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Abstract— OSPF (Open Shortest Path First) is a widely
used intra-domain routing protocol in IP networks. Inter-
nal processing delays in OSPF implementations impact the
speed at which updates propagate in the network, the load
on individual routers, and the time needed for both intra-
domain and inter-domain routing to reconverge following
an internal topology or a configuration change. An OSPF
user, such as an Internet Service Provider, typically has no
access to the software implementation, and no way to esti-
mate these delays directly. In this paper, we present black-
box methods (i.e., measurements that rely only on external
observations) for estimating and trending delays for key in-
ternal tasks in OSPF: processing Link State Advertisements
(LSAs), performing Shortest Path First calculations, updat-
ing the Forwarding Information Base, and flooding LSAs.
Corresponding measurements are reported for production
routers from Cisco Systems. To help validate the methodol-
ogy, black-box and white-box (i.e., measurements that rely
on internal instrumentation) are reported for a open source
OSPF implementation, GateD.

Keywords— Routing, OSPF, black-box measurements,
SPF calculation

I. INTRODUCTION

OSPF is used widely as an intra-domain routing proto-
col [1][2] in IP networks today. Overall, OSPF implemen-
tations are now robust and high quality. Still, the behav-
ior of these implementations in large operational IP net-
works, especially under transient stress, is not very well
understood. Any sort of service level agreement or quality
assurance depends on routing stability. Any internal topo-
logical or OSPF configuration change will, in general, alter
traffic flows throughout the network, following a transient
period during which route calculation has yet to converge.
In general, such an event triggers not only intra-domain
routing changes, but also inter-domain routing changes,
since BGP (Border Gateway Protocol) uses intra-domain
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(OSPF) distance calculations to break ties between candi-
dates for traffic egress points. Thus, a very large number of
flows and a very large number of customers are potentially
impacted by OSPF events.

A number of key tasks internal to OSPF implemen-
tations affect the speed at which updates propagate in
the network, the load on individual routers, and the time
needed to reconverge. The delays associated with some of
these tasks depend on scaling factors such as the number of
routers and links in the network. To understand these de-
lays and their dependencies, we could imagine gathering
data by instrumenting OSPF implementations deployed in
the network. However, users, such as Internet Service
Providers, have limited opportunities for this. First, com-
mercial implementations are proprietary. Second, even if
appropriate access was provided, the necessary instrumen-
tation to measure certain tasks (e.g., updates to the For-
warding Information Base) may be difficult to achieve.
The instrumentation may involve kernel level measure-
ment, grappling with various platform dependencies, and
reverse engineering complex code written and debugged
over the years by numerous developers.

In this paper, we present black-box measurement tech-
niques for estimating key internal delays in OSPF imple-
mentations, and our experience in applying these tech-
niques to production routers from Cisco Systems. We
tested a variety of Cisco platforms including the 12012
(GSR), 7513 and 3660. By black-box, we mean the inter-
nal task times are estimated using only external observa-
tions of the behavior of the box under test. Table I summa-
rizes internal tasks considered: processing Link-State Ad-
vertisements (LSAs), performing Shortest Past First (SPF)
calculations, updating the Forwarding Information Base
(FIB), and flooding LSAs to neighboring routers. As de-
scribed in Section II, these are the key tasks OSPF goes
through upon receiving an update. As Table I indicates, we
examine the dependencies of these tasks on scaling factors
such as the network size. The methods presented are effec-
tive in estimating delays across a wide range, from a few
hundred microseconds to a few hundred milliseconds, and
in correctly capturing dependencies with scaling parame-
ters. For example, the black-box SPF measurements agree
with white-box counterparts and scale quadratically with
the network size.

The idea behind the black-box measurements is straight-



TABLE I
SUMMARY OF PROCESSING DELAYS FOR WHICH MEASUREMENTS ARE PRESENTED IN THIS PAPER.

Task Scaling Factors Type of Measurement
LSA Processing Number of links at a router black-box

Number of LSAs per LS Update packet | black-box
LSA Flooding Number of links at a router black-box
Shortest Path First Calculation Number of routers black-box, white-box
Forwarding Information Base Update | Number of routers black-box

Fig. 1. From left to right, the figure depicts an example OSPF topology, router G’s view of the topology and the shortest path tree
calculated at G. For simplicity, we depict the topology as an undirected graph (implicitly assuming symmetry in connectivity

and weight assignment).

forward. To estimate a task delay, we need to determine
when the task starts and ends. We found that the diffi-
culty of determining the start and finish times of a given
task depends on that specific task. As described in Section
IV, we bracket the start and finish times, and then subtract
out time intervals that precede or exceed these times. We
combine three techniques to design experiments for this
purpose:

o Using an OSPF emulator for generating specific patterns
of OSPF or ICMP ping messages.

