to the hose model, aingtraffic spreading ratios are uniform. While our
mechanisms to realize VLB do not perfectly meet both theseitions, we show in
Section 3.5.1 that our scheme’s performance is close toghimnom.

We also study specifically how this loose enforcement of theddions above affects
our system’s performance. To meet conditionve rely on TCP’s end-to-end conges-
tion control mechanism to enforce the hose model on offen&tid. Unfortunately, in
cloud-computing data centers, non-TCP (e.g., UDP, or artg 86 non-TCP-compliant)
traffic co-exists with TCP traffic. We conduct experimentSattion 3.5.2 to see how our
design works under such situations. Satisfying conditiog-even harder in practice for
two reasons. First, to avoid out-of-order delivery, we sprows — not packets. Unfor-
tunately flows differ in size. Second, for state-less trafficeading, weandomly— rather
than uniformly — associate flows with paths. We conduct exrpants in Section 3.5.2 to
guantify how this factor manifests itself in practice.

Separating names from locators To enable agility (such as hosting any service on
any server, dynamically growing and shrinking a server pant migrating virtual ma-
chines), we use an addressing scheme that separates 'seavees, termed application-
specific addresses (AAs), from their locators, termed locaspecific addresses (LAS).
VL2 uses a directory system to maintain the mappings betweemes and locators in
a scalable and reliable fashion. A shim layer running in teemorking stack on ev-
ery server, called the VL2 agent, invokes the directoryesyss resolution service. We

evaluate the performance of the directory system in Se&ibr.

79



Embracing End Systems In a data center, the rich and homogeneous programma-
bility available at end systems provides a mechanism talhapealize any new func-
tionality. For example, the VL2 agent enables fine-grainaith gontrol by adjusting the
randomization used in VLB. In addition, to realize the segian of names and locators,
the agent replaces Ethernet’s ARP functionality with geeetio the VL2 directory sys-
tem. The directory system itself is also realized on servrather than switches, and thus
offers flexibility, such as fine-grained, context-awareveeraccess control, or dynamic
service re-provisioning.

Building on proven networking technology. While embracing end-system func-
tionality, VL2 also leverages the mature and robust IP rautnd forwarding tech-
nologies already available in commodity switches. Thosduinte the link-state rout-
ing protocol, equal-cost multi-path (ECMP) forwarding, dRycasting, and IP multi-
casting. VL2 employs a link-state routing protocol to maintthe switch-level topol-
ogy, but not to disseminate end hosts’ information. Thigguts switches from needing
to learn the huge, frequently-changing host informatiod ttrus substantially improves
the network’s control-plane scalability. Furthermoreiotiigh a routing design that uti-
lizes ECMP forwarding along with anycast addresses shayeduitiple switches, VL2
spreads traffic over multiple paths and hides network chtroma the directory system

and end hosts as well.

We next describe each aspect of the VL2 system and how they tegether to im-
plement a virtual layer-2 network. These aspects includendgtwork topology, the ad-
dressing design, the routing design, and the directoryesyshat manages name-locator

mappings.
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3.4.1 Scalable oversubscription-free topology

Internet
Link-state network / \
carrying only LAs CR ... | CR
(e.g.,10/3) N\ D2 x)/m}_nggate Switches
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Int R
Dy x1 7/ \
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\ servers owning AAs
(e.g.,20/8)

Figure 3.5: Example Clos network between Aggregation atertmediate switches pro-
vides a broad and richly connected backbone well-suited/td8. Connectivity to the
Internet is provided by Core Routers (CR).

As described in Section 3.3, the way conventional dataecergtworks concentrate
traffic into a few devices at the highest levels restrictstttal bisection bandwidth and
also significantly impacts the network when the devices fagtead, we choose a topol-
ogy driven by our principle to use randomization for copinighwraffic volatility. Rather
thanscale upindividual network devices with more capacity and featumes scale out
the devices — build a broad network offering huaggyregatecapacity using a large num-
ber of simple, inexpensive devices, as shown in Figure 3 i§ an example of a folded

Clos network [65] where the links between the Intermediatéches and the Aggrega-
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tion switches form a complete bipartite graph. As in the @mional topology, ToRs
connect to two Aggregation switches, but the large numberadhs between any two
Aggregation switches means that if there arBtermediate switches, the failure of any
one of them reduces the bisection bandwidth by drily — a desirable property we calll
graceful degradation of bandwidtlevaluated in Section 3.5.3. Further, it is easy and
less expensive to build a Clos network for which there is nereubscription (further
discussion on cost is given in Section 3.6). For examplejguare 3.5, we usé 4-port
Aggregation and);-port Intermediate switches, and connect these switclesthat the
capacity between each layerlig D 4 /2 times the link capacity.

The Clos topology is exceptionally well suited for VLB in thay indirectly forward-
ing traffic through an Intermediate switch at the top tier spihe” of the network, the
network can provide bandwidth guarantees for any trafficriceg subject to the hose
model. Meanwhile, routing is extremely simple and restilien this topology — take a
random path up to a random intermediate switch and a randtimdpa/n to a destination

ToR switch.

3.4.2 VL2 routing

This section explains the motion of packets in a VL2 netweankg how the topology,
routing design, VL2 agent, and directory system combineitualize the underlying
network fabric and create the illusion for the network lgyard anything above it, that

the host is connected to a big, non-interfering data-cemige layer-2 switch.

Address resolution and packet forwarding

To implement the principle of separating names from losgtdt2 uses two different-

addresdamilies. Figure 3.5 illustrates this separation. The rmekwnfrastructure oper-
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ates using location-specific addresses (LAS); all switalnelinterfaces are assigned LAS,
and switches run an IP-based (i.e., layer-3) link-statéimguprotocol that disseminates
only these LAs. This allows switches to obtain the comple@¥®edge about the switch-
level topology, as well as forward any packets encapsulatddlLAs along the shortest
paths. On the other hand, applications operate using pemapplication-specific ad-
dresses (AAs), which remain unaltered no matter how seri@rations change due to
virtual-machine migration or re-provisioning. Each AA fger) is associated with an
LA, the identifier of the ToR switch to which the servers is neated. The VL2 directory
system stores the mapping of AAs to LAs, and this mappingaated when application
servers are provisioned to a service and assigned an AA IRssld

The crux of offering the layer-2 semantics is having serbeigve they share a single
large IP subnet (i.e., the entire AA space) with other sarviethe same service, while
eliminating the ARP and DHCP scaling bottlenecks that ptdguge Ethernets.

Packet forwarding: Since AA addresses are not announced into the routing pistoc
of the network, for a server to receive a packet the packetisce must first encapsulate
the packet (Figure 3.6), setting the destination of therdueader to the LA of the ToR
under which the destination server (i.e., the destinatié) i& located. Once the packet
arrives at its destination ToR, the ToR switch decapsutaepacket and delivers it based
on the destination AA in the inner header.

Address resolution: Servers in each service are configured to believe that tHey al
belong to the same IP subnet, so when an application sendskatpga an AA for the
first time, the networking stack on the host generates a besadA\RP request for the
destination AA. The VL2 agent running in the source hostsvoeking stack intercepts
the ARP request and converts it to a unicast query to the Vik&ctbry system. The

directory system answers the query with the LA of the ToR taciipackets should be
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tunneled.

Inter-service access control by directory serviceServers cannot send packets to an
AA if they cannot obtain the LA of the ToR to which they musth@hpackets for that AA.
This means the directory service can enforce access-d¢quiioies on communication.
When handling a lookup request, the directory system knowstwserver is making
the request, the services to which both source and destinaélong, and the isolation
policy between those services. If the policy is “deny”, tlredory server simply refuses
to provide the LA. An advantage of VL2 is that, when intengee communication is
allowed, packets flow directly from sending server to rerggvserver, without being
detoured to an IP gateway as is required to connect two VLAN&e conventional
architecture.

These addressing and forwarding mechanisms were chosdwdomain reasons.
First, they make it possible to utilize low-cost switchesieh often have small routing
tables (typically justi6K entries) that can hold only LA routes, without concern floe t
huge number of AAs. Second they allows the control plane ppst agility with very
little overhead; the design obviates frequent link-stdieegtisements to disseminate host-

state changes and host/switch reconfiguration.

Random traffic spreading over multiple paths

To offer hot-spot-free performance for arbitrary traffic tmees without any esoteric traf-
fic engineering or optimization, VL2 utilizes two related chanisms: VLB and ECMP.
The goals of both are similar — VLB distributes traffic acrassiltiple intermediate
nodes chosen independently of destinations (e.g., randparnid ECMP across multiple
equal-cost paths so as to offer larger capacity. When ubiegetmechanisms, VL2 uses

flows rather than packets, as the basic unit of traffic spreadmbytaus avoids out-or-
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Link-state network with LAs (10/8)

Int Int Int
(10.1.12.1) | """ | (10.1.2.1) | """ | (10.1.1.1)
H(ft) 10.1.1.1 H(ft) 10.0.0.6
Hft) 10.0.0.6 20.0.0.55 | 20.0.0.56
20.0.0.55 | 20.0.0.56 Payload
Payload
o
(10.0.0.4) (10.0.0.6)
ToR ToR
(20.0.0.1) (20.0.0.1)
Hift) 10.1.1.1
Hift) 10.0.0.6
20.0.0.55 | 20.0.0.56 20.0.0.55 | 20.0.0.66
Payload Payload

IP subnet with AAs (20/8) IP subnet with AAs (20/8)

Figure 3.6: VLB in an example VL2 network. Sendeisends packets to destinatiéh
via a randomly-chosen intermediate switch using IP-intiBagsulation. AAs are from
20/8 and LAs are froml0/8. H(f t ) denotes a hash of the five tuple.

order delivery. As explained below, VLB and ECMP are com@enary in that each can
be used to overcome limitations in the other.

Realizing the benefits of VLB requires forcing traffic to baenoff a randomly-
chosen Intermediate switch. Figure 3.6 illustrates trdffrevarding in an example VL2
network. The VL2 agent on each sender implements this “biagfi¢unction by encap-
sulating each packet to an Intermediate switch, wrappednarthe header that tunnels
the packet to the destination’s ToR. Hence the packet iddi#lstered to one of the Inter-
mediate switches, decapsulated by the switch, deliverédetdoR’s LA, decapsulated
again, and finally sent to the destination server.

While encapsulating packets to a specific, but randomly emastermediate switch
correctly realizes VLB, it would require updating a potatlyi huge number (e.g., 100K)
of VL2 agents whenever an Intermediate switch’s availgbdhanges due to switch/link

failures or recoveries. Instead, we assign the same LA add@ all Intermediate
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switches, and the directory systems returns #mgcast addres® agents as part of the
lookup results. Since all Intermediate switches are exalotee hops away from a source
host, now ECMP simply takes care of delivering packets esuwdaged with the anycast
address to any one of the active Intermediate switches. pgtch or link failures,
ECMP will react, eliminating the need to notify agents andugimg scalability. ECMP
mechanisms in modern switches choose next hops in a déstinatiependent fashion
(e.g., based on the hash of five-tuple values), satisfyiay/ttB semantics.

In practice, however, the use of ECMP leads to two “techhipabblems. First,
switches today only support up to 16-way ECMP, with 256-w&@MP being released by
some vendors this year. If there should be more paths alailadn ECMP can use, then
VL2 defines several anycast addresses, each associatednjths many Intermediate
switches as ECMP can accommodate. When an Intermediathdails, VL2 reassigns
the anycast addresses from that switch to other Intermeediaitches so that all anycast
addresses remain live and servers can remain unaware oeth®nk churn. Second,
inexpensive commodity switches cannot correctly retritngefive-tuple values when a
packet is encapsulated with multiple IP headers. As a swiuthe agent at the source
computes a hash of the five-tuple values and writes that valo@ header field the switch
does use in making an ECMP-forwarding decision. VL2 usesdtigce IP address field,
and the type-of-service (ToS) is another option.

Afinal issue for both ECMP and VLB is the chance that uneven fliaes and random
spreading decisions will cause transient congestion oresimks. Our evaluation did not
find this to be a problem on data center workloads (Sectio2B.but should it occur, the
sender can change the path its flows take through the netwahkdying the value of the
fields that ECMP uses to select a next-hop. Initial resultsvsthe VL2 agent can detect

and deal with such situations with simple mechanisms, ssck-aashing the large flows
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periodically or when TCP detects a severe congestion eeemt @ full window loss or

Explicit Congestion Notification).

Backwards-compatibility

To ensure complete layer-2 semantics, the routing and folinwg solutions must also
be backwards compatible and transparent to the existiryaiter applications. This
section describes how a VL2 networks handle external tréffiien and to the Internet),
as well as general layer-2 broadcast traffic.

Interaction with hosts in the Internet: 20% of the traffic handled in our cloud-
computing data centers is to or from the Internet, so the odtwust be able to handle
these large volumes. Since VL2 employs a layer-3 routingdab implement a virtual
layer-2 network, the external traffic can directly flow agdlse high-speed silicon of the
switches that make up VL2, without being forced through wateservers to have their
headers rewritten, as required by some designs (e.g., Mor{40]).

Servers that need to be directly reachable from the Intef@et, front-end web
servers) are assigned two addresses: an LA in addition té\#&esed for intra-data-
center communication with back-end servers. This LA is drdmem a pool that is an-
nounced via BGP and is externally reachable. Traffic fromitibernet can then directly
reach the server, and traffic from the server to externalmkssdbns will be routed toward
the core routers while being spread across the availaldse &nd core routers by ECMP.

Handling Broadcast: VL2 provides layer-2 semantics to applications for bacldsar
compatibility, and that includes supporting broadcast andticast. VL2’s approach
is to eliminate the most common sources of broadcast cosipletuch as ARP and
DHCP. ARP is handled by the mechanism described above, ar@dPDidessages are

intercepted at the ToR using conventional DHCP relay agamdsunicast forwarded to
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DHCP servers. To handle other general layer-2 broadcdit fievery service is assigned
an IP multicast address, and all broadcast traffic in thaisers handled via IP multicast
using the service-specific multicast address. The VL2 agsatlimits broadcast traffic

to prevent storms.

3.4.3 Maintaining host information using VL2 directory system

The VL2 directory system is a scalable, reliable and higliggerance store designed for
data center workloads. It provides two key functionaliti€s) lookupsandupdatesfor
AA-to-LA mappings, and (2) a reactive cache update mechatist supports latency-

sensitive operations, such as live virtual machine migrati

Characterizing requirements

We expect the lookup workload for the directory system toreguient and bursty. As
discussed in Section 3.3.1, servers can communicate with kipndreds of other servers
in a short time period with each flow generating a lookup foA&ato-LA mapping. For
updates, the workload is driven by failures and server igpaevents. As discussed in
Section 3.3.4, most failures are small in size and largestated failures are rare.

Performance requirements The bursty nature of workload implies that lookups
require high throughput and low response time to quickhalesh a large number of
connections. Since lookups are a replacement for ARP, tbgronse time should match
that of ARP, i.e., tens of milliseconds. For updates, howete key requirement is
reliability, and response time is less critical. Furtherce updates are typically scheduled
ahead of time, high throughput can be achieved by batchidgtep.

