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Abstract

The increasing popularity of multimedia streaming applications introduces new challenges in
content distribution. Web-initiated multimedia streams typically experience high start-up delay,
due to large protocol overheads and the poor delay, throughput, and loss properties of the Internet.
Internet service providers can improve performance by caching the initial segment (the prefix) of
popular streams at proxies near the requesting clients. The proxy can initiate transmission to the
client while simultaneously requesting the remainder of the stream from the server. This paper
analyzes the challenges of realizing a prefix-caching service in the context of the IETF’s Real-Time
Streaming Protocol (RTSP), a multimedia streaming protocol that derives from HTTP. We de-
scribe how to exploit existing RTSP features, such as the Range header, and how to avoid several
round-trip delays by caching protocol information at the proxy. Based on our experiences, we
propose extensions to RTSP that would ease the development of new multimedia proxy services.
In addition, we discuss how caching the partial contents of multimedia streams introduces new
challenges in cache coherency and feedback control. Then, we briefly present our preliminary
implementation of prefix caching on a Linux-based PC, and describe how the proxy interoperates
with the RealNetworks server and client.
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1 Introduction

The popularity of Internet multimedia applications has grown dramatically in the past several years,
spurred by the penetration of the Web and the increasing capacity of backbone and local-access
networks. Although HTTP can be used to transfer audio and video content, most multimedia
transmissions are simply initiated on the Web. Then, the client’s player contacts the multimedia
server using a different set of protocols that are better suited to streaming applications. For example,
the RealNetworks client and server communicate using the Real-Time Streaming Protocol (RTSP) [1],
an IETF draft standard that derives from HTTP. RTSP is used in a number of commercial streaming
media applications, including the RealNetworks client and server.

Despite the advent of new multimedia protocols, today’s audio and video applications typically
experience high start-up delay, due to protocol overheads and the poor delay, throughput, and loss
properties of the Internet. The route from the server to the client often traverses multiple ISP

domains, giving the client’s service provider little control over the end-to-end performance. Instead,



response time can be reduced by caching popular streams at proxies near the requesting clients (e.g.,
at the head-end of the access network). The ISP can carefully provision the proxy-client path for good
quality-of-service, and protect the client from the vagaries of the server-proxy path. Although proxy
caching of text and image data has been widely explored in the past several years, proxy services for
multimedia streams introduce new challenges — very large objects, strict timing requirements, and
new protocols.

The large size of most multimedia streams makes conventional Web caching techniques inappro-
priate. Rather than storing the entire contents of a large audio or video clip, the proxy could cache a
set of frames from the beginning of the stream (i.e., the prefix of the clip) [2]. This allows the proxy
to initiate transmission to the client while simultaneously requesting the remainder of the stream
(the suffix) from the server. The prefix could be cached while satisfying a client request, prefetched
from the server upon access to the enclosing Web page, or pushed explicitly by the server. The
prefix should be large enough to hide the round-trip delays, jitter, and small time-scale fluctuations
in server-proxy throughput (e.g., 5-second prefix). Caching a larger prefix reduces the amount of
traffic between the server and the proxy on subsequent client requests, and allows the proxy to sup-
port additional functions, such as transcoding or workahead transmission, without introducing client
delay.

For ease of deployment, multimedia proxy services, such as prefix caching, should not require
changes to existing client/server software or network mechanisms and should operate in the context
of standard protocols. This paper investigates the challenges of realizing the prefix-caching service
in the context of the RTP, RTSP, and RTCP family of IETF protocols. Section 2 briefly reviews the
RTP, RTCP, and RTSP protocols. In Section 3, we describe how to exploit existing RTSP features,
such as the Range header, and how to avoid several round-trip delays by caching protocol information
at the proxy. Then, in Section 4 we discuss how caching partial contents at the proxy introduces
new challenges in cache coherency and feedback control. Drawing on the protocol analysis, Section 5
briefly describes the architecture and preliminary implementation of our prefix-caching proxy on a
Linux-based PC. We used the RealNetworks G2 server and player as a source and sink for testing
the proxy. To aid other researchers in experimenting with multimedia proxy services, we describe
how to coax the RealNetworks implementation of RTSP, including how to coax the RealServer to
stream with RTP and RTCP, rather than the proprietary RDT protocol. Section 6 concludes the
paper with a discussion of future research directions.