« Exploiting features mandated by the OSPF specification
[1]. One such feature turned out be extremely useful in
providing time-stamps: duplicate LSAs must be acknowl-
edged immediately.

« Setting vendor-specific configuration parameters so as
to force tasks to occur in an order that allows for measure-
ment.

We believe that in general a judicious mix of techniques
that rely on behavior mandated by protocol standards and
behavior configurable by vendor-specific commands are
necessary for black-box protocol measurement.

Simple empirical models of routing behavior, or simu-
lators aiming for higher fidelity, require sound measure-
ments to guide parameterization. The measurements pre-
sented here on internal OSPF task delays could be used
to investigate, in large testlabs or in simulations, scenar-
ios that cause OSPF to meltdown or routing in general to
break. There has been a recent interest in studying OSPF

stability, convergence and scalability via simulation [3][4].
We know of few studies on routing protocol measurement
methodology or results. A notable exception is the com-
pelling analysis of Alaettinoglu et al. [5] on the factors
that impact the convergence of IS-IS in detail, based on
white-box measurement techniques applied to Cisco, Ju-
niper and customized IS-IS implementations. IS-IS is a
link-state protocol, similar to OSPF. Our numerical results
for SPF calculation delays in OSPF on Cisco routers are
comparable to those reported by Alaettinoglu et al. for
SPF calculation on Cisco and Juniper routers. We are un-
aware of other work in black-box protocol measurement.
Frameworks for router benchmarking have been proposed
in the IETF [6]. It is worth mentioning that router software
can typically be run in debug mode, which provides infor-
mation related to many of the OSPF internal tasks consid-
ered here. However, the extra processing and 1/O distorts
associated measurements in a difficult to predict fashion.

The paper is organized as follows. Section II provides
a brief overview of OSPF and the workflow modeling of
OSPF processing. Section III describes the testbed we
used for black-box measurements. A key component of the
testbed is the OSPF emulator which is also described in the
section. Section IV describes the experimental design and
the results. Finally, Section V presents the conclusions.
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Fig. 2. Model of a router.

II. OSPF PROCESSING
Overview

OSPF is a link-state routing protocol, meaning each
router (i) discovers and maintains a complete view of the
network topology (within the the domain controlled by
OSPF), and (ii) uses this view to calculate paths to all des-
tinations in the network [2]. In essence, the topology is a
directed graph, where routers correspond to vertices and
links between neighboring routers correspond to unidirec-
tional edges. All links are administratively assigned fixed
numerical weights. Each router independently computes a
shortest path tree with itself as the root, and applies the re-
sults to build its Forwarding Information Base (FIB). We
refer to the computation of the shortest path tree as the
SPF computation, and the tree itself as the SPF tree. Fig-
ure 1 provides an example. OSPF allows a network to be
divided into one or more areas for scalability.

In OSPF, each router describes a certain part of the
network in a message termed a Link-State Advertisement
(LSA). LSAs are flooded reliably to other routers in the
network, so that all routers can build a consistent view of
the network topology. Each router stores a current set of
LSAs as a local link-state database; LSAs contained in the
database determine the topology visible from the router.
When sending LSAs to a neighbor, a router bundles them
together in a Link-State Update (LS Update) packet. To ac-
knowledge receipt of each LSA, the receiving router bun-
dles individual LSA acks into Link-State Acknowledgment

(LS Ack) packets, and sends them to the appropriate neigh-
bor.

Figure 2 depicts a simplified model of a router. Routing
protocols like OSPF run on a route processor. OSPF re-
ceives LSAs bundled in LS Update packets as shown in the
figure and processes these to build the link-state database.
OSPF then uses the link-state database to perform an SPF
calculation and applies the result to build the FIB. In most
modern routers, the FIB is maintained in specialized mem-
ory to maximize forwarding performance. Data packets
do not consume CPU cycles of the route processor. Once
a data packet arrives on an interface card, the card con-
sults the FIB to determine the next hop and forwards the
packet to the outgoing interface through a switching fabric
as shown in the figure.

