
Waze: Congestion-Aware Load Balancing
at the Virtual Edge for Asymmetric Topologies

Naga Katta
Salesforce.com

Aditi Ghag, Mukesh Hira
VMware

Isaac Keslassy
Technion, VMware

Aran Bergman
Technion

Changhoon Kim
Barefoot Networks

Jennifer Rexford
Princeton University

ABSTRACT
Most datacenters still use Equal Cost Multi-Path (ECMP),
which performs congestion-oblivious hashing of flows over
multiple paths, leading to an uneven distribution of traffic.
Alternatives to ECMP come with deployment challenges, as
they require either changing the tenant VM network stacks
(e.g., MPTCP) or replacing all of the switches (e.g., CONGA).
We argue that the hypervisor provides a unique point for im-
plementing load-balancing algorithms that are easy to deploy,
while still reacting quickly to congestion. We propose Waze, a
scalable load-balancer that (i) runs entirely in the hypervisor,
requiring no modifications to tenant VM networking stacks or
physical switches and (ii) works on any topology and adapts
quickly to topology changes and traffic shifts. Waze relies on
standard ECMP in physical switches, discovers paths using
a novel traceroute mechanism, uses software-based flowlet-
switching, and continuously learns congestion (or path utiliza-
tion) state using standard switch features. It then manipulates
packet-header fields in the hypervisor switch to direct traf-
fic over less congested paths. Waze achieves 1.5 to 7 times
smaller flow-completion times at 70% network load than other
load-balancing algorithms that work with existing hardware.
Waze also captures some 80% of the performance gain of
best-of-breed hardware-based load-balancing algorithms like
CONGA that require new equipment.

1 INTRODUCTION
The growth of cloud computing over recent years has led to
the deployment of large datacenter networks based on multi-
rooted leaf-spine or fat-tree topologies. These networks rely
on multiple paths between pairs of endpoints to provide a
large bisection bandwidth, and are able to handle a large
number of end-points together with high switching capaci-
ties. Moreover, they have stringent performance requirements
from a diverse set of applications with conflicting needs. For
example, streaming and file transfer applications require high
throughput, whereas applications that rely on the composition
of several subroutines, such as map-reduce paradigms and/or
microservice architectures, require low latency, not only in
the average case but also in the 95th percentile and beyond.

An efficient distribution of traffic over multiple paths be-
tween endpoints is key to achieving good network perfor-
mance in datacenter environments. However, a vast majority
of datacenters continue to use Equal Cost Multi-Path (ECMP),
which performs static hashing of flows to paths and is known
to provide uneven distribution and poor performance. As
summarized in Figure 1, a number of alternatives have been
proposed to address the shortcomings of ECMP. These come
with significant deployment challenges and limitations that
largely prevent their adoption. Centralized schemes are too
slow for the volatile traffic patterns in datacenters. Host-based
methods such as MPTCP [25] require changes to kernel net-
work stack in guest virtual machines, and hence, are challeng-
ing to deploy because operators of multi-tenant datacenters
often do not control the end-host stack. In-network per-hop
load-balancing algorithms such as CONGA [2] require re-
placing every network switch with one that implements a new
state-propagation and load-balancing algorithm.

It behooves us to ask the question: “Can network traffic be
efficiently load-balanced over multiple paths in a dynamically
varying network topology, without changing either the end-
host transport layer or the standard off-the-shelf ECMP-based
network switches?". We believe that the virtual switch in the
hypervisor provides a unique opportunity to achieve this goal.
The inefficiencies of uneven traffic distribution on equal cost
paths can be addressed to a large extent by dividing long-lived
flows into small units, and routing these units independently
instead of routing the entire long-lived flow on the same path.
Indeed, this has been done in Presto [10], which divides a flow
into fixed size flowcells, routes the flowcells independently,
and re-assembles out-of-order flowcells back in order before
delivering them to the guest VM. However, Presto uses a
non-standard Multiple Spanning Trees based approach to
routing traffic in the network fabric, and requires centralized
computation of path weights to accommodate asymmetric
network topologies. Such a centralized computation does not
react fast enough to a dynamically varying topology. Section 8
describes in more detail important drawbacks of prior work on
network load balancing. Being able to optimally route flowlets
on arbitrary network topologies while continuously adapting
to (i) rapidly varying congestion state and (ii) changes in

1

State-unaware
or based on
Local State

Centralized Distributed

Host-based

MPTCP
Ø VM stack not controlled

by the network operator
Ø Increases Incast

At each network hop
(Requires complete network replacement)

Hedera,	B4,	SWAN,	
FastPass
Ø Slow	to	react

Flare, LocalFlow, DRILL
Ø Better performance than

ECMP
Ø Far from optimal load

balancing due to lack of
downstream congestion
information

Based on
Global State

CONGA
Ø Near-optimal

performance
Ø Limited to 2-tier

topologies
Ø Propagation of global

state does not scale to
large multi-tier networks

Based on
Summarized State

HULA
Ø Near-optimal performance
Ø Works in any topology
Ø Scalable to large multi-tier

topologies by virtue of
state summarization

At Network Edge in Server/Hypervisor
(Works with existing network switches)

State-unaware State-aware

Presto
Ø Uses Multiple

Spanning Trees, not a
standard configuration
in Datacenter networks

Ø Poor performance with
asymmetry

Ø Requires offline weight
configuration to handle
asymmetry

Waze
Ø Uses Standard ECMP

in the network switches
Ø Implemented entirely

in software in
Hypervisor vSwitch

Ø Simply manipulates
header fields to
influence path taken

Ø Reacts quickly to
congestion and
topology changes in a
distributed manner

At Network Edge
in Top of Rack Switch

LetFlow
Ø Simple flowlet-

switching with each
flowlet hashed
independently to a
next-hop

Ø Unaware of
congestion state of
paths

State-unaware

Figure 1: Network Load Balancing Algorithms

the topology due to link failures and/or background traffic,
presents additional challenges.

Waze. We present Waze, an adaptive and scalable hypervisor-
based load-balancing solution implemented entirely in the
virtual switches of hypervisors. Waze uses standard ECMP in
the physical network, and can be deployed in any environment
regardless of the guest VM TCP/IP stack and the underlying
physical infrastructure and network topology.

Waze is based on the key observation that since ECMP
relies on static hashing, the virtual switch at the source hyper-
visor can change the packet header to influence the path that
each packet takes in the ECMP-based physical network. Waze
then attempts to pick paths that avoid congestion. Specifically,
it relies on three important components:
(1) Indirect source Routing. Waze uses the virtual switch
in the hypervisor to control packet routing. We assume at
first that the datacenter is based on a network overlay [9]
(e.g., STT, VxLAN, NV-GRE, GENEVE), and later discuss
non-overlay environments. In such an ECMP-based overlay
network, the source hypervisor does not know in advance how
a new packet header will impact the ECMP routing decided
by the existing network switches. However, by sending probes
with varying source ports in the probe encapsulation headers,
the source hypervisor can discover a subset of source ports
that lead to distinct paths. Then, for each outgoing packet, the
hypervisor can modify the encapsulation header by setting
the appropriate source port, and thereby effectively influence
the path taken by the packet.
(2) Flowlet Switching. The second component of Waze is its
introduction of software-based flowlet-switching [15]. Since
Waze needs to be able to load-balance ongoing flows while
avoiding out-of-order packets, it divides these flows into
flowlets, i.e., tiny groups of packets in a flow separated by a
sufficient idle gap. It can then independently pick a new path
for each new flowlet.

(3) Congestion-aware load-balancing. The last component of
Waze is an algorithm that reacts to both short-term conges-
tion, e.g., resulting from poor load-balancing, and long-term
network asymmetry, e.g., resulting from failures or from asym-
metrical workloads, by increasing the probability of picking
uncongested paths for new flowlets. Waze schedules new
flowlets on different paths by rotating through source ports in
a weighted round-robin fashion, while continuously adjusting
path weights in response to congestion.