Consistency requirements In a conventional L2 network, ARP provides eventual

consistency due to ARP timeout. In addition, a host can ame®its arrival by issuing
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Figure 3.7: VL2 Directory System Architecture

a gratuitous ARP [66]. As an extreme example, consider litea machine (VM) mi-
gration in a VL2 network. VM migration requires fast updaftestale mappings (AA-to-
LA) as its primary goal is to preserve on-going communiaatiacross location changes.
These considerations imply that weak or eventual consigtehAA-to-LA mappings is

acceptable as long as we provide a reliable update mechanism

Directory-system design

Our observations that the performance requirements an#leaut patterns of lookups
differ significantly from those of updates led us to a twadd directory system ar-
chitecture shown in Figure 3.7. Our design consists of (1)calest number (50-100
servers for 100K servers) of read-optimized, replicatedalory servers that cache AA-
to-LA mappings and that communicate with VL2 agents, anca(&nall number (5-10
servers) of write-optimized, asynchronous replicatetesteachine (RSM) servers offer-

ing a strongly consistent, reliable store of AA-to-LA mapgs. The directory servers
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ensure low latency, high throughput, and high availabflitya high lookup rate. Mean-
while, the RSM servers ensure strong consistency and dityalbising the Paxos [67]
consensus algorithm, for a modest rate of updates.

Each directory server caches all the AA-to-LA mappingseddoat the RSM servers
and independently replies to lookups from agents using #thed state. Since strong
consistency is not a requirement, a directory server lagifychronizes its local mappings
with the RSM on a regular basis (e.g., every 30 secs). To aelhigh availability and low
latency at the same time, an agent sends a looképtwo in our prototype) randomly-
chosen directory servers. If multiple replies are receitbd agent simply chooses the
fastest reply and stores it in its cache.

Directory servers also handle updates from network prowisig systems. For con-
sistency and durability, an update is sent to only one rargl@hmosen directory server
and is always written through to the RSM servers. Specificalt an update, a directory
server first forwards the update to the RSM. The RSM reliabplicates the update to
every RSM server and then replies with an acknowledgmehgdirectory server, which
in turn forwards the acknowledgment back to the originatthgnt. As an optimization
to enhance consistency, the directory server can optipdmseminate the acknowledged
updates to a small number of other directory servers. If thgiraating client does not
receive an acknowledgment within a timeout (e.g., 2s), tleatcsends the same update
to another directory server, trading response time foakglity and availability.

Ensuring eventual consistency Since AA-to-LA mappings are cached at directory
servers and at VL2 agents’ cache, an update can lead to istemsy. To resolve in-
consistency without wasting server and network resoumaésgesign employs a reactive
cache-update mechanism to ensure both scalability andrpeahce at the same time.

The cache-update protocol leverages a key observatiorala lsbst mapping needs to
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be corrected only when that mapping is used to deliver traffspecifically, when a
stale mapping is used, some packets arrive at a stale LA — awfoéh does not host
the destination server anymore. ToRs forward such nomvelalble packets to a direc-
tory server, triggering the directory server to selectvabrrect the stale mapping in the

source server’s cache via unicast.

3.5 Evaluation

In this section we evaluate VL2 using a prototype running nr8@ server testbed and
commodity switches. Our goals are two-fold. First, we wargtiow that VL2 can be built
from components available today and Second, our implertienteeets the objectives
described in Section 3.1.

The testbed is built using a Clos network topology, simitafigure 3.5, consist-
ing of 3 Intermediate switches, 3 Aggregation switches aff@R®s. The Aggregation
and Intermediate switches have 24 10Gbps Ethernet portghich 6 ports are used on
the Aggregation switches and 3 ports on the Intermediateckes. The ToRs switches
have 4 10Gbps ports and 24 1Gbps ports. Each ToR is connectea tAggregation
switches via 10Gbps links, and to 20 servers via 1Gbps linkternally, the switches
use commodity merchant silicon ASICs: Broadcom ASICs 5682056514. To enable
detailed analysis of the TCP behavior seen during expetisnéme servers’ kernels are
instrumented to log TCP extended statistics [68] (e.g.gestion window (cwnd) and
smoothed RTT) after each socket buffer is sent (typicallKIR in our experiments).
This logging does not affeggoodput i.e., useful information delivered per second to the
application layer.

We first investigate VL2'’s ability high uniform network bandlth between servers,
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Figure 3.8: VL2 testbed comprising 80 servers and 10 swiche

then analyze performance isolation and fairness betwesdiictflows, measure conver-
gence after link failures, and finally, quantify addressoheBon performance. Overall,
our evaluation shows that VL2 provides an effective sulbstiar a scalable data center
network: VL2 achieves (1) 93% optimal network capacity, #2) CP fairness index of
0.995, (3) graceful degradation under failures with fasbrerergence, and (4) handles

50K lookups/sec under 10ms for fast address resolution.

3.5.1 VL2 Uniform high capacity

A central objective of VL2 is uniform high capacity betweearyawo servers in the data
center. How closely does the performance and efficiency dianétwork match that of

a Layer 2 switch with 1:1 over-subscription?

92



/U? T T T

S 60 | e - . e e 16000
Q/ [ -ttt TTETEEEEEEEEEEEEEES N B

— 50f- - N 5000 ,
a ] Ay =
el 40+ 14000 &
S 301 —— Aggregate goodput 13000 .g
{]!i 20t - - - Active flows 42000 &
% 10f 41000
(@)} 0 1 1 1 1 | | | 0

< 50 100 150 200 250 300 350 400

o

Time (s)

Figure 3.9: Aggregate goodput during a 2.7TB shuffle amongergers.

To answer this question, we consider an all-todata shufflestress test: all servers
simultaneously initiate TCP transfers to all other servétss data shuffle pattern arises
in large scale sorts, merges and join operations in the daitec We chose this test
because, in our interactions with application developges|earned that many use such
operations with caution, because the operations are haxggnsive in today’s data cen-
ter network. However, data shuffles are required and if datdfles can be efficiently
supported, it could have large impact on the overall alparit and data storage strategy.

We create an all-to-all data shuffle traffic matrix involviii§ servers. Each of 75
servers must deliver 500MB of data to each of the 74 otheressrva shuffle of 2.7 TB
from memory to memory

Figure 3.9 shows how the sum of the goodput over all flows sa&igh time during
a typical run of the 2.7 TB data shuffle. All data is carried oVEP connections, all
of which attempt to connect beginning at time 0. VL2 commdtee shuffle in 395 s.
During the run, the sustained utilization of the core linkghe Clos network is about
86%. For the majority of the run, VL2 achieves an aggregatalgat of 58.8 Gbps. The

goodput is very evenly divided among the flows for most of tng with a fairness index

We chose 500MB files rather than 100MB files (the most commawglae seen in our measurements)
to extend the period during which all 5,550 flows are sendimgkaneously — some flows start late due to
connection timeout on first attempt.
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between the flows of 0.995 [69] where 1.0 indicates perfaotéas (mean goodput per
flow 11.4 Mbps, standard deviation 0.75 Mbps). This goodpumore than an order of
magnitude improvement over our existing network consedetsing traditional design.

How close is VL2 to the maximum achievable throughput inehisronment?To
answer this question, we compute the goodput efficiencyhisrdata transfer. The good-
put efficiency of the network for any interval of time is defihas the ratio of the sent
goodput summed over all interfaces divided by the sum of nherface capacities. An
efficiency of 1.0 would mean that all the capacity on all thieiifaces is entirely used
carrying useful bytes from the time the first flow starts to witiee last flow ends.

To calculate the goodput efficiency, two sources of inefficiemust be accounted
for. First, to achieve a performance efficiency of 1.0, thevesenetwork interface cards
must be completely full-duplex: able to both send and rexé&iGbps simultaneously.
Measurements show our interfaces are able to support dreetate of 1.8 Gbps (sum-
ming the sent and received capacity), introducing an iriefiy of 1.8/2.0 = 10%. The
sources of this inefficiency include TCP ack overhead anthatrs of operating system
and device driver implementations. In addition, there esdkerhead of packet headers.
In the VL2 design, packet headers (including the encapsul&ieaders) account for 6%
inefficiency for standard Ethernet MTU of 1,500 Bytes. There, our current testbed
has an intrinsic inefficiency of 16% resulting in maximum iastable goodput for our
testbed of 84%.

Taking the above into consideration the VL2 network aclsese efficiency of (75 *
.84) / 58.8 = 93%. This combined with the fairness index ob.88monstrates that VL2

promises to achieve uniform high bandwidth across all servethe data center.

94



3.5.2 Performance isolation

One of the primary objectives of VL2 igility, which we define as the ability to assign
any server, anywhere in the data center to any service (8dhieving agility critically
depends on providing sufficient performance isolation leetwservices so that if one ser-
vice comes under attack or a bug causes its servers to sprkgtpait does not adversely
impact the performance of other services.

The promise of performance isolation in VL2 rests on the raathtics of Valiant
Load Balancing — that any traffic matrix that obeys the hoseé@h@s sprayed evenly
across the network (through randomization) to prevent argiptent hot spots. Rather
than have VL2 perform admission control or rate shaping teues the traffic offered
to the network conforms to the hose model, we instead rely ©R o ensure that each
flow offered to the network is rate-limited to its fair shar@ts bottleneck. Further, VL2
relies on ECMP to split traffic in equal ratios to intermediatvitches. Because ECMP
does flow-level splitting, coexisting elephant and mice #awnight get split unevenly at
smaller time scales.

Thus, the two key questions for performance isolation are ketiver TCP reacts
sufficiently quickly to control the offered rate of flows, amthether our implementation
of Valiant Load Balancing splits traffic evenly across théwwk. In the following, we

describe experiments that evaluate these two aspects 6§ dkegign.

Does TCP obey the hose model?

In this experiment, we add two services to the network. Trst §iervice has 18 servers
allocated to it and each server starts a single TCP transfen¢ other server at time 0
and these flows last for the duration of the experiment. Thers# service starts with one

server at 60 seconds and a new server is assigned to it evegoBds for a total of 19
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Figure 3.10: Aggregate goodput of two services with serugesmingled on the TORs.
Service one’s goodput is unaffected as service two ramfigtegp and down.

servers. Every server in service two starts an 8GB transfer CP as soon as it starts
up. Both the services’ servers are intermingled among th©ORd to demonstrate agile
assignment of servers.

Figure 3.10 shows the aggregate goodput of both serviceswaston of time. As
seen in the figure, there is no perceptible change to the gggrgoodput of service one
as the flows in service two start up or complete, demonsgagigrformance isolation
when the traffic consists of large long-lived flows. Througteaded TCP statistics, we
inspected the congestion window size (cwnd) of serviceoh€P flows, and found that
the flows fluctuate around their fair share momentarily duseiwvice two’s activity but
then stabilize quickly.

We would expect that a service sending unlimited rate UDRdraight violate the
hose model and hence performance isolation. We do not aosech UDP traffic in our
data centers, although, techniques such as STCP to make DO friendly” are well
known if needed [70]. However, large numbers of short TCPheations (mice), which
are common in DCs (Section 3.3), have the potential to causelgmubsimilar to UDP
as each flow can transmit small bursts of packets as it befpnsstart. Intuitively, the

bursts of small connections threaten to reduce goodputraf lived flows, as the mice
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Figure 3.11: Aggregate goodput of service one as servicecteates bursts containing
successively more short TCP connections.
may capture an unfairly large fraction of the small bufferd/iL.2’s switches.

To evaluate this aspect, we conduct a second experimentserthce one sending
long lived TCP flows, as in experiment one. Servers in servicecreate bursts of short
TCP connections (1 to 20 KB), each burst containing progrelysmore connections.

Figure 3.11 shows the aggregate goodput of the service thloe's along with the to-
tal number of TCP connections by service two versus time.if\grvice one’s goodput
is unaffected by service two’s activity. We inspected th@dwf service one’s TCP flows
and found only brief fluctuations due to service two’s atyivi

The above two experiments demonstrate TCP’s natural esrfeeat of the hose
model. Even though service one’s flows could have taken maneiwidth in the net-
work, TCP limited them to their receivers’ interface capgcihereby leaving spare ca-
pacity in the network for service two to ramp up and down withompacting service

one’s goodput.

VLB fairness

To evaluate the effectiveness VL2's implementation of MaiLoad Balancing in splitting

traffic evenly across the network, we created an experimeioiuw 75-node testbed with
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Figure 3.12: Fairness measures how evenly flows are splitéomediate switches from
aggregation switches. Average utilization is for linksveeén Aggregation and Interme-
diate switches.

traffic characteristics extracted from the DC workload oft®m: 3.3. Each server initially
picks a value from the distribution of number of concurreniMs and maintains this
number of flows throughout the experiment. At the start, ¢erah flow completes, it
picks flow rate(s) from the associated distribution andtstidne flow(s). Because of flow
aggregation happening at the Aggregation switches, itffcgnt to check the split ratios
at each Aggregation switch to each Intermediate switch. Gvnis by collecting SNMP
counters at 10 second intervals for all links from Aggregatio Intermediate switches.

In Figure 3.12, for each Aggregation switch, we plot Jaiasrfess index [69] for
the traffic to Intermediate switches as a time series. Theageeutilization of links was
between 10% and 20%. As shown in the figure, the average VL& apb fairness index
is greater than .98 for all Aggregation switches over theatan of this experiment. We
get such high fairness because there are enough flows at tpededion switches that
randomization benefits from statistical multiplexing. Jlevaluation validates that our
implementation of VLB is an effective mechanism for prevegthot spots in a data
center network.

In summary, the even splitting of traffic in VLB, when comhiheith TCP’s confor-
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mance of the hose model, provides sufficient performandatisa to achieve agility.

3.5.3 Convergence after link failures

As discussed in Section 3.3, interface flaps account for 28%etwork failures. Our
discussions with network engineers revealed that manyesfetare due to software and
hardware bugs, which manage to slip through processes $tngeand hardening the
system. VL2 mitigates the threat of such bugs by simplifyiimg network control and
data plane and relying on existing, mature OSPF routingemeintation. In this section,
we evaluate VL2's response when a link or a switch failuresdaegppen, which could be
the result of the routing protocol or the network managenpeatess converting a link
flap to a link failure.

We begin an all-to-all data shuffle and then disconnect lindétsveen Intermediate
and Aggregation switches until only one Intermediate swigmains connected and the
removal of one additional link would partition the networRccording to our study of
failures, this type of mass link failure has never occurredur data centers, but we use
it as an illustrative stress test.

Figure 3.13 shows a time series of the aggregate goodput\azhby the flows in
the data shuffle, with the times at which links were discotedand then reconnected
marked by vertical lines. The figure shows OSPF is re-commgrguickly (sub-second)
after each failure. Both Valiant Load Balancing and ECMP kvas expected, and the
maximum capacity of the network gracefully degrades. OSRIErs delay restoration
after links are reconnected, but restoration does notferewith traffic and the aggregate
goodput returns to its previous level.

This experiment also demonstrates the behavior of VL2 whemetwork is struc-

turally oversubscribed (meaning the Clos network has lapaadty than the capacity of
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Figure 3.13: Aggregate goodput as all links to switchesrinegliate1l and Intermediate2
are unplugged in succession and then reconnected in siatespproximate times of
link manipulation marked with vertical lines. Network rere/erges in< 1s after each
failure and demonstrates graceful degradation.

the links from the ToRs). For the over-subscription ratiesvieen 1:1 and 3:1 created
during this experiment, the VL2 continues to carry the alhatl traffic at roughly 90% of

maximum efficiency, indicating that the traffic spreadind/i2 is making full use of the

available capacity.