Processing

Consider the processing tasks initiated by receipt of an
LS Update packet (Figure 3). Although the OSPF speci-
fication clearly describes the tasks to be performed upon
receiving an LS Update packet, it gives implementors a
lot of leeway in how and when these tasks are scheduled.
The flow chart in Figure 3 follows the specification while
capturing the scheduling choices available to implemen-
tors. As can be seen from the figure, upon receiving an
LS Update packet, OSPF processes all the LSAs contained
in the packet. For each LSA, OSPF classifies the LSA
as new or duplicate based on the sequence number con-
tained in the LSA. An LSA is deemed a duplicate if the
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Fig. 3. Flow chart depicting OSPF processing initiated by the receipt of an LS Update packet.

sequence number is the same as that of a matching LSA
instance in the router’s link-state database. OSPF typically
receives duplicate LSAs because of flooding redundancy,
i.e., when all the neighbors of the router send the same
LSA to the router. An LSA is new if its sequence num-
ber is higher than that of the matching LSA instance in the
router’s database. As the figure shows, LSA processing de-
pends on the new or duplicate distinction. For every new
LSA, OSPF has to update its link-state database, sched-
ule an SPF calculation and determine which interfaces the

LSA needs to be flooded out.

Actual flooding of the LSA may or may not happen
immediately after LSA processing. Modern routers em-
ploy pacing mechanisms as a form of flow control while
sending out OSPF packets [7]. LSA flooding is driven
by a timer off the path of LSA processing. In other
words, while processing the LSAs, OSPF merely deter-
mines which interfaces the LSA needs to be flooded out
according to [1], but does not actually send the LSA. The
LSA is sent out on an interface along with other “to-be-



flooded” LSAs when the timer associated with the inter-
face fires.

In this paper, our objective is to determine two parame-
ters relevant to LSA processing: #;54_proc Which is the time
for processing LSAs (T3 — T4 in Figure 3), and #;54_fi00d
which indicates how long it takes to flood an LSA after it
is received (T4 — T1).

When processing an LSA, OSPF also has to determine
whether to carry out an SPF calculation. Not all LSAs
indicate a change in topology; OSPF requires periodic re-
freshing of LSAs even when the topology has not changed.
In addition, since SPF calculation is a CPU-intensive task,
modern routers merely schedule an SPF calculation when
they receive an LSA indicating a change. This gives the
router a chance to receive more LSAs that may indicate
changes in the topology and amortize the cost of an SPF
calculation over a number of LSAs requiring such calcula-
tion. We assume that SPF calculation is non-preemptable
in the sense that the router completes the calculation be-
fore doing any other OSPF processing. This makes sense
since the router has already waited for a certain time period
before undertaking the calculation. It makes little sense to
delay its completion further by preempting it. Moreover,
data collected for SPF calculation time (Section IV-C) val-
idate the assumption. We have also verified these assump-
tions with vendors.

Once a router has done its SPF calculation, it has to
install all the routes in its FIB, which introduces an ad-
ditional delay. Accordingly, we estimate two parameters
relevant to the routing calculation: the time #,,; taken by
a router to perform an SPF calculation (75 — 75 in Fig-
ure 3), and the time & f;p_update to update the FIB (17 — T}
in Figure 3).

Table II summarizes the four internal task delays we
wish to measure, in terms of the start and finish times
of Figure 3. We measured these four parameters on
Cisco Systems 12012 (GSR) and 7513 routers running 10S
12.0(7). (Some of the experiments were repeated on the
Cisco Systems 3600, with very similar results.) We also
measured one of these parameters (£ f_time) On a Linux
PC running GateD version 4.0.6, and compared the mea-
surements with corresponding white-box measurements.

TABLE II
SUMMARY OF FOUR PROCESSING DELAYS WE MEASURE.

Processing task | Symbol Start time | Finish time
LSA Processing | tisq_proc T T
LSA Flooding Lisa_flood T Ty
SPF Calculation | 4,/ Ts T
FIB Update t fib_update Ts T

III. TESTBED SETUP

Figure 4 depicts the physical testbed setup. We refer
to the router whose OSPF implementation is under test as
the target router. To understand the OSPF behavior of the
target router, and investigate the impact of scaling param-
eters, we developed an OSPF topology emulator, termed
TopTracker, which runs on PC1. TopTracker is derived
from Moy’s OSPF implementation and simulator [8]. An
Ethernet switch provides VLAN connectivity between the
boxes.