In order to study the incremental gain from tracking con-
gestion accurately, we evaluate three algorithms in increasing
order of congestion-awareness of the algorithm.

First, we introduce Edge-Flowlet, a simple routing scheme
that only uses the first two components, without any
congestion-avoidance component: the source virtual switch
simply picks a new source port for each flowlet in a round-
robin manner, unaware of network path state. Interestingly,
we show that it still manages to indirectly take congestion into
account and outperform ECMP, mainly because congestion
tends to delay ACK clocking and increase the inter-packet
gap, thus leading to the creation of new flowlets that get
routed on different paths.

We then present two variants of Waze that differ in how they
learn about the real-time state of the network. The first variant,
denoted Waze-ECN, learns about the path congestion states
using Explicit Congestion Notification (ECN), and forwards
new flowlets on uncongested paths. The second variant, called
Waze-INT, learns about the exact path utilization using In-
band Network Telemetry (INT), a technology likely to be
supported by datacenter network switches in the near future,
and proactively routes new flowlets on the least utilized path.
Experiments. We have implemented Waze in the Open
vSwitch (OVS) datapath of Linux hypervisors in a VMware
NSX network virtualization deployment. We test Waze on a
two-tier leaf-spine testbed with multiple paths in presence and
absence of topology asymmetry caused by link failures. When

2

compared with schemes like ECMP and Presto [10] that work
with existing network hardware, Waze obtains 1.5x to 7x
smaller flow completion times at 70% network load, mainly
because these schemes do not take congestion and asym-
metry into account. An interesting result from our testbed
evaluation is that Edge-Flowlet alone helps achieve 4x better
performance than ECMP at high load.

In order to compare our schemes with more complex
hardware-based alternatives such as CONGA that we could
not deploy since it requires custom ASIC fabric, we also
run packet-level simulations in NS2. We show that our edge-
based schemes help improve upon ECMP in terms of average
and 99th-percentile flow completion time, and that their per-
formance gains get increasingly close to those of hardware-
based CONGA. Specifically, (i) Edge-Flowlet already cap-
tures some 40% of the performance gained by CONGA over
ECMP; (ii) Waze-ECN captures 80%; and (iii) Waze-INT
comes 95% close to CONGA’s performance. Overall, we
illustrate that there are a set of edge-based load-balancing
schemes that can be built in the end-host hypervisor and attain
strong load-balancing performance without the limitations of
existing schemes.

This paper makes the following novel contributions:
• We present a spectrum of variations of a novel network

load balancing algorithm, Waze, that works with off-the-
shelf network switches, requires no changes to tenant
VM network stack, and handles topology asymmetry.

• We present the design and implementation of Waze in
Open Virtual Switch, and provide an in-depth discussion
of its implementation challenges.

• We evaluate our Waze implementation against other
load balancing schemes in a testbed with a 2-tier leaf-
spine topology and 32 servers imitating client-server
RPC workloads. We show that Waze outperforms all
comparable alternatives by at least 2x in terms of aver-
age flow completion time (FCT) at high load.

• Finally, using packet-level simulations, we show that our
hypervisor-based load-balancing schemes capture most
of the improvements provided by the best hardware-
based schemes, while being immediately deployable
and not requiring complete network replacement.

2 HYPERVISOR-BASED LOAD
BALANCING

2.1 Design Goals
An ideal hypervisor-based load balancing solution should sat-
isfy the following goals to achieve optimal performance, yet
be simple to deploy.
Path discovery and indirect source routing: The source vir-
tual switch can indirectly influence the routes taken by the
packets when the network switches are based on a standard

ECMP. To do so, for each destination, it should first identify
a set of 5-tuple header values that the network switches will
map to distinct (ideally disjoint) paths using ECMP, and later
should appropriately set these 5-tuple values for each packet.
The mapping has to be discovered in any network topology,
with no knowledge of the ECMP hashing functions used by
the network switches. This mapping also has to be kept up-to-
date and updated after any network topology changes.
Granularity of routing decisions: In order to achieve opti-
mal load balancing, routing decisions have to be imposed at
the level of fine-grained flow chunks, without causing out-of-
order delivery at the receiving VM.
Network state awareness: The source hypervisor should
monitor the state of the identified paths (utilization, conges-
tion) at round-trip timescales using standard switch features,
and then make routing decisions based on a state that is as
real-time as possible.
Minimal packet processing overhead: Dataplane opera-
tions of keeping network state information up-to-date, identi-
fying flow segments that may be independently routed, mak-
ing state-aware routing decisions, and manipulating packet
header fields appropriately, should all be achieved with mini-
mal packet processing overhead.

2.2 Opportunities
The confluence of a number of recent trends in datacenter
networking makes it feasible to implement network load bal-
ancing entirely at the network edge without requiring any
changes to guest VMs or network switches, yet achieve good
load balancing performance.
Adoption of network overlays: Network overlays have been
recently widely adopted in multi-tenant datacenter networks
to enable provisioning of per-tenant virtual topologies on top
of a shared physical network topology, and achieve isolation
between these virtual topologies. In a network with network
overlays, the source virtual switch appends to each packet
an encapsulation header, which contains a new 5-tuple. This
"outer" 5-tuple is used by ECMP-based switches to route the
packet in the physical network. Since the source port in the
encapsulation header is essentially arbitrary, the virtual switch
gains the ability to influence the path of the packet.
Real-time network monitoring: An ideal load balancer
needs a way to monitor network state such as link utiliza-
tion and adapt to it at round-trip timescales. The emergence
of In-band Network Telemetry (INT)[18] provides the vir-
tual switch with an additional set of previously-unavailable
telemetry features that can be used to efficiently load-balance
from the edge.
Stateful packet processing in the virtual switch: An algo-
rithm that routes flowlets dynamically based on network state
at the start time of a flowlet needs to keep state so that all
packets of the flowlet are routed on the same path. Recent

3

advances in performance optimization of OVS make stateful
packet processing at line rate possible.

3 WAZE DESIGN
In this section, we describe the design of Waze, the first
virtualized, congestion-aware dataplane load-balancer for dat-
acenters that achieves the above design goals.

3.1 Path Discovery using Traceroute
In a network with overlays, the source hypervisor encapsu-
lates packets received from a VM using an overlay encapsula-
tion header. Our goal is to use standard off-the-shelf ECMP-
based network switches and influence the packet paths by
manipulating the 5-tuple fields in the encapsulation header,
since ECMP pre-dominantly determines the path by comput-
ing a hash on these fields.

We implement a traceroute mechanism in the source hy-
pervisor, so as to discover, for each destination, a set of
encapsulation-header transport protocol source ports that map
to distinct network paths. Specifically, for each destination,
the source hypervisor sends periodic probes with a random-
ized encapsulation-header transport protocol source port, so
that the probes travel on different paths using ECMP. The rest
of the 5-tuple is typically fixed: the source and destination IP
addresses are those of the source and destination hypervisors,
the transport protocol and its destination port number are typi-
cally dictated by the encapsulation protocol in use (depending
on the overlay protocol). Each path discovery probe consists
of multiple packets with the same transport protocol source
port but with the TTL incremented. This gives the list of IP
addresses of switch interfaces along that path. The result of
the probing is a per-destination set of encapsulation-header
transport-protocol source ports that map to distinct paths to
the destination. As an optimization, paths may be discovered
only to the subset of hypervisors that have active traffic being
forwarded to them from the source hypervisor. The path dis-
covery mechanism can work with any topologies with ECMP
based layer-3 routing.

Once we have mapped all these random source ports to
specific paths, we want Waze to select a set of k source ports
leading to k distinct (ideally disjoint) paths. To pick these k
paths, we use a heuristic whereby we greedily add the path
that shares the least number of links with paths already picked.

