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ABSTRACT

This paper describeégINI, a virtual network infrastructure that al-
lows network researchers to evaluate their protocols andces
in a realistic environment that also provides a high degfemn-
trol over network conditions. VINI allows researchers tpldy
and evaluate their ideas with real routing software, trdfiads,
and network events. To provide researchers flexibility isigieng
their experiments, VINI supports simultaneous experimenth
arbitrary network topologies on a shared physical infragtrre.
This paper tackles the following important design questMfhat
set of concepts and techniques facilitate flexible, realiahd con-
trolled experimentationg(g, multiple topologies and the ability to
tweak routing algorithms) on a fixed physical infrastruefirWe
first present VINI's high-level design and the challengesirdfial-
izing a single network. We then presd®it-VINI, an implementa-
tion of VINI on PlanetLab, running the “Internet In a SliceQur
evaluation of PL-VINI shows that it provides a realistic azwh-
trolled environment for evaluating new protocols and sm@vi

Categories and Subject Descriptors

C.2.6 [Computer Communication Networks]: Internetworking;
C.2.1 [Computer Communication Networks]: Network Archi-
tecture and Design

General Terms
Design, Experimentation, Measurement, Performance

Keywords

Internet, architecture, virtualization, routing, expeeintation

1. Introduction

Researchers continually propose new protocols and serdige
signed to improve the Internet's performance, reliahiktyd scal-
ability. Testing these new ideas under realistic networhkd@ions
is a critical step for evaluating their merits and, ultintatéor de-
ploying them in practice. Unfortunately, evaluating newad in
operational networks is difficult, because of the need twiome
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equipment vendors and network operators to deploy theisolut
Accordingly, researchers are faced with the option of extitg
their proposals via simulations, driven either by synthetiodels
of topology and workloads or by measurements of the exigting
tocols, or evaluating their proposals in a small-scalebtskt Ide-
ally, researchers should be able to conduct experimerttartadoth
realisticand controlled.

Even services that operate above the network layer areutiffic
to evaluate without some level of visibility into and cortover
network events at lower layers. Consider a Resilient Oyéddet-
work (RON) that circumvents performance and reachabiligbp
lems in the underlying network by directing traffic througtter-
mediate hosts [1]. While RON can be deployed and offer servic
to real users without modifying the underlying infrastuuret, to
evaluate its effectiveness, the system designers mustfovaitet-
work failures to arise. Worse yet, without access to logssaf/)
link failures in the underlying network or the ability to @gt such
failures—RON must rely on active probes to detect link fiagk)
which introduces a tradeoff between probing overhead ana me
surement precision [2]. Ideally, researchers would be tabieject
link failures at known times and collect precise measurgmeh
RON’s behavior during these events.

Researchers evaluating new protocols and services shoulgn
forced to choose between realistic conditions and coetiakper-
iments. Instead, we believe that the research communitgsnae
experimental infrastructure that satisfies the followiagrfgoals:

e Running real routing software: Researchers should be able
to run conventional routing software in their experimeias,
evaluate the effects of extensions to the protocols anddie ev
uate new services over commodity network components.

e Exposing realistic network conditions: Researchers should
be able to construct experiments on realistic topologies an
routing configurations. The experiments should be able to
examine system behavior in response to exogenous events,
such as routing-protocol messages from the “real” Internet

e Controlling network events: Researchers should be able to
inject network eventse(g, link failures and flash crowds)
that do not occur often in practice, to enable controlled ex-
periments and fine-grained measurements of these events.

e Carrying real traffic. Researchers should be able to eval-
uate their protocols and services carrying applicatioffitra
between real end hosts, to enable measurements of end-to-
end performance and effects of feedback at the end systems.

Satisfying these four goals requires both the tools fordug
virtual networks and the infrastructure for deploying thedm the



one hand, PlanetLab is an infrastructure that supportspreuiis-
tributed services running on hundreds of machines throuigtie
world [3, 4]. However, conducting controlled and realistetwork-
ing experiments on PlanetLab is quite challenging, becatisiee
first three goals above. On the other hand, toolkits like X+8{b]
and Violin [6] automate the creation of overlay networksgsiun-
nels between hosts, allowing researchers to evaluate reacots
and services. However, these tools are not integrated wiked,
wide-area physical infrastructure that reflects a real agtvde-
ployment. Instead, we believe the community needs a shared
frastructure(like PlanetLab) that can suppatittual networkg(like
X-Bone and Violin), in a controlled and realistic environme

To that end, we are building VINI, a Virtual Network Infras-
tructure, for evaluating new protocols and services. \Wename-
ing with the National Lambda Rail (NLR) and Abilene Interdet
backbones to deploy VINI nodes that have direct connections
the routers in these networks and dedicated bandwidth leettie
sites. VINI will have its own globally visible IP address bks, and
it will participate in routing with neighboring domaihsOur goal is
for VINI to become shared infrastructure that enables rebeas to
simultaneously evaluate new protocols and services usiagnaf-
fic from distributed services that are also sharing VINI tgses.
The nodes at each site will initially be high-end serverg, rhay
eventually be programmable hardware devices that carr thette
dle a large number of simultaneous experiments carryingge la
volume of real traffic and many simultaneously running peots.

Rather than presenting a complete design and implemeniaitio
VINI, this paper addresses the following important preisitg de-
sign questionWhat set of concepts and techniques facilitate flexi-
ble, realistic, and controlled experimentatioag, multiple topolo-
gies, ability to tweak routing algorithms, etc.) on a fixed/gibal
infrastructure? The answer to this question and other insights we
glean from the design and implementation of VINI will progiin-
portant lessons for the design of experimental infrastmest such
as the National Science Foundation’s Global Environmeninfet-
worked Innovations (GENI) [7, 8] and similar efforts in otto®un-
tries. Toward this end, our paper makes three main coniitistt

Proposed design of VINI: In designing VINI, we grapple with
the challenges of representing every component in the mktwo
routers, interfaces, links, routing, and forwarding, adl ae the
failure modes of these components, as discussed in Sectitm 2
addition to facing similar challenges to testbeds like Bthab, we
must deal with additional issues such as sharing routingepol
port numbers across experiments, supporting multiplelogpes,
numbering the ends of a virtual link from a common subnet; for
warding data packets quickly, diverting user traffic inte thfras-
tructure, performing network address translation to recegturn
traffic from the Internet, and allowing multiple experimetd share
a routing adjacency with a neighboring domain.

Initial prototype of VINI on PlanetLab: In prototyping VINI,
we focus first on the significant challenges of supporting exe
periment on the infrastructure at a time, as discussed in Sec
tion 3. We synthesize many of the software components ateate
by the networking research community—from software raiter
configuration-management tools—into a single functiomddais-
tructure. We use XORP for routing [9], Click for packet fomaiang
and network address translation [10], OpenVPN serversnoext
with end users [11], anctc for parsing router configuration data
from operational networks to drive our experiments [12]. \ge

Iwe are in discussions with service providers about havirgicdéed up-
stream connectivity to the commercial Internet at a few arge points.

the PlanetLab nodes in Abilene for prototyping and expeniing,
while working in parallel on deploying equipment for VINI.