The paper complements recent work on multimedia caching and proxy services. Earlier research
on multimedia caching proposed storing a sliding interval of successive frames to satisfy client requests

that arrive close together in time [3-5]. Other recent work proposed having the proxy cache a fixed



subset of frames, such as the prefix of the stream or a subset of frames in high-bandwidth regions of
the stream, to reduce the overhead of transmitting to the client [2,6-9]. Our paper complements these
studies by focusing on the protocol issues that arise in caching partial contents. Other recent work
has introduced multimedia proxy services that operate within existing streaming protocols, including
systems that perform transcoding, retransmission, workahead smoothing, and ad insertion [10-13].

We complement this work by focusing on the unique challenges of performing prefix caching at a

proxy.

2 Multimedia Streaming Protocols

The RTP, RTCP, and RTSP suite of protocols supports multimedia streaming in the Internet, and

serves as the starting point for our work on prefix caching.

2.1 Real-Time Transport Protocol (RTP)

RTP [14] provides the basic functionality for transferring real-time data over packet networks. Since
RTP does not include mechanisms for reliable delivery or flow control, transport of RTP packets
must rely on underlying protocols such as UDP and TCP. RTP typically runs over UDP, though
TCP is sometimes used for reliable transport or to stream across firewalls that discard UDP packets.
RTP provides source identification (randomly chosen SSRC identifier), payload type identification
(to signal the appropriate decoding and playback information to the client), sequence numbering (for
ordering packets and detecting losses), and timestamping (to control the playback time and measure
jitter). Data packets contain a generic RTP header with these fields, as well as payload-specific
information to improve the quality of delivery for specific media (e.g., MPEG). Interpretation of
some header fields, such as the timestamp, is payload dependent. The RTP header may also identify
contributing sources (CSRCs) for the payload carried in the packet; such a list is typically inserted

by mixers or translators.

2.2 Real-Time Control Protocol (RTCP)

RTCP [14] monitors the delivery of RTP packets. The protocol provides feedback on the quality
of data distribution, establishes an identification (CNAME) for each participant, scales the control
packet transmission with the number of participants (to avoid generating excessive feedback traffic
in large multicast groups), and provides minimal session control information. RTCP packets consist
of source descriptors, sender reports, receiver reports, BYE packets (signifying the end of partici-

pation in a session), and APP packets (for application-specific functions). Receiver reports include



the stream’s SSRC, the fraction of RTP packets lost, the sequence number of the last RTP packet
received, and the packet interarrival jitter. Senders can use this information to modify their trans-
mission rates or to switch to a different encoder. The sender reports include the stream’s SSRC, the
sequence number of the last RTP packet sent, the wallclock time of the last transmission, and the
number of RTP packets and bytes sent. The client can use the RTP timestamp and wallclock time

information for media synchronization.

2.3 Real-Time Streaming Protocol (RTSP)

RTSP [1] coordinates the delivery of multimedia files, acting as a “VCR remote control.” RTSP typ-
ically runs over TCP, though UDP can also be used. Though conceptually similar to HTTP /1.1 [15],
RTSP is stateful and has several different methods. The OPTIONS method inquires about server
capabilities (e.g., RTSP version number, supported methods, etc.), and the DESCRIBE method
inquires about the properties of a particular file (e.g., Last-Modified time and session description
information, typically using SDP [16]). Client and server state machines are created with the SETUP
method, which also negotiates transport parameters (e.g., RTP over unicast UDP on a particular
port). The client sends a SETUP message for each stream (e.g., audio and video) in the file. Stream-
ing of the file is initiated with the PLAY method, which can include a Range header to control the
playback point. The TEARDOWN method terminates the session, releasing the resources at the

server and client sites. The protocol also includes a number of recommended or optional methods.

3 Prefix Caching in RTSP

In this section, we describe how to reduce client delay by caching protocol information at the proxy,
and how to use the RTSP Range header to fetch the suffix of the stream. The discussion draws on
Figure 1, which illustrates the handling of RTSP messages when the proxy has cached the prefix of
each stream (e.g., audio and video), the description of the presentation, and the options supported

by the server.