A (Linux) PC, PC1, plays multiple key roles. First, it
runs TopTracker, which is capable of emulating any de-
sired OSPF topology, making the target router behave as
if the emulated topology exists “behind” a TopTracker in-
terface. Specifically, TopTracker generates LSAs for all
nodes in a given emulated topology and floods the LSAs
to the target router. In addition, we applied TopTracker to
generate specific patterns of LSAs required in the experi-
mental designs described in Section IV.

Sample emulated topology

.7 2 N Expl:cctlscript
Q\ 9 \E‘ - TopTracker
00 2 T
TVLAN2 VLAN 1
2 1 1
Target router PC2

- - - - Emulated link
O Emulated router

Fig. 4. Testbed for measuring OSPF processing on a target
router. PC1 runs the TopTracker OSPF emulator, as well as
an Expect script that controls an overall experiment. PC2 is
used as a ping generator if required.

Second, PC1 is used to control each experiment,
through the use of Expect scripts [9]. Third, PC1 sources,
sinks and time-stamps OSPF packets and applies the time-
stamps to estimate internal OSPF processing delays on the
target router. An advantage of using a single PC in this role
is of course that we avoid clock synchronization problems.

We vary the logical connectivity from experiment to ex-
periment. Table III provides the configuration details. For
the most part, the VLANSs simply provide one or two links
between the target router and TopTracker. In the FIB Up-
date experiment, VLAN 1 also provides connectivity to
PC2, which functions as a ping generator (Section IV-D).

IV. EXPERIMENTAL DESIGN AND RESULTS

In this section, we provide the details of the methods for
estimating the four OSPF internal task delays described



TABLE III
TESTBED CONFIGURATION FOR FOUR PROCESSING DELAYS

Task Logical Connectivity

LSA Processing | PC1 - target router on VLAN 1

LSA Flooding PC1 - target router on VLANS 1 and 2

SPF Calculation | PC1 - target router on VLAN 1

FIB Update PCI1 - target router on VLAN 1 and
PC2 acts as ping generator on VLAN 1.

in Section II, and provide associated results obtained for
Cisco and GateD routers. For each task, we estimate the
associated start and finish times by a black-box technique.
In each case, we bracket the start and finish times by mea-
surable events ¢ occurring before the start time and ¢, oc-
curring after the finish time. We then compute an estimate
toverhead that accounts for the time from % to the task start
time, and from the task finish time to ¢,. The estimated
task delay is then (¢, — t5) — toverhead-

For each of the four tasks, we first describe the testbed
configuration (Figure 4) used to measure the task delay.
Then we describe how we determine the bracketing start
and finish times, ¢ and ¢, respectively. Next we character-
ize the overhead (¢,yerheaq) and describe how we measure
it. Finally we present the results.

We make use of two configurable parameters provided
by Cisco routers to pace SPF calculation [7]:

1. spf-delay, which specifies how long OSPF waits be-
tween receiving a topology change and starting an SPF
computation.

2. spf-holdtime, which enforces a lag of spf-holdtime be-
tween two consecutive SPF computations.

In practice, these parameters can be set to help ensure
that the SPF calculations act on LSAs in batch and cre-
ate only moderate load on the route processor. In addi-
tion, Cisco OSPF uses a pacing-timer [7] to control the
rate at which LS Update packets are transmitted out an in-
terface. This timer is non-configurable and expires every
33 milliseconds. Specifically, Cisco routers send out one
LS Update packet (if present) every 33 milliseconds to ev-
ery neighbor, helping to ensure that the neighbors are not
overwhelmed with bursts of LS Update packets.

A. LSA Processing Time

Of the four tasks, the measurement of LSA processing
delays is the most complex. As described in Section II,
OSPF bundles LSAs into LS Update packets. Thus, we
focus on the time needed to process an LS Update packet,
and then examine how this delay varies with the number
of LSAs within the packet.

The testbed configuration is simple. TopTracker estab-
lishes an adjacency with the target router on VLAN 1 (Fig-
ure 4).

To measure the LS update processing delay, TopTracker
sends two LS Update packets back to back: the first con-
taining legitimate LSAs, which we term probe LSAs, and
the second containing a duplicate LSA. As noted in Sec-
tion I, OSPF mandates that duplicate LSAs be acknowl-
edged immediately, via an LS Acknowledgment (ack) [1].
By design, the duplicate LSA is different from any of the
probe LSAs, allowing TopTracker to unambiguously iden-
tify the duplicate LSA ack from probe LSA acks. We as-
sume that LS Update packets are processed consecutively,
with a negligible intervening gap.