Evaluation of PL-VINI: We evaluate our prototype to demon-
strate its suitability for evaluating network archite@sirand sys-
tems in a realistic and controlled setting, as discusse@ati& 4.
We first use microbenchmarks to show that VINI efficiently-for
wards data packets. Our second set of experiments validiti's
behavior in the wide-area. We mirror the Abilene backboneth-w
the real topology and the same OSPF configuration—on PlabetL
nodes co-located at Abilene PoPs. We inject a link failute our
network and observe the effects of OSPF route convergentafon
fic running between two of the nodes.

We envision that ideas for new network protocols and sesvice
could flow through a research pipeline with three main forrhs o
evaluation, each with its own strengths and weaknesses:

1. Analytical modeling and simulationA new idea could be
evaluated via analytical models or in simulators like n&-3 [
or SSFNet [14]. This enables experimentation with high-
level ideas in a controlled fashion over a range of condition

. Evaluation of a prototype in a testbedA new idea could
be implemented in a prototype system and evaluated in a
testbed, such as Emulab [15], DETER [16], Modelnet [17],
WAIL [18], or ONL [19]. This allows the researchers to eval-
uate a real system in a controlled environment.

. Deployment of a prototype in VINIA prototype system
could be deployed and evaluated in VINI. This allows the
researchers to evaluate their system carrying real traffic a
experiencing realistic network conditions.

VINI is most useful for experiments that need to carry traféic
real end hosts on the existing Internet, or experience reate-end
network conditions. We envision two broad classes of expents:

e Controlled experiments: A controlled experiment would
evaluate new protocols or services under a range of condi-
tions. On the one extreme, a controlled experiment might
carry traffic that is generated automatically (e.g., by @scr
that directs HTTP requests to Web sites), subject to agilfici
network events (e.g., injected link failures). These kinfls
experiments could arguably run in an existing testbed, such
as Emulab. Yet, an experiment could gradually incorporate
real user traffic, actual network events, or end-to-end data
transfers over the Internet, for greater realism.

e Long-running services: Once a controlled experiment
demonstrates the value of a new idea, the researchers may of-
fer a long-running service operating “in the wild.” Real end
hosts—either users or servers—could “opt in” to the proto-
type system, to achieve better performance, reliabilitges
curity, or to access services that are not available els@vhe
We envision that one system running in VINI could provide
services for another, where end hosts subscribe to a value-
added service (e.g., a new content delivery service) that, i
turn, runs over a new network architecture deployed on VINI.

Through VINI, we hope to provide the research community &ith
environment that offers not only increasing control andiseg but
also a credible path to real-world deployment.



Design Requirement

Solution Section

Flexible Network Topology (Section 2.1)

Virtual point-to-point connectivity Virtual network devices from common subnets in UML 3.1.3
Tunnels and encapsulation in Click 3.21

Unique interfaces per experiment Virtual network devices in UML 3.2.2

Exposure of underlying topology changes Upcalls of layer-3 alarms to virtual nodes —

Flexible Routing and Forwarding (Section 2.2)
Distinct forwarding tables per virtual node Separate instance of Click on each virtual node 3.21
Distinct routing processes per virtual node Separate instance of XORP on each virtual node 3.2.2
Connectivity to External Hosts (Section 2.3)
Allowing end hosts to direct traffic through VINI End-host connection to an OpenVPN server 3.2.3
Ensure return traffic flows back through VINI | Network address translation in Click on egress 3.2.3
Support for Simultaneous Experiments (Section 2.4)

Resource isolation between experiments Virtual servers and network isolation in PlanetLab 3.11
Extensions for CPU reservations and priorities 3.1.2

Distinct external routing adjacencies BGP multiplexer to share external BGP sessions —

Table 1: Design requirements for VINI. This table also discisses how our prototype implementation of VINI (discussed imore detail in Section 3)

tackles each of these challenges.

2. VINI Design Requirements

This section outlines the design requirements for a virtigt
work infrastructure. We focus on the general requiremehssioh
an infrastructure—and why we believe the infrastructureusth
provide those requirements—independent of how any paatiau
stantiation of VINI would meet these requirements.

VINI's design requirements are motivated by the desire éai-r
ism (of traffic, routing software, and network conditionsidacon-
trol (over network events), as well as the need to providécsemt
flexibility for embedding different experimental topolegion a sin-
gle, fixed physical infrastructure. Generally speakingulization
provides much of the machinery for solving this problem;eied,
virtualization is a common solution to many problems in coiep
architecture, operating systems, and even in networkedhdited
systems. Still, despite the promises of virtualizationaipplication
to buildingcommunication networks not straightforward.

As Table 1 shows, constructing a virtual network involvels-so
ing four main problems: First, the infrastructure must jewsup-
port for virtualizing network devices and attachment poimecause
a network researcher may wish to use the physical infrastreito
build an arbitrary topology. We discuss these challengeSeic-
tion 2.1. Second, once the basic topology is establishednftras-
tructure must facilitate running routing protocols oveisthirtual
topology. This goal is challenging because each virtuaenoey
have characteristics that are unique from physical rediity ex-
ample, multiple virtual edges may map to a single physicedrin
face, and a virtual link between two nodes may comprise pialti
IP-layer hops. Section 2.2 discusses these requirememtmia
detail. Third, once the virtual network can establish itsxawut-
ing and forwarding tables, it must be able to transport gadfiand
from real networks. This task, which we discuss in Secti@én-
ables network researchers to experiment with real netwonklie
tions. Finally, the virtual network infrastructure showaliiow mul-
tiple network researchers to perform the above three stgpg the
same physical infrastructure. Virtualizimgtworknodes presents
complications that we address in more detail in Section 2.4.

2.1 Flexible Network Topology

To allow researchers (and practitioners) to evaluate nenng
protocols, architectures, and management systems, VISt affer
the ability to configure a wide variety of nodes and links. ey
this type of flexible network configuration requires satis§ymain

challenges: the ability to configure each of these nodes aitar-
bitrary number of interfaced.¢., the flexibility to give each node
an arbitrary degree), and the ability to provide the appearaf
a physical link between any two virtual nodes( the flexibility
to establish arbitrary edges in the topology). None of thesb-
lems is straightforward: indeed, each problem involves etoyw
abstracting (“virtualizing”) physical network componsrih new
and interesting ways.

Problem: Unique interfaces per experimentRouting protocols
such as OSPF and IS-IS have configurable parameters formach i
terface €.g, weights and areas). To run these protocols, VINI must
enable an experiment to have multiple interfaces on the sxyer-
iment, but most commodity physical nodes typically have adix
(and typically small) number of physical interfaces. Liimit the
flexibility of interface configuration to the physical corants of
each node is not acceptable: Because different experinnesys
need more (or fewer) interfaces for each node, massivelspoye
visioning each node with a large number of physical devicag m
prohibitively expensive and physically impossible.

Even if a node could be deployed with a plethora of physical
interfaces, we ultimately envision VINI as an infrastruetthat is
sharedamong multiple experiments. Many experiments, each of
which may configure a different number of virtual interfades
each node, must be able to share a fixed (and likely small) aumb
of physical interfaces.

Problem: Virtual point-to-point connectivity To allow construc-
tion of arbitrary network topologies, VINI must also progid fa-
cility for constructing virtual “links” {.e., the appearance of di-
rect physical connectivity between any two virtual nodes)first
brush, providing this capability might seem simple: VINhcgim-
ply allow an experimenter to create the appearance of a lagk b
tween any two arbitrary nodes by building an overlay netwafrk
tunnels. In principle, this approach is the essence of olutisa,
but our desire to make VINI look and feel like a “real” netwerk
not just an overlay—presents additional complications.