3.1 Basic RTSP Operation

The handling of client requests depends on whether or not the proxy has cached the prefix and
the related RTSP information. The client uses the OPTIONS message to learn which methods are
supported by the server. The server (and therefore the proxy) should support the basic methods

such as OPTIONS, DESCRIBE, SETUP, PLAY, and TEARDOWN. The proxy can respond directly
to the client’s OPTIONS request, avoiding the delay in contacting the server, as shown in Figure 1.
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Figure 1: Protocol exchange under proxy prefix caching

In particular, the proxy could respond with a list of methods that were cached during a previous
interaction with the server. Alternatively, the proxy could respond with a default list of basic
methods. In either case, the proxy may occasionally send an incorrect list of methods (e.g., if the
server ceases to support some method). If the client later attempts to invoke the unsupported
method, the server would simply respond with an error message (response code 405 “Method not
allowed”) that includes the current list of methods, which the proxy can cache and forward to the
client. Note that this error would not cause streaming to fail.

The DESCRIBE message is used to retrieve information about the particular presentation, which
consists of one or more underlying streams (e.g., audio, video). Like the OPTIONS message, the
DESCRIBE message is optional and does not affect the RTSP state machine at the client or the
server. If the description resides in the cache, the proxy can respond directly to the client; otherwise,
the proxy must contact the server. However, note that the cached DESCRIBE information may
not be up-to-date. The proxy can employ a variety of techniques to reduce the likelihood of stale
information, as discussed in Section 4.1.

The SETUP request is used to negotiate the transport parameters, including the transport pro-
tocol (e.g., RTP) and the TCP/UDP port numbers. Upon receiving the client SETUP message,
port numbers are generated for the proxy’s end of the RTP and RTCP connections, and a session
identifier is selected. The port numbers and session identifier are sent to the client. In the mean-
time, the proxy generates a separate SETUP message to the server. Each stream in the multimedia

presentation results in separate connections on both the proxy-client and server-proxy paths, and



consist of TCP or UDP connections for RTP and RTCP. The proxy could request that the server
stream the RTP packets over TCP (or a related semi-reliable transport protocol), since the cached
prefix could hide transient periods of TCP congestion where the server does not send packets fast
enough for continuous playback. To coordinate the transfer of RTP and RTCP messages, the proxy
must maintain a mapping table to direct messages to the appropriate outgoing connection (and with
the appropriate session identifier), as discussed in Section 5.1.

The client can send the PLAY message after receiving the proxy response to the SETUP request.
If the prefix is cached, the proxy can respond immediately to the PLAY request and initiate the
streaming of RTP and RTCP messages to the client. The client can begin playback, without waiting
for the proxy to communicate with the server. Note that the proxy may or may not have received
the SETUP response from the server, depending on the delay on the server-proxy path. Once the
proxy has received a SETUP response from the server, indicating the server’s session identifier, the
proxy can send the PLAY request to the server, with the appropriate Range header, as discussed in
more detail in Section 3.2. After transmitting the prefix of the stream to the client, the proxy can
start sending the RTP packets in the suffix retrieved from the server.

Depending on the size of the prefix, the proxy may decide to wait longer before asking the server
to transmit the suffix. Fetching the suffix too early would require extra storage resources at the
proxy, and may result in extra server load and network traffic if the client eventually pauses or stops
the transfer of the presentation. Yet, the suffix should be requested sufficiently ahead of when the
proxy would need to start transmitting this data to the client. Requesting the suffix a bit early allows
the proxy to hide the server-proxy round-trip delay (which can be estimated from RTCP reports),

or additional delays for other functions such as smoothing or transcoding.

3.2 Linking the Prefix and Suffix

When the entire stream resides in the cache, the proxy acts as a server in responding to the client
PLAY request. When the cache does not contain any portion of the requested resource, the proxy
forwards the PLAY request to the server and simply shuttles messages back and forth between the
server and the client, acting as an application-level router. The operation of the proxy becomes
more interesting when the cache stores only the prefix of the stream. In this case, the proxy can
reply to the client PLAY request and initiate transmission of RTP and RTCP messages to the client,
while requesting the suffix from the server. Fetching the suffix requires the proxy to initiate a Range
request for the appropriate portion of the stream. As part of linking the prefix and suffix, the proxy
must specify the appropriate Range and handle inaccuracies in the server response.

