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Abstract

Internet censorship impacts many people around the
world, but the most common censorship circumvention
tools, like virtual private networks, proxies, and Tor, can
be blocked by repressive governments and internet ser-
vice providers. There are several new anticensorship
techniques that cannot be blocked without blocking the
entire internet, but these new techniques are not used
in practice because they are not fast enough to keep up
with internet traffic. In this paper, we present Decoy
Switching, an unblockable anticensorship system, that
uses a novel application of programmable switch hard-
ware to scale where past anticensorship systems failed.
We found that Decoy Switching has the potential to be
thousands of times faster than other unblockable anti-
censorship systems, which brings us closer to deploying
unblockable anticensorship in practice.

1 Introduction

There have been numerous efforts to create network-
level anticensorship systems over the last six years, in-
cluding Decoy Routing [15], Telex [28], Cirripede [13],
TapDance [27], and Rebound [11]. In this section, we
provide a high level overview of common design choices,
and investigate differences between the systems’ ap-
proaches to similar problems. Before going into detail,
it is important to establish some terminology that we use
for the rest of the paper. There is an adversary that op-
erates a network and does not want people within its net-
work to access some set of internet addresses. There is
a client that is inside the adversary’s network that wants
to access a covert destination that the adversary blocks.
The decoy destination is a website or service that the ad-
versary allows users to access. This terminology is based
on the definitions in the Decoy Routing paper [15].

All of the existing systems also use similar threat mod-
els which assume that the adversary can observe all traf-

fic in its network. The adversary can also drop packets
from clients that try to access covert destinations directly.
The adversary has no knowledge of or control over traffic
outside its network.

1.1 Common Architecture
Existing anticensorship systems use similar high-level
designs. Since the adversary cannot meddle with pack-
ets outside its network, the anticensorship systems intro-
duce custom network hardware (NH), like routers, prox-
ies, or middleboxes, in friendly ISP’s networks outside of
the adversary’s control. Once the NH is in place, exist-
ing anticensorship systems allow clients to access covert
destinations by including hidden tags in requests to de-
coy destinations. If the NH is on the path of the client’s
request to the decoy destination, then the NH detects the
client’s tag, takes over the client’s connection to the de-
coy destination, and reuses the connection between the
client and the decoy destination to relay information be-
tween the client and the covert destination. Since the
client and the NH communicate over the client’s connec-
tion to the decoy destination, the adversary cannot detect
that the client accessed a blocked address. Figure 1 pro-
vides a visual representation of this process.

2 Related Work

2.1 Fundamental Problems in Network-
Level Anticensorship

Despite their general similarities, there are common
problems that arise in building network-level anticensor-
ship systems that existing anticensorship systems solve
differently. Those problems are (1) what network hard-
ware to use and where to deploy it; (2) how the client
indicates that it wants to use the anticensorship system
without alerting the adversary; (3) how the client com-
municates the address of the covert destination it wants to
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Figure 1: The client makes a request to a decoy desti-
nation that happens to go through an anticensorship sys-
tem’s network hardware (NH). The NH detects a secret
tag in the client’s request and creates a connection to the
covert destination on the client’s behalf. The NH uses
the client’s connection to the decoy destination to relay
information to the client from the covert destination. The
dotted line represents the client’s initial connection to the
decoy destination and the solid lines represent the actual
flow of data once the anticensorship system is initiated. It
should be noted that even though the NH is represented
as a single object in this diagram, some anticensorship
systems introduce multiple devices to the network.

access; and (4) how to send information from the covert
destination to the client. In this section, we review dif-
ferent ways existing anticensorship systems solve these
problems. Figure 2 has a summary of this information.

2.1.1 Network Hardware in Existing Anticensor-
ship Systems

There are three different hardware configurations for ex-
isting anticensorship systems. The most common con-
figuration is used by Telex and TapDance and involves a
device (D) that operates in conjunction with a router in an
ISP’s network. The router sends every packet it receives
to D. D reads every packet and occasionally modifies
packets before sending them back to the router. When
the router receives packets from D, it forwards them ac-
cording to normal routing protocols.

Decoy Routing and Rebound introduce their own
routers (decoy routers) and proxies (decoy proxies). In
Decoy Routing, the decoy routers and decoy proxies may
be physically separate or encapsulated on the same ma-
chine, but in Rebound the decoy router and decoy proxy
functions are always on the same machine. The decoy
routers behave like typical routers except that they for-
ward packets to decoy proxies when they detect a tag in
a packet from a client that indicates that the client wants

to use the anticensorship system. The decoy proxies per-
form most of the functionality in Decoy Routing and Re-
bound, such as opening connections to covert destina-
tions and sending data between the client and the covert
destination. The decoy routers are placed according to
[6].

Cirripede has the most complicated hardware configu-
ration. The system includes a registration server, routers,
and proxies. Clients contact the registration server to in-
dicate that they want to use Cirripede. Once the client
is registered, the registration server disseminates infor-
mation about the client to every router and proxy in the
system, and when a router sees traffic from a registered
client, it forwards the traffic to a proxy, which hijacks the
client’s connection to the decoy destination and performs
the rest of Cirripede’s functions.