Each virtual link must create the illusion of a physical linét
only in terms of providing connectivityi.., all physical nodes in
between two endpoints of any virtual link must know how to-for
ward traffic along that link) but also from the standpointe$aurce
control (.e., the performance of any virtual link should ideally be
independent of the other traffic that is traversing that majdink).



A primary concern is that the topology that an experimenséae
lishes in VINI should reflect to a reasonable degree the ptigge
of the corresponding links in the underlying network. Vattlinks
in a VINI experiment will, in many cases, not consist of a #ng
point-to-point physical connection, but may instead berlaie on
a sequence of physical links.

Providing this type of guarantee is challenging. First, savh
these “links” may bear very little correspondence to howyaia
two link between the same nodes might actually behave, siacle
IP link comprising a single virtual link may experience netiw
events such as congestion and failures independentlymaligiy,
as we discuss in Section 2.4, the underlying links in the agtw
may be shared by multiple topologies, and the traffic from exe
periment may affect the network conditions seen in anotivaral
network.

Problem: Exposure of underlying topology change# physical
component and its associated virtual components shoute hia.
Topology changes in the physical network should manifesinth
selves in the virtual topology. If a physical link fails, fekample,
VINI should guarantee that the virtual links that use thatgital
link should see that failure. For example, VINI should ndowl
the underlying IP network to mask the failure by dynamicady
routing around it. Without this requirement, experiments\iNI
would be subject to properties of the underlying networksstatte
(e.g, IP routing), and the designer of a new network protocohiarc
tecture, or management system would have trouble disshqg
properties of the new system from artifacts of the substrate

2.2 Flexible Forwarding and Routing

VINI must not only provide the flexibility for constructingetk-
ible network topologies, but it must also carry traffic ovhege
topologies. This requirement implies that VINI must supmapa-

bilities for forwarding {.e., directing traffic along a particular path)
and routing i.e., distributing the information that dictates how traf-

fic is forwarded). VINI must provide its users the flexibilityarbi-
trarily control how routing and forwarding over the virtuapolo-
gies is done. Forwarding must be flexible because diffengmtre
iments may require different virtual topologies. Routingshbe
flexible because each experiment may implement entirefgreifit
routing mechanisms and protocols. In this section, we desbow
VINI's design facilitates node-specific forwarding and ting.

Problem: Distinct forwarding tables per virtual nodeAs we de-
scribed in Section 2.1, different experiments may requiffergnt
topologies: Any given virtual node may connect to a différset

of neighboring nodes. For example, one experiment may use a

topology where every node has a direct point-to-point cotioe

with every other node, while another experiment may wisheto s

up a topology with significantly fewer edges. Supporting ifiéx
topology construction not only requires supporting flegibiter-
face configuration, but it also implies that the each toppladgjl
require different forwarding tables. In addition, VINI niuslso
allow experimenters to implement completely differentfarding
paradigms than those based on today’s IPv4 destinaticedifas-
warding. This implies that VINI must allow network experintg
to specify different forwarding mechanismesd, forwarding based

on sourceand destination, forwarding on tags or flat identifiers,

etc.).

Problem: Distinct routing processes per virtual nadeFor simi-
lar reasons of flexible experimentation, VINI must enablehesx-
periment to construct its own routing table and implemenbitn

routing policies. Thus, in addition to giving each slice thial-
ity to configure its own network topology and forwarding &dl
VINI must also allow each experiment to run its own distirmtr
ing routing protocols and processes. These routing presessich
each handle two cases: (1) discovering routes to destirsatvithin
VINI; and (2) discovering routes to external destinations.

2.3 Connectivity to External Hosts

A cornerstone of VINI is the ability to carry traffic to and fro
real end hosts, to allow researchers to evaluate their grist@nd
services under realistic conditions. This enalolesed-loopexper-
iments that capture how network behavior affects end-tb{mer-
formance and, in turn, how adaptation at the end systemtsffiee
offered traffic. Supporting real traffic requires the VINIsign to
address the following two problems.

Problem: Allowing end hosts to direct traffic through VINEnd
hosts should be able to “opt in” to having their traffic traseean ex-
periment running on VINI. For example, end users should tetab
connect to nearby VINI nodes and have their packets reagftesr
running on VINI, as well as external services (e.g., Webs$its
the existing Internet. This requires VINI to provide thaidion of
an access network between the end host and the VINI nodenand e
sure that all packets to and from the end host (or to/from Gopdar
application on the end host) reach the virtual node in thecpiate
virtual topology. The virtual nodes can then forward theaekets
across the virtual topology using the forwarding tablesstarcted
by the experimental routing software.

Problem: Ensuring return traffic from external services flows back
through VINI To support realistic experiments, VINI should be
able to direct traffic to and from external hosts that offemouni-
cation services, even if these hosts do not participate Mil.\For
example, a VINI experiment should be able to act as a stubanktw
that connects to the Internet to reach a wide range of coioreit
services (e.g., Web sites). Directing traffic from VINI tcetlex-
ternal Internet is not especially difficult. However, ensgrthat
the return traffic is directed to a VINI node, and forwardegtigh
VINI and onward to the end host, is more challenging.

Solving these two problems would enable a wide range of exper
iments with either synthetic or real users running real iappbns
that direct traffic over experimental network protocols ardvices
running on VINL. Ultimately, we envision that some VINI expe
ments could provide long-running services for end usersagpd-
cations that need better performance, security, and riljathan
they have today.

2.4 Support for Simultaneous Experiments

VINI should support multiple simultaneous experimentsitma:
tize the cost of deploying and running the physical infracture.
In addition, running several experiments at the same tirfosval
researchers to provide long-running services that attesttusers,
while still permitting other researchers to experimentwiéw pro-
tocols and services. Supporting multiple virtual topotsgat the
same time introduces two main technical challenges in thegde
of VINIL.

Problem: Resource isolation between simultaneous experiments
Each physical node should support multiple virtual nodes éne
each part of its own virtual topology. To provide virtual rsdwith
their own dedicated resources, each physical node shdolchtd



and schedule resources.d, CPU, bandwidth, memory, and stor-
age) so that the run-time behavior of one experiment doeadhot
versely affect the performance of other experiments rupomthe
same node. Furthermore, the resource guarantees msistdbein

the sense that they should afford an experiment no more—and n
less—resources than allocated, to ensure repeatabiliheafxper-
iments. Each virtual node also needs its own name spacesfile.g
names) and IP addresses and port numbers for communicatimg w
the outside world.

Problem: Distinct external routing adjacencies per virtual node
Multiple virtual nodes may need to exchange routing infdiorg
such as BGP announcements, with the same operational iauter
the external Internet. This is crucial for allowing eachwa topol-
ogy to announce its own address space to the external Ihimde
control where its traffic enters and leaves the network. Hewex-
ternal networks are not likely to establish separate rguirotocol
adjacencies with each virtual node, for two reasons. Fiser-
ational networks might reasonably worry about the stabiit a
routing-protocol session running on prototype softwarg@as of

a research experiment, especially when session failurésmn
plementation errors might compromise routing stabilityha real
Internet. Second, maintaining multiple routing-protoseksions
(each with a different virtual node) would impose a memoand>
width, and CPU overhead on the operational router. VINI must
address these issues to strike the right trade-off betwersiding
flexibility (for experimenters) and robustness (for theeemall net-
works).