3.5.4 Directory-system performance

Finally, we evaluate the performance of the VL2 directorgteyn which provides the
equivalent semantics of ARP in layer 2. We perform this eatiun through macro- and
micro-benchmark experiments on the directory system. \Weotr prototype on up to 50
machines: 3-5 RSM nodes, 3-7 directory server nodes, angtthaining nodes emulat-
ing multiple instances of VL2 agents generating lookupswgmthtes. In all experiments,
the system is configured so that an agent sends a lookup teque® directory servers
chosen at random and accepts the first response. An updatestas sent to a directory
server chosen at random. The response timeout for lookupsipdates is set to two

seconds to measure the worst-case latency. To stressaeditéictory system, the VL2

100



3DS
(lossy nw)

0.8 A

0.6 A

~~1DS

0.2 A

Fraction of Lookups

0.0 T T T T

0.1 1.0 10.0 100.0 1000.0
Lookup Latency (msec), Log

(@)

1.0 4

3DS 3 DS (lossy nw)

0.6 A

0.4 A1

Fraction of Updates

T~1Ds
0-0 1 T T

1.0 10.0 100.0 1000.0
Update Latency (msec), Log

(b)

1.0 4

0.6 -

0.4 4

Fraction of Updates

0.0 T T T
1.0 10.0 100.0 1000.0
Convergence Latency (msec), Log

(©)

Figure 3.14: The directory system provides high througlgnd fast response time for
lookups and updates
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agent instances generate lookups and updates followingséylbnandom process, emu-
lating storms of lookups and updates. Each directory seeteieves all the mappings
(100K) from the RSM every 30 seconds.

Our evaluation supports four main conclusions. First, tineatiory system provides
high throughput and fast response time for lookups; threectbry servers can handle
50K lookups/sec with latency under 10ms(98ercentile latency). Second, the directory
system can handle updates at rates significantly higheretkagcted churn rate in typical
environments: three directory servers can handle 12K @sdsgc within 600ms (99
percentile latency). Third, our system is incrementallglable; each directory server
increases the processing rate by about 17K for lookups anfbdépdates. Finally, the
directory system is robust to component (directory or RSMes) failures and offers
high availability under network churns.

Throughput: In the first micro-benchmark, we vary the lookup and update eand
observe the response latencie¥,(30" and 99" percentile). We observe that a directory
system with three directory servers handles 50K lookupsisthin 10ms which we set
as the maximum acceptable latency for an “ARP request”. U400 lookups/sec, the
system offers a median response timecofims. Updates, however, are more expensive,
as they require executing a consensus protocol [67] to erthat all RSM replicas are
mutually consistent. Since high throughput is more impdrthan latency for updates,
we batch updates over a short time interval (e.g., 50ms). kéethat three directory
servers backed by three RSM servers can handle 12K updatesithin 600ms and
about 17K updates/sec within 1s.

Scalability: To understand the incremental scalability of the direcaygtem, we mea-
sured the maximum lookup rates (ensuring sub-10ms latesc®9% requests) with 3,

5, and 7 directory servers. The result confirmed that the mari lookup rates increases
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linearly with the number of directory servers (with eachveeroffering a capacity of
17K lookups/sec). Based on this result, we estimate the wast aumber of directory
servers needed for a 100K server data center. Using the mentdlow measurements
(Figure 3.3), we use the baseline of 10 correspondents pegrse a 100s window. In
the worst case, all 100K servers may perform 10 simultankmiaips at the same time
resulting in a million simultaneous lookups per second. Ated above, each directory
server can handle about 17K lookups/sec under 10rffs@9centile. Therefore, han-
dling this worst case will require a modest-sized directsygtem of about 60 servers
(0.06% of the entire servers).

Resilience and availability: We examine the effect of directory server failures on lagenc
We vary the number of directory servers while keeping thekia@d constant at a rate
of 32K lookups/sec and 4K updates/sec (a higher load thaectxg for three directory
servers). In Figure 3.14(a), the lines for one directoryweeshow that it can handle
60% of the lookup load (19K) within 10ms. The spike at two s&=is due to the
timeout value of 2s in our prototype. The entire load is haddly two directory servers,
demonstrating the system’s fault tolerance. Additiondhg lossy network curve shows
the latency of three directory servers under severe (10%Rgidosses between directory
servers and clients (either requests or responses), shdlersystem ensures availability
under network churns.

For updates, however, the performance impact of the nunfdirectory servers is
higher than updates because each update is sent to a sirggedi server to ensure
correctness. Figure 3.14(b) shows that failures of indiglddirectory servers do not
collapse the entire system’s processing capacity to hamutlates. The step pattern on
the curves is due to a batching of updates (occurring evems)0We also find that the

primary RSM server’s failure leads to only about 4s delayujpdates until a new primary
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is elected, while a primary’s recovery or non-primary’ddiaes/recoveries do not affect
the update latency at all.

Fast reconvergence and robustness=inally, we evaluate the convergence latency
of updates i.e., the time between when an update occursaulatdkup response reflects
that update. As described in Section 3.4.3, we minimize eaance latency by having
each directory server pro-actively send its committed tgsléo other directory servers.
Figure 3.14(c) shows that the convergence latency is witBdms for 70% updates and

99% of updates have convergence latency within 530 ms.

3.6 Discussion

In this section, we address several remaining concernstabewL?2 architecture, in-
cluding whether other traffic engineering mechanisms migghbetter suited to the DC
than Valiant Load Balancing; the cost of a VL2 network; and tost and viability of
cabling VL2.

Optimality of VLB: As noted in Section 3.4, VLB uses randomization to cope with
volatility, potentially sacrificing some performance fobast-case traffic pattern by turn-
ing all traffic patterns (including both best-case and woeste) into the average case.
This performance loss will manifest itself as the utilipatiof some links being higher
than they would under a more optimal traffic engineeringeayst To quantify the in-
crease in link utilization VLB will suffer, we compare VLBaximum link utilization
with that achieved by other routing strategies on a full dasaffic matrices (TMs) from
the DC traffic data reported in Section 3.3.1.

We first compare t@adaptive routingwhich routes each TM separately so as to min-

imize the maximum link utilization for that TM — essentiallypper-bounding the best
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performance that real-time adaptive traffic engineeringi¢@chieve. Second, we com-
pare tobest oblivious routingpver all TMs so as to minimize the maximum link utiliza-
tion. (Note that VLB is just one among many oblivious routsitategies.) For adaptive
and best oblivious routing, the routings are computed us#sgective linear programs
in Cplex. The overall utilization for a link in all schemesdemputed as the maximum
utilization over all routed TMs.

The results show that for the median utilization link in eadheme, VLB per-
forms about the same as the other two schemes. For the moslyheaded link in
each scheme, VLB’s link capacity usage is about 17% highaar that of the other two
schemes. Thus, evaluations on actual data center work&bente that the simplicity and
universality of VLB costs relatively little capacity whepnmpared to much more complex
traffic engineering schemes.

Cost and Scale:With the range of low-cost commodity devices currently &alale,
the VL2 topology can scale to create networks with no ovédasstiption between all the
servers of even the largest data centers. For example f@sitgith 144 portsip = 144)
are available today for $75K, enabling a network that cots1@00K servers using the
topology in Figure 3.5 and up to 200K servers using a slighatian. Using switches
with D = 24 ports (which are available today for $10K each), we can conaleout 3K
servers. Comparing the cost of a VL2 network for 35K serveth & conventional one
found in one of our data centers shows that a VL2 network watlover-subscription can
be built for the same cost as the current network that ha€lo2dr-subscription. Build-
ing a conventional network with no over-subscription woadst roughly 14x the cost of
a equivalent VL2 network with no over-subscription. We fihé same ballpark factor of
14-20 cost difference holds across a range of over-suligmripatios from 1:1 to 1:23.

(We use street prices for switches in both architecturesleanke out ToR and cabling
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costs.) There is some savings to be had by building an ovecsibled VL2 network, as a
VL2 network with 1:23 over-subscription costs 70% less tharon-oversubscribed VL2
network, but the savings is probably not worth the loss irigrerance.

Cabling and Deployment: A major concern for every network topology is the ability
to realize the cabling required. The VL2 topology in Figurd Biaps easily to a number
of common and anticipated deployment scenarios. Condmgeunse of 10G SFP+ fiber
optic cables for all network links (the cost of each cableoisghly $190, dominated by
the cost of the SFP+ optical transceiver at each end). Ghatnthe 10G end-ports of a
link cost about $500 each, we estimate the cabling cost tHbEL000 = 19% of total
system cost. Actual calculations show that for each of tlieggoyment scenarios, the
total cabling cost is 12% of the network equipment ¢ostluding ToR costs).

Layout Designs:Figure 3.15(a) shows a layout of a VL2 network into a convadi
open floor plan data center. The ToRs and server racks swrauaantral “network cage”
and connect using copper or fiber cables, just as they do tadanventional data center
layouts. The aggregation and intermediate switches atelatiin close proximity inside
the network cage, allowing use of copper cables for theerodnnection (copper cable
is lower cost, thicker, and has low distance reach vs. fibre number of cables inside
the network cage can be reduced by a factor of 4 (and thelrdosa by a factor of about
2) by bundling together four 10G links into a single cablengghe QSFP+ standard.

Modularization of the data center via containerization reeent trend [71]. Figure
3.15(b) shows how the server racks, ToRs, and pairs of Aggieayswitches can be pack-
aged into containers that plug into the Intermediate swecthe latter forming part of the
DC infrastructure. This design requires bringing one cdllrdle from each container
to the data center spine. As the next logical step, we can thevimtermediate switches

into the containers themselves to realize a fully “infrasture-less” and “containerized”
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Figure 3.15: Three layouts for VL2: (a) Conventional DC fldayout, (b) Container-
based layout with intermediate switches part of DC infiastire, and (c) Fully “con-
tainerized” layout. (External connectivity, servers rachnd complete wiring not shown.)
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data center — this layout is shown in Figure 3.15(c). Thisgiesequires running one
cable bundle between each pair of containers C1 and C2 — titéowill carry links that

connect the aggregation switches in C1 to the intermedveaitetsin C2 and vice-versa.

3.7 Related Work

Commercial Networks: Data Center Ethernet (DCE) [72] by Cisco and other switch
manufacturers share the goal of increasing network cap#tibugh multi-path with
VL2. However, these industry efforts are primarily focusadconsolidation of IP and
storage area network (SAN) traffic, which is rare in cloudvgse data centers, as they are
built on distributed file systems. Due to the requirementupp®rt loss-less traffic, their
switches need much bigger buffers (tens of MBs) than comin&thernet switches do
(tens of KBs), hence driving their cost higher.

Scalable routing: Locator/ID Separation Protocol [17] from IETF proposes fma
and-encap” as a key principle to achieve scalability and iktpln Internet routing.
VL2’'s control-plane takes a similar approach (i.e., demdrnden host-information res-
olution and caching) but adapted to data center environmmedtimplemented on end
hosts.

SEATTLE [73] proposes a distributed host-information teon system running on
switches to enhance Ethernet’s scalability. VL2 takes ahtest based approach to this
problem, which allows its solution to be implemented todiagependent of the switches
being used. Furthermore, SEATTLE does not provide scaldata plane primitives,
such as multi-path, which are critical for scalability andreasing utilization of network
resources.

Data-center network designs:DCell [74] proposes a highly-dense interconnection
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network for data centers by incorporating end systems witlitiple network interfaces
into traffic forwarding and routing. VL2 shares a similar joisiophy of leveraging design
options available at servers, however, uses servers oglyritol the way traffic is routed
but not for forwarding. Furthermore, DCell incurs signifitacabling complexity that
may limit incremental growth.

Fat-tree [75] and Monsoon [10] also propose building a datster network using
commodity switches and a Clos topology. Monsoon is desigmetbp of layer 2 and
reinvents fault-tolerant routing mechanisms alreadyleistiaed at layer 3. Fat-tree relies
on a customized routing primitive that does not yet existammodity switches. VL2,
in contrast, achieves hot-spot-free routing and scalaylert2 semantics using forward-
ing primitives available today and minor, application-qmatible modifications to host
operating systems. Further, our experiments using traffitepns from a real data center
show that random flow spreading leads to a network utilirefgorly close to the opti-
mum, obviating the need for a complicated and expensivengdtion scheme suggested
by Fat-tree.

Valiant Load Balancing: Valiant introduced VLB as a randomized scheme for
communication among parallel processors interconnectadhiypercube topology [65].
Among its recent applications, VLB has been used inside thclsing fabric of a
packet switch [76]. VLB has also been proposed, with modifics and generalizations
[63, 62], for oblivious routing of variable traffic on the bBrnet under the hose traffic

model [64].
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3.8 Summary

The key to creating economical data centers is enablingyagithe ability to assign any
server to any service — but the network in today’s data cerdeectly inhibits agility.
We argue that to enable agility, the network should meegtbigectives: uniform high
capacity, performance isolation, and layer-2 semantics.

In this chapter we present the VL2 network architecture nne¢ts these objectives. It
gives each service the illusion that all its servers are gdagnto a single layer 2 switch,
regardless of where the servers are actually connecteceitofbology. VL2 provides
high throughput, hot-spot free routing, and performancaison through Valiant Load
Balancing on a Clos topology. The VL2 directory system aatsehigh throughput and
fast response times, and only requires about 60 nodes faiaacdater of 100K servers.
VL2 embraces the opportunity to customize the server opgyaystem in the data center
which allows us to build VL2 by leveraging robust networkitezhnologies working
today.

We implemented all components of VL2 and created a workimmggbype intercon-
necting 80 servers using commodity switches. Experimeiitstwo data-center services
showed that churns (e.g., dynamic re-provisioning of ssrvehange of link capacity,
and micro-bursts of flows) have little impact on TCP goodpusing the flow statistics
measured in an operational 1,500-server cluster to drieevbrkload, we validated that
VL2’s implementation of Valiant Load Balancing splits flowsenly and VL2 achieves
high TCP fairness. Our prototype network shuffles 2.7 TB dadecross 75 servers in
395 seconds, achieving an efficiency of 93% with a TCP fagedex of 0.995 showing

that VL2 delivers high uniform capacity.
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Chapter 4

Relaying: A Scalable Routing
Architecture for Virtual Private

Networks

In Chapters 2 and 3, we proposed network architecturesefaine novel functions to be
implemented in routers, switches, or end hosts. While bhagigful on a mid- to long-
term basis, such an approach offers little help to networkiagstrators who want to turn
an existing operational network into a scalable and efficsetf-configuring ond¢oday.
Addressing this kind of problem requires different appltee First, it is critical to
ensure that a new solution (i.e., network architecture)a=abuilt with router/switch/end-
host functions available today. Second, more importa@atlgubstantial amount of ef-
fort has to be spent on facilitating the deployment and dpmraof the new solution.
This encompasses various tasks, including offering mashemnthat ensure backwards-
compatibility (with end hosts and neighboring networksyiding algorithms that help

administrators to make optimal operational decisiondding tools that implement such
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algorithms, and evaluating the algorithms and tools witl data from a target network.
Taking virtual private networks as an example, this chaatieiresses all these questions
onimmediately-availablescalable, and self-configuring network architectures.

Enterprise customers are increasingly adopting VPN serthat offers direct any-
to-any reachability among the customer sites via a proviééwork. Unfortunately this
direct reachability model makes the service provider'stirtables grow very large
as the number of VPNs and the number of routes per customezaise. As a result,
router memory in the provider’s network has become a keyldoo#tk in provisioning
new customers.