2.1.2 Methods for Requesting Censorship Circum-
vention

Telex, TapDance, Decoy Routing and Rebound’s clients
use the same method to request access to their systems.
They all embed a secret tag in the Random Field in the
TLS [9] ClientHello message. The exact method for em-
bedding the tag in the Random Field varies from system
to system. Cirripede, on the other hand, uses covert chan-
nels embedded in TCP [21] SYN packets.

2.1.3 Communicating Covert Destination Address
from Client to Anticensorship System

All of the anticensorship systems have their clients send
the covert destination’s address in an HTTP GET request
using HTTP over TLS (HTTPS). Despite their apparent
similarity, the systems differ in the way that they obtain
the cryptographic keys necessary to read the client’s en-
crypted message. Decoy Routing sidesteps the issue by
assuming that the client and the Decoy Routing prox-
ies already share a set of symmetric keys. Telex, Cir-
ripede, and Rebound all use the approach developed in
Telex, which uses information in the client’s tag to gen-
erate symmetric keys for the connection using a variant
to the Diffie-Hellman key exchange [10]. TapDance gets
the keys it needs by modifying the TLS handshake so
that TapDance can compute the secret key used in the
connection between the client and the decoy destination.

2.1.4 Relaying Information from the Covert Desti-
nation to the Client

Every anticensorship system except Rebound sends data
to the client from the covert destination using the same
approach. When the anticensorship system receives data
from the covert destination to send to the client, the an-
ticensorship system forges a packet from the decoy des-
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Figure 2: Comparison of features between Decoy Switching and existing anticensorship systems.

tination and includes the packet from the covert desti-
nation in the payload of the forged packet. In most of
these systems, the client and the anticensorship system
use a set of encryption keys that are different from the
keys used by the anticensorship system and the covert
destination, so in those cases, the anticensorship sys-
tem decrypts the data from the covert destination and re-
encrypts it using the key it shares with the client.

Rebound’s method for sending information from the
covert destination to the client is different because it does
not forge packets from the decoy destination. Instead,
Rebound rewrites packets sent from the client to the de-
coy destination such that the URL in the client’s request
contains data from the covert destination. Since the de-
coy destination is extremely unlikely to have a resource
specified by the rewritten URL, the decoy destination re-
sponds to the client with an HTTP 404 Not Found er-
ror, which includes the URL from Rebound with data
from the covert destination.

3 Threat Model and Computational As-
sumptions

3.1 Threat Model
Before diving into Decoy Switching’s implementation,
we establish the threat model considered when building
the system. Decoy Switching is designed with the as-
sumption that there is an ISP-level adversary that blocks
all traffic to and from a set of IP addresses. The adver-
sary has access to all traffic within its network, but the
adversary uses conventional routers that can only inspect
IP source and destination addresses, the IP protocol, and
the TCP (or UDP) source and destination ports for real-
time analysis. Furthermore, the adversary has no knowl-
edge of any internet traffic outside its network, and while
it is capable of dropping any packet within its network,
it is not able to make modifications to the packets it does

not drop.

3.2 Limitations of Existing Anticensorship
Systems

The common problem with existing anticensorship sys-
tems is that they are all implemented in software, which
limits their ability to scale with the demands of modern
networks. If network-level anticensorship systems can-
not operate at line rate, or the speed at which packets
are transmitted through network links, then ISPs will not
deploy them because they add too much latency to the
ISP’s network [27]. Therefore, the goal of this project is
to build an anticensorship system that can be deployed
without adding latency to ISPs’ networks.

To get a sense for what it means to operate at line rate
we look at network switches that are used in networks
where network-level anticensorship systems are meant to
be deployed. It is common for network switches to oper-
ate at a rate in the order of Terabits per second (Tbps).
For example, the Cisco Nexus 3016 (1.28 Tbps) [8],
the Juniper EX4600 (1.44 Tbps) [14], Arista Network’s
7050X Series (2.56 Tbps) [1], and Barefoot Network’s
Tofino (6.5 Tbps) [2] all operate in the Tbps range. It
should be noted that these switches are not the very best
switches that are on the market, like the Cisco Nexus
7700 Switch which boasts throughput up to 83 Tbps [7].
With this in mind, we use the Cisco Nexus 3016 switch
as a basis for our analysis going forward.

Assuming that a network-level anticensorship system
was deployed in place of a Cisco 3016 switch, the system
will have to keep up with the network demands at that
location. The Cisco 3016 has a maximum throughput of
1.28 Tbps, which according to the switch’s specification,
amounts to 950 million packets per second (Mpps) [8].
To make our performance estimate more conservative,
lets say that the switch receives packets at a rate of 500
Mpps, which is about half of the switch’s capacity. At
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500 Mpps, then the switch receives, on average, a new
packet every two nanoseconds.

Any system processing these packets needs to be able
to keep up with this rate, but systems implemented in
software execute machine instructions at the rate of the
CPU clock. Assuming that a CPU clock cycle takes half
a nanosecond (a 2 GHz CPU), then there would only be
time for the software system to execute four machine in-
structions per packet to keep up with incoming traffic,
and none of the anticensorship systems described in §2
can be implemented with anywhere near four machine
instructions.