In the next section, we describe how we address these chafien
in our prototype of VINI running on the PlanetLab nodes in the
Abilene backbone.

3. A VINI Implementation on PlanetLab

As a first step toward realizing VINI, we have built an initgab-
totype on the PlanetLab nodes in the Abilene backbone. Agho
we do not (yet) have dedicated bandwidth between the nodgs or
stream connectivity to commercial ISPs, this environmerathées
us to address many of the challenges of supporting virtualorés
on a fixed physical infrastructure. For extensibility andesaf pro-
totyping, we limit the changes to the PlanetLab OS, and auste
place many key functions in user space through careful cenfig
ration of the routing and forwarding software. In this sestiwe
describePL-VINI, our extensions to PlanetLab to support experi-
mentation with network protocols and services, and “Irgétn a
Slice” (IIAS), a network architecture th&L-VINI enables.

Table 1 summarizes how thHeL-VINI prototype addresses the
problems outlined in Section 2. The table emphasizes thahust
solve several problems in user space software (e.g., pnovehch
experiment with point-to-point connectivity and uniquevnerk in-
terfaces) that would ideally be addressed by the VINI infragure
itself. This division is a direct consequence our decisiorint-
plement our initial VINI prototype on PlanetLab; since Ritirab
must continue to support a large user base, we cannot made-ext
sive changes to the kernel. We expect more functionalityetpro-
vided by the infrastructure itself as we gain insight fronn imitial
experiences.

3.1 PL-VINI: PlanetLab Extensions for VINI
Our prototype implementation of VINI augments PlanetLathwi

features that improve its support for networking experitaeihis

goal appears to depart somewhat from PlanetLab’s origirssion,

which was to enable wide deploymentaMerlays—distributed sys-
tems that, like networks, may route packets, but that conicats
using socketsq.g, UDP tunnels) PL-VINIdoes, however, preserve
PlanetLab’s vision by enabling interesting and meaningétivork
protocols and services to be evaluated on an overlay; weilesc
one such network design in Section 3.2.

3.1.1 PlanetLab: Slices and Resource Isolation

PlanetLab was a natural choice for a proof-of-concept VIidlp
totype and deployment, both due to its large physical itfuas
ture and the virtualization it already provides. Virtualibn—the
ability to partition a real node and its resources into arnitiaty
number of virtual nodes and resource pools—is a definingirequ
ment of VINI. PlanetLab isolates experiments in virtualvees
(VServers) [20]. Each VServer is a lightweight “slice” okthode
with its own namespace. Because of the isolation provideelay-
etLab, multiple VINI experiments can run on the same PlaaletL
nodes simultaneously in different slices.

VServers enable tight control over resources, such as CEU an
network bandwidth, on a per-slice (rather than a per-ppoesa
per-user) basis. The PlanetLab CPU scheduler grants eaehasl
“fair share” of the node’s available CPU, and supports terago
share increase®.@, via Sirius [21]). Similarly, the Linux hierar-
chical token bucket (HTB) scheduler [22] provides fair ghac-
cess to, and minimum rate guarantees for, outgoing netwenmkl-b
width. Network isolation on PlanetLab is provided by a medul
called VNET [23] that tracks and multiplexes incoming andgoud
ing traffic. VNET provides each slice with the illusion of teevel
access to the underlying network device. Each slice hasactcdy
to its own traffic and may reserve specific ports.

3.1.2 Improved CPU Isolation

PlanetLab provides a fair share of the CPU resources to each
slice, but fluctuations in the CPU demands of other sliceswake
running repeatable networking experiments challengifhg. node
supports a large number of slices, a routing process rurininge
slice may not have enough processing resources to keep bp wit
sending heartbeat messages and responding to events, and a f
warding process may not be able to maintain a desired thpuigh
Many slices simultaneously contending for the CPU can adad |
to jitter in scheduling a forwarding process, which mangetself
as added latency in an overlay network.

PL-VINI leverages two recently exposed CPU scheduling knobs
on PlanetLab: CPU reservations and Linux real-time piesif24].

A CPU reservation of 25% provides the slice with a minimum of
25% of the CPU during the times that it is active, though it may
get more than this if no “fair share” slice are running. Baugta
process to real-time priority on Linux cuts the time betwadren

a process wakes up (e.g., receives a packet) and it runsl-fimea
process that becomes runnable immediately jumps to the dfead
the run-queue and preempt any non-real-time process. MNate t
even real-time processes are still subject to PlanetLaBld f2ser-
vations and shares, so a real-time process that runs amaolotcan
lock the machine. These two PlanetLab capabilities progidater
isolation for a VINI experiment running in a slice. In Secti®.4 we
describe several additional extensions we are explorimydeide
even better isolation betwe@_-VINI slices.

3.1.3 Virtual Network Devices

A networking experiment running in a slice in user space seed
the illusion that each virtual node has access to one or neiveonk
devices. Our prototype leverages User-Mode Linux (UML)][25



a full-featured Linux kernel that runs as a user-space gder
this purpose. For each user-space tunnel in our overlaydgpo

PL-VINI creates a pair of interfaces on a common subnet in the

UML instances at its endpoints. Routing software runnirgida
UML is in this way made aware of the structure of an overlay net

that IIAS can also usPL-VINI's tap0 device as an ingress/egress
mechanism for applications running oiPa-VINI node.

3.2.1 Click: Links and Packet Forwarding
IIAS uses the Click modular software router [10] as its \attu

work. PL-VINI then maps packets sent on these network interfaces data plane. Our Click configuration consists of five comptsien

to the appropriate tunnel at a layer beneath UML. We note\that
olin [6] also uses an overlay network to connect UML instance
However, the goal of Violin is tdide topology from Grid applica-
tions, wherea®L-VINI uses network interfaces in UML &xpose
a tunnel topology to the routing software that runs above it.

Our prototype also uses a modified version Linux’s TUN/TAP
driver to allow applications running in the networking erpe
ments'’s slice to send and receive packets on the overlay. oA pr
cess running in user space can read frafev/net/tunX to re-
ceive packets routed by the kernel to the TUN/TAP device;- sim
ilarly, packets written to/dev/net/tunX are injected back into
the kernel’s network stack and processed as if they arrikad &
network device. Our modifications to the driver allow it taepr
serve the isolation between different slices on PlanetlLeery
slice sees a single TUN/TAP interface with the same IP addres
but our changes allow multiple processes (in differeneslj¢o read
from /dev/net/tunX simultaneously, and each will only see pack-
ets sent by its own slice.

For PL-VINI, we create a virtual Ethernet device calteh0 on
every PlanetLab node. We give eachkp0 device a unique IP ad-
dress chosen from the 10.0.0.0/8 private address spacemiEains
that each PlanetLab node’s kernel will route all packetschiag
10.0.0.0/8 tocap0 and therefore onto that slice’s own overlay net-
work.