TopTracker logs the time ¢4 at which it sends out the LS
Update packet containing the probe LSAs, and the time %,
at which it receives the ack for the duplicate LSA. Figure 5
describes the sequence of events, marked at times %, %1,
t, to, th, t3 and t,. By the assumption that the LS update
packets are processed back to back, t} is less than or equal
to to.

From Figure 5, we can see that

to —t1
(t
(tr - ts) -

[(Duplicate LSA processing time) + RTT]
(tr — ts) — [taup_isa + RTT]

(tr —ts)
where toperhead = taup_isa + RTT

tlsa_proc

- toverhead

Here RTT denotes the round trip propagation delay be-
tween PCI and the target router (Figure 4) and Zgyp 54
denotes the processing delay for the duplicate LSA on the
target router.

It remains to estimate tyyerheaq- 10 this end, TopTracker
sends a single LS update packet containing the duplicate
LSA, and logs the time between the LS Update transmis-
sion and LS ack receipt, as an estimate of ¢ yerheqd-

Let us now present some of the results we obtained.

—ts) — [(tr —t3) + (t3 — t2) + (t1 — 15)]

(D
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Fig. 5. Sequence of events during the measurement of LSA processing delays on the target router.

0.001

0.0008

0.0006

0.0004

Processing time (seconds)

0.0002

0.0016

0.0014

0.0012

0.001

0.0008

0.0006

Processing time (seconds)

0.0004

0.0002

Fig. 7. Processing time for LS Update packets having one or more LSAs. The figure shows how the processing time is effected as

Processing time for an LSA with n links

T T T T T 0.001
mean —+—
95% confidence interval +--x---
B — —0.0008
(%2}
©
c
Q
[$]
(0]
B n £ 0.0006
(0]
£
2
- E a 0.0004
(0]
(5]
<
B . & 0.0002
1 1 1 1 1 0
0 20 40 60 80 100
Number of links (n) in the LSA
(a) Cisco GSR

Processing time for an LSA with n links

T T T T T
mean

95% confidence interval

20 40 60 80 100
Number of links (n) in the LSA

(b) Cisco 7513

Fig. 6. Processing time for an LSA (%;54_proc) containing n links, as a function of n.

Processing time for LSA(s)

I T T T 0.0016
One LSA per packet —+—
- Two LSAs per packet ---x--- 0.0014
Three LSAs per packet ------ _
- Four LSAs per packet & Z 00012
Five LSAs per packet --m-- s
- Six LSAs per packet ---o--- | § 0.001
Seven LSAs per packet ----e--- 2
- Eight LSAs per packet -—-&-- | £ 00008
(o))
c
i . % 0.0006
[0]
S
I . £ 0.0004
I . 0.0002
1 | L L ) 0
0 20 40 60 80 100

Number of links (n) in the LSA
(a) Number of links

Processing time for an LS Update packet

T T T T
One LSA per packet
Two LSAs per packet
Three LSAs per packet
Four LSAs per packet
Five LSAs per packet
Six LSAs per packet
Seven LSAs per packet
Eight LSAs per packet

> e O MmO X X +

200 400 600 800 1000 1200 1400
LS Update size (bytes)

(b) LS Update packet size

the number of LSAs in the LS Update packets increases. The results are for the Cisco GSR.

First consider the case where an LS Update packet con-
tains a single LSA. The processing time for the packet de-
pends on three factors: the number of links the LSA de-
scribes, the number of interfaces on which the LSA must

(later) be flooded, and the size of the link-state database.
We performed experiments to examine the effect of all
three factors on #;54_proc. Due to space constraints, we
present results showing only the first.
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To gauge the effect of number of links on #;54_proc, We
used probe LSAs each describing n links, and varied n in
the range 10, 20, ..., 100. Figure 6 shows how #;54_proc
varies as 1 increases for the two Cisco target routers.

Next consider the case where the LS Update packet con-
tains multiple LSAs. Recall from Figure 3 that a router
first has to process the interrupt and copy the LS Update
packet into its memory before it can process the LSAs.
The time spent in performing this step is amortized over
all the LSAs in the packet. How much time is spent in
packet copying as compared with how much is spent in
processing individual LSAs? To investigate this question,
we increased the number of probe LSAs (each LSA hav-
ing n links) from one to the maximum number of such
LSAs that can fit into a single LS Update packet, and mea-
sured the processing time for the LS Update packet. The
maximum number of LSAs that can fit into a single LS
Update packet is limited by the maximum size an LS Up-
date packet can grow to. In our case, the maximum size
was equal to the Ethernet MTU (1500 bytes) including the
IP and Ethernet headers. With this limit, consider a probe
LSA with 100 links (n = 100). Each such LSA is 1224

bytes long. Hence, we cannot fit more than one such LSAs
into a single LS Update packet. On the other hand, a probe
LSA with 50 links (n = 50) is 624 bytes long, hence we
can fit up to two such LSAs in a single LS Update packet.