4 Decoy Switching Overview

Decoy Switching is designed to provide network-level
anticensorship using programmable switch hardware. In
this section, we provide high-level information about the
system. §5 covers implementation details.

4.1 Anticensorship at Line Rate with Pro-
grammable Switch Hardware

Recently, companies have started building switches [2,
17, 18] that take advantage of advances in hardware de-
sign [4]. These switches allow users to compile custom
switching logic to switching hardware that operates at
line rate, and they can be programmed using a new lan-
guage called P4 [3, 19], which provides greater flexibil-
ity than predecessors like OpenFlow [16]. Despite P4’s
advantages over previous methods for programming net-
work hardware, P4 places significant constraints on the
range of supported operations due to limitations of the
underlying hardware architecture. The underlying hard-
ware also places severe constraints on the amount of state
available for processing packets.

These restrictions make it challenging to build systems
in this environment, but if it is possible to design a pro-
gram that operates within those constraints, then the pro-
gram can be compiled to hardware and the program gets
all the performance benefits associated with hardware.
Namely, operating at line rate.

Therefore, this project’s goal is building a network-
level anticensorship system that takes advantage of
emerging switch hardware to scale with the demands
of modern internet traffic. The main challenge of this
project is designing a system amenable to implementa-
tion in the impoverished programming environment that
accompanies programmable switch hardware. The re-
mainder of this paper is devoted to explaining and an-
alyzing Decoy Switching, the system designed to meet
this goal.

4.2 High-Level System Architecture

The Decoy Switching system is composed of many de-
coy switches, physical devices that behave like typi-
cal routers under normal circumstances, that are placed
throughout the internet. With this hardware in place,
clients can request to use Decoy Switching by opening a
TCP connection with a decoy destination and embedding
a secret tag in the connection’s opening SYN packet.
Once the client completes the TCP handshake with the
decoy destination, the client sends the name of the covert
destination that it wants to reach. If the client’s traffic
to the decoy destination goes through a decoy switch,
then the decoy switch will have seen the client’s tag and
it will take over the client’s connection with the decoy
destination as soon as it receives the name of the covert
destination from the client.

Once the decoy switch takes over, it does several
things at the same time. First, the decoy switch closes
the decoy destination’s half of the client/decoy destina-
tion connection and leaves the client’s half of the connec-
tion open. Second, the decoy switch opens a connection
with the covert destination, and third, the decoy switch
uses the client/decoy destination connection to tell the
client that it is using Decoy Switching.

Once the client receives the acknowledgment message
from the decoy switch, then any information that the
client sends on the connection to the decoy destination
gets intercepted by the decoy switch and rerouted to the
covert destination. Similarly, any information that the
decoy switch receives from the covert destination gets
forwarded to the client on the old client/decoy destina-
tion connection. If the client does not receive the ac-
knowledgment message from the decoy switch, then it
closes the connection with the decoy destination and re-
peats the process with a new decoy destination with the
hope that the new path will contain a decoy switch.

4.3 Design Decisions

Decoy Switching’s design is based on existing anticen-
sorship systems discussed in §2, but it does not exactly
correspond to any of them due to Decoy Switching’s
goal of performing as much processing as possible in
hardware. To provide a better understanding of De-
coy Switching’s design we explain the way that Decoy
Switching addresses the core problems of network-level
anticensorship as defined in §2.1. Figure 2 provides a
direct comparison of Decoy Switching against existing
anticensorship systems.

Required Network Hardware Decoy switches have
two parts enclosed within the same device. The first part
is a programmable switch that is connected to an ISP’s
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network and sends/receives packets to/from its neighbors
in the network. The second part of the Decoy Switch is
a local controller that is a computer that runs specialized
software to assist the hardware switch under certain cir-
cumstances. The functions performed by the hardware
switch and the local controller and the conditions under
which the controller is used will be explained in §5.

Requesting Decoy Switching using TCP SYN Sev-
eral existing anticensorship systems have clients request
access to their systems using fields in the TLS hand-
shake. This approach is problematic for Decoy Switch-
ing because it is difficult to efficiently detect the start
of the TLS handshake in hardware without tracking the
state of every connection that goes through the decoy
switch and predicting when the TLS ClientHello will be
sent. Tracking every connection in switch hardware is
not feasible due to limited available state. Therefore,
Decoy Switching encodes the client’s tag in the TCP
SYN packet, the very first packet in the client’s connec-
tion with the decoy destination. This means that the de-
coy switch knows whether a connection will use Decoy
Switching as soon as possible, so the decoy switch only
stores information that it will actually use.

Communicating the Covert Destination’s Address
Since the decoy switch’s programmable hardware does
not have enough memory to track the state of clients’
connections for long, Decoy Switching’s clients send
the covert destination’s address at the first opportunity,
which is the first packet after the TCP handshake com-
pletes. The client sends the covert destination’s address
in an HTTP GET request over TCP. We use TCP instead
of TLS because the adversary cannot read the packet pay-
load (§3.1).

Relaying information between the Covert Destination
and the Client Decoy Switching sends the client pack-
ets from the covert destination without alerting the adver-
sary by hijacking the client’s connection with the decoy
destination and reusing that connection. This was dis-
cussed in §4.2.