3.2 1IAS: “Internet In a Slice” Architecture

Thelnternet In a Slic€llAS) is the example network architecture
that we run on ouPL-VINI . Researchers can use IIAS to conduct
controlled experiments that evaluate the existing IP nmufiroto-
cols and forwarding mechanisms under realistic conditigxiter-
natively, researchers can view IIAS as a reference impléatien
that they can modify to evaluate extensions to today’s patoand
mechanisms. An IIAS consists of five components [26]:

1. aforwarding engine for the packets carried by the oveday
overlayrouter);

2. a smart method of configuring the engine’s forwardingesabl
(acontrol plang; and

that create the illusion of point-to-point links to othertual nodes
and enable the virtual nodes to forward data packets:

e UDP tunnels: UDP tunnelsi(e., sockets) are the links in the
IIAS overlay network. Each Click instance is configured with
tunnels to each of its neighbors in the overlay.

e Local interface: Click reads and writes Ethernet packets to
PL-VINI's local tap0 interface. Packets sent by local appli-
cations to a 10.0.0.0/8 destination are forwarded by the ker
nel totap0 and then are received by Click. Likewise, Click
writes packets destined farap0's IP address taap0, in-
jecting the packets into the kernel which delivers them o th
proper application.

e Forwarding table: Click’s forwarding table maps IP pre-
fixes (both within and outside of 1IAS’s private address
space) to “next hops” within 1IAS. The forwarding table is
initially empty and is populated by XORP. Note that the “next
hops” inserted by XORP are the IP addresses of its immedi-
ate neighbors’ UML interfaces.

e Encapsulation table: Click’s forwarding table maps the IP
destination of each packet to a next hop corresponding to
a UML interface. The preconfigured encapsulation table
matches the next hop to a UDP tunnel by mapping it to the
public IP address of a PlanetLab node.

e UML Switch: Click exchanges Ethernet packets with the lo-
cal UML instance via a virtual switch.

Two points about the IIAS data plane are worthy of note. First
the forwarding table in IIAS controls both how data and cohtr
traffic is forwarded between IIAS nodes, and how traffic is- for
warded to external destinationise(, on the “real” Internet). Sec-
ond, though IIAS currently performs IP forwarding, we cascal
support new forwarding paradigms beyond IP—for example, on
could implement DHT-based addressing and forwarding sirhpl
writing new forwarding and encapsulation table elementkefhet
frames are exchanged with UML and the local interface todaeoi
dependence on IP.

3. a mechanism for clients to opt-in to the overlay and divert 3.2.2 XORP: Unique Interfaces and Routing

their packets to it, so that the overlay can carry real trédfic
overlayingress;

4. a means of exchanging packets with servers that don’'t know
anything about the overlay, since most of the world exists

outside of it (an overlaggress$;

5. a collection ofdistributed machinesn which to deploy the

overlay, so that it can be properly evaluated and can attract

real users.

Our 1IAS implementation synthesizes many components edeat
by the networking research and open source communitiesS [IA
employs the Click modular software router [10] as the foxwar
ing engine, the XORP routing protocol suite [9] as the cdntro
plane, OpenVPN [11] as the ingress mechanism, and perfoAfis N
(within Click) at the egress. We run IIAS dPL-VINI, meaning

IIAS uses the XORP open-source routing protocol suite [9sas
control plane. XORP implements a number of routing protecol
including BGP, OSPF, RIP, PIM-SM, IGMP, and MLD. XORP ma-
nipulates routes in the data plane through a Forwardingriengjb-
straction (FEA); supported forwarding engines include ltiraix
kernel routing table and the Click modular software routehni¢h
is why we chose XORP for IIAS).

The main complication to running XORP on PlanetLab is a lack
of physical interfaces to correspond to each virtual linkum con-
figuration. XORP generally assumes that each link to a neighb
ing router is associated with a physical interface; OSPB ats
signs costs to network interfaces. In our Click data planteri
faces conceptually map to sockets and links to tunnels. eftwe,
to present XORP with a view of multiple physical interfaces
run it in UML and map packets from each UML interface to the
appropriate UDP tunnel in Click.
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Figure 1: The life of a packet in IIAS (shown shaded) running o PL-
VINI (dotted box)

An important feature of IIAS is that it decouples the contaot
data planes by placing the routing protocol in a differemtual
world than the forwarding engine. In fact, decoupling thetool
and data planes in this way means that XORP could run in ardiffe
ent slice than Click, or even on a different node.

3.2.3 OpenVPN and NAT: External Connectivity

IIAS is intended to enable realistic experiments by cagyieal
traffic generated by outside hosts, as well as applicationsing
on IIAS nodes themselves. 1IAS uses OpenVPN [11] as an isgres

1. Firefox sends a packet to CNN. The routing table of thetlie
directs the packet to the locedp0 device that was created by
OpenVPN. This device bounces the packet up to the Open-
VPN client on the same machine. The packet has a source
of 10.0.87.2 (the locatap0 address) and a destination of
64.236.16.20 (the IP address of CNN'’s web server).

2. The OpenVPN client tunnels the packet over UDP to an
OpenVPN server running on a nearby IIAS node. The packet
is encapsulated in IP, UDP, and OpenVPN encryption head-
ers. The OpenVPN server removes the headers and forwards
the original packet to Click over a local Unix domain socket.

. Click looks up 64.236.16.20 in its forwarding table anchsa
it to the IP address of a UML interface on a neighboring node.
Click consults the encapsulation table to map the UML ad-
dress t0 198.32.154.250 (the real IP address of the next hop)
and sends the packet over a UDP tunnel to the latter address.
The same process happens again on the next node.

. The Click process running on 198.32.154.226 receives the
original packet from a UDP tunnel, consults the forward-
ing table, and discovers that it is the egress node for
64.236.16.20. Click sends the packet through its NAPT ele-
ment, which rewrites the source IP address to the lechd
address, and rewrites the source port to an available local p
(port rewriting is not shown in Figure 1). Click then directs
the packet tarww . cnn. com via the public Internet.

mechanism; IIAS runs an OpenVPN server on a set of designated Then, the packet traverses the rest of the path through temét

ingress nodes, and hosts “opt-in” to a particular instarfckAS

by connecting an OpenVPN client that diverts their traffiche
server. OpenVPN is a robust, open-source VPN access tegynol
that runs on a wide range of operating systems and suppatge |
user community. Note that OpenVPN creates a TUN/TAP device o
the client to intercept outgoing packets from the operasiygtem,
just as we do iPL-VINI and IIAS.

IIAS’s Click forwarder implements NAPT (Network Address
and Port Translation) to allow hosts participating in [I1A® ex-
change packets with external hosts that have not “optedlik€ a
Web server). IIAS forwards packets destined for an extenoat
to an egress point, where they exit IIAS via NAPT. This inadv
rewriting the source IP address of the packet to the the egage’s
public IP address, and rewriting the source port to an dviailacal
port. After passing through Click's NAPT element, a packetent
out and forwarded to the destination by the “real” Internsibte
that, since the packets reaching the external host beartirees
address of the IIAS egress node, return traffic is sent badhatio
node, where it is intercepted by IIAS and forwarded back ® th
client.

PL-VINI’s tap0 interface provides another ingress/egress mech-
anism for other applications running in the same slice aS!IFor
example, XORP uses it to send OSPF packets to its neighbuats, a
in our experiments described in Section 4, we sepelrf packets
through the overlay usingapO.

3.2.4 IIAS Summary: Life of a Packet

Figure 1 ties together the discussion of the various pietBs 8
by illustrating the life of a packet as it journeys througle thAS
overlay. In Figure 1, the Firefox web browser on the clienthiae
at left is sending a packet toww.cnn. com at right through IIAS
(shown shaded). The steps along the packet’s journey are:

to the CNN Web server. The response packets from CNN have a
destination IP address of 198.32.154.226, ensuring theynréo
the client through the VINI node.

