Floodless in SEATTLE:

A Scalable Ethernet Architecture for Large Enterprises

Changhoon Kim, Matthew Caesar, and Jennifer Rexford

Ethernet in Enterprise Nets?

- Ethernet has substantial benefits
 - Simplifies network management,greatly reducing operational expense
 - Naturally supports host mobility
 - Enhances network flexibility
- Why do we still use IP routing inside a single network?

Ethernet Doesn't Scale!

- Reasons for poor scalability
 - Network-wide flooding
 - Frequent broadcasting
 - Unbalanced link utilization, low availability and throughput due to tree-based forwarding
- Limitations quickly growing with network size
- Scalability requirement is growing very fast
 - $-50K \sim 1M \text{ hosts}$

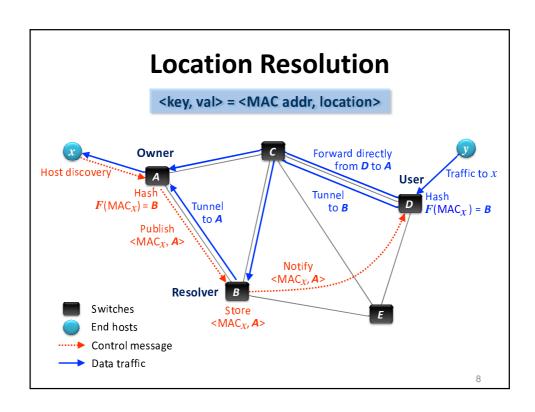
3

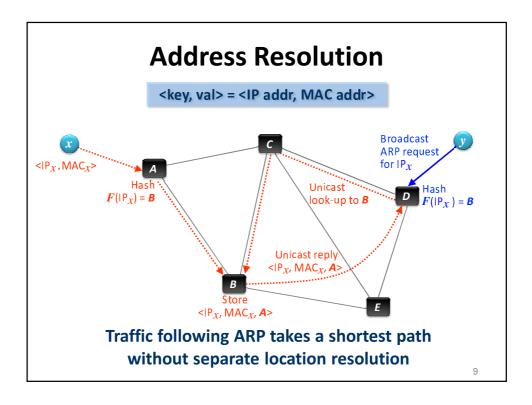
Current Practice A hybrid architecture comprised of several small Ethernet-based IP subnets interconnected by routers IP subnet == Ethernet broadcast domain (LAN or VLAN) • Loss of self-configuring capability • Complexity in implementing policies • Limited mobility support • Inflexible route selection Sacrifices Ethernet's simplicity and IP's efficiency only for scalability

Key Question and Contribution

- Can we maintain the same properties as Ethernet, yet <u>scales</u> to large networks?
- SEATTLE: The best of IP and Ethernet
 - Two orders of magnitude more scalable than Ethernet
 - Broadcast domains in <u>any size</u>
 - Vastly simpler network management,
 with host mobility and network flexibility
 - Shortest path forwarding

5

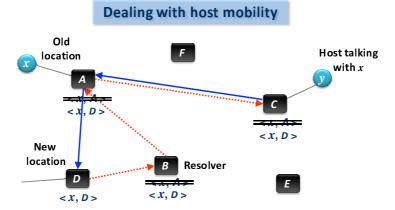

Objectives and Solutions


Objective	Approach	Solution
1. Avoiding flooding	Never broadcast unicast traffic	Network-layer one-hop DHT
2. Restraining broadcasting	Bootstrap hosts via unicast	
3. Reducing routing state	Populate host info only when and where it is needed	Traffic-driven resolution with caching
4. Shortest-path forwarding	Allow switches to learn topology	L2 link-state routing maintaining only switch-level topology

^{*} Meanwhile, avoid modifying end hosts

Network-layer One-hop DHT

- Switches maintain < key, value > pairs by commonly using a hash function F
 - -F: Consistent hash mapping a key to a switch
 - -F is defined over the live set of switches
 - LS routing ensures each switch knows about all the other live switches, enabling one-hop DHT operations
- Benefits
 - Fast and efficient reaction to changes
 - Reliability and capacity naturally growing with network size



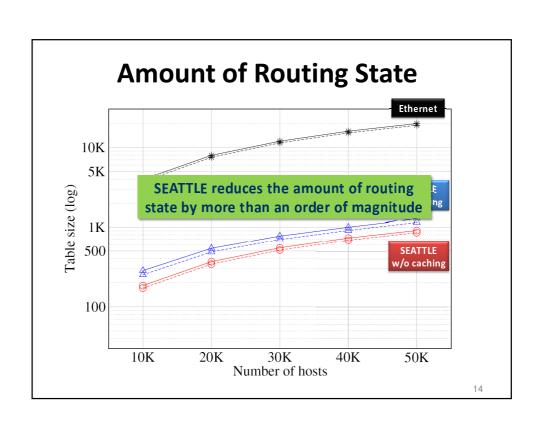
Handling Network Dynamics

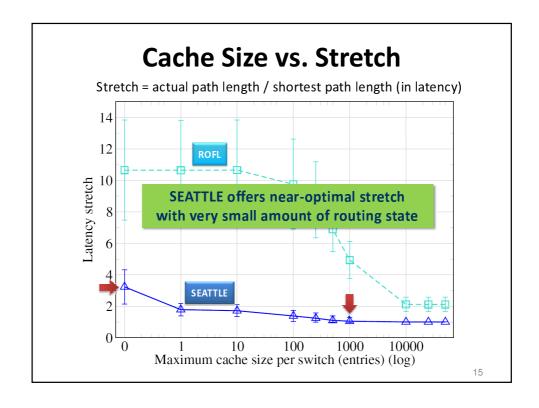
- Events not modifying the set of live switches
 - E.g., most link failure/recovery
 - LS routing simply finds new shortest paths
- Events modifying the live set of switches
 - E.g., switch failure/recovery
 - -F works differently after a change
 - Two simple operations ensure correctness
 - If $F_{new}(k) := F_{old}(k)$, owner re-publishes to $F_{new}(k)$
 - Remove any < k, v > published by non-existing owners

Handling Host Dynamics

• Host location, MAC-addr, or IP-addr can change

MAC- or IP-address change can be handled similarly


11


Further Enhancements

- Goal: Dealing with switch-level heterogeneity
- Solution: Virtual switches
- Goal: Attaining very high availability of resolution
- **Solution**: Replication via multiple hash functions
- Goal: Dividing administrative control to sub-units
- Solution: Multi-level one-hop DHT

Performance Evaluation

- Large-scale packet-level simulation
 - Event-driven simulator optimized for control-plane evaluation
 - Synthetic traffic based on real traces from LBNL
 - Inflated the trace while preserving original properties
 - Real topologies from campus, data centers, and ISPs
- Emulation with prototype switches
 - Click/XORP implementation

Conclusion and Future Work

- SEATTLE is a plug-and-playable network architecture ensuring both scalability and efficiency
- · Enabling design decisions
 - One-hop DHT tightly coupled with LS routing
 - Reactive location resolution and caching
 - Shortest-path forwarding
- Future work
 - Using SEATTLE to improve network security
 - Utilizing indirect delivery for load balancing
 - Optimizations when end hosts can be changed