5 Implementation Specifics

In this section, we dive into specifics of Decoy Switch-
ing’s implementation. In doing so, we (1) outline the data
structures and functions that compose the decoy switch
and the switch’s local controller. Then, we (2) go through
a detailed trace of a typical use of Decoy Switching to
demonstrate how the functions discussed in (1) work to-
gether to perform Decoy Switching. Figure 3 provides

an overview of the main features in the switch and the
local controller.

5.1 Decoy Switch Hardware: Core Func-
tions

The hardware portion of the decoy switch is written in
P4 and contains a couple different types of data struc-
tures and performs several types of functions. Together
the functions and data structures perform most of the De-
coy Switching protocol, which makes Decoy Switching
faster than its predecessors (§6). In this section we re-
view the main data structures and functions that are per-
formed in the switch’s hardware.

5.1.1 Communicating with the Local Controller us-
ing Custom RPC

The switch hardware does most of the work in Decoy
Switching, but there are some tasks that require the local
controller. In those cases, the switch needs to be able to
use a remote procedure call (RPC) to specify the function
it wants the controller to run as well as the data it would
like the controller to operate on.

Decoy Switching uses a custom RPC to communicate
between the hardware switch and the local controller. In
this protocol, the switch encapsulates data it wants to
send to the local controller in a special RPC frame whose
header fields include a one-byte reason field and eight
bytes of padding. The reason field specifies the func-
tion that the switch wants executed and the padding is
used to differentiate the RPC frame from the encapsu-
lated packet.

After the switch encapsulates the packet within the
RPC frame, it sends it to the local controller by writ-
ing the packet to the interface that connects the switch to
the controller. That interface could be ethernet, virtual
ethernet, PCI bus, etc. When the controller completes
the requested function, it responds to the RPC by send-
ing the switch the same packet it received when the RPC
was initiated. The controller encapsulates the packet it
returns in an RPC frame with the reason field set to zero.
See §5.2.1 for more on the way the controller handles
RPCs.

5.1.2 Key-Value Storage

In P4 and the switch hardware environment, there are
two options for key-value storage: updating the switch’s
match-action tables to include a new entry or implement-
ing a hash table in hardware using a register file for state
and using a checksum for a hash function. The draw-
back to using a match-action table is that the switch can-
not modify its match-action tables by itself. Instead,
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Figure 3: An overview of decoy switch components and the relationship between the switch and the local controller.
When a packet (p) first enter the switch, it is parsed and decomposed into header fields that the switch can manipulate
(1). Then, the switch checks for p in its bloom filters (2) to determine whether p belongs to a connection that uses
Decoy Switching (§5.1.3 and §5.3.1). The switch processes p using a series of match-action tables (3), which associate
data and actions with header fields in p (§5.1.2). The actions (4) are used to make modifications to p and update
metadata related to p maintained within the switch. Before sending p, the deparser (5) rebuilds p’s headers to include
the switch’s modifications to the packet. Sometimes, the switch uses a custom RPC protocol (§5.1.1) to invoke a
function on the local controller (6). The local controller parses packets it receives from the switch (7), uses the
reason field in the RPC header to determine which function to execute (§5.2.1), and (8) performs the requested
function. When the local controller finishes executing an RPC, it notifies the switch (9).

the switch’s local controller updates the switch’s tables.
This means that the switch needs to send what ever data
it wants to add to a table to the local controller, which
greatly reduces the efficiency of the switch. On the other
hand, even though using a hardware register avoids a trip
to the controller, the problem with this approach is that
there are no hash functions available for indexing into
the register, and the checksums that can be used as hash
functions are likely to have many collisions [24].

It may be possible to combine the two approaches to
make a general key-value store that has the performance
benefit of the hardware table in most cases and can also
fall back on the match-action tables when there is a col-
lision, but since this method ultimately involves sending
data to the controller, we decided to stick to the built-in

match-action tables and accept the performance penalty.

5.1.3 Bloom Filters in Hardware

Sometimes we would like to store information to indicate
that the decoy switch has seen a particular packet. It is
possible to do this using the key-value storage options
discussed in the previous section, but to avoid updating
match action tables, we take advantage of the fact that we
simply want to indicate that a packet has been seen and
the fact that we do not have any additional information
to store. Therefore, instead of using a key-value store,
we implement a bloom filter [25] in hardware using two
hardware registers and two different hash functions.

Since programmable switch hardware does not sup-
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port arbitrary hash functions, there are not many choices
for implementing the two hashes. Most programmable
switches support some checksum calculations because
routers need to recompute packets’ checksums if the
router modifies a packet’s fields. Therefore, our bloom
filter implementation uses two checksum calculations:
16-bit cyclic redundancy check (CRC) checksum [26]
and the 16-bit IPv4 header checksum.

To insert an entry into the bloom filter, first compute
both checksums using the packet’s source and destina-
tion IP addresses, the packet’s IP protocol field, and the
packet’s source and destination TCP ports. Second, use
the CRC checksum to index into the first register and set
the bit at that index to one to indicate that the entry has
been seen. Then, use the IPv4 checksum to index into
the second register and set the bit at that index to one. To
later check whether a packet is part of a tagged connec-
tion we simply recompute the two checksums outlined
above and check whether the corresponding entries in the
two registers are set to one.