Figure 7(a) provides the results obtained for the Cisco
GSR. First, note that if we keep the number of links n
constant, the increase in ¢;54_proc for every additional LSA
per LS Update packet is smaller than %54 _proc for a sin-
gle LSA. This indicates that the time taken in interrupt
handling and copying the LS Update packet dominates the
time taken to process individual LSAs. In order to make
this point more clear, we show in Figure 7(b) how #;54_proc
for the same experiment varies with the size of the LS Up-
date packet. Note that the processing time remains roughly
the same for LS Update packets of a given size, irrespec-
tive of the number of LSAs contained in the packet or the
number of links described in the LSAs. An important im-
plication is that for the router in question, the Cisco GSR,
we can safely characterize the processing time of an LS
Update packet simply as a function of the packet’s size,
ignoring the number of LSAs contained in the packet.
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B. LSA Flood Time

We next consider the time the target router takes to flood
an LSA after receiving it. On Cisco routers, as we will see,
the dominant effect is the pacing-timer mentioned earlier.

Estimating the time needed to flood a newly received
LSA to neighbors is relatively straightforward. We con-
figure the testbed (Figure 4) with TopTracker having two
adjacencies with the target router on two interfaces.

Figure 8 describes the setup and the sequence of events.
TopTracker sends a probe LSA on one interface to the tar-
get router, and receives the LSA flooded in response by
the target router on the other interface. TopTracker logs
the time ¢, at which it sends the probe LSA, and the time
t, at which it receives the flooded copy.

(ts —t1)
(tr - tS) - [(tr - t3) + (tl - tS)]

tlsa_flood

(t, —t,) — RTT
(tr - ts) - toverhead
where toyerhead = RTT

2

and RTT is the round trip time to forward a packet between
the two TopTracker interfaces via the target router, which
we estimate using ICMP ping from TopTracker.

To investigate how the number of links (n) affects
tisa_flood» We performed measurements using a single LSA
containing n links as the probe LSA. Figure 9 shows that
ti1sa_flood has little dependence on the size of the LSA. In-
deed the size dependence is apparently dominated by the
33 millisecond pacing-timer controlling LSA flooding.

C. Shortest Path First (SPF) Calculation Time

Next consider SPF calculation delay estimation. As
mentioned earlier, Cisco routers provide two configurable
parameters that influence the scheduling of the SPF calcu-



lation: spf-delay and spf-holdtime. We set both these pa-
rameters to 0. The idea of the experiment is to send a probe
LSA whose receipt immediately initiates SPF calculation
on the target router, and then send a duplicate LSA whose
role is to bracket the finish time of the SPF calculation. By
removing the “overhead” between the transmission of the
probe LSA and the receipt of the LS Ack from the dupli-
cate LSA, we extract the SPF processing time.

We configure the testbed with TopTracker having one
adjacency with the target router on VLAN 1. To begin the
experiment, TopTracker sends to the target router a probe
LSA indicating a change in the network topology. Upon
receiving the probe LSA, the target router processes it and
schedules an SPF calculation. Next, TopTracker sends a
duplicate LSA in a separate LS Update packet to the tar-
get router. TopTracker then receives an ack as soon as the
target router is finished processing the duplicate LSA.

Since spf-delay and spf-holdtime are set to 0, SPF com-
putation starts as soon as the target router receives the
probe LSA. We would like to use the LS Ack for the du-
plicate LSA to closely bracket the finish time for the SPF
calculation. Specifically, we want the duplicate LSA to ar-
rive to the target router while its route processor is engaged
in the SPF calculation. We achieved this by introducing a
certain delay (determined by sweeping this delay parame-
ter) between the transmission of two LS Update packets.