This chapter proposd®elaying a scalable VPN routing architecture that the provider
can implement simply by modifying the configuration of rastan the provider network,
without requiring changes to the router hardware and soéw#&elaying substantially
reduces the memory footprint of VPNs by choosing a small remab hub routers in
each VPN that maintain full reachability information, andddlowing non-hub routers to
reach other routers through a hub.

Deploying Relaying in practice, however, poses a challegpgiptimization problem
that involves minimizing router memory usage by having ag liebs as possible, while
limiting the additional latency due to indirect deliveryavé hub. We first investigate the
fundamental tension between the two objectives and theslal@algorithms to solve the
optimization problem by leveraging some unique properie¥PNs, such as sparsity
of traffic matrices and spatial locality of customer sitestdasive evaluations using real
traffic matrices, routing configurations, and VPN topolegéemonstrate that Relaying
is very promising and can reduce routing-table usage by 9p%@, while increasing the
additional distances traversed by traffic by only a few heddmniles, and the backbone

bandwidth usage by less thao%.
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We begin this chapter in Section 4.1 by giving an overviewhef ¢conventional VPN
architecture, as well as motivating Relaying. Then in Sect.2, we offer a brief in-
troduction to the problem background and desirable praggethat any solutions for the
problem should offer. Subsequently we present our measnemsults and motivate
Relaying in Section 4.3. Then we describe our baseline Rejascheme in Section 4.4
and explore the broad solution space with the baseline RgJascheme in Section 4.5.
In Sections 4.6 and 4.7, we formulate problems of finding ficatRelaying configura-
tion, propose algorithms to solve the problems, and evaltreg algorithms. Finally, we
discuss the implementation and deployment issues in 3e4t&) briefly review related

work in Section 4.9, and conclude the chapter in Section.4.10

4.1 Motivation and Overview

VPN service allows enterprise customers to interconnest Hites via dedicated, secure
tunnels that are established over a provider network. Amamgpus VPN architectures,
layer-3 MPLS VPN [77] offers direct any-to-any reachalildmong all sites of a cus-
tomer without requiring the customer itself to maintainlfmesh tunnels between each
pair of sites. This benefit of any-to-any reachability makash customer VPN highly
scalable and cost-efficient, leading to the growth of the MRIPN service at an ex-
tremely rapid pace. According to the market researcher HEMPLS VPN market was
worth $16.4 billion in 2006 and is still growing fast [78]. B010, it is expected that
nearly all medium-sized and large businesses in the UnitzeSwill have MPLS VPNs
in place.
The any-any reachability model of MPLS VPNs imposes a heawst on the

providers’ router memory resources. Each provider edgg (Bier in a VPNprovider
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network (see, e.g., Figure 4.1a) is connected to one or more differestomer sites, and
each customer edge (CE) router in a site announces its owessldliocks (i.e., routes)
to the PE router it is connected to. To enallesct any-to-any reachability over the
provider network, for each VPN, each PE router advertisa®ates it received from the
CE routers that are directly connected to it, to all other PEke same VPN. Then, the
other PEs keep those routes in their VPN routing tables ter lgacket delivery. Thus,
the VPN routing tables in PE routers grow very fast as the remalb customers (i.e.,
VPNSs) and the number of routes per customer increase. Asili,negiter memory space
required for storing VPN routing tables has become a keydio#tk in provisioning new
customers.

We give a simple example to illustrate how critical the meymoanagement problem
is. Consider a PE with a network interface card with OC-12(8bps) bandwidth that
can be channelized into 336 T1 (1.544 Mbps) ports - this isrg gemmon interface
card configuration for PEs. This interface can serve up tod86rent customer sites.
It is not unusual that a large company has hundreds or evarsdimols of sites. For
instance, a large convenience store chain in the U.S. h@¢ 8i@res. Now, suppose the
PE in question serves one retail store of the chain via onkeoTil ports. Since each of
the 7,200 stores announces at least two routes (one forthesd the other for the link
connecting the site and the backbone), that single PE haaitdgain at least 14,400 routes
just to maintain any-any connectivity to all sites in thisstamer's VPN. On the other
hand, a router’'s network interface has a limited amount ooy that is specifically
designed for fast address look-up. Today’s state-of-théngerface card can store at
most 1 million routes, and a mid-level interface card populased for PEs can hold at
most200 to 300K routes. Obviously, using.2% (14, 400/200K) of the total memory

for a single site that accounts for only at mosi% of the total capacity (1 out of 336
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T1 ports) leads to very low utilization; having onlyt customers that are similar to the
convenience store can use up the entire interface card nyewloife 322 other ports are

still available. Even if interface cards with larger amaiof memory become available
in the future, since the port-density of interfaces alsowgrahis resource utilization gap

remains.

4.1.1 Relaying: Don't keep it if you don’t need it

Fortunately, in reality, every customer site typically daet communicate with every
other site in the VPN. This is driven by a number of factorduding i) most network-
ing applications today are predominantly client-servgd@ations, and the servers (e.g.,
database, mail, file servers, etc.) are almost always dinlivaated at a few customer
sites, andi) enterprise communications typically follow corporateustures and hierar-
chies. In fact, a measurement study based on traffic volumadarge VPN provider’s
backbone shows that traffic matrices (i.e., matrices ofitrablumes between each pair
of PESs) in VPNs are typically very sparse, and have a cleardmabhspoke communica-
tion pattern [79, 80]. We also observed similar patternsimglyzing our own flow-level
traffic traces. Hence, PE routers nowadays install moreesotitan they actually need,
perhaps much more than they frequently need.

This sparse communication behavior of VPNs motivates serememory saving ap-
proach thatnstalls only a smaller number of routasa PE, while stilmaintains any-to-
any connectivity between customer sitesthis chapter, we propogeelaying a scalable
VPN routing architecture. Relaying substantially redutesmemory footprint of VPNs
by selecting a small number of hub PEs that maintain full redulitg information, and
by allowing non-hub PEs to reach other routers only throuigdé hubs.To be useful in

practice, however, Relaying needs to satisfy the followeguirements:
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e Bounded penalty: The performance penalty associated with indirect deliyeey,
detouring through a hub) should be properly restricted heo the service quality
perceived by customers does not get noticeably deteraeatd that the workload
posed on the provider’'s network does not significantly inseeeither. Specifically,
bothi) additional latency between communicating pairs of PEd,igithe increase
of load on the provider network should be insignificant onrage and be strictly
bounded within the values specified in SLAs (Service Leveteggents) in the

worst case.

e Deployability: The solution should be immediately deployable, work in tbe-c
text of existing routing protocols, require no changes tateo hardware and soft-

ware, and be transparent to customers.

To bound the performance penalty and to reduce the memotpriab of routing
tables at the same time, we need to choosenallnumber of hub PEs out of all PEs,
where the hub PEs originate or recein®sttraffic within the VPN. Specifically, we
formulate this requirement as the following optimizatiaolplem. For each VPN whose
traffic matrices, topology, and indirection constraintg(emaximum additional latency,
or total latency) are giverselect as small a number of hubs as possible, such that the
total number of routes installed at all PEs is minimized, levlihe constraints on indirect
routing are not violated Note that, unlike conventional routing studies that tgflic
limit overall stretch (i.e., the ratio between the lengthlod actual path used for delivery
and the length of the shortest path), we instead bound thiéiaua (or total) latency
of eachindividual path. This is because an overall stretch is often not quigdulisn
directly quantifying the performance impact on applicai@long each path, and hence

hard to be derived from SLAs. Moreover, most applicatiors r@ther tolerant to the
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small increase of latency, but the perceived quality of éheysplications drastically drops
beyond a certain threshold which can be very well specifiedfgbsolute maximum
latency value, rather than a ratio (i.e., stretch).

To solve this optimization problem, we first explore the fanmkntal trade-off rela-
tionship between the number of hubs and the cost due to thgetidelivery. Then, we
propose algorithms that can strictly limit the increasemafividual path lengths and can
reduce the number of hubs at the same time. Our algorithnisiespme unique prop-
erties of VPNSs, such as sparse traffic matrices and spatialitg of customer sites. We
then perform extensive evaluations using real traffic rnafyj route advertisement con-
figuration data, and network topologies of hundreds of VPNa krge provider. The
results show that Relaying can reduce routing table sizegplip90%. The cost for this
large saving is the increase of individual communicatiemlirectional latency only by
at most2 to 3 ms (i.e., the increase of each path’s length by up to a few taghihiles ),
and the increase of backbone resource utilization by lessltb?o. Moreover, even when
we assume a full any-to-any conversation pattern in each, V&Ner than the sparse pat-
terns that are monitored during a measurement period, garitims can save more than
60% of memory for moderate penalties.

This chapter makes four contributiori3We propose Relaying, a new routing archi-
tecture for MPLS VPNs that substantially reduces memorgesd routing tablesj) we
formulate an optimization problem of determining a hub set] assigning hubs to the
remaining PEs in a VPNii) we develop practical algorithms to solve the hub selection
problem; andv) we extensively evaluate the proposed architecture aratitdigns with
real traffic traces, routing configuration, and topologiesrf hundreds of operational

VPNs.
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4.2 Background

In this section, we first provide some background on MPLS VR#itaen introduce terms
we use in later sections. We also describe what propertiesraary saving solution for

VPNs should possess. Finally we briefly justify our Relayamghitecture.

4.2.1 How MPLS VPN works

Layer 3 MPLS VPN is a technology that creates virtual netwask top of a shared
MPLS backbone. As shown in Figure 4.1a, a PE can be connextadltiple Customer
Edge (CE) routers of different customers. Isolating traffmong different customers
is achieved by having distinct Virtual Routing and Forwagl(VRF) instances in PEs.
Thus, one can conceptually view a VRF as a virtual PE thatdsifip to a VPN Given a
VPN, each VRF locally populates its VPN routing table eitivéh statically configured
routes (i.e., subnets) pointing to incident CE routers, ibih woutes that are learned from
the incident CE routers via BGP [81]. Then, these local reate propagated to other
VRFs in the same VPN via Multi-Protocol Border Gateway PcotqMP-BGP) [82].
Once routes are disseminated correctly, each VRF learesstbmer routes of the VPN.
Then, packets are directly forwarded from a source to awigstin VRF through a label-
switched path (i.e., tunnel). PEs in a region are physidattgted at a single POP (Point
of Presence) that houses all communication facilities érégion.

Figure 4.1b illustrates an example VPN provisioned overft&s. Each PE’s routing
table is shown as a box by the PE. We assume thati®Eonnected to CEwhich
announces prefix PEi advertises prefikto the other PEs via BGP, ensuring reachability

to CEi. To offer the direct any-to-any reachability, each PE st@eery route advertised

We also use “PE” to denote “VRF” when we specifically discussua a single VPN.
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Figure 4.1: (a) MPLS VPN service with three PESs; two custoWfeNs (X, Y) exist, (b)
Direct reachability, (c) Reachability under Relaying.
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by the other PEs in its local VRF table. In this example, treash PE keeps five route
entries, leading t@5 entries in total across all PEs. The arrows illustrate ditrafiatrix.
Black arrows represent active communications betweers phiPEs that are monitored
during a measurement period, whereas gray ones denoté/gnactnmunications.
Specifically, our Relaying architecture aims to reduce the sf a FIB (Forwarding
Information Base), a data structure storing route entAeBIB is also called a forward-
ing table and is optimized for fast look-up for high speedkgadorwarding. Due to
performance and scalability reasons, routers are usuailiy\eith several FIBs each of
which is located in a very fast memory on a line card (i.e.ywoek interface card). Un-
fortunately, the size of a line-card memory is limited, andreasing its size is usually
very hard due to various constraints, such as packet fom@grdte, power consumption,
heat dissipation, spatial restriction, etc. For exampeesline-card models use a special
hardware, such as TCAM (Ternary Content Addressable Mejar$RAM [83], which
is much more expensive and hard to be built in a larger size tegular DRAMSs are.
Even if a larger line-card memory was available, upgradihgree cards in the network
with the large memory may be extremely costly. In MPLS VPN,RPs a virtual FIB
specific to a VPN and resides in a line-card memory along wileroVRFs configured
on the same card. Beside the VRFs, line-card memory alsesspacket filtering rules,
counters for measurement, and sometimes the routes frompuibiec Internet as well,

which collectively make the FIB-size problem even more ldmaing.

4.2.2 Desirable properties of a solution

To ensure usefulness, a router memory saving architecturé®Ns should satisfy the

following requirements.
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1. Immediately deployable: Routing table growth is an imminent problem to
providers; a solution should make use of router functiorithée in software or

hardware) and routing protocols that are available today.

2. Simple to implement: A solution must be easy to design and implement. For

management simplicity, configuring the solution shouldritaitive as well.

3. Transparent to customers: A solution should not require modifications to cus-

tomer routers.

We deliberately choose Relaying as a solution becausasfisatthese requirements.
Relaying satisfies godl because the provider can implement Relaying only via router
configuration changes (see Section 4.8 for details). It aisets goal3 since a hub
maintains full reachability, allowing spoke-to-spokdfiato be directly handled at a hub
without forwarding it to a customer site that is directly o@ated to the hub. Ensuring
goal2, however, shapes some design principles of Relaying whekwil discuss in the
following sections. Here we briefly summarize those detaig justify them.

Relaying classifies PEs into just two groups (hubs and spakesapplies a simple
“all-or-one” table construction policy to the groups, wldrubs maintain “all” routes
in the VPN, and spokes store only “one” default route to a hhb (etails are in Sec-
tion 4.4). Although we could save more memory by allowingrelab to store a disjoint
fraction of the entire route set, such an approach inewtalokeases complexity because
the scheme requires a consistency protocol among PEs.

For the same reason, we do not consider incorporating daabed optimizations.
When using route caching, each spoke PE can store a smaibfrad routes (in addition
to the default route, or without the default route) that ntilgh useful for future packet

delivery. Thus any conversation whose destination is foartthe cache does not take
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an indirect path. Despite this benefit, a route caching sehsmery hard to implement
because we have to modify routers, violating gbalSpecifically, we need to design
and implement) a resolution protocol to handle cache misses, iand caching archi-
tecture (e.g., route eviction mechanism) running in rounégrface cards. Apart from
the implementation issues, the route caching mechanigth issgenerally much harder
to correctly configure than Relaying is, violating géal For example, to actually re-
duce memory usage, we need to fix a route cache’s size. Howaeli@ed-sized cache
is vulnerable to a sudden increase of the number of populgesodue to the changes
in the customer side or malicious attempts to poison a caglge, (Scanning). To avoid
thrashing in these cases we have to either dynamically echigke size, or have to allow
some slackness to buffer the churns; neither is satisfaberause the former introduces
complexity, and the latter lowers memory saving effect.

Goal 2 also leads us to another important design decision, nameiyidual opti-
mization of VPNs. That is, in our Relaying model, a set of Relg configuration (i.e.,
the set of hubs) for a VPN does not depend on other VPNs. Tausxémple, we do not
selecta VRF in a PE as a hub at the expense of making other ViRlks same PE spokes,
neither do we choose a VRF as a spoke to make other VRFs inrtteeRR hubs. This de-
sign decision is critical because VPNs are dynamic. If wevedid the dependency among
different VPNs, having a new VPN customer or deleting antexgscustomer might alter
the Relaying configuration of other VPNSs, leading to a lamyeonfiguration overhead.
Moreover, this independence condition also allows netveahkinistrators to customize

each VPN differently by applying different optimizationrpaneters to different VPNs.
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4.3 Understanding VPNs

In this section, we first briefly describes the data set usexifhout the chapter. Then
we present our measurement results from a large set of opeabVPNs. By analyzing

the results, we identify key observations that motivatealgiel.