As part of caching multimedia content, the proxy keeps track of the size of the prefix in terms



of the timestamps in the RTP packets. The RTSP Range request is defined for both SMPTE Relative
timestamps and NPT (Normal Play Time). SMPTE has the format hours:minutes:seconds:frames.subframes
with the origin at the beginning of the clip. In contrast, NPT time consists of a decimal fraction,

where the left part of the decimal may be expressed in either hours, minutes or seconds, and the right

part of the decimal point measures fractions of a seconds. These formats require the proxy to convert

the RTP timestamps into time, by applying the payload-specific clock rate [17]. According to the
protocol specification, servers supporting the Range header must understand the NPT range format

and should understand the SMPTE range format. In most cases, the SMPTE format is preferable,

since it supports more indexing into individual packets within a frame. But, the proxy could easily

avoid the need for such fine-grain indexing by ending the prefix at frame boundaries.

The proxy does not know in advance whether or not the server supports Range requests for a
particular presentation (some streams do not allow seek operations), and whether or not the SMPTE
format is supported. The proxy can learn, and cache, this information for each presentation by
sending Range requests to the server and noting the response (e.g., the server sends a 426 “Header
Field Not Valid for Resource” response when Range is not supported). The proxy could avoid
polling the server for this information if the RTSP SETUP or PLAY response included information
about support for Range requests. To avoid changing existing RTSP implementations, providing
the information about Range support could be optional, since the proxy could always infer the
information and/or decline to cache partial contents when the information is not provided.

In addition, RTSP does not require the server to handle the Range request precisely. For example,
the request may identify a starting time that does not correspond to any particular frame, forcing the
server to initiate transmission from the previous or subsequent frame. In addition, the server may not
support arbitrary indexing to individual frames. (For example, an MPEG stream typically consists
of I, P, and B frames within a group of pictures (GOP). The server may not precisely satisfy a Range
request that starts in the middle of a GOP. In fact, allowing clients to index to any arbitrary frame
could introduce substantial overhead at the server (to maintain fine-grain indices, or to parse the
content to sequence to the appropriate frame), particularly for variable-bit-rate streams, or streams
without a fixed GOP structure.) The RTSP protocol does not dictate how accurately the server
must handle the Range header, and does not provide a way for the server to indicate in advance how
much inaccuracy could be introduced. As such, the proxy should be conservative, and ensure that
the transmission to the client does not have duplicate or missing packets. Fortunately, the server
reply includes a Range response header that indicates what range of time is currently being played.
If the beginning of the suffix contains frames that are already at the end of the prefix, the proxy
discards the overlapping packets. To avoid a gap between the prefix and the suffix, the proxy could



initiate a conservative Range request, or issue a second request if a gap arises.

3.3 Seamless Transmission of RTP Packets

In order to link the prefix and the suffix, all RTP headers must be consistent, otherwise the client
will not associate the two parts to the same stream. The sensitive fields are sequence numbers,
timestamps, and source identifier (SSRC), which have been selected separately by the proxy (for the
prefix) and the server (for the suffix). Therefore, the proxy will have to change the RTP header
fields of the suffix to match to SSRC it chose for the prefix, the timestamps and sequence numbers to
indicate that the suffix must be played after the prefix. In streaming the suffix, the proxy overwrites
the SSRC field in each RTP packet with the value it selected as part of initiating transmission of
the prefix. The proxy knows the timestamp and sequence number used in transmitting the last RTP
packet of the prefix. The base timestamp and sequence number for the server’s transmission of the
suffix are provided in the RTP-Info header in the PLAY response. The proxy can then add/subtract

the appropriate constant for the timestamp and sequence number fields of each packet in the suffix.

4 Decoupling of Client and Server

Prefix caching decouples the server transmission from client reception. Caching partial contents of
the stream, and overlapping the prefix transmission on the proxy-client path with the suffix on the
server-proxy path, introduces new challenges in cache coherency and feedback control. This section

identifies the key issues and presents several possible solutions.

4.1 Cache Coherency

Caching RTSP messages and multimedia content at a proxy introduces potential coherency problems
when the server changes this information. Cache coherency is a critical issue in the Web, where many
resources change very frequently. The problem is arguably less critical for multimedia presentations,
which may change less frequently — the server could simply assign a new URL when new content is
created. Still, the paradigms for authoring and updating multimedia content are not well understood,
and the use of proxies should not place additional restrictions on how servers are managed. As such,
the proxy should incorporate mechanisms to prevent the transmission of a suffix that does not come
from the same version of the presentation as the cached prefix.