TopTracker logs the time ¢, at which it sends out the LS
Update packet containing the probe LSA, and the time %,
at which it receives the ack for the duplicate LSA. From
Figure 10, we then see that

ty — 13
= (tr —ts) — [(tr —t6) + (te —t4)
+(t3 —t2) + (ta — t1) + (t1 — t5)]

Lopf

We can safely assume that ¢35 — 5 is negligible. The quan-
tity (¢, —tg) + (t1 — t5) is equal to the RTT between Top-
Tracker and the target router. Hence,

(tr —ts) — [RTT + (t — ta) + (t2 — t1)]

= (tr - ts) - [RTT + tdup_lsa + tprobe_lsa]
(t'r - ts) — toverhead (3)
where toperhead = RTT + Lgup isa + tprove_isa

topf

In order to determine %,yerpeqd, WE repeat the experi-
ments with two changes: First, we set spf-delay to a very
large value (nominally 60 seconds). Second, TopTracker
sends the probe LSA and the duplicate LSA back-to-back
in two separate LS Update packets. These choices ensure
that the SPF calculation is removed from the interval be-
tween the probe and the duplicate LSA processing tasks.

SPF calculation time
0.02 T

T T T
mean (black box) —+—
95% confidence interval (black box) ---x--

mean (white box) -----
0.015 |- 95% confidence interval (white box) &=

[ 4

B
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Fig. 12. Comparison of black-box and white-box measurements
for SPF calculation time (t5p7) for GateD, with varying n,
the number of nodes in a fully connected topology.

TopTracker logs the time at which it sends out the probe
LSA and the time at which it receives the ack for the du-
plicate LSA. The difference between these two time values
provides an estimate of ¢yyerhead-

To investigate the effect of network size on SPF calcu-
lation time, we collected t4,; values for fully connected
emulated topologies with varying number of nodes n. Fig-
ure 11 presents the results. Note that the results for the
GSR and 7513 are essentially identical. Though these
routers have vastly different forwarding capabilities, their
route processors are similar, and SPF calculation is a CPU
intensive task. A closer examination of the data also val-
idates the assumption that the SPF calculation is non-
preemptable.

To help validate the above methodology, we repeated
the same experiments with GateD and compared the re-
sults with white-box measurements obtained by instru-
menting GateD’s SPF calculation. Figure 12 shows that
the black-box measurements closely track the white-box
measurements.

D. Forwarding Information Base (FIB) Update Time

Next we consider the time needed for the target router
to update its Forwarding Information Base (FIB) after it
starts the SPF calculation. The idea behind the experiment
is (i) to configure the testbed initially with a given address
d unreachable on the target router, (ii) to inject an LSA
that makes d reachable on the target router, and (iii) closely
bracket the time that the target router takes to install d in its
FIB. To achieve step (iii), we ping d on the target router at
high rate. Until the FIB is updated, all pings are dropped.
Thus, the first ping forwarded closely brackets the time the
FIB update completes.
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Fig. 14. FIB update time (% f44_update) for a fully connected topology with n nodes, for varying 7.

We configure the testbed (Figure 4) using PC2 as the
ping generator. PC2 pings destination d at a constant rate
of one ping every 0.01 second (the maximal rate available
on Linux). Since PC2 does not run OSPF, we install a
static route on PC2 for destination d with the target router
as the next hop. Thus, PC2 forwards all ping packets
(ICMP request packets to be more specific) to the target
router on VLAN 1. At this point, the target router does not
know how to reach d and hence drops the pings.

Figure 13 describes the sequence of events that occur in
the course of the experiment, in some detail. TopTracker
generates a probe LSA designed to make d reachable from
the target router’s perspective. As soon as this change
is reflected in the FIB, the target router starts forwarding
ping packets to TopTracker (PC1). TopTracker computes
a time-stamp ¢, when it sends out the probe LSA. The Ex-
pect script running on PC1 computes a time-stamp %, as
soon as it receives the first ping packet destined to d. From
Figure 13, we can see that

tfib_'u,pdate = t4—1

= (tr - tS) - [(tr - t5) + (t5 - t4)
+(ta —t1) + (t1 — t5)]

As we did for SPF calculation delay, we can safely assume
that o — ¢1 is negligible. Similarly,

RTT(PCl-router)

tfib_update = (tT - tb’) 9
RTT(PC2-router)
+(ts —ta) + 5
= (tr - ts) — toverhead “4)

where toperhead =
RTT(PC2-router)
2

RTT(PCI-router)
2

+(t5 — t4) +

As Eq. 4 indicates, the value of ,,erpeaq 1S @ Sum of three
quantities. Two of these quantities depend on RTT values,
which we estimated by using pings. The value of the third
quantity, t5 —t4, depends on when the first packet arrives at
the target router after it has updated its FIB. Since FIB up-
date occurs essentially at a random time with respect to the