4.3.1 Data sources

VPN configuration, VRF tables, and network topology: We use configuration and
topology information of a large VPN service provider in theSUwhich has, at least,
hundreds of customers. VPNSs vary in size and in geographmatrage; smaller ones
are provisioned over a few PEs, whereas larger ones sparhawelreds of PEs. The
largest VPN installs more that), 000 routes in each of its VRFs. Specifically, from this
VPN configuration set, we obtain the list of PEs with whichre®®N is provisioned,
and the list of prefixes each VRF advertises to other VRFs. M @btain the list of
routes installed in each VRF under the existing routing camétion. From the topology,
we obtain the location of each PE and POP, the list of PEs ih B&P, and inter-POP

distances.

Traffic matrices: We use traffic matrices each of which describes PE-to-PEdnadl-
umes in a VPN. These matrices are generated by analyzingradfat traces captured
in the provider backbone over a certain (usually longer thaveek) period. The traffic
traces are obtained by monitoring the links of PEs facing:tire routers in the backbone
using Netflow [84]. Thus, the source PE of the flow is obvioukilevthe destination is
also available from the tunnel end point information in flaecords. Unless otherwise
specified, the evaluation results shown in the followindises are based on a week-long

traffic measurements obtained in May, 2007.
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4.3.2 Properties enabling memory saving

Through the analysis of the measurement results, we makiolibe/ing observations
about the MPLS VPNSs. These properties allow us to employyRedao reduce routing

tables.

Sparse traffic matrices: A significant fraction of VPNs exhibihub-and-spokéraffic
patterns, where a majority of PEs (i.e., spokes) commuainastlywith a small number

of highly popular PEs (i.e., hubs). Figure 4.2a shows thigidigions of the number of ac-
tive prefixes (i.e., destination address blocks that angadlgtused during a measurement
period) divided by the number of total prefixes in a VRF. We smea the distributions
during four different measurement periods, ranging fromeskvto a month. The curves
show that, for most VRFs, the set of active prefixes is mucHhlsmtaan the set of total
prefixes. Across all measurement periods, rougtib (94%) of VRFs use onlyi0%
(20%) of the total prefixes stored. The figure also confirms thastts of active prefixes
are stable over different measurement periods. By proegskese results, we found out
that the actual amount of memory required to store the aoturte set is only3.9% of the
total amount. Thus, if there was an ideal memory saving sehibatt precisely maintain
only those prefixes that are used during the measurememtdpetiich a scheme would
reduce memory usage 9.1%. This number sets a rough guideline for our Relaying
mechanism.

Spatial locality of customer sitesSites in the same VPN tend to be clustered geographi-
cally. Figure 4.2b shows the distributions of the distamoefa VRF to itsi-th percentile
closest VRF. For example, tith percentile curve shows th&®% of VRFs have25%

of the other VRFs in the same VPN with@#30 miles. According to thé0-th percentile

curve, most §1%) VRFs have at least half of the other VRFs in the same VPNiwith
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1,000 miles. Thus, a single hub can serve a large number of nearby|@&ding to the
decrease of additional distances due to Relaying.

PE’s Freedom to selectively install routesA PE can choose not to store and advertise
every specific route of a VPN to a CE as long as it maintainshaaitity to all the other
sites (e.g. via a default route). Indeed, this does not &ff€E’s reachability to all other
sites because a CE’s only way to reach other sites is via jgxant PE(s) of the same
(and sole) VPN backbone. Furthermore, this CE does not ltgwepagate all the routes
to other downstream customers. However, a CE might stilldmaected to multiple PEs
for load-balancing or backup purpose. In that case, the $aatkbalancing or backup
goals are still achieved if all the adjacent PEs are seleasduubs or all are selected as
spokes at the same time so that all the PEs announce the stofe@gtes to the CE.
Note that this property does not hold for the routers pagrtiting in the Internet routing,
where itis common for customers to be multi-homed to mudtjoviders or to be transit

providers themselves.

4.4 Overview of Relaying

The key properties of VPN introduced in the previous sectioltectively form a foun-
dation for Relaying. In this section, we first define the Relgyarchitecture, and then

introduce detailed variations of the Relaying mechanism.

4.4.1 Relaying through hubs

In Relaying, PEs are categorized into two different groupgsandspokes A hub PE
maintains full reachability information, whereas a spolee rRaintains the reachability

for the customer sites that are directly attached to it asithgle default routg@ointing to
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one of the hub PEs. When a spoke needs to deliver packetsetbttinon-local sites, the
spoke forwards the packets to its hub. Since every hub magiall reachability, the hub
that received the relayed packets can then directly detiveam to correct destinations.
Multi-hop delivery across hubs is not required becauseyelieb maintains the same
routing table.

This mechanism is illustrated in Figure 4.1c. Assuming ta#fit pattern shown in
Figure 4.1b is stable, one may choosel Riad PB as hubs. This leads tt6, rather
than25, route entries in total. Although the paths of most activeoainications remain
unaffected (as denoted by solid edges), this Relaying aarafiigpn requires some com-
munications (dotted edges) be detoured through hubsjrgferdirect reachability. This
indirect delivery obviously inflates some paths’ lengtlading to the increase of latency,
additional resource consumption in the backbone, andddage sharing. Fortunately,
reducing this side effect is possible when one can build afdaibs that originates or re-
ceive most traffic within the VPN. Meanwhile, reducing themuey footprint of routing
tables requires the hub set to be as small as possible. Ioltbeiing sections, we show

that composing such a hub set is possible.

4.4.2 Hub selection vs. hub assignment

Relaying is composed of two different sub-problerhab selectiorandhub assignment
problems. Given a VPN, laub selectiorproblem is a decision problem of selecting each
PE in the VPN as a hub or a spoke. On the other hardjbaassignmemnroblem is a
matter of deciding which hub a spoke PE should use as its ldefae. A spoke must
use a single hub consistently because, by definition, a PRotahange its default route
for each different destination. To implement Relaying, ateslach hub advertise a default

route (i.e.,0. 0. 0. 0/ 0) to spoke PEs via BGP. Thus, in practice, the BGP routingclogi
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running at each PE autonomously solves the hub assignmaviepr. Since all updates
for the default route are to be equivalent for simplicitycle#®E chooses the closest hub
in terms of IGP (Interior Gateway Protocol) distance. We tta$ model thede factohub
assignment strategy.

In order to assess the effect of the de facto strategy on pé#tion, we compare
it with some other hub assignment schemes, including randptimal, and algorithm-
specific assignment. Thrandomassignment model assigns a random hub for each non-
local destination. In theptimalassignment scheme, we assume that each PE chooses
the best hub (i.e., the one minimizing the additional disggrior each non-local desti-
nation. Note that this model is impossible to realize beeaugequires global view on
routing. Finally, thealgorithm-specifiassignment is the assignment plan that our algo-
rithm generates. This plan is realistic because it assursegyée hub per spoke, not per

destination.

4.5 Baseline Performance of Relaying

To investigate fundamental trade-off relationship betwte gain (i.e., memory saving)
and cost (i.e., increase of path lengths and the workloalderbackbone due to detour-
ing), we first explore a simple, light-weight strategy to wed routing tables. Despite
its simplicity, this strategy saves router memory subsidgtwith only moderate penal-
ties. Note that the Relaying schemes we propose in lategossaim to outperform this

baseline approach.
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4.5.1 Selecting heavy sources or sinks as hubs

The key problem of Relaying is building a right set of hubsrtéoately, spatial locality
of traffic matrices hints us that forcing a spoke PE to commatei only through a hub
might increase memory saving significantly, without incieg the path lengths of most
conversations. Thus, we first investigate the following@enhub selection strategy,
namelyaggregate volume-based hub selectieneraging the sparsity of traffic matrices.

For a PEp; in VPN v, we measure the aggregate traffic volume to and from the PE.
We denote:’™ to be the aggregated traffic volume receivedpbfrom all customer sites
directly connected t@;, anda?* to be the aggregated traffic volume sentzhyto all
customer sites directly attachedyip In VPN v, if a* > a3, a;l” orag™ > ay>; ad"
whereq is a tunable parameter betwe@mand1 inclusively, then we choose as a hub
inwv.

Although we could formulate this as an optimization problkendetermine the opti-
mal value ofx (for a certain VPN or for all VPNs) minimizing a multi-objee¢ function
(e.g., a weighted sum of routing table size and the amoumaéid volume relayed via
hubs), this approach lead us to two problems. First, it isllardetermine a general,
but practically meaningful multi-objective utility furich especially when each of the
objectives has a different meaning. Second, the objecte.gs memory saving) are not
convex, making efficient search impossible. Instead, wparnumerical analysis with
varying values oty and show how table size and the amount of relayed traffic velum
varies across different values. Since there are hundreds of VPNs available, exgjori
each individual VPN with varyingv values broadens the solution space impractically

large. Thus we apply a commaenvalue for all VPNs.
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4.5.2 Performance of the hub selection

Performance metrics: To assess Relaying performance, we measure four quantities
metric-)) the number of routing table entries reducedetric-ii) the amount of traffic
that is indirectly delivered through hulmeetric-iii) the sum of the products of traffic vol-
ume and additional distance by which the traffic has to bewteth andmetric-iV) the
additional distance of each conversation’s forwardind\p&br easier representation, we
normalize the first three metricdetric-i is normalized by the total number of routing
entries before Relayingmetric-ii is normalized by the amount of total traffic in the VPN,
andmetric-iii is normalized by the sum of the products of traffic volume aimddat (i.e.,
shortest) distance. We consistently use these metricaghot the rest of the chapter.
The meanings of these metrics are as followinlygetric-i quantifies our scheme’s
show the increase of workload on the backbone. On the othmat, hashows the latency
inflation of individual PE-to-PE communications. Note tlhag measure the latency in-
crease in distance (i.e., miles) because, in the backbomé&aoje tier-one network, prop-
agation delay dominates a path latency. Due to the speedhafdnd attenuation, a mile
in distance roughly corresponds 1o.5 usec of latency in time. Thus, increasing a path
length by1000 (or 435) miles lead to the increase of unidirectional latency rdudly
11.5 (5) msec.
Relaying results:Figure 4.3a shows the gain and cost of the aggregate volaseddub
selection scheme across different values of the volumshiotdo. As soon as we apply
Relaying (i.e..« > 0), all three quantities increase because the number of hedyeases
asa increases. Note, however, that the memory saving incregsgdast, whereas the

amount of relayed traffic and its volume-mile product inesesmmodestly. If we assume
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a sample utility function that is an equally weighted sumha& memory saving and the
relayed traffic volume, the utility value (i.e., the gap beem the gain and the cost curves)
is maximized wherey is around0.1 to 0.2. Whena passe$).23, however, the memory
saving begins to decrease fast because a large valuefaifs to select hubs in some
VPNSs, making those VPNs revert to the direct reachabilishaecture between every
pair of PEs. This also makes the cost values decrease as well.

Figure 4.3b shows how different hub assignment schemest #fie cost (specifically,
the increase of workload on the backbone manifested by timea$iwhe products of vol-
ume and additional distance). Note that we do not plot thie gaive because it remains
identical regardless of which hub assignment scheme we Esst, the graph shows
that the overall workload increased by Relaying with eittier de facto or the optimal
assignment is generally low (less tha#% for any «). Second, the de facto assign-
ment only slightly increases the workload on the backboreu@d2%) in the sweet spot
(0.1 < a < 0.2), compared to the optimal (but impractical) scheme. Thesase hap-
pens because the de facto scheme forces a spoke to use # blals consistently, and
that closest hub might not be the spoke’s popular communoitaeer. Nevertheless, this
result indicates that choosing the closest hub is effeativeducing the path inflation.

Although the sum of the volume-mile products is reasonabtglg the increased
path lengths can be particularly detrimental to sanekvidual traffic flows Figure 4.3c
shows, for all communicating pairs in all VPNs, how much éiddal distances the Re-
laying scheme incurs. The figure shows latency distribgtiwhen using Relaying (with
a = 0.1) for three different hub assignment schemes: optimal, dafand random.
For example, when using Relaying with the de facto assignsamreme, roughly0%
of the communicating pairs still take the shortest pathereas around4% of the pairs

experience additional distances of at mt¥i0 miles (i.e., the increase of unidirectional

132



latency by up tol1.5 msec). Unfortunately this means that sof8é of the pairs suf-
fer from more than1000 miles of additional distances, which can grow in the worst
case larger thaR000 miles (i.e., additionab0 msec or more unidiretionally). To those
communications, this basic Relaying scheme might be sinnphcceptable, as some ap-
plications’ quality may drastically drop. Unfortunatetie figure also shows that even
the optimal hub assignment scheme does not help much inirgpile particularly large

additional path lengthdlo remove the heavy tail, we need a better set of hubs

4.6 Latency-constrained Relaying

Relaying requires spoke-to-spoke traffic to traverse airaent path, and therefore in-
creases paths’ latency. However, many VPN applicationk asc\VoIP are particularly
delay-sensitive and can only tolerate a strictly-boundedtte-end latency (e.g., up to
250 ms for VoIP). SLAs routinely specify a tolerable maximunelaty for a VPN, and
violations can lead to adverse business consequencesasgalstomers’ loss of revenue
due to business disruptions and corresponding penaltigseqorovider.

The simple baseline hub selection scheme introduced indpett5 does not factor
in the increase of path latencies due to relaying. Thus, wefoenulate the following
optimization problem, nameliatency-constrained Relaying (LCR) probleof which
goal is to minimize the memory usage of VPN routing tablegesttlio aconstraint on
the maximum additional latency of each patiote that we deliberately bound individual
paths’ additional latency, rather than the overall strebd#rause guaranteeing a certain
hard limit in latency is more important for applications.riexample, increasing a path’s
latency from30 msec (a typical coast-to-coast latency in the U.Spteads to the stretch

of only 2, whereas the additionaD msec can intolerably harm a VoIP call’s quality. On
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the other hand, increasing a path’s latency ftbmsec tol0 may be nearly unnoticeable

to users, even though the stretch factor in this case is

4.6.1 LCR problem formulation

We first introduce the following notation. Le&® denote the set of PE routefd3 =
{p1,p2, ... pn} INn VPN v. We define two matricest) Conversation matrixC’ = (c; ;)
that captures the historical communication between th&ereun P, wherec; ; = 1 if
i # 7 andp; has transmitted traffic tp; during the measurement period, and = 0
otherwise; andi) latency matrixL = (; ;) wherel; ; is unidirectional communication
latency (in terms of distance) from to p;. [;; = 0 by definition. Letd = {h4,..., h;,}
(m < n) be a subset oP denoting the hub set. Finally, we define mappivig P — H
that determines a hub;, € H for eachp, € P.

LCRIis an optimization problem of determining a smallés{i.e., hub selection) and
a corresponding mappiny (i.e., hub assignment), such that in the resulting Relagoig
lution, every communications between a pair of VRFs adhethd maximum allowable

additional latency (in distance) thresh@ldFormally,

min |H|
s.t. Vs,dwhosec,; =1,

ls,]\/f(s) + lM(s),d - ls,d < 6

Other variations of the above formulation include bounditger the maximum total
one-way distance, or both the additional and the total degta. We do not study these
variations due to the following reasons. First, boundireggatiditional distance is a stricter
condition than bounding only the total distance is. Thus,results in the following sec-

tions provide lower bounds of memory saving and upper boohdwirection penalties.
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Second, when bounding total and additional distances otiaédistance threshold must
be larger than the maximum direct distance. However, thisimmam direct distance of-
ten results from a small number of outlier conversationg.(eommunication between
Honolulu and Boston in the case of the U.S.), making the th&ahnce bound ineffective
for most common conversations.