The proxy could reduce the likelihood of introducing an inconsistent stream by sending a DE-
SCRIBE message to the server for every client request, and checking that the Last-Modified time

matches the cached prefix. However, the additional exchange with the server would increase client



start-up latency, which would partially defeat the purpose of prefix caching. Instead, the proxy
could apply a timeout (time-to-live) to the cached information, revalidating (with an “If-Modified-
Since” request) only if the timeout has expired. To avoid forcing the client to wait for the proxy
to check with the server, the proxy could periodically validate the cached information, even if no
client has requested the stream. To reduce the overhead of creating a TCP connection to the server,
the proxy could freshen the DESCRIBE information during other communication with this server
(e.g., while coordinating the transmission of another stream from the same server). Such piggyback
cache validation has proved to be a very effective technique for controlling the consistency of Web
resources [18].

To ensure that a client never receives a suffix that does not match with the prefix, the proxy
could send a DESCRIBE request to the server just after requesting the suffix. This would allow the
proxy to verify that the suffix comes from the same presentation as the cached prefix. In the rare
event that the suffix comes from a more recent version of the presentation, the proxy could terminate
the transmission to the client rather than send inconsistent information. Note that this approach
does not delay transmission to the client in the common case when the presentation has not changed.
From the client’s point of view, the disruption of the transmission would appear as a transient server
error. For example, the proxy could send a “500 Internal Server Error,” “502 Bad Gateway,” or
“503 Service Unavailable” message. Note that the proxy could also send such an error message if
the server does not respond to the proxy’s request for the suffix, or is unable to devote resources
to satisfying the proxy’s request. After receiving the error message from the proxy, the client could
optionally initiate the request a second time, and receive a fresh copy of the presentation from the
server.

Finally, cache inconsistency can be avoided with additional support from the server. The simplest
approach would be to have the server indicate an expiration time for the presentation, and ensure that
the contents will not change in the meantime. An alternative solution would be to allow additional
communication between the server and the proxy. For example, the server could push the prefix of
each popular multimedia presentation to interested proxies, perhaps using multicast to distribute
the content. In this case, the proxy acts as a (partial) replica of the server content, rather than as a
conventional cache. The server could indicate the expiration time for the presentation, or promise to
send updates as part of changing the presentation. The proxies could subscribe to receive updates

for particular content of interest.



4.2 Relaying RTCP Sender/Receiver Reports

Prefix caching introduces additional challenges in generating accurate and timely reports of server
and client performance. If the entire stream resides in the cache, the proxy acts as a server in
generating sender RTCP reports and responding to the client’s receiver reports. On a cache miss,
the proxy acts as an application-level router and simply forwards the reports generated by the server
and the client. Yet, the appropriate behavior is less clear when the proxy sends the prefix of the
stream and fetches the suffix from the server. On the one hand, the proxy could view the server-
proxy and proxy-client paths as distinct, and have two unrelated RTCP sessions with the server and
the client, respectively. Despite the conceptual appeal of this approach, the proxy runs the risk of
hiding important information about performance problems on the server-proxy or proxy-client paths.
Instead, the proxy could generate and receive reports while transmitting the prefix, and switch to
forwarding reports while transmitting the suffix. In forwarding the server-generated reports, the
proxy would need to map the key fields, such as the SSRC, timestamp, and sequence number, that
have a different base in the suffix than in the prefix.

Forwarding server and client RTCP reports during transmission of the suffix has the advantage
of informing the server about the performance experienced by the client. However, the information
could be rather out of date, since the suffix is not sent to the client until transmission of the prefix
is complete. The proxy has a number of possible options to control the RTCP reports sent to the
server. Reporting transient performance problems (e.g., burst of loss) on the proxy-client path may
not be particularly relevant, especially if this information is out-of-date. Instead, the proxy could
choose to report only persistent problems that require a response by the server (e.g., to switch to
a lower bandwidth version of the stream). In generating these reports, the proxy must be careful
to reflect the delay that has been introduced in sending the RTP packets in the suffix to the client.
Otherwise, the server may think that a large number of packets have not been received. The proxy
could achieve these goals by basing the receiver reports on the packets that have been received by
the proxy (even if they have not all been sent to the client), while using the loss rate experienced by

the client to compute the number of lost packets to report to the server.