TABLE IV
SUMMARY OF RESULTS

Task Range of task delay Dependence
LSA processing | 100-800 microseconds | Depends on the size of the LS Update packet;
Individual LSA in the packet contribute little
to the overall processing time of the packet
LSA flooding 30-40 milliseconds Depends on the pacing time
SPF calculation | 1-40 milliseconds Depends on the number of nodes in the network
FIB update 100-300 milliseconds | Depends on router architecture;
Little dependence on the number of nodes in the network

pings from PC2 occurring every 0.01 seconds, we assume
that quantity ¢5 — ¢4 is a uniformly distributed variable in
the interval [0.00, 0.01] seconds and hence has a mean of
0.005 seconds.

Figure 14 plots the FIB update time, as it varies with the
size of the network, which we assumed for simplicity to
be fully connected. The figure clearly demonstrates that
T fib_update has little dependence the size of the network
or the duration of the SPF calculation. It is worth noting
that FIB update time is significantly higher than the SPF
calculation time. Thus, it takes a significant amount of
time for the target router to update its FIB even after it is
done with the SPF calculation. FIB update time depends
heavily on the router architecture. As pointed out earlier,
the two Cisco routers have different architectures, which
explains the significantly different FIB update behaviors.

V. CONCLUSIONS

In this paper, we presented methods and results for es-
timating internal OSPF processing delays. The methods
are black-box, i.e., they are based on external observa-
tions rather than internal instrumentations. We applied the
methods to production Cisco Systems routers. Table IV
summarizes the results. Delay associated with LSA pro-
cessing is relatively small, on the order of 100 microsec-
onds. Moreover, the major contribution of the delay comes
from time spent in copying the LS Update packet that con-
tains the LSAs. Delay associated with LSA flooding de-
pends on the pacing timer employed by the router, and is
on the order of tens of milliseconds for the Cisco routers
under test. On the other hand, delays associated with SPF
calculation and FIB update are relatively large, on the or-
der of 10 and 100 milliseconds, respectively. The delay as-
sociated with SPF calculation (Dijkstra’s algorithm) scales
quadratically with the number of nodes in fully connected
topologies. FIB update shows no correlation with the net-
work size, but is much larger than the SPF calculation
time. Though FIBs greatly speed packet forwarding, up-

date is relatively costly.

We presented results for Cisco GSR and 7513 routers.
Though these routers vary considerably in hardware archi-
tecture and forwarding capabilities, their route processors
are similar. As a result, the routers behaved similarly for
CPU-bound tasks such as SPF calculation, LSA process-
ing and flooding. On the other hand, the routers showed
widely varying behavior for FIB update, which is natural
since FIB update performance depends heavily on router
architecture.

We applied the methodology to an open source OSPF
implementation, GateD 4.0.6, running on a Linux PC, for
SPF calculation time. In this case, white-box and black-
box measurements were found to be quite close.

The basic idea behind the black-box method is straight-
forward: design experiments that allow us to bracket the
start and the finish times of the task in question, and re-
lated experiments that allow us to estimate “overhead” in
the bracket accounting for time spent before the task start
time and after the task finish time. Our experimental de-
signs made use of:

¢ A protocol emulator, used to generate specific patterns
of control messages, and to investigate the impact of scal-
ing parameters.

« Attributes of the protocol standard that help provide
time-stamps. In the paper, we introduced a time-stamping
trick that works for any protocol packet that requires
immediate processing with an externally observable re-
sponse. Applied to OSPF using duplicate LSAs, we were
able to estimate the finish time for two tasks: LSA pro-
cessing and SPF calculation. The same trick can be used
to measure the processing time for other OSPF tasks (for
example, processing OSPF Hellos).

« Vendor specific configuration parameters. For example,
to help measure SPF calculation time, we set the parameter
spf-delay to 0, and to help measure LSA processing time
we set the same parameter to a large quantity (60 seconds).

In future work, we plan to further investigate LSA pro-



cessing and SPF calculation delays. For LSA processing,
we plan to explore how the delay varies with: the size of
the link-state database, the number of adjacencies that the
LSA needs to be flooded out, and the way LSAs are dis-
tributed across LS Update packets. For SPF calculation,
we plan to see how the delay varies with different kinds
of network topologies. It is also of interest to adapt the
experimental designs to routers from other vendors. An-
other avenue of future research is developing black-box
techniques for other routing protocols, such as BGP [10]
and IS-IS [11].
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