Considering the any-to-any reachability model of MPLS VPNs could accommo-
date the possibility that any PE can potentially commueiedth any other PEs in the
VPN, even if they have not in the past. Thus, we can solve the pblem using &ull-
meshconversation matri</“! = (¢/4"), whereVi, j (i # j) ¢/ =1, ¢[" = 0. There
is trade-off between using the usage-based matrice¢suid full-mesh matrices((/*%).
UsingC/“! imposes stricter constraints, potentially leading to Iomemory saving. The
advantage of this approach, however, is that the hub seteatould be oblivious to the
changes in communication patterns among PEs, obviatingdieal re-adjustment of the
hub set.

Unfortunately, the LCR problem is NP-hard, and we provids groof in the paper

containing the extended version of this chapter [85]. Hewegporopose an approximation
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algorithm explained in the following subsection.

4.6.2 Algorithm to solve LCR

In this section, we outline our solution to th&€R problem. The pseudo-code of this
algorithm is also given in our extended version [85]. We sa@.CR problem through
a two-staged approach. The first stage busleis/e-useelationships among PEs. Given
a pair of PESp;,p;) € P, we say thap,; canservep;, or conversely, that; canusep;,

if all conversations irC' from p; to other PEs in the VPN can be routed yigas a hub
without violating the latency constraint. For each REn P, we builds two setsi) the
serveset.S; composed of PEs that can serve as a hub, angltheusesetlU; composed
of PEs thafp;, as a spoke, can use for relaying. The serve-use relatipmisinmong PEs
can be represented as a bipartite graph. Figure 4.4 showsesaerve-use relationship
graph of a VPN with five PEs. Each node on the left bank reptegere P in its role
as a possible hub, and on the right bank, each node represemiss role as a potential
spoke. The existence of serve-use relationship betegen;) € P is represented by an
edge betweep; on the left bank ang; on the right bank.

Our original LCR problem now reduces to finding the smallashber of nodes on
the left bank (i.e., hubs) that can serve every node on tlt bgnk. This is an instance
of the set cover problem, which is proven to be NP-comple&, [8hd we use a simple
greedy approximation strategy to solve this. At each step | CR algorithm) greedily
selects; from the left bank whose serve s&tis the largestii) removep; from the left
bank,iii) remove allp; (j € S;) from the right bank and update the mapping functidn
to indicate thap,’s assigned hub ig;, andiv) revise the serve-use relationships for the
remaining PEs in the graph. The above step is repeated eniEnremains on the right

bank.
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The LCR algorithm can be easily extended to solve the altemaroblems men-
tioned above (i.e., bounding total latency, or both adddicand total latency) only by
re-defining the semantics of “serve” and “use” relationsiiwote also that the LCR al-
gorithm assigns a single hub for each spoke PE, and each §toke assumed to use
the single hub consistently for all packets. Thus, the hgigasnent plan generated by
the LCR algorithm is implementable, if not as simple as théagdé assignment scheme
based on BGP anycasting as described in Section 4.4. FompéxaaVPN provisioning
system can configure each spoke PE’s BGP process to chooseificspute advertise-

ment from a corresponding hub.

4.6.3 Solutions with usage-based matrices

We run the LCR algorithm individually for each VPN. The rasidhown in later sections

are the aggregate of individual solutions across all VPNSs.

Bounding additional distances: Figure 4.5a shows the CDFs of additional distances
of all conversation pairs i’ across all VPNs for varying values. Solid lines show
the additional distance distributions when using the algor-specific hub assignment
decisions (i.e., assignment plans computed by the LCR itthgoy, whereas the dotted
lines represent the distributions when spoke PEs choosgldkest hubs in terms of the
IGP metric (i.e., the de facto hub assignment). Note, howekat for a giverd, both
solid and dotted curves are generated with the same hub eesofe spoke PEs, the
hub determined by the LCR algorithm might be different frdma tlosest hub that the de
facto assignment scheme would choose. Thus, when one esesitthsets selected by
the LCR algorithm accompanied with the de facto hub assigiseheme, some pairs of
PEs might experience additional distances larger thahhis is why solid lines always

conform thed values, whereas dotted lines have tails extending beyaatd.th
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However, the fraction of PE pairs experiencing additionatahces larger thaf is
small. We re-scale Figure 4.5a to magnify the tails and pmiteise@s Figure 4.5b. For a
reasonable value df (e.g., additionall00 miles, which are commensurate wihmsec
increase in latency), only.3% of PE pairs experience additional distances larger ¢than
Meanwhile, the fraction of pairs exposed to unbearablydagglditional distances (e.qg.,
1000+ miles, or more thari1.5 msec in latency) is only.2%, which amounts to a few
tens of pairs. These results suggest that in practice, asingitors can use the simpler
de facto assignment scheme in general and can configure loodg tsmall number of

exceptional PEs as per specific assignment plans dictatdtelyCR algorithm.

Memory saving: We next investigate the memory saving from our latency cairstd
hub selection. Figure 4.5c¢ shows the gain (i.e., memonngawand cost (i.e., the increase
of workload in the backbone) under LCR for a rangéoBoth the gain and cost curves
increase witl because a larger value ®@Mmakes it possible for a smaller number of hubs
to serve all the spokes.

The results convey a number of promising messages. For dgatoachieve roughly
80% memory saving, a conversation (i.e., VRF pairs) need travé additional distance
of only up t0320 miles, which corresponds to the increase of unidirectidet@incy by
just3 ms. Moreover, when conversations can bear at mo@ miles of path inflation,
Relaying can reduce routing table memory by rougktt§o. Note that this amount of
memory saving is onl\8% worse than that of the ideal memory saving scheme men-
tioned in Section 4.3.2, and is better than that of the aggesgolume-based scheme
(Figure 4.3a) with any choices of the volume thresheld

A surprising result is that, even if we do not allow any adutial distance (i.ef = 0),
the relaying scheme can reduce routing table memory consoimpy around a hefty

54%. By specifically analyzing these penalty-free cases, wadoout three reasons
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for this huge, free-of-charge benefit. First, a significanmiber of PEs communicate
mostly with a hub PE. In the case of the traffic whose sourceestiation is a hub, our
relaying scheme does not introduce any additional distgecalty as long as the hubs
are correctly identified and assigned. This case account®@ighly 45% of the entire
penalty-free conversations. Second, a hub can sometimesdited on the shortest path
from a source to a destinatioB8%). For example in the United States, relaying traffic
between San Diego and San Francisco through Los Angeles nogimcur any detour in
effect because physical connectivity between the twoxitigght be already configured
that way. Third, for availability purposes, a VPN is ofteropisioned over multiple PEs
located at the same POP706). Thus if one of the PEs in a POP is chosen as a hub, all
the other PEs at the same POP can use the hub PE for relayirayaiddany (practically

meaningful) distance penalties.

Indirection penalty: Figure 4.5¢ shows that the latency-constrained Relayiggires
substantially more traffic to be relayed compared to the baseelaying scheme shown
in Figure 4.3a. (Note that we use the same metrics describ&edgtion 4.5.2.) This is
because the LCR algorithm does not take into account thivestaaffic volumes associ-
ated with the different PE-to-PE conversations while mgl@ither the hub selection or
hub assignment decisions; the LCR algorithm selects a PEal as long as the PE can
relay the largest number of other PEs without violating #itethicy constraint. However,
Figure 4.5c also shows that the sum of the relayed volume dditi@nal distance prod-
ucts is a relatively small compared to the corresponding stithe volume and direct
distance products. This is because, even when relayingedeak the algorithm limits
the additional distances below the sntallalues. Hence, thgractical impactof relaying
(e.g., the increase of resource usage in the provider nkjMsmuch less severe than it

is suggested by the sheer amount of relayed traffic. Also, endirened that using the
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de facto hub assignment, rather than the LCR algorithm’sassignment plan, increases
the aggregate costs very little. This is because the LCRrighgo does not necessarily
choose heavy sources or sinks as hubs, leaving only litdenrto improve/worsen the

indirection penalties via different hub assignments.

4.6.4 Solutions with full-mesh matrices

We next consider the performance of the LCR when using therfakh conversation
matrices. Figure 4.6a shows the gain and the cost curvedeWhiselect the hubs based
on the full-mesh matrices, to evaluate the penalties duel&ying we use the historical
PE-to-PE conversations (including volumes) that are nooedit during the measurement
period (May 13 - 19, 2007).

The results are encouraging, even though the conversatbmces are much denser
in this case. At the expense of incurring additional diséanof up to roughly480
miles (corresponding only to roughlyms in unidirectional latency), we can reduce the
memory consumption by nearl§0%. Interestingly, we can still save rough®% of
memory even with no additional distance. This is is becagisen a PE, it is sometimes
possible to have a hub lying on every shortest path from theoRtach other PE. For
example, on a graph showing the physical connectivity of &lMPa spoke PE has only
one link connecting itself to its neighbor, and the neighisahe hub of the spoke PE,
delivering traffic through the neighbor does not increase @aths’ lengths originating
from the spoke PE. We also note that the aggregate costsrélayed traffic volume
and its volume-mile product) are slightly reduced compacethe results derived from
usage-based matrices. This is because hub sets for ful-masrices are bigger than
those for usage-based matrices. We also confirmed that igénke of individual paths

are correctly bounded withif for all cases.
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For network administrators, these full-mesh results artiqudarly encouraging for
the following reasons. First, even when customers’ netwgrkpatterns drastically
change from todays hub-and-spoke style to a more peerdptie style (e.g., by per-
vasively deploying VoIP or P2P-style data sharing appliced), the relaying scheme can
still save significant amount of memory. Second, it has thiteashal attraction that the
relaying solution needs to be computed and implemented @amtg and for all. There
would be no need to track the changing conversation matricdike the usage-based

case.

4.6.5 Robustness

We next explore how our solution performs under traffic dyren Figure 4.6b shows
the results when we applyfxedsolution set derived from the traffic measurements in a
particularmodelweek (May 13 - 19, 2007) to the traffic férdifferenttestweeks in May
to August, 2007. We assume that VRFs added later on after tlieelmveek maintains
full reachability.

The solid curves in Figure 4.6b depict the aggregate coshgltine test weeks. We
apply the usage-based solutions — both the hub selectioassighment results — from the
model week to the traffic matrices of the test weeks. Erros bepresent the maximum
and minimum cost across allweeks with each value @f, whereas the curve connects
the averages. For comparison, we also plot the cost curvehidomodel week using
dotted lines. We do not plot the gain curves because we ussathe hub set for all the
weeks. The results are promising; the aggregate cost cfovtee test weeks are close to
those of the model week for all choicestbéxceptd. The exception wheé = 0 occurs
because the strict latency condition leads to a solutiothsets very sensitive to traffic

pattern changes. The tight error bars show that the aggrexet is stable with little

143



variance across thetest weeks. We found similar results with the full-mesh soluof
the model week, and omit the graphs in the interest of space.

Figure 4.6¢ shows the distribution of additional distansen we apply the usage-
based solutions from the model week to one (July 23 - 29, 26Die test weeks. The
solid lines show the additional distances when we use bethti selection and assign-
ment plans of the model week. The dotted lines representiste@des when combining
the hub selection results with de facto hub assignment. Tdghgs similar to Figure 4.5a,
meaning that the site-to-site latency distribution reradairly stable over the test weeks.
However, the fraction of communication pairs whose adddiadistance is larger than
the specified increases by at mo8%o, leaving heavier tails. Note that, due to traffic dy-
namics, just using the hub assignment results of the moded \@ree., solid curves) does
not guarantee the conformanceftim subsequent weeks because the conversation matrix
changes. However, the fraction of such cases is small. lgdke ofy = 400, only less
than2.5% of conversation pairs do not meet the latency constraietveVified that these
tails are removed when using the full-mesh solutions of éiséweek. In conclusion, the

latency-constrained hub selection and assignment scheneajes robust solutions.

4.7 Latency-constrained, Volume-sensitive Relaying

In addition to bounding additional latency within a threkhove also want to reduce
additional resource consumption in the backbone requoeRélaying. We view the sum
of volume and additional distance products is one of thevagiemetrics to measure the
load a backbone has to bear. This requirement motivatefi@noptimization problem,

namelylatency-constrained, volume-sensitive Relaying (LCVSR)
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Server side User side

Figure 4.7: A sample serve-use relationship with penalties

4.7.1 LCVSR problem formulation

To formulate this problem, we define a volume matrix= (v; ;) of a VPN wherev; ;
denotes the amount of traffic volume thatsends top;. Obviously,v;; = 0 when

¢;,; = 0. Now we consider the following problem:

min  |H|, YvsaVsa - (Lsar(s) + lares)a — ls,a)

s.t.  Vs,dwhosec, = 1,

ls,]\/[(s) + lM(s),d - ls,d < 6

To provide robust solutions for the worst case, we can algiaaithe full-mesh con-
versation matrixC/*!", Note, however, that we still need to use the usage-baseuinel
matrix V' as well because we cannot correctly assume the volumes obthersations
that have never taken place. Thus, a hub set generated bfothislation can serve
traffic between any pairs of PEs without violating the lagenonstraint, and keeps the
amount of relayed volume relatively small as long as the ma&umatrices considered are
similar to the usage-based matrices. Hence, assumindhh&iture communication be-
tween two PEs who have never spoken to each other in the pasiages relatively small

amount of traffic, this full-mesh solution might still workfectively.
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4.7.2 Algorithm to solve LCVSR

We outline our LCVSR algorithm in this section. The pseuddeis given in [85]. Min-
imizing |H| conflicts with minimizing_y, 4 vs.a - (Is.n(s) + lar(s),a — ls,a), making the
problem hard to solve. For example, to reduce the additimsdurce consumption to
zero, every PE should become a hub, leading to the maximune il 7 |. Note, how-
ever, that this does not mean that the additional resoumgurnption can be minimized
only and if only the hub set is maximal. In fact, for sodigit is possible to minimize the
additional resource consumption with a very small — one trivial example is the case
where there is only one popular PE, and all the other PEs coriuaite only with the pop-
ular PE. Although we cannot minimize both the objectiveshatdame time in general,
coming up with a unified objective function composed of the tbjectives functions
(e.g., a weighed sum of the two objectives) is not a good ambreither because the two
objectives carry totally different meanings. Thus, we m®ga simple heuristic to build
a reasonably small hub set that reduces the relayed volume.

Our algorithm for LCVSR works similarly to the algorithm féhe LCR problem.
Thus, the first stage of the algorithm builds the same seseerelationships among PEs.
However, during the process, the algorithm also computesnaltyvalue for each PE.
The penaltyX; of PEp; is defined to be the sum of the volume and additional distance
products of all conversations @1, assuming; is a sole hub in the VPN. That i{; =
SvsaUsd - (lsi 4+ lia — ls,4). Figure 4.7 illustrates a sample serve-use relationskdphgr
with five PEs, where each PE is annotated with its penaltyevallfith these serve-use
relationships along with penalties, the algorithm chodaéss.