4.3 Proxy Adaptation

Correctly modifying the RTCP receiver reports is a delicate process. Instead, the proxy could take
advantage of the cached prefix to change the properties of the server-proxy and proxy-client paths.
The proxy could take advantage of the prefix cache to hide the delay for explicit retransmission of
lost packets on the server-proxy path. For example, the proxy could issue a Range request (perhaps

on a separate connection) to retrieve a previously-requested interval of frames from the server. This

10



would isolate the client from the loss on the server-proxy path. Rather than issuing RTSP Range
requests (which is arguably a rather coarse-grain way to effect packet retransmissions), the proxy
could have the server transmit RTP packets over a TCP connection (by requesting TCP in the initial
SETUP message). The TCP connection would ensure a reliable transmission of the RTP packets,
and would obviate the need for an RTCP session between the server and the proxy. The proxy could
still use UDP for transferring RTP packets to the client.

To address potential performance problems on the proxy-client path, the proxy could perform
additional functions, such as transcoding and workahead smoothing. Transcoding [10] would re-
duce the bandwidth requirements of the stream by lowering the quality. The proxy could perform
transcoding either by discarding a subset of the incoming packets, or by reencoding the stream (e.g.,
by discarding high-frequency components in each MPEG slice). In contrast, workahead smoothing
would involve transmitting frames into the client playback buffer ahead of the playout time [12]. The
cached prefix allows the proxy to transmit frames ahead of time without incurring additional client
playback latency. The transmission of additional frames would allow time for slower transmission of
large frames (smoothing out a burst) or retransmission of lost packets (based on the receiver reports).
The proxy could perform these functions on the proxy-client path without involving the server. If
the proxy sends RTCP receiver reports to the server, these messages should reflect the improvements

made in the proxy-client path, to avoid triggering conflicting recovery operations at the server.

5 Prefix Caching Implementation

This section describes the architecture of the proxy and identifies the key implementation issues.
We describe the session data structure, the operation of the cache, and the scheduling of proces-
sor and link resources. A preliminary implementation of the prefix-caching proxy has been imple-
mented in C on a Linux-based PC, and successfully tested using the RealServer and RealPlayer (from

www.real.com) as a source and sink.

5.1 Per-Session State

The client sends RTSP messages directly to the proxy by configuring the player with the proxy’s IP
address. The client has a TCP connection to/from the proxy for RT'SP operations, a UDP connection
from the proxy to receive RTP packets, and a UDP connection to/from the proxy for RTCP. Having
the client contact the proxy explicitly has advantages over transparent caching, where the proxy must
lie in the path of client messages that are directed to the server. In addition, transparent caching

would also introduce extra complexity and overhead for the proxy to intercept and modify all of the
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client and server packets, including reconstruction of the TCP stream for the RTSP messages. These
challenges, while important, are beyond the scope of our initial implementation effort.

The proxy coordinates communication with the client and the server using a data structure that
stores key information about the ongoing session. The fields in this data structure are populated as
the session progresses. A session can include multiple streams, simultaneously or back-to-back; for
example, a presentation often includes both an audio and a video stream, and perhaps a third stream
for subtitles. The reply to the OPTIONS message contains cacheable information about the server,
but does not include any session-level information. The reply to the DESCRIBE message includes
cacheable information about a resource, such as its URI and Last-Modified Time. For illustration,

we describe how the session data structure is populated on a cache miss:

e Client RTSP connection: Upon establishing a TCP connection with the client, the proxy
records the client IP address and the identifier for the TCP socket.

e First client RTSP request: The first RTSP message could be an optional OPTIONS or DE-
SCRIBE message, or a SETUP message. The proxy extracts the server name and performs a
gethostbyname() to learn the server IP address. The proxy establishes a TCP connection to
the server and stores the identifier for the TCP socket.

e Client SETUP request: The client SETUP message(s) includes information about the transport
protocol and port numbers that the client wishes to use (e.g., for RTP and RTCP). After binding
the two UDP sockets, the proxy records the two sets of client and proxy port numbers, and
replies to the client. In the meantime, the proxy generates and records the port numbers for

its UDP connections with the server, and sends a SETUP message to the server.

e Server SETUP response: After receiving the server reply, the proxy records the server port
numbers for the UDP connections and binds the UDP sockets. The proxy also stores the

session identifier, generated by the server.

e Client TEARDOWN request: The proxy closes the sockets to the client, forwards the TEAR-

DOWN to the server, and deletes the session data structure.