4. Preliminary Experiments

In this section, we describe two experiments that we havérrun
IIAS on PL-VINI. These experiments are intended not to demon-
stratePL-VINI as a “final product”, but rather as a proof of concept
that highlights the efficiency, correctness, and utilitytioé VINI
design. The microbenchmark experiments (Section 4.1) demo
strate thafPL-VINI provides a level of support for networking ex-
periments comparable to running on dedicated hardwamyiald
the experiment’s throughput and traffic flow charactersstacmir-
ror that of the underlying network. Next, intra-domain iiagtex-
periments (Section 4.2) on the Abilene topology demorestifaat
meaningful results for such experiments can be obtainedy#i-
VINI on PlanetLab.

4.1 Microbenchmarks

The purpose of the microbenchmarks is to demonstratePthat
VINI can support an interesting networking experiment on Planet
Lab. To this end, we first establish that the IIAS overlay velsa
like a real network when run on dedicated hardware in antisdla
environment, and then show tHRaL-VINI can provide IIAS with a
similar environment on PlanetLab.

In order to provide a realistic environment for network expe
mentation,PL-VINI must enable IIAS to deliver along two dimen-
sions:

e capacity: To attract real users and real traffic, IIAS must be
able to forward packets at a relatively high rate. If IIAS’s
performance is bad, nobody will use it.
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Figure 3: Overlay topology on DETER

e behavior: To boost our confidence that observed anomalies
are meaningful network events and not undesirable arifact
of thePL-VINI environment, 11AS should exhibit roughly the
same behavioral characteristics as the underlying network

mean (Mb/s) | stddev | mean CPU%
Network 940 0 48
IIAS 195 0.843 99

Table 2: TCP throughput test on DETER testbed

min avg | max | mdev | % loss
Network | 0.193 | 0.414| 0.593| 0.089 0
IIAS 0.269 | 0.547 | 0.783| 0.080 0

Table 3: ping results on DETER; units are ms

of the throughput with an equal amount of CPU. The throughput
achieved by the Linux kernel, 940Mb/s, was roughly the maxim
supported by the configuration, and even at this maximumtinate
CPU of Fwdr was 52% idle. In comparison, Click's forwarding
rate is CPU-bound. Runningtrace on the Click process indi-
cates (not surprisingly) that the issue is system-call leead: for

We run two sets of experiments to measure the capacity and be-8ach packet forwarded, Click cal®11, recvfrom, andsendto

havior of 1IAS. The first set of experiments runs on dedicated
chines on DETER [16], which is based on Emulab [15]; we qdianti
the efficiency of the IIAS overlay by evaluating the perfonoa of
DETER'’s emulated network topology versus IIAS running dveit
same topology. The second set of experiments repeats thERET
experiments on PlanetLab; here we quantify the effects ofimgo
IIAS from dedicated hardware (DETER/Emulab) to a sharett pla
form (PlanetLab), and then show how PL-VINI's support forlCP
reservations and real-time priority reduce CPU contention

The microbenchmark experiments are run usipgrf version
1.7.0[27]. We measure capacity usingerf’s TCP throughput test
to send 20 simultaneous streams from a client to a serveughro
the underlying network anBL-VINI . We measure behavior with
iperf’s constant-bit-rate UDP test, observing the jitter andslos
rate of packet streams (with 1430-byte UDP payloads) ofingry
rates. Each test is run 10 times and we report the mean arghstin
deviation. When measuring the capacityPafVINI, we also report
the mean CPU percentage consumed by the Click process {bsing

TIME field as reported bys).
4.1.1 Microbenchmark #1: Overlay Efficiency

First we compare the capacity and behavior of IIAS’s usacep
Click forwarder versus in-kernel forwarding. The expenitgeare
run on the DETER testbed, which allows a researcher to spanif
arbitrary network topology for an experiment, includingdated
link characteristics such as delay and loss rate, using script.
The machines used in the experiment p¢@800 2.8 GHz Xeons
with 2 GB memory and five 10/100/1000 Ethernet interfaced, an

are running Linux 2.6.12.

Our experiments run on a simple topology shown in Figure 2,
consisting of three machines connected by Gigabit Ethdimet
that do not have any emulated delay or loss. In this topoltwy,
machineFwdr is configured as an IP router; a packet sent f@m
to Sink or vice-versa, is forwarded iRwdr's kernel. We compare
the performance of the network with that of IIAS running oe th
same three nodes. We configure a Linux TUN/TAP device on each
node to divert packets sent hyerf to the local Click process.
Click then tunnels the packets over the topology as showrign F
ure 3. The key difference between the two scenarios is tA& I
makes the the forwarding decisions in user-space ratherithze

Linux kernel.

Table 2 shows the results of the TCP throughput test for ths Il
overlay versus the underlying network. Clearly IIAS is neaily
as efficient as the network alone: it manages to achieve dld8at

once, andgettimeofday three times, with an estimated cost of
5us per call. Forsendto andrecvfrom, this cost appears to be
independent of packet size. Reducing this overhead isdutork.
However, stepping back, we observe that even 200Mb/s isif-sig
icant amount of throughput for a networking experiment,tdari
outstrips the available bandwidth between edge hosts imtamet
today.

Next we compare the fine-grained behavior of the network and
IIAS. Table 3 shows the results of measuring latency on tleelay
and network usingping -f -c 10000. We see that IIAS adds
about130us latency on average, but doesn’t change the standard
deviation of ping times. Likewise, running UDP CBR strearhs a
rates from 1Mb/s to 100Mb/s over the network and IIAS did not
reveal significant jitter in either case. In all UDP CBR tesiserf
observed jitter of less than 0.1ms and no packet losses.

4.1.2 Microbenchmark #2: Overlay on PlanetLab

The next set of microbenchmarks contrasts the behavioA& |1
running on dedicated hardware (DETER) to a shared platform
(PlanetLab) anL-VINI. Our main concern is that the activities of
other users on a shared system like PlanetLab can negaaiffett
the performance of IIAS. To test this, we repeat the exparise
of Section 4.1.1 on three PlanetLab nodes co-located wiiteAd
PoPs. Figure 4 shows the topology of the PlanetLab nodeshend t
underlying Abilene network, as revealed by runnifigaceroute
between the three nodes. The Chicago and Washington DC Plan-
etLab nodes are 1.4 GHz P-lll, and the New York node is a 1.267
GHz P-1I; all nodes have 1 GB of memory. Again, we compare the
capacity and behavior of IIAS with that of the underlyingwetk.
Note that the network traffic between Chicago and Washintyten
verses the three routers only, but IIAS traffic traveries router
hops since it is forwarded by the Click process on the New York
node and so visits the local router twice. Because the linkke
Abilene backbone are lightly loaded, we do not expect to gge s
nificant interference from cross traffic.