Due to the two conflicting objectives, at each run of the hubdi®n process, the
algorithm has to make a decision that reduces either oneeativtb objectives, but not

necessarily both. We design our algorithm to choose a PE ft@rserver side (i.e.,
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the left bank) that hathe smallest penalty valueather than the largest serve set size.
The intuition behind this design is that choosing a PE withgmallest penalty is often
conducive to reducingothobjectives, if not always. By definition, a penalty valdgof
PE p; decreases when each product (e - (Is; + lia — ls.4)) becomes smaller. Now
suppose a PE that communicates with a large number of oth&rwEcall such a PE
has a higlspan The penalty of the high-span PE is usually lower becausaitifespan
PE is on the shortest path of many conversations, making rofthe volume-distance
products zero. Thus, our algorithm tends to choose PEs wgtieh spans. The key is
that, fortunately, a PE with a higher spalsohas a large serve set (i.6,) because it can
serve as a hub a large number of PEs it communicates witholativig the additional
distance constraint. The remaining part (removing the eh®*E, and revising the serve-
use relationships) is identical to the previous algoritiiMe repeat the process until no

PE remains on the user side.

4.7.3 Solutions with usage-based matrices

The benefit of LCVSR over LCR is shown in Figure 4.8a. The figmeicates that
LCVSR algorithm significantly reduces indirection peredtcompared to the LCR algo-
rithm. The amount of relayed traffic volume increases muchenstowly than does it
with the LCR algorithm and never exceéoo of the total volume for any below 1000
miles. In comparison, in Figure 4.5c, the same cost cunsedl@ve thel0% line for
almost allf, reaching nearly0% whené = 1000. This decrease in relayed volume also
reduces the sum of volume and additional distance prod&cisa reasonable choice of
0 (e.g.,400 miles), the sum of the volume and additional mile productsnly 1.2% of
the corresponding total.

Figure 4.8a also shows the LCVSR can still substantiallpcedrouter memory us-
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age, and also that the amount of memory saving is marginaisi than the results of
LCR. Specifically, a comparison with Figure 4.5c reveald tha saving for eaclf is
lower by only1 to 3%. While, the lower saving is somewhat expected given thatER
does not explicitly aim to minimizé&H |, the small difference in saving suggests that the
LCVSR is still very effective in identifying memory-effiar solutions.

In conclusion, the LCVSR scheme results in very modest asgef backbone work-
load, while enabling dramatic memory saving. We also cordrthat combining the
LCVSR with the simpler-to-implement de facto assignmetnesce, instead of the as-
signment dictated by the algorithm, marginally affectsaggregate cost.

We also note that the distribution of path lengths is biasedtds lower values for
the LCVSR compared to the LCR, as evidenced by comparingdbke €DF curve in
Figure 4.8b to the corresponding curve in Figure 4.5a. Iti@aar we note that for any
givend, a significantly larger fraction of communications have rathpinflation. This
reduced inflation is probably a consequence of the LCVSRrithgo tending to choose
PEs with higher span values, rather than those PEs whod#olesare qualified to serve
a larger number of other PEs, as hubs. Using the de factoremssigt scheme, however,
also adversely impacts a few (e.9.9% of the total communication pairs in the case of

6 = 400) individual pairs, leading to the increase of additionaitdnces beyoné

4.7.4 Solutions with full-mesh matrices

Here we compare LCVSR with LCR, both using full-mesh conagon matrices. Recall
that a full-mesh conversation matrix of a VPN factor in theefey for conversations
between every PE pair. Hence, for a given PE, the number offttsthat can serve
the given PE tends to be smaller than the corresponding nuwilie the usage-based

conversation matrix. This in turn suggests that hub setganerally larger in the full-
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mesh case. This intuition is confirmed in Figure 4.8c whicbvehthat the hub set size
indeed increases. However, we can still save a substaxiad 75% of memory for
reasonable values ¢fin the few hundred miles range. This corresponds to marginal
lower (aboutl — 5%) memory saving compared to the LCR algorithm (see Figusa)4.
On the other hand, the cost of Relaying reduces significamitier LCVSR (about0%

in terms of the amount of relayed volume, &ridto 95% in terms of the sum of volume

and additional distance products) compared to LCR.

4.7.5 Robusthess

We next evaluate how a specific LCVSR solution (i.e., a hubctigin and assignment re-
sults generated by the LCVSR algorithm) performs as coaviers and volume matrices
change over time. We use data from the same model and tess\asék Section 4.6.5.
Figure 4.9 presents the aggregate cost during the test wegkghe solid curves
and error bars. We apply the usage-based solution (both élebt®n and assignment
results) derived from the model week to the conversationvahane matrices of the test
weeks. For comparison, dotted curves show the correspgnddirection penalties for
the model week. First, the figure shows that the increase aktmme workload (i.e., the
sum of volume and additional distance products), whilésigher than the model week,
is quite small and has low variability. For all valuesipthis quantity remains belon2%
(below9% whend < 800). Hence, the actual additional network load in the test wegk
still very low. However, the results also indicate that theoant of relayed traffic volume
itself can be substantially higher in the test weeks contptrehat in the model week.
For example for) = 400, the relayed volume is higher by’ to 106%, depending on
weeks. This higher and markedly variable amount of relayddne can be attributed to

the fact that LCVSR uses the traffic matrix of the model weeksrhub selection, and
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that different weeks will have some variability in the volasnof common conversation
pairs. Similar results are found when using the full-medntsans of the model week,
but we do not show them to save space. Despite the increaskpéd traffic volume, we
confirmed that the distributions of additional distancesmiuthe test weeks are similar
to those of the test week (i.e., curves in Figure 4.8b), eixtteqd tails become slightly
heavier in a similar fashion shown as in the LCR results (8ret.6.5 and Figure 4.6¢).
The fact that the distributions of the additional distangdes ot change much over the
test weeks might seem to be conflicting with the fact that tfgregate relayed volume
significantly increases during the test weeks. By manualgstigating the traffic pat-
terns of the model and test weeks, we figure out that this hegpbecause conversation
matrices () are more stable than volume matricdg @re. For example, suppose PE
p1 communicates with Plg; during the model week (i.ec; » = 1), and bothp; andp.
are not hubs (i.e., traffic from, to p, is relayed). Note that during the test weeks traffic
from p, to p, never experience additional distances larger théecause our algorithm
guarantees this for all pairs of PEs who communicated duhiegnodel week. Now let
us consider the volume, , of the traffic fromp, to p,. Whenw, , increases during the
test weeks, compared tg , of the model week, the fraction of the relayed traffic vol-
ume during the test weeks eventually increases, leadirtgteffect shown in Figure 4.9

without affecting the additional distance distributions.

4.8 Implementation and Deployment

Implementing relaying is straightforward and does notdadtrce complexity into the ex-
isting VPN infrastructure. Given a set of hubs for each VP&twork administrators can

easily migrate from the conventional VPN architecture te télaying architecture only
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by slightly modifying PE routers’ configuration. Meanwhilelaying traffic through a
hub is handled solely by the hub, without affecting the CEbnis that are incident to
the hub. Moreover, both initial deployment and periodiadgustment of Relaying do

not incur any service disruption.

4.8.1 Implementing Relaying with BGP

PE routers use BGP to disseminate customer prefixes. Faisidgl PE routers multi-
plex route updates of different VPNs over a set of shared B&3Bigns established among
the PEs. Isolation between different VPNs is then achievadoute target§RTs) and
import policies Specifically, all routes of VPN are tagged with its own route targeft,
when they are advertised. When PEs receive route updaigsdagth R7,, they import
those routes only intp’s VRF tableV RE), as dictated by’s import policy. Note that
implementing this conventional VPN routing architectueguires only one RT and one
import policy for each VPN.

Our Relaying scheme can be easily implemented by introduaieach VPN) two
RTs to distinguish customer routes from the default roude$ (0. 0/ 0), andii) two dif-
ferent import policies for hubs and spokes. This mechanssittuistrated in Figure 4.10.
Each PE — regardless of whether it is a hub or a spoke — in YRNvertises customer
routes tagged witi7’;. Additionally, each hub ip advertises a default route tagged with
RTZ?. Upon receiving updates, a spoke PE imports routes tagghdei;l only, whereas
a hub PE imports routes tagged willY’; only. As a result, a VRF tabléfRFpSPO’“e at
a spoke PE is populated only with the default routes adesttisy other hubs and the
routes of the locally-attached customer sites. Contrghtim hub’s VRF tabld” RFIf““’
contains all customer routes in the VPN. Note that this rayérchitecture ensures for a

hub to directly handle relayed traffic without forwardingata locally-attached customer
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site because hubs maintain full reachability informatidence, implementing Relaying
does not require any modification to customers.

The mechanism described above naturally implements thaate hub assignment
scheme because each spoke individually selects the cloglesh terms of IGP metric.
However, to implement a specific hub assignment plan thaalgarithm generates, we
need to customize the import policy of each spoke’s VRF wbfily. There may be
multiple options enabling such customization, includiogdl preference adjustment.

Unfortunately there is one exceptional case where this emphtation guideline
should not be directly applied. When a customer site annesutite default route on its
own (to provide Internet gateway service to other sitesgb@mple), the PE connected
to the customer site must be chosen as a hub regardless dfgouttam’s decision. By
comparing our algorithms’ results with the VPN routing cgufiation, we found that
most 07.2%) PEs that are connected to those default-route-advegtsies are anyway
chosen as hubs because those sites usually have higherapas wr generate/receive

large amount of traffic volume. Thus, the penalty due to treoseptional cases are very
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low.

4.8.2 Managing Relaying-enabled VPNs

Run-time complexity:The complexity or our algorithms i8(n?) per VPN wherez is the
number of PEs in a VPN. A sparse usage-based traffic matnafiows much better
run times in practice -©(n?) especially when each spoke communicates with a small
constant number of hubs. Actually, given hundreds of VPNshed which spans some
tens to hundreds of PEs, running our prototype script witgesbased traffic matrices
measured over one week takes less than an hour. With fulhrmesrices, the completion
time goes up to tens of hours. Thus, assuming a simple coafignrautomation tool

set [87], running our algorithms and correspondingly ref@uring PEs can be easily
performed as a weekly management operation. With furthemigation (e.g., coding in

C language), daily adjustment might be possible as well.

Reconfiguration overhead:To assess the incremental re-configuration overhead, we
measured how stable hub sets are across different measuresreonfiguration win-
dows. We used two different sizes (i.e., a week and a montthjradows. For9 weeks
beginning May 07, 2007, we measured how many hub PEs out séttlwosen for a win-
dow are also chosen as hubs in the following window. The tesué shown in Table 4.1.
Overall, the hub sets are quite stable; more &b (91%) percent of PEs chosen for a
week (month) remain as hubs in the following week (month)e Tésults also confirms
the followings:i) Using a smaller measurement window (i.e., a shorter rdigoration
interval) ensures higher stability) full-mesh solutions are more stable than usage-based

solutions, andii ) the LCR solutions are more stable than the LCVSR solutions.

Availability: One concern about utilizing Relaying is the potential dasesof availability
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Figure 4.10: BGP configuration for Relaying

Table 4.1: Proportions (in percentage) of hubs that remsinubs across two windows
(averaged across all windows afid

| | LCR-usage| LCR-full | LCVSR-usage LCVSR-full]

weekly 96.4 99.2 94.3 98.4
monthly 91.2 97.8 91.0 97.3

due to the small number of hubs. When one of the multiple halzssVPN goes down,
our Relaying scheme ensures that each spoke using the baldadub immediately
switches over to another hub. Thus, by having at least twcs hobated at different
POPs, we can significantly increase a VPN's availabilitythAugh our hub selection
algorithms do not consider this constraint (i/éZ| > 2), most large VPNs almost always
have multiple hubs anyways.3% of VPNs which are provisioned over more thah
PEs have at least hubs. Moreover, our algorithms in itself ensure that eacthote
hubs are located at different POPs.

Nevertheless, extending the algorithms to explicitlydaab this additional constraint
for every VPN is also straight forward. When the algorithnookes only one hub for
a VPN, we can make the algorithm additionally choose therskdest hub in terms

of the algorithm’s hub selection criterion that does noidesn the same POP as the
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first hub. We modified our algorithms this way and measured argreaving effect.
The reduction of memory saving due to this modification waly &% at most, and
this penalty decreases édecomes smaller because a smalleaturally chooses more

number of hubs per VPN.

4.9 Related Work

To the knowledge of the author, ou in this chapter is the fitsdysfocusing on a scalable
L3 VPN routing architecture that reduces the the amountatesnformation stored in
routing tables and yet strictly bounds individual path lérsg

Designing a scalable routing architecture tbe general intra- or inter-domain IP
routing, however, is an active research field where several infagesesults are avail-
able, including CRIO [18], and LISP [17]. One key mechanismmonly used by these
works isindirection An indirection mechanism divides the large address spsaed for
end host (or subnet) identification into several small faatt. Then each router stores the
reachability information about one of the fractions, rattiean the entire address space,
leading to smaller routing tables. When a router receiveackgt destined to a fraction
for which the router is not responsible, the packet is firstverded via tunneling to a
router that is responsible for the fraction, and then fintdlyhe actual destination. Each
architectural model mentioned above suggests unique miesha to systematically di-
vide the original address space into fractions, and to ma@cién to a router. For
example, CRIO uses large super-prefixes and BGP for thepeges, whereas LISP en-
compasses several variations, including super-prefiedhad3NS-based, or ICMP-based
mapping models. However, none of these models suggesftfispggiorithms that can

generate complete indirection configuration satisfyingapeeterized performance con-
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straints. Also, all these models propose caching for redupath inflation, whereas our
approach avoids caching for simplicity and implementapili

Flat routing architectures, such as ROFL [21] and UIP [8BJo aeduces the amount
of state at the expense of increasing path stretch. Thedeswarerage on DHTs (Dis-
tributed Hash Tables) to avoid storing individual routeriest for each destination. Un-
fortunately, these solutions are not immediately avadamd lacks simplicity. Also it
is unclear how we can utilize these flat routing schemes in Bl ¥Rvironment where
names (i.e., prefixes) are not flat. For example, a routeratadetermine which part of a
given destination address it should hash unless it knowddkgnation prefix. Apart from
these, the flat routing schemes are not practically suit@bleealizing a constrained in-
direction architecture because path stretch in thosetathies is unlimited in the worst
case, and paths may often change as the set of destinatmnpi@fixes) change.

Understanding the unique nature of VPNs and suggestingerlfetg., more efficient
or scalable) provisioning architecture leveraging thequeinature of VPNs has been of
interest to many researchers recently. A study on estim&tt-to-PE traffic matrix from
aggregate volume data gathered at the edge [79] has iddnhi&estrong “hub-and-spoke”
traffic patterns. They used the estimation model to suggesbre efficient admission
control scheme [80]. Unfortunately, estimated traffic ntais are not suitable for making
relaying decisions since hub selection is sensitive to timg@rsation matrices, rather than

the volumes matrices.

4.10 Summary

The large memory footprint of L3 VPN services is a criticahgending problem to net-

work service providers. As a solution, this chapter suggBslaying, a highly scalable
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VPN routing architecture. Relaying enables routers to cedouting tables significantly
by offering indirect any-to-any reachability among PEs.spite this benefit, there are
two practical requirements that must be considered. Higin customer sites’ point
of view, end-to-end communication latency over a VPN shautiincrease noticeably.
Second, for the service provider’s sake, Relaying shouldsignificantly increase the
workload on the backbone.