The session structure also includes a number of flags that indicate whether or not the requested
streams are in the cache, and which packet should be sent next. The session data structure is
populated in a similar manner when the proxy cache contains the prefix, except that the session

identifier, base timestamp, and base sequence number are chosen by the proxy.
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5.2 Caching Architecture

The desire to efficiently transmit cached multimedia content to a large collection of clients drives
most of the design decisions for the caching architecture. For example, the proxy caches RTP packets,
rather than raw multimedia content. This obviates the need to parse the body of the RTP packets
and repacketize the content, at the expense of additional storage overhead for RTP headers. Each
item in the cache represents a particular multimedia resource, including the DESCRIBE information
and a linked list of RTP packets, ordered by sequence number. In the simplest case, the incoming
RTP packets are appended to the linked list as they arrive. Since packets sometimes arrive out of
order, the proxy could insert each packet in the appropriate place in the list based on the sequence
number field in the RTP packet header.

Each time a stream is transmitted from the cache, the proxy must select an SSRC and a base
timestamp and sequence number (at random). As such, the proxy must alter these header fields in
the cached RTP packets before transmitting to the client. To avoid extra data copying, the proxy
can send the packet using a gather function (e.g., writev()) that can combine buffers from multiple
locations. However, not all systems have efficient support for the gathering function. In this case,
the proxy can overwrite the RTP header fields directly in the cache, and initiate a regular socket
send operation for the entire packet. To avoid alteration or deletion of the packet during the copy
into the socket buffer, each packet includes a lock bit to indicate that a (non-blocking) transmission
is in progress; the lock bit is cleared after completion of the socket call. Also, since the proxy
overwrites certain RTP header fields, the cache stores additional information to allow computation

of the sequence number and timestamp fields for subsequent transmissions of the packet.

5.3 Processor and Link Scheduling

To handle requests from multiple clients, the proxy must have an effective way to allocate memory,
processing, and 1/O resources between different sessions. Our prototype implementation has an
event-driven architecture, where the proxy coordinates all activity between client-server pairs in a
single process. This avoids the overheads (and jitter) introduced by context switching between the
processes, and simplifies the sharing of the cache amongst all of the sessions. In addition, the event-
driven architecture enables the proxy to have greater control over resource allocation, by sending
and receiving RTP data for each session in proportion to the bit-rate requirements. Instead of
having a process scheduler implicitly allocate resources to each session, the event-driven approach
shares resources by scheduling socket operations. The proxy can timeshare the system by performing
accounting of the number of bytes handled for each stream.

The proxy, like a server, must carefully schedule transmission of RTP packets to avoid underflow

13



and overflow at the client site. If the proxy sends packets to the client over a TCP connection, the
TCP flow control could implicitly pace the transmission. However, sending UDP packets requires
greater care. The proxy schedules packets based on the RTP timestamps and packet sizes. The
timestamp clock rate is payload dependent [17], requiring the proxy to maintain a mapping between
payload types and clock rates to determine how many packets to transmit during a given time
interval.

Ideally, the proxy could schedule the transmission of each packet at the appropriate departure
time. However, such fine-grain scheduling is typically not possible, and is arguably not necessary.
Instead, the proxy should pick an appropriate time interval (say, one second) for coordinating packet
transmissions for each session. When streaming multimedia content to multiple clients, the proxy
proxy can sequence through the set of sessions, transmitting the appropriate number of packets
for each active session. A system with kernel support for multimedia streaming could explicitly
support packet scheduling [19]. Ideally, in addition to allowing per-session scheduling and variable
transmission rates, the kernel could conceivably compute the appropriate rate directly from the RTP
timestamps, payload-specific clock rate, and packet sizes. Such system support would aid in scaling

the proxy to support a larger number of sessions.

5.4 Testbed and Implementation Status

Testing the prototype proxy requires multimedia clients and servers that implement RTP, RTCP, and
RTSP. Currently, reference RTSP software is available for a source and a sink. However, the reference
source cannot support multiple simultaneous clients, and the reference client does not display the
multimedia stream; in addition, the reference code implements an earlier version of RTSP. Rather
than extending the reference code, we decided to experiment with the RealNetworks server and
player, which both support RTSP/1.0. This provided an opportunity to test the interoperability
of our proxy with the dominant Internet multimedia components, and to study the RealNetworks
RTSP implementation. Our testbed consists of a Windows NT 4.0 PC running a trial version of
RealServer G2 (version 6.0.3.353), and a Windows 95 PC running RealPlayer G2 (version 6.0.3.143).