PlanetLab makes running meaningful experiments chaltengi
because it is shared among many users, whose actions mayechan
the experimental results. The Emulab microbenchmarksételi
that CPU contention in particular is likely to be a problem Ri.-
VINI on PlanetLab; howevePL-VINI uses CPU reservations and
real-time priorities to provide consistent CPU scheduliegavior.
Therefore, we run our experiments from Section 4.1.1 usiag-P
etLab’s default fair share (“llAS on PlanetLab”), as wellaa&5%
CPU reservation plus a priority boost for the IIAS Click pess



New York

planetlabl.nycm
(fwdr)

Chicago

planetlabl.chin
(src)

Washington Dt

planetlabl.we
(sink)

Figure 4: PlanetLab topology for microbenchmarks

Mb/s | stddev | CPU%
Network 90.8 0.53 N/A
IIAS on PlanetLab|| 22.5 4.01 13
IIAS on PL-VINI 86.2 0.64 40

Table 4: TCP throughput test on PlanetLab

(“IAS on PL-VINI " in the tables and graphs). The CPU reserva-
tion improves the overall capacity of IIAS by giving it moré>O,
while the boost to real-time priority reduces the schedulatency
of the Click process and so improves end-to-end overlantgte

Table 4 shows the results of the bandwidth test with bothafets
CPU scheduling parameters. We note that, \RithVINI, IIAS ap-
proaches the underlying network in both observed througapd
variability of the result. Running IIAS oRL-VINI provides a 4X
increase in throughput and reduces variability by over 80%.

Focusing on fine-grained behavior of IIAS on PlanetLab, @&bl
presents results using ping. IIAS clearly introduces $icgunt vari-
ability in the latency measurements when run with the défhare:
the standard deviation iAL-VINI ping times is over 20X that of the
network. PL-VINI again improves 1IAS’s overall behavior, reduc-
ing maximum latency by two-thirds and standard deviatiommsr
90%. In this case IIAS introduces a small amount of addifitaa
tency, and the variability in ping times is roughly doublattbf the
underlying network.

Table 6 shows the effects BL-VINI on jitter in the IIAS overlay.

min | avg | max | mdev | loss

Network 2441 245] 282| 0.2 | 0%
IIAS on PlanetLab|| 24.7 | 27.7| 80.9| 4.8 | 0%
IIASonPL-VINI || 24.7| 25.1| 28.6 | 0.38 | 0%

Table 5: ping results on PlanetLab; units are ms

mean | stddev
Network 0.27 0.16
IIAS on PlanetLab|| 2.4 3.7
IIAS on PL-VINI 1.3 0.9

Table 6: Summary of jitter results on PlanetLab; units are ms

with the eleven routers in the Abilene backbone, as showrign F
ure 6. To conduct a realistic experiment, we configure 1Aghwi
the same topology and OSPF link weights as the underlying Abi
lene network, as extracted from the configuration stateeétbven
Abilene routers. That is, each virtual link maps directlyatgin-
gle physical link between two Abilene routers. Analyzingitro
ing traces collected directly from the Abilene routers deslus to
verify that the underlying network did not experience anytirag
changes during our experiment.

Our experiment injects a failure, and subsequent recowétlie
link between Denver and Kansas City, and measures the &ffect
end-to-end traffic flows. For this experiment, we “fail” thiel
by dropping packets within Click on the virtual link (UDP )
connecting two Abilene nodes, and at the same time deletiag t
interface from XORP’s OSPF configuratfonWe use ping, iperf,
and tcpdump to measure the effects on data traffic. Expetsmen
such as this can help researchers study routing patholtgieare
difficult to observe on a real network, where a researchembas
control over network conditions.

Figure 7 shows the effect on ping times between DC and Seattle
of failing the link between Kansas City and Denver 12 secomtis
the experiment, and restoring the link at time 38 second8allg,

The experiment sends CBR streams between 1Mb/s and 50Mb/s orl!AS routes packets from DC through New York, Chicago, Indi-

the network and overlay; jitter did not appear to be coreglatith
stream size and so we report the the jitter results acrosgeiims.
Here we see that running IIAS dPL-VINI halves the mean jitter
and reduces the variation in test results by 75%.

anapolis, Kansas City, and Denver to Seattle, with a meandrou
trip time (RTT) of 76 ms. When the link fails at time 12, XORP’s
OSPF takes 12 seconds to find a new route through Atlanta,-Hous
ton, Los Angeles, and Sunnyvale, with a mean RTT of 93.ms

Figure 5 shows packet loss in the same set of experiments. In-After the link comes back up at time 38, we see another 12 siscon

terestingly, with the default share on PlanetLab, IIAS $ogackets
dramatically as the traffic rate increases as shown in Fig(ag
Our hypothesis is that this is due to scheduling latency ®Ghick
process: packets are arriving at a constant rate on the Ufeltu
and Click needs to read them at a faster rate than they avéngrri
or else the UDP socket buffer will overflow and the kernel aithp
packets. However, if Click’s scheduling latency is highmiy not
get to run before packets are dropped. This hypothesis feomud
by running I1AS inPL-VINI : here, we measure packet loss in IIAS
comparable to that measured in Abilene itself.

We conclude from these microbenchmarks tR&atVINI and
IIAS together provide a close approximation of the undexdynet-
work’s behavior. Clearly, running traffic through an ovgridoes
introduce some overhead and additional variability. Inrtaet ex-
periment we try to demonstrate that the value of being abtero
IIAS using PL-VINI outweighs this additional overhead.

4.2 Intra-domain Routing Changes

To validate that together IIAS arfeL-VINI provide a reasonable
environment for network experiments, we use them to conduoct
intra-domain routing experiment on the PlanetLab nodelecated

of delay before the RTT increases briefly to 103 ms. We hypothe
size that these larger RTTs correspond to an intermediagg st
the convergence process, where data packets are briefgrnay
longer paths or even a forwarding loop. Finally, 52 seconttsthe
experimentPL-VINI returns to the initial state with an RTT of 76
ms.

Figure 8 shows another run of the same experiment, this time
using iperf to send a bulk TCP transfer from Washington DC to
Seattle. The TCP window size is setigerf’s default of 16 KB, so
TCP’s throughput is limited by the window size to around 3 8b/
The figure plots the arrival time of data packets at the reces
reported bytcpdump. At time 12 we fail the link and packets stop
getting through, as shown in Figure 8(a); at approximaiefg t30

2Dropping all packets on the virtual link should be enoughaose OSPF
to choose new routes. However, due to a bug in XORP, we alsdedee
to manually modify XORP’s OSPF configuration to trigger itsend out
new LSAs. We have notified the XORP team about the problem kmdtp
rerun the experiments once the bug is fixed. Although not witiai goal,
this experience illustrates that our IIAS deployment pdesi a valuable en-
vironment for testing routing software under a wide rangeasfditions.
3XORP has a built-in 5-second delay in recalculating theer¢aitle, and the
script that modifies XORP's OSPF configuration takes 3 sezoBgploring
the remaining sources of convergence delay is the subjestgding work.
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a new route is found and the TCP transfer continues. Figurg 8(

shows what happens at time 30 in more detail. Here we canclear (b) TCP slow-start restart after new route is found

see TCP slow-start restart in action and each individuatioinof

data arriving at the receiver. The link is brought back upiraet

38. At time 52, the throughput increases slightly after tngting - .

protocol converges back to the old path with the smaller detuip S. Pt‘OVIdIng Greater Control and Realism

time. In this section, we discuss our ongoing work on VINI, as byiefl
These experiments do not illustrate any new discoveriesitabo summarized in Table 1. In particular, we have yet to addrdes/a

OSPF or its interaction with TCP. Rather, we argue that they of the design goals from Section 2; in this section, we dbsgubs-

Figure 8: TCP throughput during OSPF routing convergence

demonstrate oneould make such discoveries usif}--VINI and sible solutions to these problems. First, we discuss twosway
IIAS, sincePL-VINI enables IIAS to behave like a real network on  expose experiments in VINI to more realistic network coiodis,
PlanetLab. by exposing the underlying topology changes and enablipgrex
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iments to exchanging routing-protocol messages with fighg
domains. Then, we discuss how to offer researchers with owre
trol over their experiments, and a seamless migration frepee-
ments in a simulator (like ns-2) or a testbed (like Emulat®valu-
ating their ideas in VINI. Finally, we discuss techniquegtovide
better isolation between experiments.