Reflecting these requirements, we formulate two hub seleend assignment prob-
lems and suggest practical algorithms to solve the prohlebng evaluation using real
traffic matrices, routing configuration, and VPN topologiaws the following conclu-
sions:i) When one can allow the path lengths of common conversatmirerease by
a few hundred miles (i.e., a few msec in unidirectional laygrat most, Relaying can
reduce memory consumption 189 to 90%; ii) even when enforcing the additional dis-
tance limit to every conversation, rather than only commoes) Relaying can still save
60 to 80% of memory with the increase of unidirectional latency bguard 10 msec at
most; andii) it is possible, at the same time, to increase memory satiggtly bound
the increase of workload on the backbone, and bound adéditiatency of individual
conversations.

Our Relaying technique is readily deployable in today’swwek, works in the context
of existing routing protocols, requires no changes to eitbeter hardware and software,
or to the customer’s network. Network administrators caplament Relaying by mod-
ifying routing protocol configuration only. The entire pess of Relaying configuration
can be easily automated, and adjusting the configuratiosmatancur service disruption.

In this chapter, we focused on techniques that did not reqairy new capabili-
ties or protocols. The space of alternatives increases ifelax this strict backwards-

compatibility assumption. One interesting possibilitydtves combining caching with
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Relaying, where Relaying is used as a resolution schemendlén@ache misses. An-
other revolves around having hubs keep smaller non-ovegirggportions of the address
space, rather than the entire space, and utilizing advaesetution mechanisms such as
DHTs. We are exploring these as part of ongoing work, and t&TSLE architecture

introduced in Chapter 2 will serve as a good model.
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Chapter 5

Conclusion

Configuration is the Sisyphean task of network managemeérithaburdens administra-
tors with a huge workload and complexity only to maintain #tatus quo. This dis-
sertation took an architectural approach toward self-gomiing networks that do not
compromise other indispensable features for wide deployneich as scalability and
efficiency. This chapter begins by summarizing the contrdms in Section 5.1, then
suggests avenues for future work in Section 5.2, and finalhclkudes the dissertation in

Section 5.3.

5.1 Summary of Contributions

While sharing the same high-level goal of ensuring selffigomation without sacrific-

ing scalability and efficiency, the specific network arctitees introduced in previous
chapters take different approaches as to how and where matidas are implemented,
which specific aspects of self-configuration, scalabibityy efficiency they address, and

so forth. In this section, we first summarize the key resuithe three network architec-
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tures with focus on how and to what extent those architestachieve this dissertation’s
goal — self-configuration, scalability, and efficiency. Thee recapitulate how our key

principles play pivotal roles in those architecture in ensyithe goals.

5.1.1 Scalable and efficient self-configuring networks candomade

practical

Table 5.1 gives an overview of how specifically each architecin this dissertation ad-
dresses the issues of self-configuration, scalability,effidiency, and what kind of key
results each architecture ensures. Altogether, thesésemonstrate that scalable and
efficient self-configuring networks can be made practical.

Table 5.1: Specific aspects of self-configuration, scatgbénd efficiency in the pro-
posed architectures

Self-configuration Scalability Efficiency
Ensure reachability Decrease control-plane Improve link utilization
SEATTLE without requiring overhead, allowing an and reduce convergences
addressing and routingg  Ethernet network to grow latency as well
configuration an order of mag. larger
Obviate configuration| Allow a DC to host hundred$ Enable dynamic service
VL2 for addressing, routing of thousands of servers | re-provisioning, increasing
and traffic engineering  without over-subscription | server and link utilization
Retain self-configuring  Allow existing routers to Only slightly increase
Relaying semantics for serve an order of mag. end-to-end latency
VPN customers more number of VPNs and traffic workload

Self-configuration
Both SEATTLE and VL2 obviate the need for configuration forsnfrequent, labor-
intensive, and yet complex administrative tasks. More iigatly, SEATTLE ensures

host-to-host reachability without requiring any addregsand routing configuration.
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VL2 takes a further step by not only guaranteeing reachgptut also avoiding con-
gestion in a configuration-free fashion. In addition, Reigyretains the same self-
configuring capability as the conventional VPN architeetdrallowing individual cus-
tomer sites to autonomously choose and alter their own addhecks, and letting routers

in the provider network self-learn and disseminate thainmiation.

Scalability

In SEATTLE and VL2, the main technical principle enablindfs®nfiguration is flat
addressing of end hosts. When dealing with a large numbeostEhhowever, dissemi-
nating and storing non-aggregatable hosts’ informationiead to a huge workload in the
control plane. SEATTLE effectively solves this problem artioning — assigning only
a fraction of the entire host information to each switch.sT$theme allows a SEATTLE
network to grow by more than an order of magnitude larger thanonventional Ethernet
network can. While VL2 also improves control-plane scdlgbthrough its own non-

partitioning approach (i.e., the scalable directory-gsrgystem), its novelty and empha

sis lie on data-plane scalability achieved via random traffireading. Specifically, this
allows cloud-service providers to build a huge data-cemévork using only commodity
components. Finally, Relaying substantially reduces tiegall memory footprint needed
to store customer-routing information and thus enables H @Rvider to host nearly an

order of magnitude more customers immediately.

Efficiency

SEATTLE switches run a link-state routing protocol and delitraffic through short-
est paths, rather than through a single spanning tree. &Hisces routing-convergence
latency and improves link utilization by a huge factor. VL&sixally offers the same

benefits, because its switch-level routing mechanism istid& to that of SEATTLE.
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Additionally, the random traffic spreading used in VL2 caniman links’ utilization at

a uniformly high level and ensure a huge server-to-serveaci#y. Eventually this mech-
anism enables agility (i.e., capability to frequently mengsion services over different
sets of machines without causing any configuration updatootrol-plane overhead),
which eliminates pod-level resource fragmentation anghdehaintain servers’ utiliza-
tion at a uniformly high level as well. Together, all thesattees can greatly improve
the statistical multiplexing gain of a data center. FinatlyRelaying, the hub selection
algorithm guarantees that any traffic between customes steubject to only a small,
bounded increase of end-to-end latency. Another variatiotiis algorithm can addi-
tionally bound the increase of traffic workload in the prasidhetwork resulting from

indirect forwarding. In the end, the overall networking feemance, perceived by cus-
tomers, in a Relaying-enabled VPN would remain equivalerthat in a conventional

VPN.

5.1.2 Principles and applications

Earlier in this dissertation (Section 1.2), we introduclkrkée technical principles useful
for designing scalable and efficient self-configuring netgo Table 5.2 summarizes
how those principles are repeatedly utilized in each of thkitectures introduced in this

dissertation.

Flat addressing

In SEATTLE, hosts identify themselves using their flat andpenent MAC addresses,
and the network also delivers traffic based on those addres$his ensures exactly
the same plug-and-play semantics as Ethernet, guaragtegokwards-compatibility for

end hosts in enterprises. Servers in a VL2 network alsozatiiermanent, location-
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Table 5.2: Key principles and the varying applications @f phinciples

Flat Traffic Usage-based
Addressing Indirection Optimization
MAC-address-based Forwarding traffic Caching host info
SEATTLE routing through at ingress switches, and
resolver switches reactive cache update
Separating hosts’ Forwarding traffic Utilizing ARP,
VL2 names from through randomly-chosen and reactive cache
their locations indirect paths update

Relaying || Location-independent Forwarding traffic Popularity-driven

site addressing through hub routers hub selection

independent names to communicate with one another. Sineevar's name does not
change regardless of which physical or virtual machine émees is provisioned on, VL2
can allow services to be frequently re-provisioned ovefedént sets of machines without
causing any configuration change at hosts or switches. &AKATTLE and VL2, Re-
laying utilizes flat addressing at the level of individual N¥eustomer sites, rather than
of individual hosts. This gives each site complete freedonshoose its own address
blocks and thus allows the network to cope with frequentamust-information churn —
which naturally occur due to various business activitieshsas branch opening or con-
solidation, corporate merger and acquisition, alterind\vd&rvice providers — with little

configuration overhead.

Traffic indirection

SEATTLE switches retrieve a host’s information by forwanglionly the first few packets
to the host through a resolver switch. To lower complexitgt arcrease scalability when
dealing with traffic to less popular or highly-mobile hosssyitches can also forward
such traffic always through resolvers. On the other hand i, \8witches forward traffic

through randomly-chosen indirect paths all the time, andglso enables the network
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to avoid congestion with neither gross over-provisioning @soteric traffic engineering.
Finally in Relaying, traffic between two unpopular custorsites is always forwarded
through a hub router connected to a popular site. This greatluces overall memory
footprintin provider routers, allowing them to serve an@rdf magnitude more customer

VPNs without hardware or software upgrade.

Usage-based optimization

In SEATTLE, host-information is reactively fetched from esolver when incoming
traffic arrives at ingress switches. Resolved host infoiomais also cached at ingress
switches to reduce resolution overhead and end-to-enddater subsequent packets.
When updating cached entries for consistency, switches aggploy a reactive approach
that can correct only those entries that are actually usettdffic. All these “usage-
driven” approaches substantially improve the overall &fficy of a network, in terms of
memory footprint in switches, end-to-end performance,ti@plane overhead to dis-
seminate host information, etc. VL2 employs the same aghesmexcept that source
hosts, rather than ingress switches, resolve and cachertfioghation. Finally, in Re-
laying, the hub selection algorithm chooses hub routersaking into account actual
traffic patterns among customer sites. This helps reducetnaber of hub routers —
thus overall memory consumption as well — while boundingtmgact on the end-to-end

performance those actual conversations experience.

5.2 Future Work and Open Issues

Given the importance of enabling hands-free network opmrah various networking
environments and at various scales, we believe the follgvgisues deserve further inves-

tigation.
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Internet-wide flat addressing: Despite potential benefits including mobility and secu-
rity, enabling flat addressing at Internet scale remainscnemely challenging goal due
to scalability and efficiency concerns. We believe that thitirlevel one-hop resolution
scheme introduced in Chapter 2 (Section 2.3) can offer aialiairchitecture toward this
goal. Our preliminary analysis results indicate that it nsayl be feasible to achieve
scalability and efficiency to such a tremendous extent wérilguring robustness, back-
wards compatibility, and conformance with existing intlermain-routing policies remain
as challenging future work. The reason these issues bedbthe enore important at In-
ternet scale is because, unlike in edge networks, diffenglependent participants in the
Internet (i.e., autonomous systems) are often not codpgratith or even competing
against one another. As such, forwarding or resolving thhoa randomly chosen inter-

mediary network could cause various security, performaand economic concerns.

Scalable router: Internet routers in the default-free zone are sufferingfitbe inflation
of the amount of routing state and churn. Deployment of IRvb\&PNs stands to worsen
this situation even further. While solutions for this prefw are being proposed [17, 19],
those schemes rely on inter-router coordination and thgsire complicated control-
and management-plane protocols to maintain consistenmogsdistributed routers, in-
creasing configuration complexity. Instead, it may be igéng to develop a purely
stand-alone solution that achieves the same goal, graatplifying configuration and
deployment. The feasibility of this argument is groundedt@observation that network
interface cards in an individual router can collectivelyeofenough memory capacity
to hold the entire set of routes in the Internet, whereas eotivonal routers utilize the
memory resources in the least efficient fashion by forcirgehtire set of routes to be

redundantly kept on every interface card.
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Self-adjusting host and switch groups:For scalability and security purposes, hosts in a
network are often grouped into VLANSs. Deciding which hostééamg to which VLANS,
however, is mostly a manual process relying on administsatotuition and understand-
ing of performance, host-mobility patterns, and accesdrobpolicies. This can lead
to either sub-optimal resource utilization across differédLANs or frequent updates of
VLAN-membership settings. Thus it would be highly intenegtto design a network that
self-adjusts VLAN membership and boundaries. By allowing®s to be dynamically
defined for varying workloads, or by making VLAN boundarié¢sstic, it would be possi-
ble to attain higher efficiency and performance while lowgrconfiguration complexity.
Similar approaches could also be extended for defining Bvgtoups, such as areas in
link-state routing protocols and regions in the multi-lESEATTLE design introduced in

Chapter 2 (Section 2.3).

Novel traffic engineering: Hot spots in a network have traditionally been resolved by
traffic engineering and end-to-end congestion control. fBh@er approach is often em-
bodied by adjusting traffic-forwarding paths — tuning rogtiprotocol parameters, or
explicitly setting up specific paths for individual types todffic. The latter approach
achieves its goal by regulating traffic-forwarding ratesad hosts. While the VL2 work
in Chapter 3 introduces a novel way of eliminating hot spibta/ould also be very ex-
citing to investigate the potentials of other kinds of megkas. Among those, two
emerging primitives — anycast and live process cloningfatign — seem particularly in-
triguing. With these primitives it might be possible to mdweavy traffic sources and
sinks, or even to split them into multiple entities runningdifferent machines and ad-
just workload distributions over the machines. This apphoaas several unique benefits
over the conventional schemes: effectiveness (as it threenipulates individual traffic

sources and destinations), efficiency (as it essentiatiyeases the capacity share for the
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resource-hungry application), and low management contgléas it does not require
frequent update of routing-protocol parameters and thinsimhtes transient forwarding

anomalies during convergence).

Robust self-configuring networks: Ensuring robust operation of a self-configuring net-
work can be particularly challenging when the network igs faulty or un-trusted en-
tities. This is because such an entity can deliberately advertently compromise both
the integrity and availability of a routing system. Moregviea the case of a malicious
participant, it can even hide itself with a fabricated (sfeol) self-configured identity. Po-
tentially promising principles deserving further explooa include self-certifying identi-
fiers, replication of routing and host information, and quurbased resolution. A result-
ing architecture will be useful in securing conventionalda2 networks, which suffer

from the vulnerabilities due to flooding and broadcasting.

5.3 Concluding Remarks

Administrators in today’s large operational networks neetf-configuring network ar-
chitectures. To run emerging applications, such as cloudtibty computing, a self-
configuring network is also paramount, because such a nketeor substantially reduce
service-management workload and increase resourceatitliz For real-world deploy-
ment, however, self-configuring networks must be scalahdeedficient all at once.

As part of a larger effort to re-design networks with this bimamind, this disserta-
tion i) presented key technical principles useful for designind developing a scalable
and efficient self-configuring networlki;) proposed a highly-scalable network architec-
ture that combines Ethernet’s plug-and-play capabilitg Heis efficiency (SEATTLE);

iii ) developed a data-center network architecture that eastamendous server-to-server
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capacity and support for agility, substantially incregsindata-center’s overall resource
utilization (VL2); andiv) presented an alternative VPN routing architecture thateo
deployed, immediately allows a VPN provider to host an oafenagnitude more cus-
tomers without any router hardware or software upgradegyred).

At the same time, all the solutions proposed in this distertare highly practical
and can be rapidly prototyped and deployed — in fact, Retagan be immediately de-
ployed. VL2 and Relaying have passed pre-deployment tedébbratory settings and
are expected to be rolled out for real-world deployment -aftarge public cloud-service
provider (VL2) and for large corporate VPNSs served by a figirovider in the U.S. (Re-
laying). SEATTLE is also available as several independeotopypes implemented by
different research groups.

While we took a comprehensive approach in this dissertatiendo not claim com-
pleteness. In fact, we are aware that this is just the firpttsi@ards the wide deployment
of self-configuring networks. That means there are manyrdgipes of networks upon
which self-configuration can (and should) be achieved witltompromising scalability
and efficiency. Good examples include the Internet itsealfjous content-distribution
networks, the networks interconnecting distributed sraedlle data centers, etc. In light
of the lessons learned from this dissertation, we belieged@sign principles and archi-
tectural primitives we proposed will benefit the developtr@rappropriate architectures

for those networks.
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