Probes are sent periodically to adapt to the changes and fail-
ures in the network topology. Probing is done on the order of
hundreds of milliseconds to limit the network bandwidth used
by probe traffic. Probes to different destination hypervisors
may be staggered over this interval. As a topology change
causes the number of ECMP-nexthops for a destination to
change at a switch hop, the same static hash function at this
hop will now map source ports differently. Thus, any change

in the network topology that affects even a single path to a
particular destination requires the entire mapping of source
ports to the destination to be rediscovered. As an optimization,
network state (path utilization, congestion state, etc.) learned
for a path may be maintained through such a transition, with
only the source port mapping to the path changing through
the transition.

Note that the concept of tracing the route of a particular
application by sending probes with specific transport-protocol
header fields is well understood, e.g., in the Paris traceroute
[4]. However, this has not been used before in the context
of discovering distinct equal-cost paths and load-balancing
network traffic over these paths.

3.2 Routing Flowlets
In order to evenly distribute flows over the mapped network
paths at a finer granularity, Waze divides each flow into
flowlets. Flowlets are bursts of packets in a flow that are
separated by a sufficient idle gap so that when they are routed
on distinct paths, the probability that that they are received
out of order at the receiver is very low. Flowlet splitting
is a well-known idea that has often been implemented in
physical switches (e.g., in FLARE [15] and in Cisco’s ACI
fabric [6]), but to the best of our knowledge not in virtual
switches. Flowlet time-gap, the inter-packet time gap between
subsequent packets of a flow that triggers the creation of a
new flowlet [15], is an important parameter. Based on previ-
ous work [2, 14], we recommend twice the network round
trip-time as the flowlet gap for effective performance. We
propose three schemes with varying path selection techniques
for distributing flowlets from the network edge in increasing
order of sophistication and performance gain.
Edge-Flowlet: We first consider a very simple routing
scheme wherein the source virtual switch simply picks a
new source port for each flowlet in a random manner, un-
aware of network path state. We refer to this simple scheme
as Edge-Flowlet. Note that in a flow, the inter-packet gap that
triggers a new flowlet can be due to two main reasons. First,
the application may simply not have something to send. Sec-
ond, and more importantly, the packets of the previous flowlet
may have adopted a congested path, and as a result the TCP
ACKs take time to come back and no new packets are sent
for a while. In such a case, the new flowlet is in fact a sign of
congestion. Thus, even though the source virtual switch is not
learning about network state, it is indirectly re-routing flows
experiencing congestion. Besides, breaking up large elephant
flows into flowlets also helps break persistent conflicts be-
tween elephant flows sharing a common bottleneck link. For
all these reasons, the Edge-Flowlet algorithm is expected to
perform better than flow-based load balancing using ECMP.
Waze-ECN: Next, we consider learning about congestion
along network paths using Explicit Congestion Notification

4

CONFIDENTIAL 11

Dst SPort Wt

H2 50001 0.25

H2 50002 0.25

H2 50003 0.25

H2 50004 0.25

Flowlet ID SPort

45 50001

234 50002

505 50003

818 50004

4. Return
packet carries

ECN for
forward path

Flowlet table

Path weight table

2. Switches
mark ECN on
data packets

Data

vSwitch vSwitchHypervisor	H1 Hypervisor	H2

1. Src vSwitch
detects and

forwards flowlets 3. Dst vSwitch
reflects ECN
back to Src

vSwitch5. Src vSwitch
adjusts path

weights

Dst SPort Wt

H2 50001 0.1

H2 50002 0.3

H2 50003 0.3

H2 50004 0.3

Flowlet ID SPort

45 50001

234 50002

505 50003

818 50004

Flowlet table

Path	weight	table

Dst SPort Wt

H2 50001 0.1

H2 50002 0.3

H2 50003 0.3

H2 50004 0.3

Figure 2: Waze-ECN congestion-aware routing.
(ECN), which has been a standard feature in network switches
for many years. ECN was primarily designed to indicate con-
gestion to the source transport stack and have it throttle back
in the event of congestion. A source indicates that it is ECN
capable by setting the ECN-Capable-Transport (ECT) bit in
the IP header. ECN-enabled network switches set Congestion-
Experienced (CE) bits in the IP header when a packet ex-
periences an egress queue length greater than a configured
threshold. The receiving transport stack relays ECN back to
the source transport stack, which throttles back in response
until the congestion clears.

Figure 2 illustrates how Waze-ECN exploits the ECN ca-
pability in network switches to learn about congestion on
specific paths and route flowlets along alternate uncongested
paths to the destination entirely in hypervisor virtual switch. It
consists of two distinct mechanisms: (a) detecting congestion
along a given path, and (b) reacting to congestion on this path
by favoring other paths for future new flowlets.
Detecting Congestion: The source virtual switch sets ECT
bits in the encapsulation IP header. The receiving hypervisor
intercepts ECN information and relays it back to the sending
hypervisor, indicating the source port mapped to the network
path that experienced congestion. Reserved bits in the encap-
sulation header of reverse traffic (towards the source) are used
to encode the source-port value that experienced congestion
in the forward direction. For instance, in the Stateless Trans-
port Tunneling (STT) protocol, the Context field in the STT
header may be used for this purpose.
Reacting to Congestion: Waze-ECN uses weighted round
robin (WRR) to load balance flowlets on paths. The weights
associated with the distinct paths are continuously adapted
based on the congestion feedback obtained from ECN mes-
sages. Every time ECN is seen on a certain path, the weight
of that path is reduced by some predefined proportion, e.g., by
a third. The weight remainder is then spread equally across
all the other uncongested paths. Once the weights are read-
justed, the WRR simply rotates through the ports (for each
new flowlet) according to the new set of weights. As long
as there is at least one uncongested path to the destination,
the source virtual switch masks the ECN marking from the

sending VM. Only when all network paths to a destination
are sensed to be congested, it relays ECN to the sending VM,
triggering it to throttle back.

As an optimization, instead of relaying the ECN informa-
tion on every packet back to the sender, the receiver could
relay ECN only once every few RTTs for any given path. The
effect of this is that there will be fewer ECNs being relayed
and some may be missed entirely. However, this leads to a
more calibrated response to the ECN bits (as opposed to an
unnecessarily aggressive manipulation of path weights), and
also amortizes the cost (number of software cycles spent) for
processing each packet in the dataplane.

Waze-ECN uses two important parameters:
ECN threshold: This is the threshold in terms of queue length
on a switch-port beyond which switches start marking the
packets with ECN. Similarly to the recommendations by
DCTCP [3], we use a threshold of 20 MTU-sized packets
so that the load balancer keeps the queues low, and at the
same time allows room for TSO-based bursts at high band-
width.
ECN relay frequency: This is the frequency at which the
receiver in a flow relays congestion marking to the associated
sender in that flow. The receiver should send feedback
more frequently than the frequency at which load balancing
decisions are being made, as recommended in TexCP [14].
We use half the RTT as the ECN relay frequency in our design.

Waze-INT: Finally, we consider a variation of Waze based
on proactively monitoring the exact utilization of each path,
and routing flowlets along the least-utilized path. We want to
prevent congestion from occurring along any path, instead of
reacting after congestion has occurred on specific paths.

In-band Network Telemetry (INT) [18], a technology likely
to be available in datacenter network switches in the near
future, enables network endpoints to embed instructions in
packets, requesting every network hop to insert network state
in packets as they traverse the network, potentially at line-rate.
As the packets arrive at the destination endpoint, the endpoint
has access to the state at each link along the hop that is as
close to real-time as possible.