5.1.4 “Creating” TCP Control Packets

There are times when we would like the decoy switch
to generate TCP control packets to manipulate TCP con-
nections. For example, the decoy switch needs to close
the client’s connection to the decoy destination and open
a new TCP connection with the covert destination.

This may sound easy, but the process is not straight-
forward because it is not possible to construct arbitrary
packets in P4. It is only possible to manipulate exist-
ing packets as the switch receives them. Conveniently,
it is possible to change any of the static fields that the
switch can parse and all the fields in TCP control packets
are parsable and have static length. The switch can also
copy and reprocess packets. By combining these obser-
vations, it is possible to “create” any TCP control packet
from any packet that goes through the switch by copying
the packet, processing the original packet as normal, and
stripping all unnecessary data from the copy and rewrit-
ing the copy’s TCP and IP fields to turn it into the desired
TCP control packet.

5.2 Decoy Switch Local Controller: Core
Functions

The local controller runs a Python program that performs
the parts of Decoy Switching that cannot be implemented
efficiently in hardware. In this section, we look at com-
mon methods that the controller uses to execute the func-
tions it supports. We discuss the actual functions that the
controller performs for the switch in §5.3.

5.2.1 Receiving Data from the Switch and the Other
Side of the RPC

The controller receives data from the switch by captur-
ing packets on the interface that connects it to the switch,
and it sends data to the switch by writing data to the same
port. The controller uses Scapy [20] to capture and send
packets. When the controller receives a packet, it parses
the first nine bytes to see if the packet uses the RPC
format specified in §5.1.1. Packets that do not use the
proper RPC format are ignored, but those that are cor-
rectly formatted are stripped of the encapsulating RPC
header, parsed using Scapy, and sent to the appropriate
function. The controller responds to RPCs by sending
the packet back to the switch with a new RPC header en-
capsulating the packet in which the reason field is set to
zero.

5.2.2 Updating Match-Action Tables

Programmable switches typically expose an interface for
updating their match-action tables. The virtual switch
used to prototype the Decoy Switching system exposed
a command-line interface (CLI) for manipulating match-
action tables, so the controller uses this CLI to add en-
tries to the switch’s match-action tables.

5.3 Exploring the Implementation
Through a Typical Interaction

It is time to dive into implementation-specific details by
doing a step-by-step trace through a typical use of Decoy
Switching. The primary stages of Decoy Switching are
(1) tag detection and connection tracking, (2) parsing the
covert destination and hijacking the client’s connection
with the decoy destination, (3) opening a connection with
the covert destination, and (4) routing packets between
the client and the covert destination. Figure 4 contains
an overview of the interactions between the client, decoy
switch, decoy destination, and the covert destination in
typical use of the Decoy Switching system.

5.3.1 Efficient Tag Detection and Connection Track-
ing using Bloom Filters

When the client wants to use the Decoy Switching sys-
tem, it needs make a request to a decoy destination and
include a secret tag in the SYN packet that it sends to the
decoy destination. The tag needs to be easily computable
by the decoy switch and difficult for the adversary to de-
tect. Since the adversary cannot read the TCP sequence
number (§3.1), we use the initial sequence number (ISN)
to store a 32-bit tag. The tag consists of the 32-bit CRC
checksum of the source, destination, and protocol fields
in the IP header as well as the source port, destination
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Figure 4: Complete request diagram for a typical use of
Decoy Switching. The client initiates a connection with
the decoy destination, and once the decoy switch gets
the address of the covert destination from the client, the
switch closes the connection with the decoy destination
and connects to the covert destination on the client’s be-
half. The adversary thinks that the client is talking to the
decoy destination the whole time. The local controller
only receives packets from the decoy switch when there
is a solid line in the diagram.

port, and window size fields in the TCP header. This
method has the advantage of being computable in hard-
ware and appearing random to observers.

Since the tag is in SYN packets, the switch computes
what the tag for every SYN packet it sees and com-
pares the result to the packet’s sequence number. If the
packet’s sequence number is equal to the tag computed
by the switch, then the switch needs to mark the connec-
tion so it can take appropriate action for future packets.
The switch uses a bloom filter as described in §5.1.3 to
record that a tagged SYN packet has been seen for this
connection.

After detecting the tag and marking the connection us-
ing the bloom filter, the switch forwards the packet to the
destination specified in the packet (this is the decoy des-
tination). We now discuss how the switch keeps track of
the state of the client’s connection to the decoy destina-
tion.

Once the switch records that a client wants to use De-
coy Switching, the switch needs to get the name of the
covert destination that the client wants to connect to. As
discussed in §4.3, the client sends the name of the covert
destination in the first packet after the client completes
the TCP handshake with the decoy destination. There-
fore, the decoy switch needs to track the state of the

client’s connection with the decoy destination so it can
detect the end of the TCP handshake.

In a normal TCP handshake, the client sends a SYN
to the destination, the destination responds with a SYN-
ACK back to the client, and then, the client sends an
ACK to the destination to complete the handshake. At
this point, the decoy switch has already seen the client’s
SYN, so it assumes that the next ACK the client sends to
the decoy destination is the ACK that completes the TCP
handshake.