5.1 Exposing Real Topology Changes

As discussed in Section 2.1, the failure or recovery of a phys
cal component should affect each of the associated virtwrapo-
nents. Our PL-VINI prototype does not achieve this goal beea
the underlying network automatically reroutes the traffitvien
two IIAS nodes when the topology changes. Although masking
failures is desirable to most applications, researchergyugINI
may want their protocols and services to adapt to these etleein-
selves, in different ways; at a minimum, the researcherddwwant
to know that these events happened, since they may affecethe
sults of the experiments. As we continue working with NLR and
Abilene, we are exploring ways to expose the topology chabge
VINI in real time, and extending our software to perform “afis”
to notify the affected slices.

5.2 Participating in Interdomain Routing

As discussed in Section 2.4, multiple VINI experiments may
want to exchange reachability information with neighbgrimet-

We envision that the specification of an actual experimentliévo
be a part of a larger experimental workflow, where aspectssoéx-
periment, such as topologies, routing configurations, aifdrés,
could be driven by “real world” routing configurations and ane
surements. PL-VINI's current machinery for mirroring thbikene
topology automatically generates the necessary XORP aia#t Cl
configurations (and determines the appropriate co-locatelds at
PlanetLab PoPs) for a VINI experiment from the actual Alglen
routing configuration, exploiting the configuration-pagsifunc-
tionality from previous work on router configuration chewi[12].
Eventually, we intend to augment VINI to incorporate moreaf
routing configuration into XORP and Click and also suppoatypl
back of routing traces.

5.4 Providing Isolation Between Experiments

As discussed in Section 2.4, VINI should be able to suppoft mu
tiple simultaneous experiments with strict resource gutaks for
each slice. Adding support for CPU reservations and read-fpri-
ority helps isolate a PL-VINI experiment from other slicbaf PL-
VINI arguably needs better isolation. The first step is to lenp
ment a non-work-conserving scheduler that ensures that @ac
periment always receives the same CPU allocatien (either less
nor more), which is necessary for repeatable experimentalldw
researchers to vary link capacities, we also plan to addastibar
setting link bandwidths, either via configuration of traf§icapers
in Click, or in the kernel itself.

works in the real Internet. Having each virtual node maimsaipa- . .
Recall from Section 3 that, in order to create the appearance

rate BGP sessions introduces problems with scaling (bectnes £ multiple interf. ded t dify XORP o all
number of sessions may be large as the number of experimentsOf Multiple interfaces, we needed to modify 0 aflow-con

grows), management (becausath sides of the BGP session must
be configured), and stability (unstable, experimental \ibiting
software could introduce instability into neighboringwetks, and
the rest of the Internet).

To avoid these potential issues, we are designing and ingsiem
ing a multiplexer that manages the BGP sessions with nergitpo
networks and forwards (and filters) routing protocol messédae-
tween the external speakers and the BGP speakers on thal virtu
nodes. Each experiment might have its own portion of a laager
dress block that has already been allocated to VINI. Theiptexer
would ensure that each virtual node announces only its owread
space and potentially impose limits on the rate of BGP upufes-
sages that are propagated from each experiment. Our cprant
type of the BGP multiplexer is implemented as multiple inses
of XORP, each running in UML and communicating with a single
external speaker. Each instance of XORP maintains BGPog&sssi
with the routing software running on the virtual nodes, towalex-
periments to exchange BGP messages with neighboring demain

5.3 Specifying and Running an Experiment

Beyond the existing support for constructing arbitraryologies
and failing links, VINI should also provide the ability ®&pecify
experiments. In anssimulation [13], an experimenter can generate
traffic and routing streams, specify times when certaindisitould
fail, and define the traces that should be collected. VINlustho
provide similar facilities for creating an experiment. Wevision
that VINI experiments would be specified using the same tyjpe o
syntax that is used to construts or Emulab [15] experiments, so
that researchers can move an experiment from Emulab to \ANI a
seamlessly as possible, as part of a natural progressionargVe
currently working on such a specification, which alreadgwadi an
experimenter to specify the underlying topology, the idtraain
routing adjacencies and internal BGP sessions, and ths timese
links and sessions fail.
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figuration of dummy interfaces. To allow XORP to run unmodi-
fied in PL-VINI, we are currently experimenting with extemss to
PL-VINI to run XORP in User-Mode Linux (UML). Our prelimi-
nary results suggest that running Click in UML would compigen
packet-forwarding performance too much. As such, we aresinv
tigating ways to run XORP in UML separately from Click, as el
as running Click in the kernel, on dedicated hardware, dn.bot

6. Conclusion

This paper has described the desigrivaiil, a virtual network
infrastructure for supporting experimentation with netkvproto-
cols and architectures in a realistic network environmevitNI
complements the current set of tools for network simulatod
emulation by providing a realistic network environment veisy
real routing software can be evaluated under realistic ortwon-
ditions and traffic loads with closed-loop experimentatidfe first
outlined the case for VINI, providing both design principland
an implementation-agnostic design. Based on this higéHMiNI
design, we have presented one instantiation of VINI on tlza-PI
etLab testbed?PL-VINI. Our preliminary experiments in Section 4
demonstrate th&L-VINI is both efficient and a reasonable reflec-
tion of network conditions.

Once VINI is capable of allowing users to run multiple vittua
networks on a single physical infrastructure, it may algonately
serve as a substrate for new network protocols and servizasrfg
it useful not only for research, but also for operations).c8ee
VINI also provides the ability to virtualizany component of the
network, it may lower the barrier to innovation for netwdayer
services and facilitate new usage modes for existing potgodVe
now briefly speculate on some of these possible usage modes.

First, VINI allows a network operator to simultaneously run
different routing protocols (and even different forwamglimecha-
nisms) for different network services. Previous work hasenbed
that operators occasionally route external destinatiatisam inter-



nal routing protocol €.g, OSPF, IS-1S) that scales poorly but con-
verges quickly for applications that require fast convamgeg.g,
voice over IP) [12]. With VINI, a network operator could rurutti-
ple routing protocols in parallel on the same physical istinacture
to run different routing protocols for different applicatis.

Second, VINI could be used to help a network operator with
common network management tasks. For example, operators ro
tinely perform planned maintenance operations that maghev
tweaking the configurations across multiple network eleéséng,
changing IGP link costs to redirect traffic for a planned rtein
nance event). Similarly, they may occasionally wish to émeen-
tally deploy new versions of routing software, or test blagebdge
code. A VINI-enabled network could allow a network operator
to run multiple routing protocols (or routing protocol vienss) on
the same physical network, controlling the forwarding ¢éahh the
network elements in one virtual network at any given timeijlevh
providing the capability for atomic switchover betweertwal net-
works.

VINI's future appears bright, both as a platform for both exp
imentation and more flexible network protocols and servidéss
paper has demonstrated VINI's feasibility, as well as itseeptal
for enabling a new class of controlled, realistic routingenments.
The design requirements we have specified, and the lessdmswme
learned from our initial deployment, should prove usefuason-
tinue to develop VINI and deploy it in various forms.
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