In Waze-INT, the source virtual switch requests each net-
work element to insert egress link utilization in packet headers.
When the packet is received at the destination hypervisor, it
relays back the maximum link utilization along the path to the
source virtual switch together with the encapsulation header
source port in the packet. As in Waze-ECN, it uses reserved
bits in the overlay encapsulation header, the difference being
that in this case, real-time path utilization is relayed back
instead of binary congestion state. The source virtual switch
proactively routes new flowlets on the least utilized path. Note
that while this requires a new capability at each switch and
hence a physical network upgrade, this approach can be used

5

Figure 3: Encapsulation with STT headers
when INT becomes a standard feature in datacenter network
switches. Load balancing decisions are still made in soft-
ware in the hypervisor virtual switch. This is in contrast to
algorithms such as CONGA, which implement the additional
implementation of proprietary state propagation and load bal-
ancing algorithms at each hop, thus requiring all switches
to have the same proprietary implementation from the same
vendor.

4 IMPLEMENTATION
We have implemented Edge-Flowlet and Waze-ECN in the
Open vSwitch (OVS, version 2.4.0.0) kernel datapath. The
first component for Waze consists of a user-space traceroute
daemon that periodically sends probes (with rotating source
ports) to various destination hypervisors. The daemon collects
the path traces and distills a set of disjoint paths and the
corresponding source ports to be used for data traffic.
Indirect source routing using STT encapsulation. As indi-
cated earlier, Waze exploits tunnel encapsulation, typically
used in network virtualization, to isolate Waze’s mechanisms
from affecting the actual tenant traffic. Open vSwitch sup-
ports the Stateless Transport Tunneling (STT) protocol (see
Figure 3), which we use for encapsulating the tenant VM
traffic before sending it onto the physical underlay. Currently,
the STT protocol encapsulates each TCP segment (with a
maximum size of 64KB) received from a VM with an outer
TCP header whose TCP source port is set to the hash of the in-
ner TCP packet header fields (apart from other fields that are
fixed for each source-destination hypervisor pair). Instead, the
Waze implementation in the OVS kernel datapath picks one
of the encapsulation TCP source ports that were previously
identified by the traceroute daemon in a congestion-aware
manner, as described in Section 3. Subsequently, this segment
is sent to the NIC for segmentation offload, breaking the seg-
ment into MTU-sized packets before sending them onto the
physical network.
Communicating Waze metadata amongst hypervisors.
When a packet is marked with the ECN bit by switches in the
network and reaches the destination, the receiver has to relay
this information back to the sender. However, we cannot rely
on the receiver VM TCP stack to do this, since our objective
is to keep the VM stack unmodified and hence unaware of
any ECN marking in the underlay. Instead, the receiver hyper-
visor intercepts the ECN state and feeds it back to the sender

using some reserved bits in the STT header of the return pack-
ets, as previously shown in Figure 2. A hypervisor encodes
the ECN information in bits borrowed from the STT context
(shown in Figure 3) — the encapsulation header source port
it received and the ecnSet bit indicating whether or not the
received packet experienced congestion. Note that this infor-
mation cannot be relayed back to the sender using the typical
ECN echo mechanism, because the receiver cannot use the
sender’s source port to be its outer destination port (which is
set to fixed STT port). Hence, Waze uses a separate header
space (the STT context bits) to encode this information.
Stateful packet processing. An important aspect of imple-
menting Waze is that of maintaining network state in the
hypervisor based on Waze’s metadata about congestion on
various paths. In a multi-core multi-threaded environment
(for processing multiple packets in parallel), this has to be
done using efficient locking mechanisms such as Read-Copy-
Update (RCU) [19] locks to minimize blocking of threads
when updating state—a mechanism already used for updating
per-connection state in the Open vSwitch today. We use RCU
hash lists supported by the kernel libraries to maintain state
for (i) detecting flowlets and (ii) storing per-path congestion
state. The lookups and updates to these data structures happen
in the datapath while maintaining the line rate throughput of
at least 40Gbps per hypervisor.
Scalability: Waze is highly scalable due to its distributed
nature:
(a) State space: Each hypervisor keeps state for k network
paths to N destinations. The amount of state is not a concern
for software implementations in x86 CPUs even in the largest
datacenter networks, with k typically between 4 and 256 and
N in the order of thousands. In addition, the number of flowlet
entries is in the order of the number of destination hypervisors
that the source is actively talking to at any point, i.e., typically
in the order of at most a thousand entries.
(b) Probe overhead: Waze sends periodic probes that map
source ports to network paths in order to detect an (infre-
quent) change in network topology. Today, a virtual switch
in an overlay network typically generates Bi-directional For-
warding Detection (BFD) probes to all overlay destinations,
at the timescale of a few hundred ms, with negligible over-
head. Therefore, if Waze probes are sent every few seconds,
the overall load should be similar. The probe frequency only
determines the reaction time to a change in network topology,
which is an infrequent occurrence.
Tuning algorithm parameters: An effective deployment of
Waze needs proper tuning of several key parameters that
influence its performance as discussed in the previous section.
(i) Low flowlet time-gap increases packet reordering at the
receiver and large flowlet time-gap leads to coarse-grained
flowlets, increasing the possibility of congestion.
(ii) At low ECN-relay frequency, Waze makes suboptimal

6

choices based on stale ECN information, while if it is too high,
it would incur high overhead for processing ECN information
in the software datapath.
(iii) In our experience, Waze is robust to small shifts in the
flowlet time-gap and the ECN relay frequency (both between
1-5 RTTs), but is more sensitive to the ECN threshold.
(iv) We noticed that if the ECN threshold is a few segments
above the threshold of the 20 packet limit, Waze reacts very
slowly to elephant flow collisions. However, if we set the
threshold lower, then Waze would over-react to the typically
bursty traffic sent by the TCP segmentation offload.

5 TESTBED EVALUATION
In this subsection, we illustrate the effectiveness of the Waze
load-balancer by testing our implementation of Waze in OVS
against the following schemes.
ECMP: Each packet’s outer TCP source port is determined
by taking a hash of the inner packet’s TCP 5-tuple (src IP,
dest IP, src port, dest port, protocol).
Edge-flowlet: This method also uses hash-based TCP source
ports on the outer packet header, except that the hash changes
for each new flowlet. This involves taking a hash of the 6-tuple
that includes the flow’s 5-tuple plus the flowlet ID (which is
incremented every time a new flowlet is detected at a switch).
MPTCP: In order to compare MPTCP and Waze, we de-
ployed MPTCP v0.89 on Linux kernel 3.18. We disabled the
mptcp_checksum option since we noticed significant drop in
the throughput in our experiments, and set the sub-flow count
to 4 which gave us the best results in terms of network path
utilization and application performance. Additionally, we en-
abled Large Receive Offload (LRO) for improving throughput
and latency. The MPTCP implementation was occasionally
unstable, and incurred high CPU utilization even when run-
ning as few as 4 iPerf sessions in parallel between two end-
points.
Presto: We implemented Presto [10] in OVS with modifica-
tions that adapt Presto to Layer-3 ECMP routing in today’s
data centers. Unlike the implementation described in the pa-
per, we do not use a centralized controller for configuring
multiple spanning trees and shadow-MAC-based forwarding
in the dataplane. Instead, we rotate through a pre-calculated
set of encapsulation header source ports for flowcells (TSO
segments) to route them on distinct network paths in a round-
robin manner. We implemented flowcell reassembly logic
similar to the one discussed in the paper. To assist with the
reordering of flowcells at the receiver side, we encode the flow
ID (hash of the 5-tuple) and a monotonically increasing flow-
cell ID in the encapsulation header. At the receiver end, the
reassembly alogrithm merges out-of-order flowcells in order
before they are pushed to the guest VM. We use an empirical
static timeout to send bufferend segmets to the guest VM,
and set a limit on the number of flowcells that are buffered in

order to recover from packet loss. Note that while this mod-
ified version makes certain packet-format changes to adapt
to ECMP-based routing, it faithfully reproduces the core ele-
ments of Presto. For asymmetric topology, the Presto paper
does not delve into concrete details of how path weights are
updated at network RTT timescales using a centralized con-
troller based detection and spanning-trees re-configurations.
Hence, we use (ideal) statically configured path weights that
reflect the topology in our implementation of Presto to give it
the benefit of doubt.