We are again faced with the question of how the de-
coy switch should record whether an event has occurred.
Here, the event is whether the decoy switch has seen an
ACK from a client who previously sent a tagged SYN.
To solve this problem, we introduce a second bloom fil-
ter that is updated when the decoy switch sees an ACK
from a client in a tagged connection.

Conceptually the logic for tracking the handshake
works as follows:

1. For every packet, check whether it is present in the
SYN bloom filter. If it is not present, it is a nor-
mal packet and there is nothing to do beyond regular
routing.

2. If the packet is present in the SYN bloom filter,
check whether the packet is present in the ACK
bloom filter. If the packet is also in the ACK bloom
filter, then it is safe to conclude that the TCP hand-
shake between the client and the decoy destination
is complete.

3. If the current packet is an ACK and it is not present
in the ACK bloom filter then this packet must be
the ACK that concludes the TCP handshake, so the
switch updates the ACK bloom filter and forwards
the packet on to the decoy destination.

Once the TCP handshake is complete, the next packet
sent by the client should contain the address of the covert
destination. At that point, the switch has more work to
do to perform Decoy Switching. That work is outlined in
the next section.

5.3.2 Parsing Covert Destination and Connection
Hijacking

As mentioned in §4.3, the client sends the name of covert
destination it wants to access as an absolute URI in the
request line of an HTTP GET request. When the client
sends the covert destination to the decoy switch, it sends
the covert destination’s domain name rather than its IP
address because the client cannot look up the covert des-
tination’s IP address without revealing its intention to ac-
cess the address to the adversary. When the decoy switch
receives the packet with the covert destination from the
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client, it needs to (1) parse the covert destination, (2) look
up the covert destination’s IP address, (3) save the map-
ping between the client’s address, the client’s decoy des-
tination, and the client’s covert destination, (4) close the
connection to the decoy destination, and (5) open a TCP
connection to the covert destination before (6) respond-
ing to the client. In this section we discuss the imple-
mentation of steps 1-4. Steps 5 and 6 are addressed in
§5.3.3.

In considering 1, parsing the covert destination from
the client’s request, we must consider the parsing lim-
itations of the switch hardware. While it is possible
to parse user-defined packet headers in the switch hard-
ware, the headers must be of fixed length. Unfortunately,
this means that the covert destination cannot be parsed in
hardware because the length of the covert destination’s
domain name can vary. Therefore, when the switch re-
ceives the covert destination from the client, it needs to
have the local controller parse the name of the covert
destination. We will cover the role of the controller in
more detail later in this section. For now, we continue to
review the aspects of connection hijacking that are per-
formed in the switch.

Moving on to 2, looking up the covert destination’s IP
address, it is not possible to perform a DNS lookup in the
switch hardware for the same reason that it is not possi-
ble to parse the name of the covert destination: variable
length fields. In DNS, the variable length comes from the
NAME field in the DNS resource record. Fortunately,
the switch already needs to send the packet to the con-
troller to parse the name of the covert destination, so the
controller can look up the covert destination’s IP address
while it has the packet to process.

We now consider how to accomplish 3, saving the
covert destination and other necessary information for
rerouting the client’s traffic so it goes to the covert desti-
nation instead. Ideally, we would like to have the switch
use a packet from the client addressed to the decoy des-
tination to look up the address of the covert destination.
This is exactly what the switch’s match-action tables are
meant to do. Normally, there would be a penalty for
adding an entry to the switch’s match action table, but
there is no extra penalty in this case because the switch
already needs to send this packet to the controller.

At this point, we have outlined three things that
the controller needs to do: parsing the covert desti-
nation, looking up the covert IP address, and updat-
ing the switch’s match-action tables. These three tasks
are encapsulated in a controller function that can be
called with a single RPC. To implement this function,
the controller uses Scapy to parse the packet head-
ers and isolate the packet payload, which should be
an HTTP request line that looks something like GET

http://www.example.com:80 HTTP/1.1, the URL

can be parsed using Python string functions as well as the
standard Python URL parsing library, urlparse [23].
Once the controller isolates the covert destination’s do-
main name, it looks up the covert IP address using the
Python socket library [22].

Now that the controller has the covert destination’s IP
address, it updates the appropriate match-action table in
the switch with two new entries. One entry is keyed on
the IP addresses and TCP ports of the client and the de-
coy destination, and the other is keys on the IP addresses
and TCP ports of the decoy switch and the covert destina-
tion. These keys are used to determine whether a packet
is coming from the client to the covert destination or if
a packet is from the covert destination to the client. For
more on the way these two entries are used, see the sec-
tion on typical forwarding (§5.3.4). Now that we have
covered the way that the switch and the controller work
together to accomplish the first three tasks outlined at the
start of this section, we finally discuss part 4, closing the
connection to the decoy destination.

Closing a TCP connection means sending an RST
packet to one of the participants. Here, we want to send
an RST packet to the decoy destination so the decoy des-
tination stops using its connection with the client. The
switch makes a copy of the next packet it receives and
applies the method in §5.1.4 to generate the RST packet
for the decoy destination. The P4 code for this operation
is available in figure ??.