The RealPlayer is configured with the IP address and port number of the proxy. The decision to
experiment with a local copy of the G2 server, rather than with existing multimedia servers in the
Internet, was motivated by several issues. First, during the development and testing of our proxy
software, we did not want to risk generating incorrect RTSP messages that might crash an operational
G2 server The G2 server in our testbed did crash a few times during our initial development of the
proxy. Second, AT&T Research has a firewall that filters UDP packets. This would force RTP and

RTCP transfers to use TCP, whereas we wish to experiment with UDP; later, we could conceivably
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SETUP rtsp://135.207.15.90:554/g2video.rm/streamid=0 RTSP/1.0

CSeq: 3

RealChallenge2: 7c7687849ca62b5a063fd037£f9d13d7a01d0a8e3, sd=789204f3

Transport: x-real-rdt/udp;client_port=6970;mode=play,
x-pn-tng/udp;client_port=6970;mode=play,
rtp/avp;unicast;client_port=6970-6971;mode=play

If-Match: 31278-2

Figure 2: Trace of RealPlayer SETUP message

put the proxy outside of the firewall, or experiment with RTP and RTCP transfers over UDP. Third,
our initial implementation operates on a private Ethernet, to prevent accidental generation of excess
traffic on the local area network; as such, the proxy does not have direct access to the larger Internet.

Although the RealServer can generate RTP and RTCP packets, the server typically employs a
propriety transport protocol called RDT. The selection of the transport protocol is initiated by the
client SETUP message. For example, the example SETUP message in Figure 2 shows three candidate
transport protocols, starting with RDT. Upon receiving this message, the server selects RDT as the
transport protocol. To convince the server to send RTP and RTCP packets, the proxy modifies the
Transport header to include only the RTP protocol. Then, the server selects RTP as the transport
protocol, and transmits RTP and RTCP messages after receiving the PLAY request. Modifying the
SETUP message is sufficient to convince the server to use RTP for most encoding formats (e.g., .wav,
.au, and .avi files). However, the RealServer will not send RealNetworks files (e.g., .ra or .rm) using
RTP. We discuss our experiences with the RealNetworks components and present a complete trace
of the RTSP messages between the client and server in [20].

The initial prototype of proxy prefix caching implements a subset of the architecture, along with
the modifications necessary for interacting with the RealNetworks server and player. Using the basic
implementation, we can successfully process client RT'SP messages, requesting the full contents from
the server on a cache miss, or partial contents when a portion of the stream resides in the cache.
The playback at the client is seamless in both cases. The proxy can sustain continuous transmission
to multiple clients. In addition to viewing the stream at the client, we also verified the continuity of
the RTP stream by packet inspection. The prototype is sufficient to test our uses of the RTP and
RTSP protocols. However, supporting the full use of the protocols and scaling to a large number
of simultaneous sessions would require enhancements to our implementation. The current prototype
transfers RTSP messages over TCP, and RTP and RTCP messages over UDP, and assumes that a

session has at most two simultaneous streams. The proxy forwards RTCP messages between the
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client and server, but does not generate reports itself. For simplicity, transfers of RTP packets to
the client use a blocking send call. Future work can focus on extending the implementation and

evaluating the performance.

6 Conclusions

Prefix caching offers an effective way for Internet service providers to improve user performance and
network efficiency, without requiring additional support from the client, the server, or the network.
The service can operate within existing standard protocols. Still, the service would benefit from
improvements in the capabilities exchange in RTSP to provide more upfront information about the
supported submethods, such as the Range header and acceptable time representations. In addition,
prior knowledge of a bound on the server’s inaccuracy in satisfying Range requests would be use-
ful. These features could be added to RTSP, or supported in an alternate protocol with similar
functionality.

As part of our ongoing work, we are pursuing these possible extensions to the RTSP standard,
and are studying the cache coherency and RTCP feedback issues in greater detail. These issues
become more complicated when the server can dynamically adjust the quality of the media stream
in response to network congestion or server load. In addition, we are investigating how to combine
prefix caching with other multimedia proxy services, such as workahead smoothing, retransmission,

and transcoding.
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