We answer the following questions with evaluation in a real
testbed environment, using a realistic workload: (i) How does
Waze perform in symmetric topologies compared to other
schemes? (ii) How effective is Waze when link failures lead
to asymmetry in the network topology? (iii) How does Waze
perform under incast?
Topology: Our testbed consists of a 2-tier Clos topology as
shown in Figure 4a, with two spines (S1 and S2) connecting
two leaf switches (L1 and L2). Each leaf switch is connected
to either spine by two 40G links. This gives a total of 160G for
the bisection bandwidth. Routing is set up such that all traffic
received by a spine switch on the first link from one of the leaf
switches is forwarded on the first link towards the other leaf
switch; same is the case for all traffic received on the second
link from a leaf switch. Thus, there are a total of four disjoint
paths that a packet could take to travel from one leaf to another.
Each leaf is connected to 16 servers with 10G links. This
makes sure that the network is not oversubscribed and the 16
servers on one leaf can together saturate the 160G bandwidth.
In order to simulate asymmetry in the baseline symmetric
topology, we disable one of the 40G links connecting the
spine S2 with the leaf switch L2.
Empirical workload: We use a realistic workload to gen-
erate traffic for our experiments. Specifically, we rely on a
web search workload [3] that is obtained from production
datacenters of Microsoft. The workload is long tailed, and
most of its flows are small. The small fraction of large flows
contribute to a substantial portion of the traffic. We simulate a
simple client-server communication model where each client
chooses a server at random and initiates persistent TCP con-
nections to the server. Of the 32 machines connected to the
testbed, 16 act as clients and the rest as servers. The client
sends a flow with size drawn from the empirical CDF of the
web search workload. The inter-arrival rate of the flows on a
connection is taken from an exponential distribution whose
mean is tuned by the desired load on the network. We run
the workload for a total of 50K jobs per client connection.
Similarly to previous work [2], we look at the average Flow
Completion Time (FCT) as the overall performance metric
so that all flows including the majority of small flows are
given equal consideration. We run each experiment with three
random seeds and report the average of the three runs.

7

L1 L2

S1 S2

16
servers
per leaf

40Gbps

10Gbps

Link
Failure

(a) Topology used in evaluation

 0

 5

 10

 15

 20

 25

 30

 20 30 40 50 60 70 80 90 100

A
vg

. J
ob

 C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

Network Load (%)

ECMP
Edge-Flowlet

Waze-ECN
MPTCP

PRESTO

(b) Symmetric topology - avg FCT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 20 30 40 50 60 70 80

A
vg

 J
ob

 C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

Network Load (%)

ECMP

Edge-Flowlet

Waze-ECN

MPTCP

PRESTO

(c) Asymmetric topology - avg FCT

Figure 4: Average FCT for the web-search workload on a network testbed. Network load is measured with respect to
the full bisection bandwidth of 160 Gbps.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

 20 30 40 50 60 70 80

A
vg

 J
ob

 C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

Network Load (%)

ECMP
PRESTO

Edge-Flowlet
MPTCP

Waze-ECN

(a) Avg. FCTs for <100 KB flows

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 30 40 50 60 70 80

A
vg

 J
ob

 C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

Network Load (%)

ECMP
PRESTO

Edge-Flowlet
MPTCP

Waze-ECN

(b) Avg. FCTs for >10 MB flows

 0

 20

 40

 60

 80

 100

 120

 140

 20 30 40 50 60 70 80

99
th

 p
er

ce
nt

ile
 F

C
T

 (
se

co
nd

s)

Network Load (%)

ECMP
PRESTO

Edge-Flowlet
MPTCP

Waze-ECN

(c) 99th percentile FCTs

Figure 5: FCT breakdown of small and large jobs for the web-search workload on a network testbed.

5.1 Baseline symmetric Topology
First, we compare the various load balancing schemes on the
baseline symmetric topology. Figure 4b shows the average
completion time for all flows as we vary the load on the net-
work. Waze performs better than ECMP or Edge-Flowlet at
higher loads but is neck-to-neck with MPTCP and Presto. At
lower loads, the performance of all load balancing schemes
is nearly the same because when there is enough bandwidth
available in the network, there is a greater tolerance for con-
gestion oblivious path forwarding. However, as the network
load becomes higher, the flows have to be carefully assigned
to paths such that collisions do not occur. Given that the flow
characteristics change frequently, at high network load, the
load balancing scheme has to adapt quickly to the change in
link utilizations throughout the network.

ECMP performs the worst because it does congestion-
oblivious load-balancing at a very coarse granularity. Edge-
Flowlet performs slightly better because it still does
congestion-oblivious load-balancing, but at the granularity
of flowlets. Two effects improve its performance. First, it
is less bursty on each path. More significantly, upon con-
gestion, there are fewer ACKs, and therefore more chances
of forming a new flowlet, and therefore it is still indirectly
congestion-aware. Waze does better than both because of its
fine-grained congestion-aware load-balancing. For the web-
search workload, Waze achieves 2.5x lower FCT (i.e., better
performance) compared to ECMP and 1.8x lower FCT com-
pared to Edge-Flowlet at 80% network load. Amongst all

the load balancing schemes compared with here, MPTCP
performs the best because of its usage of multiple subflows
that help redistribute flow bytes on to subflows mapped to
uncongested paths. This advantage of 1.2X over Waze at
80% load comes at the expense of deployment troubles with
MPTCP. Presto does nearly the same as Waze-ECN owing to
its round-robin flowcell spraying.

5.2 Asymmetric topology
In order to simulate a network failure that creates topological
asymmetry, we brought down the 40G link between the spine
switch S2 and switch L2. Subsequently, the effective band-
width of the network drops by 25% for traffic between clients
and servers. This requires the various load balancing schemes
to carefully balance paths at even lower network loads com-
pared to the baseline topology scenario. In particular, any
given load balancer has to ensure that the bottleneck link con-
necting S2 to L2 is not overwhelmed with a disproportionate
amount of traffic.
ECMP and Presto. Figure 4c shows how various schemes
perform with the web search workload as the network load is
varied. Since Presto assumes that the controller infers asym-
metry and feeds that information to the hypervisors, we gave
Presto a head start by specifying the correct path weights
(0.33, 0.33, 0.17, 0.17) for the topology in its source data-
plane component so that the flowcells (64-Kb are distributed
on the paths in the appropriate ratio. The overall FCT for
ECMP shoots up steeply above 50% network load. This is

8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 20 30 40 50 60 70 80

A
vg

 J
ob

 C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

Network Load (%)

Waze-best (1*RTT, 20pkts)

Waze (0.2*RTT, 20pkts)

Waze (5*RTT, 20pkts)

Waze (1*RTT, 40pkts)

Figure 6: Performance of Waze (flowlet-threshold, ecn-
threshold) under different parameter settings.