5.3.3 Performing TCP Handshake with TCP Op-
tions Approximation

At this point, the connection with the decoy destination
has been closed and the decoy switch knows the IP ad-
dress of the covert destination, so it is time to open a TCP
connection to the covert destination. To begin, the decoy
switch has to send a SYN packet to the covert destination
to initiate the TCP handshake. In principle, it is possible
to make a SYN packet to send to the covert destination
using the method from §5.1.4, but the problem with this
approach is that some hosts do not respond to SYN pack-
ets if they do not contain the correct TCP options, which
are things like selective acknowledgments and window
segment size that are used to improve TCP performance.
It is not clear how to parse TCP options using P4 and
programmable switch hardware because the TCP options
may form a loop in the P4 parse graph, which leads to
undefined behavior. One solution is to enforce a strict
ordering to the TCP options as in [12], but this solution
depends on the client and the covert destination support-
ing these options and obeying this ordering, which seems
unlikely to happen.

The TCP option fields lead to deeper problems for De-
coy Switching beyond parsing in P4. Since TCP op-

9



tions are used for the duration of a TCP connection, the
connection that the decoy switch makes with the covert
destination must either use the same TCP options as the
client/decoy destination connection or the decoy switch
must be able to keep track of the TCP options used in the
client/decoy destination connection as well as the TCP
options used in the switch/covert destination connection
and be able to map between the two. The mapping ap-
proach becomes complicated quickly due to the window
scale and timestamp options, which are used to deter-
mine how much data the TCP endpoint can receive and
whether sequence number overflow has occurred, respec-
tively.

Given that remapping TCP options is complicated and
requires a lot of per-connection state on the switch, it
seems like getting the covert destination to use the same
TCP options as the client/decoy destination connection is
the way to go, but this approach will not work in general
because TCP options are optional. That is, the covert
destination may not support some of the options used in
the client/decoy destination connection.

For now, decoy switching addresses these issues by
approximating the correct TCP options using the as-
sumption that all internet hosts respond to SYN packet
TCP options in the same way. When the decoy switch
receives a tagged SYN packet from the client, it makes a
copy of the packet, processes the original packet as de-
scribed in §5.3.1, and sends the copy to the local con-
troller in an RPC. When the controller gets the SYN
packet, it saves the client’s TCP options. Later, when
the client sends the covert destination’s address to the
decoy switch and the switch sends the packet to the lo-
cal controller for parsing (§5.3.2), the controller uses the
client’s original TCP options to construct a SYN packet
for the covert destination. The SYN packet’s source IP
address is the switch’s address so the covert destination’s
response comes back to the switch. The controller sends
the new SYN packet back to the switch, which then for-
wards the packet to the covert destination to initiate the
TCP handshake.

If all goes well and the covert destination responds to
the SYN packet with a SYN-ACK packet, the switch
needs to respond with an ACK to complete the TCP
handshake. To do so, the switch converts the SYN-ACK
packet into an ACK packet for the covert destination us-
ing the method outlined in §5.1.4 and sends the new ACK
back to the covert destination.

The covert destination’s SYN-ACK contains the initial
sequence number that the covert destination will use as a
base for all future packets it sends. The switch needs to
store the new sequence number so the switch can rewrite
sequence numbers from the covert destination so they
match the sequence numbers from the decoy destination
which the client expects to see. The switch handles this

at the same time as it makes the ACK for the covert des-
tination by making a copy of the SYN-ACK when it first
arrives and by sending the SYN-ACK to the local con-
troller in an RPC so the controller can update the switch’s
match-action tables.

When the controller receives the SYN-ACK packet
from the switch, it (1) computes the difference be-
tween the SYN-ACK’s sequence (seq) number and the
acknowledgment (ack) number in the last packet the
client sent to the decoy destination. The controller also
(2) computes the difference between the SYN-ACK’s
ack number and the seq number in the last packet the
client sent. The first difference is used to update the
covert/decoy table, which is used to rewrite seq
numbers in packets from the covert destination so they
look like they came from the decoy destination. The
covert/decoy table is also used to rewrite ack num-
bers in packets from the client so they match the ack
number the covert destination expects. The second dif-
ference is used updated the client/switch table,
which does the same things as the covert/decoy

table except it is applied to packets going in the op-
posite direction.

5.3.4 Typical Forwarding and Minimizing Software
Processing

At this point, there is a connection between the client and
the decoy switch and a connection between the decoy
switch and the covert destination, so the decoy switch
is ready to perform typical forwarding between the client
and the covert destination. The decoy switch needs to tell
the client that it can start sending data to the covert desti-
nation. The switch repurposes the SYN-ACK packet that
it gets back from the controller to make an ACK packet
for the client using the method from §5.1.4. It should be
noted that this packet looks benign to the adversary be-
cause the switch uses the client/switch table and
covert/decoy table to set the new ACK packet’s seq
and ack numbers so it looks like the packet is a TCP
keepalive packet from the decoy destination.