because, as the network load reaches 50%, the bottleneck
link between S2 and L2 gets pressurized by the flows hashed
to go through S2. Since ECMP treats all 4 paths from L1
equally, at high loads, S2 receives more traffic than it can
forward on the reduced downlink bandwidth to L2. This is
why it performs poorly at high network loads. Presto, owing
to load balancing at the granularity of flowcells (64kB flow
segments), suffers less from congestion and does 1.8X better
than ECMP at 70% load. However, it still lags behind Waze-
ECN (by 3.8x at 70% load) despite its ideal path weights, due
to its congestion-unaware flowcell distribution. This is in line
with recent research (e.g., LetFlow [24]) which observes that
statically assigning weights to path distribution is not enough
to handle the mismatch between workload asymmetry and
topology asymmetry.
Edge-Flowlet. The notable result in our experiments is the
relatively better performance of Edge-Flowlet over ECMP or
Presto. Edge-Flowlet does congestion-oblivious load balanc-
ing but at the granularity of flowlets. However, we noticed
that new flowlets are created in the workload whenever the
corresponding flows travel on a congested path. As previously
mentioned, these new flowlets are being created due to de-
layed ACK clocking caused by congestion. Hence, compared
to ECMP or Presto, Edge-Flowlet’s random flowlet routing
can inherently adapt to congestion. This is why Edge-Flowlet
performs 4.2X better than ECMP at 80% load. It also does
better than PRESTO despite the fact that PRESTO needs com-
plex packet re-assembly logic while Edge-flowlet does not.
In fact, Edge-Flowlet captures most of the gain of Waze-ECN
which is impressive given the simplicity of its design.
Waze-ECN and MPTCP. Waze does the best of all schemes
because of its fast congestion-aware path selection that avoids
pressure on the bottleneck link. This helps Waze achieve 7.5x
better performance than ECMP and 2x better FCT than Edge-
Flowlet at 80% network load. MPTCP also does nearly as well
as Waze-ECN owing to its use of multiple subflows that can
redistribute bytes from congested subflows to uncongested
ones dynamically using the MPTCP control loop.
FCT Breakdown. Figure 5 shows the breakdown of perfor-
mance separately for mice flows (of size less than 100KB)
and for large flows (of size greater than 10MB). The average

FCTs for both small and large flows largely reflect the rela-
tive overall FCT performance for each scheme. The relative
performance difference between the FCTs for small flows is
slightly smaller than that for large flows, because longer flows
give more opportunities to react to congestion. For example,
Edge-Flowlet does 3.7X better than ECMP for small flows
but 4.1X better for large flows at 70% load.
99th percentile. Figure 5c shows 99th percentile FCTs under
all the load balancing schemes. Here, interestingly, the rela-
tive performance story is different from that of the average
FCT. MPTCP does significantly worse compared to Edge-
Flowlet or Waze. We believe this is because when all the
subflows of a connection get mapped to congested paths, then
MPTCP suffers very badly compared to all other schemes ex-
cept ECMP. While Waze (and Edge-Flowlet, to some extent)
can reroute their flowlets onto uncongested paths, MPTCP’s
subflow mapping is static and hence affects those rare flows
that are stuck with congested paths. Hence Waze does 2.7X
better than MPTCP at 60% load.
Parameter sensitivity. Figure 6 shows how the performance
of Waze varies with changes to two of its key parameters.
For our experiments, the optimal settings were (i) 1 RTT for
flowlet inter-packet timegap. and (ii) 20 packets for switch
ECN threshold. As the figure shows, if the flowlet threshold is
too low (0.2×RTT), then Waze behaves closer to per-packet
load balancing, sees high packet reordering and hence de-
grades by 5x. If the threshold is too high (5×RTT), then
Waze suffers from elephant flowlet collision. Similarly, when
the ECN threshold is too high (40 packets), Waze takes much
longer to detect congestion and hence sees performance degra-
dation by 4x at 80% load.

5.3 Incast Workload
Workload. We designed a workload scenario that creates
typical partition-aggregate patterns [2, 3] that induce incast on
a machine’s access link to the network. A single client sends
out requests to a number of servers simultaneously, causing
the servers to start sending traffic to the client concurrently.
This traffic pattern stresses the queue on the link connected to
the client and may result in potential packet drops. The client
requests a file of 10 MB split among the n servers, where n
is the request fanout. Each of the n servers sends 107n bytes
to the client at the same time. Once all 10 MB are received
by the client, it issues the next request to another set of n
servers chosen uniformly from the 16 servers in the testbed.
We measure the average throughput seen on the client side
over the period of 10K such job requests.
Waze does better than Edge-Flowlet and MPTCP. The
workload experiment shown in Figure 7 essentially stresses
the incast behavior of the TCP transport used by Waze and
that of MPTCP. The figure shows that the performance of

9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 3 5 7 9 11 13 15

T
ho

ru
gh

pu
t (

G
bp

s)

Request fan-in

Waze-ECN
Edge-Flowlet

MPTCP

Figure 7: Performance of MPTCP, Edge-Flowlet and
Waze on the incast workload measured in terms of
throughput on the client access link.

MPTCP degrades badly as the fanout for a job request in-
creases, as confirmed similarly in CONGA [2]. For example,
Waze achieves 1.9x better throughput than MPTCP for a
fanout of 10 and 3.4x better for a fanout size of 16. This is
mostly because MPTCP ramps up the congestion windows of
all the subflows simultaneously in this synchronous workload,
thereby exacerbating the pressure on the access link queues.
The higher the fanout, the more the burstiness of MPTCP
flows, which hurts its performance compared to Waze (which
simply relies on the unmodified end-host TCP stack).

6 EXTENSIVE SIMULATIONS
In this section, using packet-level simulations in NS2 [12],
we study effectiveness of various edge-based load balancers.
Algorithms: We compare our three edge-based load-
balancing schemes (Edge-Flowlet, Waze-ECN, and Waze-
INT) against the following two extremes of the spectrum
of load-balancing schemes: ECMP, which uses static hashing
and is congestion-oblivious; and CONGA [2], which modi-
fies switches to collect switch-based measurements and routes
flowlets along the least utilized path at each hop, and therefore
is considered the higher end of the spectrum.

Specifically, we compare Waze-ECN with CONGA in our
topology setting and investigate whether INT can be used to
improve Waze-ECN’s performance so that it will match that
of CONGA’s.
Topology and workload We simulate the same testbed topol-
ogy used in section 5. Similar to our methodology in section 5,
in order to simulate asymmetry in the baseline symmetric
topology, we disable one of the 40G links connecting the
spine S2 with the leaf switch L2. To generate traffic for our
experiments, we use the same realistic web search workload
distribution [3] from section 5 to simulate a simple client-
server communication model where each client chooses a
server at random and initiates three persistent TCP connec-
tions to the server. The way the clients select flow size and
inter-arrival rate is also similar. However, we run the exper-
iments for a job count of 20K only since the simulation of
these high bandwidth topologies at packet level takes signif-
icant amount of compute resources and time. We run each

 0

 100

 200

 300

 400

 500

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

ECMP
Edge-Flowlet

Waze-ECN
Waze-INT

CONGA

(a) Symmetric topology - avg. FCT

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

ECMP
Edge-Flowlet

Waze-ECN
Waze-INT

CONGA

(b) Asymmetric topology - avg. FCT

Figure 8: Average FCT for the web-search workload in
NS2. Waze-ECN, which is implementable on existing net-
works, captures about 80% of the performance gain be-
tween ECMP and CONGA in both topologies.
experiment with three random seeds and then measure the
average FCT of the three runs.

6.1 Symmetric Topology
First, we compare the various load-balancing schemes on the
baseline symmetric topology to make sure that Waze-ECN
performs at least as well as ECMP.

Figure 8a shows the average completion time for all flows
as the load on the network increases. At lower loads, the
performance of all the load-balancing schemes is nearly the
same, because when there is enough bandwidth available
in the network, there is a greater tolerance for congestion-
oblivious path forwarding. At higher loads, Waze-ECN per-
forms better than ECMP or Edge-Flowlet, but underperforms
Waze-INT and CONGA. Waze-ECN does better because of
its fine-grained congestion-aware load balancing. Waze-ECN
achieves 1.4x lower FCT (better performance) compared to
ECMP and 1.2x better compared to Edge-Flowlet at 80%
network load. However, Waze-INT and CONGA do slightly
better (by 1.1X) because they are utilization-aware instead of
just being congestion-aware. Therefore, Waze-ECN, which
is implementable on existing networks, captures 82% of the
performance gain between ECMP and CONGA at 80% load.

6.2 Topology Asymmetry
When a 40G link between the spine switch S2 and switch
L2 is removed, the effective bandwidth of the network drops

10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10

C
D

F
 o

f F
C

T
s

Mice flow completion times (secs)

ECMP
Waze-ECN

CONGA

Figure 9: CDF of FCTs at 70% load with asymmetry.
Waze-ECN captures 80% of the performance gain be-
tween the 99th percentiles of ECMP and CONGA.

by 25% for traffic going across the pods. This means that
the load balancing schemes have to carefully balance paths
at even lower network loads compared to the baseline topol-
ogy scenario. In particular, the load balancing scheme has to
make sure that the bottleneck link connecting S2 to L2 is not
overwhelmed with a disproportionate amount of traffic.

Figure 8b shows how various schemes perform with the web
search workload as the network load is varied. As expected,
the overall FCT for ECMP shoots up pretty quickly after
50% network load. Once the network load reaches 50%, the
bottleneck link gets pressurized by the flows hashed to go
through S2. In fact, had we used an infinite-time workload,
ECMP would not have theoretically converged. But since we
used a finite workload as in [2] to measure the FCT, we obtain
finite delays. Edge-Flowlet does slightly better than ECMP as
expected, yet still performs relatively poorly (unlike observed
in [24] for instance).

Waze-ECN does better than ECMP and Edge-Flowlet be-
cause of its fast congestion-aware path selection, which de-
creases pressure on the bottleneck link once the queues start
growing. This helps Waze-ECN achieve 3x better perfor-
mance than ECMP and 1.8x better FCT than Edge-Flowlet
at 70% network load. However, it still has to catch up with
Waze-INT and CONGA, which do 1.2X better than Waze.
The important take-away is that Waze-ECN, which is imple-
mentable on existing networks, captures 80% of the perfor-
mance gain between ECMP and CONGA at 70% network
load.
99th Percentile. Figure 9 illustrates similar results by plotting
the CDFs for the flow completion times of mice flows for the
asymmetric topology at 70% load. The 99th percentile FCT
for Waze-ECN captures 80% of the performance gain between
the 99th percentiles of ECMP and CONGA.
Congestion-aware vs. utilization-aware. The main differ-
ence between the performance of Waze-ECN and CONGA
comes from the fact that while CONGA is network utilization-
aware, Waze-ECN is only congestion-aware. In other words,
Waze-ECN will deflect flowlets from a path only when its
queues start growing beyond the ECN threshold. This means
that the flowlets will be sent on paths which are preferred

till they reach 100% utilization and beyond. On the other
hand, CONGA ensures that the utilization on all paths in
the network stays nearly the same. This keeps the queues on
the bottleneck paths near zero at all times unless the traffic
load exceeds the total network capacity. The results also show
that if Waze were to potentially use a feature like INT to
learn utilization at the edge, then Waze-INT captures 95%
of CONGA’s performance. Therefore, empirically, it is clear
that it helps to be utilization-aware in order to make the best
load balancing decision, whether it is inside the network or
at the edge. However, by just being congestion-aware (which
is what is possible with existing switches), Waze-ECN still
manages to come very close to the performance of CONGA.

7 DISCUSSION
In this section, we address potential deployment concerns and
areas of future improvement.
Stability: A major concern with adaptive routing schemes is
that of route flapping and instability. However, recent efforts
like CONGA [2] and HULA [17] have demonstrated that as
long as network state is collected at fine-grained timescales,
and processed in the dataplane, the resulting scheme is stable
in practice. Waze similarly collects and acts on network state
directly in the datataplane, and makes routing decisions in the
virtual switch based on state that is as close to real-time as
possible. While we did not notice any stability issues during
our empirical experiments, a rigorous study of the stability
characteristics of Waze’s control loop is part of future work.
Use of path latency: Since ECN can sometimes be erratic,
and INT switches are not shipping yet, another way to infer
congestion could be to measure the latency on each forward
path to a destination. Timestamping at the NIC layer, com-
bined with time synchronization across hypervisors using a
mechanism such as IEEE 1588, would enable the receiving
virtual switch to accurately determine forward latency and
report it back to the sending hypervisor [20].
Non-overlay environments: In non-overlay environments
with TCP applications running on VMs, the virtual switch
in the source hypervisor can implement a hidden overlay by
simply replacing the five-tuple in traffic received from a VM
with the five-tuple that would otherwise be in the overlay
header, hiding the real values in TCP options. The destination
virtual switch copies back the original values into the header,
entirely transparent to the TCP application on the destination
VM.
Flowlet optimization: Our implementation of Waze uses a
static value of flowlet time-gap to detect flowlets. Unless this
value is set extremely conservatively, flowlets can still arrive
out of order due to asymmetric congestion on paths, and
hinder TCP performance. The flowlet time-gap may be made
adaptive to the variance in RTT measured between different

11

paths to a destination, further decreasing the probability of
flowlets arriving out of order at the receiver. Moreover, flowlet
sequence numbers may be carried in the encapsulation header,
allowing the receiving virtual switch to put flowlets back in
order (similarly to Presto [10]) so that the TCP stack in the
VM does not see any out of order packets.

8 RELATED WORK
Centralized Algorithms: Hedera, MicroTE, SWAN, Fast-
pass [1, 5, 11, 13, 22] are based on a centralized scheduler
that maintains global network state and calculates routes for
network flows. Such algorithms are slow to react for data-
center traffic patterns and come with a prohibitive cost of
querying the scheduler for short-lived latency-sensitive flows.
Flowtune [21] is an additional recent work that schedules
flowlets onto paths from a centralized server. While it is more
scalable, it cannot adapt to failures at dataplane timescales.
Host-based Algorithms: There are many potential conges-
tion control algorithms, such as DCTCP [3] and MPTCP [25].
Unfortunately, such algorithms need to modify the end-host
transport stack. DCTCP is further discussed in Section 7.
MPTCP [25] distributes each application flow over multiple
TCP sub-flows with distinct five-tuples that are routed inde-
pendently by ECMP, although a subset of subflows may end
up being routed on the same path due to ECMP hash colli-
sions. The multiple subflows cause burstiness and perform
poorly under incast [2]. In addition, it is difficult to deploy
MPTCP in datacenters because it requires change to all the
end-hosts, which are outside the control of the network op-
erator in multitenant environments. Finally, the number of
subflows in MPTCP is static and does not vary in accordance
with the number of network paths.
In-Network Per-Hop Distributed Algorithms: Based on
Local State (FLARE, LocalFlow, Drill [8, 15, 23]): Each hop
routes flowlets based on local link utilization. Accounting
only for local state, these algorithms perform poorly with
asymmetric paths.
Based on Complete Global State (CONGA [2]): Utilization of
each link is propagated throughout the network at round-trip
timescales using proprietary packet formats; each hop chooses
the least-utilized path for each flowlet. All network switches
have to be replaced with those running this proprietary algo-
rithm. Global propagation of state limits scalability. CONGA
is designed specifically for 2-tier leaf-spine networks.
Based on Summarized Global State (HULA [17]): Using In-
band Network Telemetry (INT), a technology likely to be
available in network switches in the near future, each switch
advertises per-destination best path utilization to neighbors;
each switch routes flowlets on the least utilized path towards
the destination. State summarization allows the solution to
scale to arbitrarily large topologies, however, the per-hop na-
ture does require complete network replacement.