As soon as the client receives the ACK from the de-
coy switch, the client assumes that any data it sends
over its connection to the decoy destination will reach
the covert destination. To provide this functionality, the
decoy switch uses the match-action table mentioned in
§5.3.2 that maps client/decoy destination addresses to the
covert destination and vice versa. We call this table the
mapping table. The decoy switch uses the mapping

table to perform typical forwarding as follows:

1. Every time the decoy switch receives a packet, it
consults the bloom filters from §5.3.1 to determine
whether the packet is part of a connection that uses
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Decoy Switching and whether the packet has com-
pleted the TCP handshake with the decoy destina-
tion.

2. If both of the previous conditions are met, then the
decoy switch looks for the packet in the mapping

table. If there is no entry for the packet, then that
connection is not ready for typical forwarding, but
if the packet is present, then the table returns new
IP source and destination addresses and new TCP
source and destination ports for the packet. The new
addresses and ports are saved for later.

3. The switch looks up the seq and ack number differ-
ences for the connection from the client/switch
and covert/decoy tables, and updates the packet’s
seq and ack numbers as in figure ??.

4. Once the seq and ack numbers are set, the switch
updates the packet’s TCP ports and IP addresses
with the results from the mapping table. This
cannot be done earlier because the packet’s origi-
nal addresses and ports are needed to index into the
client/switch and covert/decoy tables.

Now, the packet can be processed as a normal packet and
forwarded to the client or the covert destination. Note
that none of these steps use the local controller, so we
get all the benefits of operating in hardware, which is
important for the evaluation in the next section.

6 Evaluation

In §3.2, we explained that a problem with existing anti-
censorship systems is that they spend too much time pro-
cessing in software, which prevents them from scaling
effectively. In some systems [15, 28], every packet that
goes through the system needs to be processed in soft-
ware regardless of whether the packets are part of a con-
nection using the anticensorship system. Cirripede [13]
reduces the number of packets that need to be processed
in software because it only uses software to process SYN
packets and packets that actively use Cirripede. In this
section, we consider Decoy Switching’s performance im-
provement relative to Cirripede, since Cirripede spends
less time processing in software than any other network-
level anticensorship systems.

We begin by analyzing the number of packets that Cir-
ripede must process every second. In §3.2, we estab-
lished that network devices need to process about 500
million packets per second (Mpps). Using the April 2016
data from CAIDA [5], we calculate that the average in-
ternet connection is 37 packets long. Assuming that all
of these flows use TCP, then this means that, on average,
one in every 37 packets is a SYN packet that Cirripede

must process. Therefore, Cirripede processes about 10
Mpps in software.

In addition to the 10 Mpps that Cirripede must pro-
cess to detect connections from clients, Cirripede also
processes every packet in every flow that uses the sys-
tem. Assuming that one packet in every ten thousand is
part of a flow using Cirripede, then there are about 50
Kpps that Cirripede processes, which means that in total,
Cirripede must process about 10.05 Mpps.

In contrast, Decoy Switching needs to use software
processing for only three packets in every flow that ac-
tually uses Decoy Switching (first SYN packet to save
TCP options, packet containing covert destination, and
SYN-ACK from covert destination). If we assume that
decoy switches see 500 Mpps and that 0.01% of flows
use Decoy Switching, as we did for Cirripede, then there
are about 3 Kpps that Decoy Switching needs to process
in software (three packets for one out of every ten thou-
sand new TCP flows). This means that Decoy Switching
provides more than 3,000 times the performance of ex-
isting network-level anticensorship techniques. Figure 5
shows the performance benefits of using Decoy Switch-
ing over Cirripede as we vary our assumption about the
percent of internet traffic that uses a network-level anti-
censorship system.

Figure 5: Plot of the relationship between the percent
of internet traffic that uses Cirripede/Decoy Switching to
the performance benefit of using Decoy Switching over
Cirripede. We see that Decoy Switching provides less
of an improvement over Cirripede as more traffic uses
Cirripede/Decoy Switching.

While these calculations are not exact, they do pro-
vide an order of magnitude approximation of the perfor-
mance benefits that Decoy Switching provides over ex-
isting network-level anticensorship solutions, and these
results suggest that Decoy Switching has the potential to
scale in ways that existing software solutions cannot.

7 Conclusion

Internet service providers and repressive governments
frequently censor internet content, which limits personal
expression and access to information. To combat this
problem, researchers have developed censorship circum-
vention techniques that make anticensorship a network
function. That is, the proposed systems are features of
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the internet in a way that is impossible to for censors to
control without blocking the entire internet. The anticen-
sorship systems that have been proposed are promising
but they are unlikely to be deployed in practice because
there is too much internet traffic for them to process.

To address the deployment issues of existing anti-
censorship systems, we created Decoy Switching, a
network-level anticensorship system that can scale with
modern internet traffic, using a novel application of pro-
grammable switch hardware. This paper reviewed our
implementation of Decoy Switching and showed that
Decoy Switching has the potential to be thousands of
times faster than existing network-level anticensorship
systems.

Despite Decoy Switching’s performance potential,
this paper is only an initial investigation into pro-
grammable switch hardware’s capacity for building cen-
sorship circumvention systems, and there is more work
to do before Decoy Switching is ready for deployment.
We hope that Decoy Switching is a useful basis for future
work in this area.
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