Algorithms at the Network Edge: Presto [10] is a load bal-
ancing algorithm implemented entirely at the network edge.
The virtual switch in the source hypervisor forwards fixed-
size flow segments (e.g., 64KB) with independent source
and destination shadow MAC addresses. These flowcells are
routed independently in the network over multiple spanning
trees. This does not work with predominantly deployed Layer-
3 based ECMP forwarding in the physical network. Moreover,
Presto performs poorly in asymmetric environments as it is
oblivious of network state. Additionally, [10] does not pro-
vide a detailed analysis of the scheme’s performance in failure
cases when a centralized controller detects and re-configures
the spanning trees. Consequently, it is unclear whether Presto
is able to handle such cases at RTT timescales in order to deal
with datacenter traffic volatility.
Juggler [7] is a mechanism that helps the network stack deal
with packet reordering issues caused by splitting of flows onto
multiple paths. Juggler improves upon Presto by reducing the
amount of per-connection state required for packet assembly
and hence complements Presto. However, it still does not
effectively handle topology asymmetry.
LetFlow [24] is a recent work that independently arrived
at the conclusion that a simple mechanism that splits flows
into flowlets in the network can effectively adapt to topology
asymmetry, compared to existing schemes. However, while
LetFlow relies on new switch hardware for their implementa-
tion, our version of Edge-Flowlet is implemented entirely in
the host hypervisors and hence is readily deployable. In addi-
tion, Waze-ECN and Waze-INT show how to bridge the gap
between schemes like LetFlow/Edge-Flowlet and hardware-
based schemes like CONGA.
Finally, in [16], we previously introduced the idea of
hypervisor-based network load balancing by discovering a
mapping of encapsulation header fields into distinct network
paths, and forwarded flowlets over these distinct paths in a
congestion-aware manner. However, it fell short of convinc-
ing that these ideas are practical and efficient in practical
deployments.

9 CONCLUSION
In this paper, we showed how the end-host hypervisor can
provide a sweet spot for implementing a spectrum of load-
balancing algorithms that are fine-grained, congestion-aware,
and reactive to network dynamics at round-trip timescales. In
addition, we presented the Waze algorithm and implemented
it in a Open Virtual Switch, showing how it obtains significant
performance gains in a real network with realistic workloads.
Unlike past algorithms, Waze is essentially ready to be di-
rectly implemented in multitenant datacenters without any
changes to existing guest VMs or to existing physical network
switches.

12

REFERENCES
[1] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,

Nelson Huang, and Amin Vahdat. 2010. Hedera: Dynamic Flow Sched-
uling for Data Center Networks. NSDI (2010).

[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan,
Navindra Yadav, George Varghese, and others. 2014. CONGA: Dis-
tributed congestion-aware load balancing for datacenters. ACM SIG-
COMM (2014).

[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data Center TCP (DCTCP). ACM SIGCOMM (2010).

[4] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger,
Timur Friedman, Matthieu Latapy, Clémence Magnien, and Renata
Teixeira. 2006. Avoiding Traceroute Anomalies with Paris Traceroute.
ACM Internet Measurement Conference (2006).

[5] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang.
2011. MicroTE: Fine grained traffic engineering for data centers. ACM
CoNEXT (2011).

[6] Cisco. ACI Fabric Fundamentals. http://www.cisco.com/c/en/us/
td/docs/switches/datacenter/aci/apic/sw/1-x/aci-fundamentals/b_
ACI-Fundamentals/b_ACI_Fundamentals_BigBook_chapter_0100.
html. (????).

[7] Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani, and Mohammad
Alizadeh. 2016. Juggler: a practical reordering resilient network stack
for datacenters. EuroSys (2016).

[8] Soudeh Ghorbani, Brighten Godfrey, Yashar Ganjali, and Amin
Firoozshahian. 2015. Micro Load Balancing in Data Centers with
DRILL. ACM HotNets (2015).

[9] Sergey Guenender, Katherine Barabash, Yaniv Ben-Itzhak, Anna Levin,
Eran Raichstein, and Liran Schour. 2015. NoEncap: overlay network
virtualization with no encapsulation overheads. ACM SOSR (2015).

[10] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter,
and Aditya Akella. 2015. Presto: Edge-based load balancing for fast
datacenter networks. ACM SIGCOMM (2015).

[11] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay
Gill, Mohan Nanduri, and Roger Wattenhofer. 2013. Achieving high
utilization with software-driven WAN. SIGCOMM CCR 43, 4 (2013),
15–26.

[12] Teerawat Issariyakul and Ekram Hossain. 2010. Introduction to Net-
work Simulator NS2 (1st ed.). Springer.

[13] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou,

Min Zhu, and others. 2013. B4: Experience with a globally-deployed
software defined WAN. In ACM SIGCOMM Computer Communication
Review, Vol. 43. ACM, 3–14.

[14] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna Charny. 2005.
Walking the Tightrope: Responsive Yet Stable Traffic Engineering.
ACM SIGCOMM (2005).

[15] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger.
2007. Dynamic load balancing without packet reordering. ACM SIG-
COMM Computer Communication Review 37, 2 (2007), 51–62.

[16] Naga Katta, Mukesh Hira, Aditi Ghag, Isaac Keslassy, Jennifer Rexford,
and Changhoon Kim. 2016. CLOVE: How I learned to stop worrying
about the core and love the edge. ACM HotNets (2016).

[17] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and
Jennifer Rexford. 2016. HULA: Scalable Load Balancing Using Pro-
grammable Data Planes. SOSR (2016).

[18] Changhoon Kim, , Anirudh Sivaraman, Naga Katta, Antonin Bas, Ad-
vait Dixit, and Lawrence J. Wobker. In-band Network Telemetry via
Programmable Dataplanes (Demo paper at SIGCOMM ’15).

[19] Paul E. McKenney and Jonathan Walpole. 2007. What is RCU, Fun-
damentally? (17 December 2007). Available: http://lwn.net/Articles/
262464/.

[20] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Has-
san Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David
Wetherall, and David Zats. 2015. TIMELY: RTT-based Congestion
Control for the Datacenter. ACM SIGCOMM (2015).

[21] Jonathan Perry, Hari Balakrishnan, and Devavrat Shah. 2017. Flowtune:
Flowlet Control for Datacenter Networks. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17). USENIX
Association, Boston, MA. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/perry

[22] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah,
and Hans Fugal. 2014. Fastpass: A centralized zero-queue datacenter
network. ACM SIGCOMM (2014).

[23] Siddhartha Sen, David Shue, Sunghwan Ihm, and Michael J Freedman.
2013. Scalable, optimal flow routing in datacenters via local link
balancing. ACM CoNEXT (2013).

[24] Erico Vanini, Rong Pan, Mohammad Alizadeh, Tom Edsall, and Parvin
Taheri. 2017. Let It Flow: Resilient Asymmetric Load Balancing with
Flowlet Switching. Usenix NSDI (2017).

[25] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley.
2011. Design, Implementation and Evaluation of Congestion Control
for Multipath TCP. In NSDI, Vol. 11. 8–8.

13

http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/aci-fundamentals/b_ACI-Fundamentals/b_ACI_Fundamentals_BigBook_chapter_0100.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/aci-fundamentals/b_ACI-Fundamentals/b_ACI_Fundamentals_BigBook_chapter_0100.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/aci-fundamentals/b_ACI-Fundamentals/b_ACI_Fundamentals_BigBook_chapter_0100.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/aci-fundamentals/b_ACI-Fundamentals/b_ACI_Fundamentals_BigBook_chapter_0100.html
http://lwn.net/Articles/262464/
http://lwn.net/Articles/262464/
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/perry
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/perry

	Abstract
	1 Introduction
	2 Hypervisor-based Load Balancing
	2.1 Design Goals
	2.2 Opportunities

	3 Waze Design
	3.1 Path Discovery using Traceroute
	3.2 Routing Flowlets

	4 Implementation
	5 Testbed Evaluation
	5.1 Baseline symmetric Topology
	5.2 Asymmetric topology
	5.3 Incast Workload

	6 Extensive Simulations
	6.1 Symmetric Topology
	6.2 Topology Asymmetry

	7 Discussion
	8 Related Work
	9 Conclusion
	References

